WO2020039930A1 - 有機発光素子、組成物および膜 - Google Patents

有機発光素子、組成物および膜 Download PDF

Info

Publication number
WO2020039930A1
WO2020039930A1 PCT/JP2019/031127 JP2019031127W WO2020039930A1 WO 2020039930 A1 WO2020039930 A1 WO 2020039930A1 JP 2019031127 W JP2019031127 W JP 2019031127W WO 2020039930 A1 WO2020039930 A1 WO 2020039930A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
general formula
substituted
unsubstituted
Prior art date
Application number
PCT/JP2019/031127
Other languages
English (en)
French (fr)
Inventor
一 中野谷
琢次 畠山
靖宏 近藤
笹田 康幸
梁井 元樹
展耀 陳
正樹 田中
大貴 野田
安達 千波矢
善丈 鈴木
直人 能塚
Original Assignee
国立大学法人九州大学
学校法人関西学院
株式会社Kyulux
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 学校法人関西学院, 株式会社Kyulux, Jnc株式会社 filed Critical 国立大学法人九州大学
Priority to US17/270,158 priority Critical patent/US11937495B2/en
Priority to EP19852474.6A priority patent/EP3843168B1/en
Priority to CN201980055066.1A priority patent/CN112585778A/zh
Priority to KR1020217008517A priority patent/KR20210055712A/ko
Priority to JP2020538291A priority patent/JP7226718B2/ja
Publication of WO2020039930A1 publication Critical patent/WO2020039930A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic light emitting device, a composition and a film.
  • Patent Literature 1 describes that a polycyclic aromatic compound in which a plurality of aromatic rings are linked by a boron atom, a nitrogen atom, or the like is useful as a light-emitting material of an organic electroluminescence device.
  • Patent Document 2 describes that a delayed fluorescent material having a lowest excited singlet energy level between the light emitting material and the host material is added to a light emitting layer containing the light emitting material and the host material.
  • a delayed fluorescent material in an excited state, an inverse intersystem crossing from an excited triplet state to an excited singlet state is likely to occur, so that not only the excited singlet state but also the excited triplet state passes through the inverse intersystem crossing. Can be used for light emission. For this reason, it is described that the luminous efficiency of the organic electroluminescence element can be improved by adding a delayed fluorescent material.
  • the luminous efficiency of the organic electroluminescent device is certainly improved.
  • the luminous efficiency is improved by adding the delayed fluorescent material, the luminous efficiency has often not yet reached a satisfactory level.
  • a sufficiently high external quantum yield can be realized for a blue light emitting device.
  • the present inventors have studied to find a combination of materials that can provide an organic light-emitting element having high luminous efficiency.
  • the study was conducted with a view to finding a combination of materials that could pave the way for realizing a highly efficient blue light-emitting element.
  • it is possible to provide an organic light emitting device having high luminous efficiency by using a combination of a polycyclic aromatic compound having a specific structure and a delayed fluorescent material having a specific structure.
  • An organic light emitting device including both a compound having one or more structures represented by the following general formula (1) and a compound represented by the following general formula (2).
  • ring a, ring b and ring c each independently represent a benzene ring which may be condensed with another ring to form an aryl ring or a heteroaryl ring; At least one hydrogen atom in may be substituted.
  • R 1 and R 2 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded by a benzene ring.
  • R 1 represents —O—, —S—, —C (—R c1 ) 2 — or a carbon atom adjacent to the bonding position (atom) to N in the ring a and / or c by a single bond. They may be combined.
  • R 2 represents —O—, —S—, —C (—R c2 ) 2 — or a carbon atom adjacent to a bonding position (atom) to N in the ring a and / or b by a single bond. They may be combined.
  • R c1 and R c2 each independently represent a hydrogen atom or an alkyl group.
  • R 31 to R 35 each independently represent a substituted or unsubstituted carbazol-9-yl group, but not all four are the same.
  • the other one represents a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted carbazol-9-yl group, or a cyano group.
  • R 11 to R 17 each independently represent a substituent
  • R 18 to R 23 each independently represent a hydrogen atom or a substituent
  • n11, n13, n14, and n17 each independently represent 0.
  • n12 represents an integer of 0 to 2
  • n15 and n16 each independently represent an integer of 0 to 4.
  • At least one of R 31 to R 35 in the general formula (2) is a carbazol-9-yl group in which at least one of the 3- and 6-positions is substituted.
  • the carbazol-9-yl group in the general formula (2) is an unsubstituted or substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted diarylamino.
  • the organic light-emitting device according to any one of [1] to [5], which is substituted.
  • the organic light emitting device of the present invention has high luminous efficiency because it contains both the compound represented by the general formula (1) and the compound represented by the general formula (2). Further, according to the present invention, a blue light emitting element having high luminous efficiency can be realized.
  • FIG. 3 is a schematic cross-sectional view illustrating a layer configuration example of an organic electroluminescence element. 2 shows an absorption spectrum of Compound 1, and emission spectra of Compound 1, Compound 2-38 and Example 1. 9 is a transient decay curve of each of the element of Example 2, Comparative Element 1, and Comparative Element 2.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or some or all may be 2 H. (Deuterium D).
  • ring a, ring b and ring c each independently represent a benzene ring which may be condensed with another ring to form an aryl ring or a heteroaryl ring; At least one hydrogen atom in may be substituted.
  • R 1 and R 2 each independently represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group bonded by a benzene ring.
  • R 1 represents —O—, —S—, —C (—R c1 ) 2 — or a carbon atom adjacent to the bonding position (atom) to N in the ring a and / or c by a single bond. They may be combined.
  • R 2 represents —O—, —S—, —C (—R c2 ) 2 — or a carbon atom adjacent to a bonding position (atom) to N in the ring a and / or b by a single bond. They may be combined.
  • R c1 and R c2 each independently represent a hydrogen atom or an alkyl group.
  • the a ring, b ring and c ring may be monocyclic or polycyclic, but the ring directly bonded to B and N shown in the general formula (1) is a benzene ring.
  • the formed polycyclic ring is an aryl ring or a heteroaryl ring.
  • the aryl ring referred to here preferably has 6 to 30 carbon atoms, more preferably 6 to 16, more preferably 6 to 12, and particularly preferably 6 to 10.
  • the number of carbon atoms in the heteroaryl ring referred to herein is preferably from 6 to 30, more preferably from 6 to 25, still more preferably from 6 to 20, and even more preferably from 6 to 15. It is particularly preferably 6 to 10.
  • the hetero ring constituting the heteroaryl ring is preferably a 5- to 7-membered ring, more preferably a 5- or 6-membered ring.
  • Examples of the ring-constituting atoms of the hetero ring include 1 to 5 hetero atoms selected from the group consisting of oxygen, sulfur and nitrogen atoms, in addition to carbon atoms.
  • naphthalene ring As an aryl ring or a heteroaryl ring formed by condensation, naphthalene ring, acenaphthylene ring, fluorene ring, phenalene ring, phenanthrene ring, triphenylene ring, pyrene ring, naphthacene ring, perylene ring, pentacene ring, indole ring, isoindole ring 1, 1H-indazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, 1H-benzotriazole ring, quinoline ring, isoquinoline ring, cinnoline ring, quinazoline ring, quinoxaline ring, phthalazine ring, naphthyridine ring, carbazole ring, acridine ring , Phenoxatiin ring, phenoxazine ring
  • Examples of the aryl group that can be taken by R 1 and R 2 include an aryl group having 6 to 30 carbon atoms, an aryl group having 6 to 16 carbon atoms is preferable, and an aryl group having 6 to 12 carbon atoms is more preferable. An aryl group having 6 to 10 carbon atoms is particularly preferred.
  • aryl ring constituting the aryl group examples include a benzene ring, a naphthalene ring, an acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, a triphenylene ring, a pyrene ring, a naphthacene ring, a perylene ring, and a pentacene ring.
  • the heteroaryl group that can be taken by R 1 and R 2 has a polycyclic structure in which at least a benzene ring is condensed, and is a group bonded by a benzene ring constituting the polycyclic structure.
  • R 1 is —O—, —S—, —C (—R c1 ) 2 — or a carbon atom adjacent to the bonding position (atom) to N in the a ring and / or c ring by a single bond. They may be combined.
  • R 2 represents —O—, —S—, —C (—R c2 ) 2 — or a carbon atom adjacent to the bonding position (atom) to N in ring a and / or ring b by a single bond. They may be combined.
  • the carbon atom adjacent to the bonding position (atom) to N here is a carbon atom not bonded to B.
  • R c1 and R c2 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group here preferably has 1 to 4 carbon atoms, and examples thereof include a methyl group and an ethyl group.
  • R 1 and R 2 are bonded to ring a, ring b and / or ring c by —O—, —S—, —C (—R c1 ) 2 —, or —C (—R c2 ) 2 — or a single bond.
  • Examples of the cyclic structure formed include a phenoxazine ring, a phenothiazine ring, an acridine ring, and a carbazole ring.
  • R 1 and R 2 are a substituted aryl group or a substituted heteroaryl group, and when the a ring, b ring and c ring are substituted, the substituent is a halogen atom, a substituted or unsubstituted group.
  • Aryl group substituted or unsubstituted heteroaryl group, substituted or unsubstituted diarylamino group, substituted or unsubstituted diheteroarylamino group, substituted or unsubstituted arylheteroarylamino group (aryl group and heteroaryl group Amino group), a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryloxy group.
  • substituent include an aryl group, a heteroaryl group, and an alkyl group.
  • the total number of substituents present on R 1 , R 2 , ring a, ring b and ring c is preferably from 0 to 15, more preferably from 0 to 10, and for example, selected from 1 to 10 Alternatively, the user may select from 2 to 10, select from 0 to 6, select from 0 to 4, or select from 0 to 2.
  • halogen atom which can be taken as a substituent is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and more preferably a chlorine atom.
  • Examples of the aryl group that can be used as a substituent include diarylamino groups, arylheteroarylamino groups, and aryl groups that are included in an aryloxy group that can be used as a substituent, for example, an aryl group having 6 to 30 carbon atoms. And an aryl group having 6 to 16 carbon atoms is preferable, an aryl group having 6 to 12 carbon atoms is more preferable, and an aryl group having 6 to 10 carbon atoms is particularly preferable.
  • the aryl ring constituting the aryl group includes a monocyclic benzene ring, a condensed bicyclic naphthalene ring, a condensed tricyclic acenaphthylene ring, a fluorene ring, a phenalene ring, a phenanthrene ring, and a condensed tetracyclic ring.
  • Certain triphenylene rings, pyrene rings, naphthacene rings, condensed pentacyclic perylene rings, pentacene rings and the like can be mentioned.
  • the aryl group may be further substituted with an aryl group.
  • a tricyclic terphenyl ring m-terphenyl, o-terphenyl, p-terphenyl
  • heteroaryl group which can be taken as a substituent examples include diarylaryl and arylheteroarylamino groups which can be taken as a substituent, for example, a heteroaryl group having 2 to 30 carbon atoms.
  • a heteroaryl group having 2 to 25 carbon atoms is preferable, a heteroaryl group having 2 to 20 carbon atoms is more preferable, a heteroaryl group having 2 to 15 carbon atoms is more preferable, and a heteroaryl group having 2 to 10 carbon atoms is preferable.
  • Groups are particularly preferred.
  • heteroaryl ring constituting the heteroaryl group examples include, for example, a heterocyclic ring containing 1 to 5 hetero atoms selected from an oxygen atom, a sulfur atom, and a nitrogen atom in addition to a carbon atom as a ring-constituting atom.
  • heteroaryl ring constituting the heteroaryl group examples include a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, and a pyrazole ring.
  • the alkyl group which can be used as a substituent may be any of a straight chain, a branched chain and a cyclic group.
  • a straight chain alkyl group having 1 to 24 carbon atoms a branched chain alkyl group having 3 to 24 carbon atoms, or a carbon atom having 3 carbon atoms.
  • a straight-chain alkyl group having 1 to 18 carbon atoms, a branched-chain alkyl group having 3 to 18 carbon atoms and a cyclic alkyl group having 4 to 8 carbon atoms are preferable, and a straight-chain alkyl group having 1 to 12 carbon atoms, More preferred are a branched alkyl group having 12 carbon atoms and a cyclic alkyl group having 5 to 7 carbon atoms, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms and a C 5 to 6 carbon atom.
  • Cyclic alkyl groups are more preferred, and linear alkyl groups having 1 to 4 carbon atoms and branched alkyl groups having 3 or 4 carbon atoms are particularly preferred. Specific examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, and neopentyl.
  • a linear alkoxy group having 1 to 18 carbon atoms, a branched alkoxy group having 3 to 18 carbon atoms, and a cyclic alkoxy group having 4 to 8 carbon atoms are preferable, and a linear alkoxy group having 1 to 12 carbon atoms and 3 to 5 carbon atoms are preferable.
  • a branched alkoxy group having 12 carbon atoms and a cyclic alkoxy group having 5 to 7 carbon atoms are more preferable, a linear alkoxy group having 1 to 6 carbon atoms, a branched alkoxy group having 3 to 6 carbon atoms, and a C 5 to 6 carbon atom.
  • a cyclic alkoxy group is more preferred, and a linear alkoxy group having 1 to 4 carbon atoms and a branched alkoxy group having 3 to 4 carbon atoms are particularly preferred.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, heptyloxy, octyl Examples include an oxy group, a cyclohexyloxy group, a bicyclo [2,2,1] heptyloxy group, a bicyclo [2.2.2] octyloxy group, a decahydronaphthyloxy group, and an adamantyloxy group.
  • Two aryl groups constituting a diarylamino group, two heteroaryl groups constituting a diheteroarylamino group, and an aryl group and a heteroaryl group constituting an arylheteroarylamino group, which can be taken as a substituent, are each a single bond to each other Alternatively, they may be bonded via a linking group or may not be bonded.
  • the number of atoms constituting the linking chain of the linking group is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • R 51 to R 56 each independently represent a hydrogen atom or a substituent.
  • a substituted or unsubstituted alkyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms
  • a substituted or unsubstituted aryl group preferably having 6 to 20 carbon atoms, more preferably having 6 to 14 carbon atoms, and still more preferably having 6 to 10 carbon atoms
  • An aryl group preferably having 5 to 20 ring skeleton atoms, more preferably having 5 to 14 ring skeleton atoms, and still more preferably having 5 to 10 ring skeleton atoms
  • the compound having a plurality of structures represented by the general formula (1) is a multimer of the structure represented by the general formula (1).
  • the multimer is preferably a dimer to a hexamer, more preferably a dimer to a trimer, and particularly preferably a dimer.
  • the multimer may be in a form having a plurality of structures represented by the general formula (1) in one compound.
  • the structure may be a single bond, an alkylene group having 1 to 3 carbon atoms, a phenylene group, a naphthylene.
  • any ring (a ring, b ring or c ring) contained in the above structure is shared by a plurality of structures represented by the general formula (1).
  • R 11 to R 17 each independently represent a substituent
  • R 18 to R 23 each independently represent a hydrogen atom or a substituent
  • n11, n13, n14, and n17 each independently represent 0.
  • n12 represents an integer of 0 to 2
  • n15 and n16 each independently represent an integer of 0 to 4.
  • R 11 to R 23 may be a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted diarylamino group, a substituted or unsubstituted diarylamino group.
  • a heteroarylamino group, a substituted or unsubstituted arylheteroarylamino group (an amino group having an aryl group and a heteroaryl group), a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryl Oxy groups are preferred.
  • substituents include an aryl group, a heteroaryl group, and an alkyl group.
  • the aryl group, heteroaryl group, diarylamino group, diheteroarylamino group, arylheteroarylamino group, alkyl group, alkoxy group, and aryloxy group are described in the general formula (1). Can be referred to.
  • R 14 bonded to the 2-position of the benzene ring and R 15 bonded to the 2-position of the benzene ring may be bonded to each other to form a single bond or a linking group (where the 1-position of the benzene ring is represented by the general formula ( 1a) is a position bonded to the nitrogen atom N). Further, R 16 bonded to the 2-position of the benzene ring and R 17 bonded to the 2-position of the benzene ring may be bonded to each other to form a single bond or a linking group (where the 1-position of the benzene ring is generally This is the position bonded to the nitrogen atom N shown in the formula (1a)).
  • N11 and n13 to n17 in the general formula (1a) are preferably any integer from 0 to 3, and more preferably any integer from 0 to 2.
  • the number of substituents present as R 11 to R 23 is preferably 0 to 26, more preferably 0 to 16, and for example, 1 to 8 , From 2 to 8, from 0 to 4, or from 0 to 2.
  • a compound group represented by the general formula (1a) a compound group in which R 18 , R 20 , R 21 , and R 23 are a hydrogen atom can be mentioned.
  • R 18 , R 20 , R 21 and R 23 are hydrogen atoms, and n11 to n17 are each independently an integer of 0 to 2.
  • R 18 to R 23 are a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted diarylamino group, a substituted or unsubstituted alkyl group, Examples of the compound group include a substituted or unsubstituted alkoxy group or a substituted or unsubstituted aryloxy group.
  • R 19 and R 22 are a substituent can be mentioned, and as a more preferred compound group, R 19 and R 22 are substituted or unsubstituted.
  • a group of compounds which is an aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted diarylamino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted aryloxy group Can be mentioned.
  • substituents include an aryl group, a heteroaryl group, and an alkyl group.
  • R 31 to R 37 each independently represent a substituent
  • n31 to n33 and n35 each independently represent any integer of 0 to 5
  • n34 and n37 each independently represent 0 to And
  • n36 represents an integer of 0 to 4.
  • the substituent that can be taken by R 31 to R 37 in the general formula (1b) is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group.
  • the aryl group or the alkyl group has a substituent
  • examples of the substituent include an aryl group and an alkyl group.
  • the alkyl group which can be taken by R 31 to R 37 in the general formula (1b) preferably has 1 to 12 carbon atoms, more preferably 1 to 4.
  • the aryl group that can be taken by R 31 to R 37 in the general formula (1b) is preferably an aryl group having 6 to 10 carbon atoms, and more preferably a phenyl group.
  • N31 to n37 in the general formula (1b) are each preferably an integer of 0 to 2, and more preferably an integer of 0 to 1.
  • n31 to n37 in the general formula (1b) is preferably from 0 to 14, more preferably from 0 to 8, for example, selected from 1 to 8 or selected from 2 to 8 Or from 0 to 4 or from 0 to 2.
  • a compound group represented by the general formula (1b) a compound group in which R 31 to R 37 is a substituted or unsubstituted phenyl group can be mentioned, and as a more preferable compound group, R 31 to R 37 has no Compounds that are substituted phenyl groups can be mentioned.
  • n35 is any integer of 1 to 5
  • n35 is any integer of 1 to 3
  • R 35 is a substituted or unsubstituted phenyl group.
  • n36 is any integer of 1 to 4; a compound group in which n36 is any integer of 1 to 3; and n36 is 1 and R 36 is a substituted or unsubstituted phenyl group.
  • n35 and n36 are each independently 1 to any integer, compound group 3, n35 and n36 is 1, compound group, n35 and n36 are independently substituted each R 35 and R 36 a 1 Alternatively, a compound group which is an unsubstituted phenyl group can be given.
  • the compound represented by the general formula (1) or the general formula (1a) can be synthesized with reference to paragraphs [0281] to [0316] of Japanese Patent No. 5935199 and the description of the synthesis examples. Moreover, it is also possible to synthesize by combining known synthesis methods. The specific synthesis procedure can be referred to Synthesis Example 1 described later.
  • R 31 to R 35 each independently represent a substituted or unsubstituted carbazol-9-yl group, but not all four are the same.
  • the other one represents a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted carbazol-9-yl group, or a cyano group.
  • substituent of the carbazol-9-yl group which R 31 to R 35 can take a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted diarylamino group, a substituted or unsubstituted group
  • Preferred examples include a diheteroarylamino group, a substituted or unsubstituted arylheteroarylamino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted aryloxy group. These groups may be further substituted with these substituents.
  • the aryl group, heteroaryl group, diarylamino group, diheteroarylamino group, arylheteroarylamino group, alkyl group, alkoxy group, and aryloxy group are described in the general formula (1). Can be referred to.
  • the substituent is preferably bonded at the 3-position or both the 3- and 6-positions of the carbazole ring.
  • carbazol-9-yl group that R 31 to R 35 can take are a 3-methylcarbazol-9-yl group, a 3,6-dimethylcarbazol-9-yl group, and a 3-ethylcarbazol-9-yl group 3,6-diethylcarbazol-9-yl group, 3-t-butylcarbazol-9-yl group, 3,6-di-tert-butylcarbazol-9-yl group, 3-phenylcarbazol-9-yl group, 3,6-diphenylcarbazol-9-yl group, 3- (carbazol-9-yl) carbazol-9-yl group, 3,6-bis (carbazol-9-yl) carbazol-9-yl group, and the like. Can be.
  • R 31 to R 35 each independently represent a substituted or unsubstituted carbazol-9-yl group, but not all four are the same. All four may be different, but are preferred when three are the same and one is different, or when two are the same and the other two are the same.
  • R 31 and R 35 are the same and R 32 and R 34 are the same
  • R 31 and R 34 and R 35 are the same
  • R 31 and R 34 are the same and R 32
  • R 35 are the same, R 32 is the same as R 34 and R 35 but the only R 31 is different, or R 31 is the same as R 34 and R 35 but the only R 32 is different.
  • the difference between the substituted or unsubstituted carbazol-9-yl group present in the general formula (2) may be a difference whether the carbazol-9-yl group has or does not have a substituent.
  • the difference may be the type of the substituent bonded to the -9-yl group or the bonding position of the substituent bonded to the carbazol-9-yl group. Preference is given to differences in whether the carbazol-9-yl group has or does not have a substituent, and differences in the type of substituent bonded to the carbazol-9-yl group.
  • Examples of different types of substituents bonded to the carbazol-9-yl group include a carbazol-9-yl group substituted with an alkyl group and a carbazol-9-yl group substituted with an aryl group. it can.
  • a carbazol-9-yl group in which the 3- and 6-positions are each substituted with an alkyl group and only the 3-position are substituted with an alkyl group Carbazol-9-yl group.
  • the other one of R 31 to R 35 represents a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted carbazol-9-yl group, or a cyano group.
  • the substituted or unsubstituted carbazol-9-yl group may be the same as at least one of the other four, May be different from the four.
  • the description of the aryl group in the description of the general formula (1) can be referred to.
  • the aryl group that the remaining one of R 31 to R 35 can take may be substituted, and a preferable substituent is an alkyl group or an aryl group.
  • a preferable substituent is an alkyl group or an aryl group.
  • the aryl group that the remaining one of R 31 to R 35 can take include, for example, a phenyl group in which the 4-position is substituted with an alkyl group or an aryl group, and a phenyl group in which the 3- and 5-positions are substituted with an alkyl group or an aryl group.
  • the remaining one is a hydrogen atom, a substituted or unsubstituted aryl group, or a cyano group, it may be any of R 31 to R 35 , but is preferably R 33 .
  • R 41 to R 44 and R 46 to R 49 each independently represent a substituent, but four substituted or unsubstituted carbazole-9-bonded to benzonitrile of the general formula (2a).
  • the yl groups are not all identical.
  • n41 to n44 and n46 to n49 each independently represent any integer of 0 to 4.
  • R 45 represents a hydrogen atom, a substituted or unsubstituted aryl group, a substituted or unsubstituted carbazol-9-yl group, or a cyano group.
  • R 41 to R 44 and R 46 to R 49 can take, refer to the description of the substituent of the carbazol-9-yl group that R 31 to R 35 can take in the description of the general formula (2). Can be.
  • R 45 reference can be made to the description of the group that the remaining one of R 31 to R 35 in the description of the general formula (2) can take.
  • n41 is 2 or more, plural R 41 may be the being the same or different, and two adjacent R 41 is not formed may be bonded together to form a ring structure Is also good.
  • n42 is 2 or more, plural R 42 may be the being the same or different, and two adjacent R 42 is not formed may be bonded together to form a ring structure Is also good.
  • n43 is 2 or more, plural R 43 may be the being the same or different, and two adjacent R 43 is not formed may be bonded together to form a ring structure Is also good.
  • n44 is 2 or more, plural R 44 may be the being the same or different, and two adjacent R 44 is not formed may be bonded together to form a ring structure Is also good.
  • n46 When n46 is 2 or more, plural R 46 may be the being the same or different, and two adjacent R 46 is not formed may be bonded together to form a ring structure Is also good.
  • n47 When n47 is 2 or more, plural R 47 may be the being the same or different, and two adjacent R 47 is not formed may be bonded together to form a ring structure Is also good.
  • n48 When n2 or more, plural R 48 may be the being the same or different, and two adjacent R 48 is not formed may be bonded together to form a ring structure Is also good.
  • n49 When n49 is 2 or more, plural R 49 may be the being the same or different, and two adjacent R 49 is not formed may be bonded together to form a ring structure Is also good.
  • the description of the cyclic structure in the general formula (1) can be referred to.
  • n41 to n49 are preferably an integer of 0 to 3, and more preferably an integer of 0 to 2.
  • the sum of n41 to n49 is preferably 1 to 24, more preferably 1 to 16, and even more preferably 1 to 8.
  • n41 to n44 and n46 to n49 when only n41 is 1 and the others are 0, when only n43 is 1 and the others are 0, n41 and n42 are 1 and the others are 0
  • n43 and n44 are 1 and the others are 0, n41 and n43 are 1 and the others are 0, n41 and n46 are 1 and the others are 0, n41 and n48 are 1
  • n41 and n42 are 0 and when others
  • the compound represented by formula (2) or (2a) can be synthesized with reference to Synthesis Example 2 described below. That is, a substituted or unsubstituted carbazol-9-yl group is introduced into the 2- and 6-positions by reacting 4-phenyl-2,3,5,6-tetrafluorobenzonitrile with a substituted or unsubstituted carbazole. Then, the compound can be synthesized by introducing a substituted or unsubstituted diarylcarbazol-9-yl group at the 3-position and 5-position by reacting with a substituted or unsubstituted diarylcarbazole. Moreover, it is also possible to synthesize by combining known synthesis methods.
  • Tables 1 and 2 below show specific examples of the compound represented by the general formula (2), but the compounds that can be employed in the present invention are not limited to the following specific examples. .
  • the general formulas (3a) and (3b) representing the substituents in the general formula (2) are also described below.
  • an organic compound contained in an organic layer between the electrodes transitions from a ground state to an excited singlet state and an excited triplet state.
  • the formation probability of an organic compound in an excited singlet state (singlet exciton) and an organic compound in an excited triplet state (triplet exciton) is statistically 25% for singlet excitons and 75% for triplet excitons. %. Then, among the excitons, the energy of the compound of the general formula (2) in the excited singlet state moves to the compound of the general formula (1), and the compound of the general formula (1) in the ground state transitions to the excited singlet state. .
  • the compound of the general formula (1) in the excited singlet state emits fluorescence when returning to the ground state thereafter.
  • the energy of the compound of the general formula (1) in the excited singlet state is transferred to another luminescent material, and the luminescent material in the ground state transitions to the excited singlet state and then emits fluorescence when returning to the ground state. Radiate.
  • the compound of the general formula (2) since the compound of the general formula (2) is a compound that easily crosses from the excited triplet state to the excited singlet state, the singlet excitation due to the reverse intersystem crossing is caused. Energy also transfers to the compound of general formula (1).
  • the energy of the excited triplet state having a large abundance ratio also indirectly contributes to light emission, and the luminous efficiency of the organic electroluminescent device is dramatically improved as compared with the structure not including the compound of the general formula (2).
  • the compound of the general formula (2) is a compound that is liable to cross as much as possible.
  • the thermally activated delayed fluorescent material absorbs the heat generated by the device and relatively easily crosses the inverse triplet from the excited triplet state to the excited singlet state, thereby efficiently contributing the excited triplet energy to light emission. be able to.
  • Compounds of general formula (2) is preferably a difference Delta] E ST energy level E T1 at the lowest excited triplet state energy level E S1 and 77K in the lowest excited singlet state is equal to or less than 0.3eV , 0.2 eV or less, more preferably 0.15 eV or less, and even more preferably 0.10 eV or less.
  • Energy difference Delta] E ST is smaller compounds, since the reverse intersystem crossing from the excited triplet state to the excited singlet state occurs relatively easily, it is possible to contribute to the triplet energy to emit light efficiently.
  • the use of the compound represented by the general formula (2) allows the exciton annihilation or device due to the accumulation of triplet excitons to occur. Deterioration is suppressed, and excellent high durability can be obtained in addition to higher luminous efficiency. Also, suppression of exciton annihilation can greatly contribute to the realization of an organic laser.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) in an organic light emitting device it is possible to realize an organic light emitting device that emits good blue light.
  • the chromaticity coordinate x in the CIE-XYZ color system is 0.23 or less and y is 0.40 or less, preferably x is 0.20 or less and y is 0.30 or less, more preferably x is 0.16 or less. It is possible to provide an organic light emitting device that can emit light in which y is 0.26 or less.
  • the usefulness of the present invention is extremely high because few satisfactory organic light-emitting devices that emit good blue light with high luminous efficiency have been provided.
  • the emission color of the organic light-emitting device of the present invention is not necessarily limited to blue. Even if the organic light-emitting device realizes light emission other than blue, the compound represented by the general formula (1) may be used. As long as the compound represented by the formula (2) is used, it is included in the scope of the present invention.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) may be included together in any one of the layers constituting the organic light-emitting device, or each compound may be different. It may be included in a layer. When they are contained in different layers, it is preferable that each compound is contained in layers adjacent to each other.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) may be included in the light emitting layer together, or the compound represented by the general formula (1) may be combined with the compound represented by the general formula (2)
  • the compound represented by the general formula (2) may be contained in a layer adjacent to the light emitting layer together with the compound represented by the general formula (1), or the compound represented by the general formula (2) may be contained in the light emitting layer.
  • the compound represented by the general formula (2) can be included in a layer adjacent to the light emitting layer. It is preferable to use a compound represented by the general formula (2) in an organic light emitting device in a larger amount than a compound represented by the general formula (1). When the total of these compounds is 100 parts by weight, the compound represented by the general formula (1) is preferably used in an amount of 0.01 to 49.9 parts by weight, more preferably 1 to 35 parts by weight. .
  • a host material may be included in addition to these compounds.
  • the host material is an organic compound having a minimum excited singlet energy larger than that of the compound represented by the general formula (1) or the compound represented by the general formula (2), and functions as a host material for transporting carriers. It has a function of confining the energy of the compound represented by the general formula (1) in the compound. Accordingly, the organic compound represented by the general formula (1) receives the energy generated by the recombination of holes and electrons in the molecule, and receives the energy from the host material and the compound represented by the general formula (2).
  • the host material it is preferable to use an organic compound having a hole transporting ability and an electron transporting ability, preventing a long wavelength of light emission, and having a high glass transition temperature.
  • the host material is preferably contained in the light-emitting layer in a larger amount than the compound represented by the general formula (1) or the compound represented by the general formula (2).
  • the content is preferably 40% by weight or more, more preferably 50% by weight or more, and preferably 99.9% by weight or less, and 95% by weight or less based on the total weight of the light emitting layer. Is more preferable.
  • the light emitting layer contains only the compound represented by the general formula (1) and the compound represented by the general formula (2), and the light emitting layer includes the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • the compound represented by the general formula (1) and the host material are contained, the energy transfer from the compound represented by the general formula (2) to the compound represented by the general formula (1) is performed.
  • the compound emits light.
  • a light emitting material may be included in addition to these compounds. .
  • the light-emitting material is a compound having a lower minimum excited singlet energy than the compound represented by the general formula (1).
  • the light emitting layer may include a host material.
  • the light-emitting material emits light by receiving energy transfer from the compound represented by the general formula (1), the compound represented by the general formula (2), or both. At this time, light emission from the compound represented by the general formula (1) may be observed.
  • the content of the light emitting material in the light emitting layer is preferably 0.01% by weight to 30% by weight, more preferably 0.1% by weight to 15% by weight based on the total weight of the light emitting layer.
  • the light-emitting layer includes a light-emitting material.
  • the light emitting layer may contain a compound represented by the general formula (1).
  • the light-emitting material of the light-emitting layer emits light by receiving energy transfer from the compound represented by the general formula (1), the compound represented by the general formula (2), or both of the adjacent layers.
  • the compound represented by the general formula (1) may be included in a layer adjacent to the light-emitting layer such that the compound represented by the general formula (2) is included in the light-emitting layer.
  • the compound represented by the general formula (1) that has undergone energy transfer from the compound represented by the general formula (2) may emit light, or the light-emitting layer may further include a light-emitting material to emit light. Light may be emitted from the material.
  • the usage of the compound represented by the general formula (1) and the compound represented by the general formula (2) in the organic light emitting device can be appropriately arranged according to the production purpose and function of the organic light emitting device.
  • the organic photoluminescence (PL) element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence (EL) element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode.
  • the organic layer includes at least the light emitting layer, and may be composed of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) are contained in a layer adjacent to the light emitting layer, these compounds may be any one of the above compounds adjacent to the light emitting layer. Can be included in the layer.
  • FIG. 1 shows a specific example of the structure of an organic electroluminescence element.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of the organic electroluminescence element will be described. Note that the description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the organic photoluminescence element.
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited, and may be any substrate conventionally used in organic electroluminescent devices, and for example, a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • anode As the anode in the organic electroluminescence element, a metal, an alloy, an electrically conductive compound and a mixture thereof having a large work function (4 eV or more) are preferably used as an electrode material.
  • an electrode material include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • a material such as IDIXO (In 2 O 3 —ZnO) capable of forming an amorphous transparent conductive film may be used.
  • the anode may be formed into a thin film by a method such as vapor deposition or sputtering of these electrode materials, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required so much (about 100 ⁇ m or more). ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method and a coating method can be used.
  • the transmittance is desirably greater than 10%, and the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less. Further, the thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron-injecting metal and a second metal which is a stable metal having a large work function value such as a magnesium / silver mixture, from the viewpoint of durability against electron injection and oxidation.
  • a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like are preferred.
  • the cathode can be manufactured by forming a thin film from these electrode materials by a method such as evaporation or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or translucent cathode can be produced, and by applying this, an element in which both the anode and the cathode are transmissive can be used. Can be made.
  • the light-emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light-emitting layer includes a layer containing the compound represented by the general formula (1) and the compound represented by the general formula (2), and a compound represented by the general formula (1) and the compound represented by the general formula (2).
  • the layer adjacent to the light emitting layer contains the compound represented by the general formula (1).
  • the layer adjacent to the light emitting layer contains the compound represented by the general formula (2).
  • An injection layer is a layer provided between an electrode and an organic layer for driving voltage reduction and emission luminance improvement, and has a hole injection layer and an electron injection layer. And between the cathode and the light emitting layer or the electron transporting layer. An injection layer can be provided as needed.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer out of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer, and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transport layer, and blocks holes from passing through the light emitting layer toward the electron transport layer.
  • the blocking layer can also be used to prevent excitons from diffusing out of the emissive layer. That is, each of the electron blocking layer and the hole blocking layer can also have a function as an exciton blocking layer.
  • the electron blocking layer or the exciton blocking layer referred to in the present specification is used to mean a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has the function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of preventing holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • a material of the hole blocking layer a material of an electron transport layer described later can be used as needed.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has the role of transporting holes and preventing electrons from reaching the hole transporting layer, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer.
  • the light emitting layer can be efficiently confined in the light emitting layer, and the light emitting efficiency of the element can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted at the same time.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the light emitting layer adjacent to the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode can be inserted. Can be inserted adjacent to the light emitting layer.
  • a hole injection layer, an electron blocking layer, and the like can be provided between the anode and the exciton blocking layer adjacent to the light emitting layer on the anode side.
  • An electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the electron blocking layer and the electron blocking layer.
  • a blocking layer it is preferable that at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transporting material has any of hole injection or transport and electron barrier properties, and may be any of an organic substance and an inorganic substance.
  • hole transporting materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers. It is preferable to use an aromatic tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic tertiary amine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transporting material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of usable electron transporting layers include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain can be used.
  • Preferred materials that can be used for the organic electroluminescence device are specifically described below.
  • materials that can be used in the present invention are not limited to the following exemplified compounds. Further, even a compound exemplified as a material having a specific function can be diverted as a material having another function.
  • the organic electroluminescence device emits light by applying an electric field between an anode and a cathode of the obtained device. At this time, if the light emission is due to the excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In the case of light emission due to the excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence emission, the emission lifetime can be distinguished between fluorescence and delayed fluorescence.
  • the organic electroluminescence device of the present invention can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • an organic light-emitting device having high luminous efficiency can be provided by including the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses.
  • an organic electroluminescent display device can be manufactured using the organic electroluminescent device of the present invention.
  • Organic electroluminescent device of the present invention can be applied to organic electroluminescent lighting and backlight, which are in great demand.
  • composition and film The present invention also provides a composition containing the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • the composition may be in a solution state or a solid state. When in a solution state, it is dissolved in a solvent in which the compound represented by the general formula (1) and the compound represented by the general formula (2) are both soluble. For example, toluene can be used.
  • the present invention also provides a film containing the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) may be mixed, or the layer containing the compound represented by the general formula (1) may be mixed with the compound represented by the general formula ( It may have a structure in which layers containing the compound represented by 2) are stacked.
  • the film containing the compound represented by the general formula (1) and the compound represented by the general formula (2) is useful as a film for an organic light-emitting device, but may be used for other purposes.
  • fluorescence having an emission lifetime of 100 ns or less was determined to be immediate fluorescence
  • fluorescence having an emission lifetime of 0.1 ⁇ s or more was determined to be delayed fluorescence.
  • reaction solution was cooled to room temperature, filtered using silica gel (eluent: toluene), and the solvent was distilled off under reduced pressure to obtain a crude product. After dissolving the obtained crude product in toluene, an appropriate amount was distilled off under reduced pressure, and hexane was added for reprecipitation, whereby N 1 , N 3 -diphenylbenzene-1,3-diamine (16.5 g, (60% yield) as a white solid.
  • 1,3-dibromo-5-chlorobenzene (8.11 g, 30 mmol), diphenylamine (10.1 g, 60 mmol), Pd 2 (dba) 3 (550 mg, 0.6 mmol), 2-dicyclohexylphenylphosphino
  • SPhos 0.493 g, 1.2 mmol
  • NaOtBu 8.60 g, 90 mmol
  • toluene 300 ml
  • N 1 , N 1 ′-(1,3-phenylene) bis (N 1 , N 3 , N 3 , N 5 , N 5 -pentaphenylbenzene-1,3,5-triamine (3.24 g, 3.0 mmol) )
  • orthodichlorobenzene 400 ml
  • boron tribromide (1.13 ml, 12 mmol)
  • FIG. 2 shows the results of spectrum measurement of the toluene solution of the compound 1 and the toluene solution of the compound 2-38 at 300K.
  • the upper part of FIG. 2 shows an absorption spectrum of a toluene solution of the compound 1 and an emission spectrum when the toluene solution of the compound 2-38 is irradiated with excitation light having a wavelength of 360 nm. In the region around 450 nm, it was confirmed that both overlapped.
  • the emission spectrum when a toluene solution of the compound 1 is irradiated with excitation light having a wavelength of 360 nm is shown by a broken line in the lower part of FIG.
  • the lowest excited singlet energy level (E S1 ) and the lowest excited triplet energy level (E T1 ) of the compound 2-38 were measured according to the following methods.
  • (1) Lowest excited singlet energy level (E S1 ) A tangent was drawn to the rise of the emission spectrum of the toluene solution of compound 2-38 on the short wavelength side, and the wavelength value ⁇ edge [nm] at the intersection of the tangent and the horizontal axis was determined. The value obtained by converting this wavelength value to an energy value by the following conversion formula was defined as ES1 .
  • E S1 was 2.79eV.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-described maximum value on the shortest wavelength side, and the slope value closest to the maximum value on the shortest wavelength side has a maximum value.
  • the tangent drawn at the point taken was taken as the tangent to the rise on the short wavelength side of the phosphorescence spectrum.
  • Example 1 Preparation and Measurement of Thin Film Containing Compound 1 and Compound 2-38
  • Compound 1 and compound 2-38 and mCBP [3,3′-di () were formed on a quartz substrate at a degree of vacuum of 5 ⁇ 10 ⁇ 4 Pa or less.
  • 9H-carbazol-9-yl) -1,1′-biphenyl] were co-evaporated from different evaporation sources to form thin films having a thickness of 50 nm (1% by weight of compound 1 and 25% by weight of compound 2-38).
  • MCBP is 74% by weight). This thin film was used as the thin film of Example 1.
  • the emission spectrum of the thin film of Example 1 when irradiated with excitation light having a wavelength of 360 nm is shown by the solid line in the lower part of FIG. 2 (FWHM is 20 nm). It was confirmed that the emission spectrum was consistent with that of Compound 1.
  • the photoluminescence quantum efficiency of the thin film of Example 1 was 75%, and the delay component was 30%.
  • fluorescence having an emission lifetime of less than 0.1 ⁇ s was determined to be immediate fluorescence
  • fluorescence having an emission lifetime of 0.1 ⁇ s or more was determined to be delayed fluorescence, and the ratio of the delayed component was determined.
  • Example 2 Preparation and Measurement of Organic Electroluminescent Device Containing Compound 1 and Compound 2-38
  • ITO indium tin oxide
  • the layers were stacked at a degree of vacuum of 2 ⁇ 10 ⁇ 5 Pa by a vapor deposition method.
  • a hole injection layer was formed by depositing HATCN to a thickness of 10 nm on ITO, and a hole transport layer was formed thereon by depositing TrisPCz to a thickness of 30 nm.
  • mCBP was deposited to a thickness of 5 nm to form an electron blocking layer.
  • a 50 nm-thick light-emitting layer was formed by co-evaporating Compound 1, Compound 2-38 and mCBP from different evaporation sources (1% by weight of Compound 1, 25% by weight of Compound 2-38, and mCBP of 74% by weight).
  • SF3-TRZ is deposited to a thickness of 10 nm to form a hole blocking layer
  • SF3-TRZ: LiQ (weight ratio 7: 3) is deposited thereon to a thickness of 20 nm to form electrons.
  • a transport layer was formed. Further, LiQ was formed to a thickness of 2 nm, and then aluminum (Al) was formed to a thickness of 100 nm to form a cathode, whereby an organic electroluminescence device of Example 2 was produced.
  • Example 3 Preparation and Measurement of Organic Electroluminescence Device Containing Compound 8 and Compound 2-117
  • ITO indium tin oxide
  • the layers were stacked at a degree of vacuum of 2 ⁇ 10 ⁇ 5 Pa by a vapor deposition method.
  • a hole injection layer was formed by depositing HATCN to a thickness of 10 nm on ITO, and a hole transport layer was formed thereon by depositing TrisPCz to a thickness of 30 nm.
  • mCBP was deposited to a thickness of 5 nm to form an electron blocking layer.
  • a light emitting layer having a thickness of 30 nm was formed by co-evaporating Compound 8, Compound 2-117 and mCBP from different evaporation sources (Compound 8 was 0.5% by weight, Compound 2-117 was 15% by weight, mCBP is 84.5% by weight).
  • SF3-TRZ is deposited to a thickness of 10 nm to form a hole blocking layer
  • SF3-TRZ: LiQ (weight ratio 7: 3) is deposited thereon to a thickness of 20 nm to form electrons.
  • a transport layer was formed.
  • an organic electroluminescent device of Example 3 was manufactured by forming LiQ to a thickness of 2 nm and then forming aluminum (Al) to a thickness of 100 nm to form a cathode.
  • Example 3 shows the results of measurement of each transient decay curve of a comparative organic electroluminescent element (Comparative Element 2) which was different only in that the light emitting layer was composed of (25% by weight) and mCBP (75% by weight). Since the ratio of the delay component was increased by changing from the comparative device 1 to the device of Example 2, it was confirmed that the energy transfer from the compound 2-38 to the compound 1 was performed.
  • the external quantum efficiency of the organic electroluminescence device of Example 2 was a high value exceeding 20% at 1000 nit (1.8 lm / W).
  • the external quantum efficiency of the comparative organic electroluminescent device was different only in that the light emitting layer was composed of Compound 1 (1% by weight) and mCBP (99% by weight), the external quantum efficiency was 8%.
  • the organic electroluminescence device of Example 2 achieves a significant improvement in quantum efficiency.
  • the time (LT95) required for the emission intensity of the organic electroluminescence device of Example 2 to become 95% of the value at the start of the measurement (LT95) is about 100 hours at 750 nit (1.35 lm / W), and has a long life.
  • the organic electroluminescent device of Example 3 had a maximum emission wavelength of 469 nm and an external quantum efficiency of 22.5% at the maximum. Also in Example 3, it was confirmed that the organic electroluminescence device of the present invention had high luminous efficiency.
  • the organic light emitting device of the present invention has high luminous efficiency. Further, according to the present invention, it is possible to provide a high-efficiency organic light-emitting device that emits good blue light. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

下記一般式(1)で表される化合物と下記一般式(2)で表される化合物をともに含む有機発光素子は高い発光効率を有する。a~c環は縮合していてもよいベンゼン環であり、R、Rは置換もしくは無置換のアリール基等であり、R31~R35のうちの4つは置換もしくは無置換のカルバゾール-9-イル基であるが4つがすべて同一であることはなく、残りの1つは水素原子、シアノ基等である。

Description

有機発光素子、組成物および膜
 本発明は、有機発光素子、組成物および膜に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発することにより、発光効率を高める工夫が種々なされてきている。例えば特許文献1には、複数の芳香族環をホウ素原子や窒素原子などで連結した多環芳香族化合物が有機エレクトロルミネッセンス素子の発光材料等として有用であることが記載されている。
 一方、有機エレクトロルミネッセンス素子の発光層に用いる材料を組み合わせることにより、発光効率を高める研究もなされている。例えば特許文献2には、発光材料とホスト材料を含む発光層に、最低励起一重項エネルギー準位が発光材料とホスト材料の中間にある遅延蛍光材料を添加することが記載されている。遅延蛍光材料は、励起状態において、励起三重項状態から励起一重項状態への逆項間交差を生じやすいため、励起一重項状態のみならず、励起三重項状態も逆項間交差を介した経路により発光に利用することができる。このため、遅延蛍光材料を添加することにより、有機エレクトロルミネッセンス素子の発光効率を向上させることができることが記載されている。
特許第5935199号公報 特許第5669163号公報
 発光材料とホスト材料を含む発光層に、最低励起一重項エネルギー準位が発光材料とホスト材料の中間にある遅延蛍光材料を添加することにより、確かに有機エレクトロルミネッセンス素子の発光効率は向上する。しかしながら、遅延蛍光材料を添加することにより向上した発光効率であってもまだ満足の行くレベルには到達していないことが多く、なかでも青色発光素子については十分に高い外部量子収率を実現できているものは僅かである。このため、高い発光効率を達成しつつ、高効率の青色発光素子の実現に道を開くことができる新たな技術を提供することが必要とされている。
 このような状況下において、本発明者らは、発光効率が高い有機発光素子を提供することができる材料の組み合わせを見いだすことを目的として検討を進めた。特に、高効率な青色発光素子の実現に道を開くことができるような材料の組み合わせを見いだすことを念頭において検討を進めた。
 本発明者らが鋭意検討を重ねた結果、特定の構造を有する多環芳香族化合物と特定の構造を有する遅延蛍光材料を組み合わせて用いることにより、発光効率が高い有機発光素子を提供し得ることを見いだして、以下に記載する本発明を提供するに至った。
[1] 下記一般式(1)で表される構造を1つまたは複数有する化合物と下記一般式(2)で表される化合物をともに含む有機発光素子。
Figure JPOXMLDOC01-appb-C000009
一般式(1)において、a環、b環およびc環は、それぞれ独立して、他の環が縮合してアリール環またはヘテロアリール環を形成していてもよいベンゼン環を表し、これらの環における少なくとも1つの水素原子は置換されていてもよい。R、Rは、それぞれ独立して置換もしくは無置換のアリール基、またはベンゼン環で結合する置換もしくは無置換のヘテロアリール基を表す。Rは、-O-、-S-、-C(-Rc1-または単結合により前記a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により前記a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。前記Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。
Figure JPOXMLDOC01-appb-C000010
一般式(2)において、R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
[2] 前記一般式(1)で表される構造を1つまたは複数有する化合物が、前記一般式(1)で表される構造を2つ有する化合物である、[1]に記載の有機発光素子。
[3] 前記一般式(1)で表される化合物が、下記一般式(1a)で表される化合物である、[2]に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000011
一般式(1a)において、R11~R17は各々独立に置換基を表し、R18~R23は各々独立に水素原子または置換基を表し、n11、n13、n14、n17は各々独立に0~5のいずれかの整数を表し、n12は0~2のいずれかの整数を表し、n15、n16は各々独立に0~4のいずれかの整数を表す。
[4] R19およびR22が各々独立に置換基を表す、[3]に記載の有機発光素子。
[5] 前記一般式(2)におけるR31~R35の少なくとも1つは、3位か6位の少なくとも一方が置換されたカルバゾール-9-イル基である、[1]~[4]のいずれか1つに記載の有機発光素子。
[6] 前記一般式(2)におけるカルバゾール-9-イル基が、無置換であるか、あるいは、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のジアリールアミノ基、置換もしくは無置換のジヘテロアリールアミノ基、置換もしくは無置換のアリールヘテロアリールアミノ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、または置換もしくは無置換のアリールオキシ基で置換されている、[1]~[5]のいずれか1つに記載の有機発光素子。
[7] 前記一般式(2)で表される化合物が、下記一般式(2a)で表される化合物である、[6]に記載の有機発光素子。
Figure JPOXMLDOC01-appb-C000012
一般式(2a)において、R41~R44、R46~R49は各々独立に置換基を表すが、一般式(2a)のベンゾニトリルに結合する4つの置換もしくは無置換のカルバゾール-9-イル基がすべて同一であることはない。n41~n44、n46~n49は各々独立に0~4のいずれかの整数を表す。R45は水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
[8] 前記一般式(1)で表される化合物を発光層内に含有する、[1]~[7]のいずれか1つに記載の有機発光素子。
[9] 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物を同じ層内に含有する、[1]~[8]のいずれか1つに記載の有機発光素子。
[10] 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物をともに含む組成物。
[11] 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物をともに含む膜。
 本発明の有機発光素子は、一般式(1)で表される化合物と一般式(2)で表される化合物をともに含んでいるために、高い発光効率を有する。また、本発明によれば、発光効率が高い青色発光素子を実現することもできる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 化合物1の吸収スペクトルと、化合物1、化合物2-38、実施例1の各発光スペクトルである。 実施例2の素子、比較素子1、比較素子2の各過渡減衰曲線である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。
<一般式(1)で表される化合物>
 本発明では、下記一般式(1)で表される構造を1つまたは複数有する化合物を用いる。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)において、a環、b環およびc環は、それぞれ独立して、他の環が縮合してアリール環またはヘテロアリール環を形成していてもよいベンゼン環を表し、これらの環における少なくとも1つの水素原子は置換されていてもよい。R、Rは、それぞれ独立して置換もしくは無置換のアリール基、またはベンゼン環で結合する置換もしくは無置換のヘテロアリール基を表す。Rは、-O-、-S-、-C(-Rc1-または単結合により前記a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により前記a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。前記Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。
 a環、b環およびc環は、単環であっても多環であってもよいが、一般式(1)中に表示されるBとNに直接結合する環はベンゼン環である。BとNに直接結合するベンゼン環が他の環と縮合して多環を形成するとき、その形成される多環はアリール環またはヘテロアリール環である。ここでいうアリール環の炭素数は6~30であることが好ましく、6~16であることがより好ましく、6~12であることがさらに好ましく、6~10であることが特に好ましい。また、ここでいうヘテロアリール環の炭素数は6~30であることが好ましく、6~25であることがより好ましく、6~20であることがさらに好ましく、6~15であることがさらにより好ましく、6~10であることが特に好ましい。ヘテロアリール環を構成するヘテロ環は5~7員環であることが好ましく、5または6員環であることがより好ましい。ヘテロ環の環構成原子としては、炭素原子以外に、酸素原子、硫黄原子および窒素原子からなる群から選ばれる1~5個のヘテロ原子を挙げることができる。縮合して形成されるアリール環またはヘテロアリール環として、ナフタレン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、トリフェニレン環、ピレン環、ナフタセン環、ペリレン環、ペンタセン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、ベンゾチオフェン環、ジベンゾチオフェン環、チアントレン環などを挙げることができる。
 R、Rが採りうるアリール基としては、例えば、炭素数6~30のアリール基が挙げられ、炭素数6~16のアリール基が好ましく、炭素数6~12のアリール基がより好ましく、炭素数6~10のアリール基が特に好ましい。アリール基を構成するアリール環としては、ベンゼン環、ナフタレン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、トリフェニレン環、ピレン環、ナフタセン環、ペリレン環、ペンタセン環などを挙げることができる。
 R、Rが採りうるヘテロアリール基は、少なくともベンゼン環が縮合した多環構造を有しており、その多環構造を構成するベンゼン環で結合する基である。R、Rが採りうるヘテロアリール基を構成するヘテロアリール環の説明と好ましい範囲については、a環、b環およびc環が採りうるヘテロアリール環の説明と好ましい範囲を参照することができる。
 Rは、-O-、-S-、-C(-Rc1-または単結合により、a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により、a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。ここでいうNとの結合位置(原子)に隣接している炭素原子は、Bとは結合していない炭素原子である。Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。ここでいうアルキル基は、炭素数1~4であるものが好ましく、例えばメチル基、エチル基を挙げることができる。R、Rが、-O-、-S-、-C(-Rc1-、-C(-Rc2-または単結合によりa環、b環および/またはc環と結合して形成される環状構造として、例えばフェノキサジン環、フェノチアジン環、アクリジン環、カルバゾール環を挙げることができる。
 R、Rが置換アリール基または置換ヘテロアリール基であるときの置換基、および、a環、b環およびc環が置換されているときの置換基は、ハロゲン原子、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のジアリールアミノ基、置換または無置換のジヘテロアリールアミノ基、置換または無置換のアリールヘテロアリールアミノ基(アリール基とヘテロアリール基を有するアミノ基)、置換または無置換のアルキル基、置換または無置換のアルコキシ基または置換または無置換のアリールオキシ基であることが好ましい。これらの基が置換基を有する場合の置換基としては、アリール基、ヘテロアリール基またはアルキル基が挙げられる。R、R、a環、b環およびc環に存在する置換基の総数は0~15であることが好ましく、0~10であることがより好ましく、例えば1~10の中から選択したり、2~10の中から選択したり、0~6の中から選択したり、0~4の中から選択したり、0~2の中から選択したりしてもよい。
 置換基として採りうるハロゲン原子は、フッ素原子、塩素原子、臭素原子またはヨウ素原子であり、好ましくはフッ素原子、塩素原子または臭素原子であり、より好ましくは塩素原子である。
 置換基として採りうるアリール基としては、また、置換基として採りうるジアリールアミノ基、アリールヘテロアリールアミノ基、アリールオキシ基に含まれるアリール基としては、例えば、炭素数6~30のアリール基が挙げられ、炭素数6~16のアリール基が好ましく、炭素数6~12のアリール基がより好ましく、炭素数6~10のアリール基が特に好ましい。アリール基を構成するアリール環としては、単環系であるベンゼン環、縮合二環系であるナフタレン環、縮合三環系であるアセナフチレン環、フルオレン環、フェナレン環、フェナントレン環、縮合四環系であるトリフェニレン環、ピレン環、ナフタセン環、縮合五環系であるペリレン環、ペンタセン環などが挙げられる。後述するようにアリール基はさらにアリール基で置換されていてもよいため、例えば置換アリール基として三環系であるテルフェニル環(m-テルフェニル、o-テルフェニル、p-テルフェニル)等を採ることもできる。
 置換基として採りうるヘテロアリール基としては、また、置換基として採りうるジヘテロアリールアミノ基、アリールヘテロアリールアミノ基、に含まれるヘテロアリール基としては、例えば、炭素数2~30のヘテロアリール基が挙げられ、炭素数2~25のヘテロアリール基が好ましく、炭素数2~20のヘテロアリール基がより好ましく、炭素数2~15のヘテロアリール基がさらに好ましく、炭素数2~10のヘテロアリール基が特に好ましい。ヘテロアリール基を構成するヘテロアリール環としては、例えば環構成原子として炭素原子以外に酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1~5個含有する複素環などが挙げられる。ヘテロアリール基を構成するヘテロアリール環としては、例えば、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、インドール環、イソインドール環、1H-インダゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、1H-ベンゾトリアゾール環、キノリン環、イソキノリン環、シンノリン環、キナゾリン環、キノキサリン環、フタラジン環、ナフチリジン環、プリン環、プテリジン環、カルバゾール環、アクリジン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、フェナジン環、インドリジン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、フラザン環、オキサジアゾール環、チアントレン環などが挙げられる。
 置換基として採りうるアルキル基は、直鎖、分枝鎖および環状のいずれでもよく、例えば、炭素数1~24の直鎖アルキル基、炭素数3~24の分枝鎖アルキル基または炭素数3~8の環状アルキル基が挙げられる。炭素数1~18の直鎖アルキル基、炭素数3~18の分枝鎖アルキル基および炭素数4~8の環状アルキル基が好ましく、炭素数1~12の直鎖アルキル基、炭素数3~12の分枝鎖アルキル基および炭素数5~7の環状アルキル基がより好ましく、炭素数1~6の直鎖アルキル基、炭素数3~6の分枝鎖アルキル基および炭素数5~6の環状アルキル基がさらに好ましく、炭素数1~4の直鎖アルキル基、炭素数3または4の分枝鎖アルキル基が特に好ましい。具体的なアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、n-ヘキシル基、1-メチルペンチル基、4-メチル-2-ペンチル基、3,3-ジメチルブチル基、2-エチルブチル基、n-ヘプチル基、1-メチルヘキシル基、n-オクチル基、t-オクチル基、1-メチルヘプチル基、2-エチルヘキシル基、2-プロピルペンチル基、n-ノニル基、2,2-ジメチルヘプチル基、2,6-ジメチル-4-ヘプチル基、3,5,5-トリメチルヘキシル基、n-デシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-トリデシル基、1-ヘキシルヘプチル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-エイコシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ビシクロ[2,2,1]ヘプチル基、ビシクロ[2.2.2]オクチル基、デカヒドロナフチル基、アダマンチル基などが挙げられる。本明細書において「n」はノルマル、「s」がセカンダリー、「t」はターシャリーの略である。
 置換基として採りうるアルコキシ基としては、例えば、炭素数1~24の直鎖アルコキシ基、炭素数3~24の分枝鎖アルコキシ基または炭素数3~8の環状アルコキシ基が挙げられる。炭素数1~18の直鎖アルコキシ基、炭素数3~18の分枝鎖アルコキシ基、炭素数4~8の環状アルコキシ基が好ましく、炭素数1~12の直鎖アルコキシ基、炭素数3~12の分枝鎖アルコキシ基、炭素数5~7の環状アルコキシ基がより好ましく、炭素数1~6の直鎖アルコキシ基、炭素数3~6の分枝鎖アルコキシ基、炭素数5~6の環状アルコキシ基がさらに好ましく、炭素数1~4の直鎖アルコキシ基、炭素数3~4の分枝鎖のアルコキシ基が特に好ましい。具体的なアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、シクロヘキシルオキシ基、ビシクロ[2,2,1]ヘプチルオキシ基、ビシクロ[2.2.2]オクチルオキシ基、デカヒドロナフチルオキシ基、アダマンチルオキシ基などが挙げられる。
 置換基として採りうるジアリールアミノ基を構成する2つのアリール基、ジヘテロアリールアミノ基を構成する2つのヘテロアリール基、アリールヘテロアリールアミノ基を構成するアリール基とヘテロアリール基は、それぞれ互いに単結合または連結基を介して結合していてもよいし、結合していなくてもよい。連結基の連結鎖構成原子数は、好ましくは1~3、より好ましくは1または2、さらに好ましくは1である。連結基としては、-O-、-S-、-C(=O)-、-C(=S)-、-N(R51)-、-B(R52)-、-C(R53)(R54)-、-Si(R55)(R56)-またはこれらの2つ以上を連結した連結基を挙げることができる。ここでR51~R56は各々独立に水素原子または置換基を表し、置換基としては、置換もしくは無置換のアルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~6)、置換もしくは無置換のアリール基(好ましくは炭素数6~20、より好ましくは炭素数6~14、さらに好ましくは炭素数6~10)、置換もしくは無置換のヘテロアリール基(好ましくは環骨格原子数5~20、より好ましくは環骨格原子数5~14、さらに好ましくは環骨格原子数5~10)を好ましく例示することができる。
  一般式(1)で表される構造を複数有する化合物は、一般式(1)で表される構造の多量体である。多量体は、2~6量体が好ましく、2~3量体がより好ましく、2量体が特に好ましい。多量体は、一つの化合物の中に一般式(1)で表される構造を複数有する形態であればよく、例えば、上記構造が単結合、炭素数1~3のアルキレン基、フェニレン基、ナフチレン基などの連結基で複数結合した形態に加えて、上記構造に含まれる任意の環(a環、b環またはc環)を複数の一般式(1)で表される構造で共有するようにして結合した形態であってもよく、また、一般式(1)で表される構造に含まれる任意の環(a環、b環またはc環)同士が縮合するようにして結合した形態であってもよい。
 一般式(1)で表される好ましい化合物群として、例えば下記一般式(1a)で表される化合物群を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 一般式(1a)において、R11~R17は各々独立に置換基を表し、R18~R23は各々独立に水素原子または置換基を表し、n11、n13、n14、n17は各々独立に0~5のいずれかの整数を表し、n12は0~2のいずれかの整数を表し、n15、n16は各々独立に0~4のいずれかの整数を表す。
 一般式(1a)におけるR11~R23が採りうる置換基は、置換または無置換のアリール基、置換または無置換のヘテロアリール基、置換または無置換のジアリールアミノ基、置換または無置換のジヘテロアリールアミノ基、置換または無置換のアリールヘテロアリールアミノ基(アリール基とヘテロアリール基を有するアミノ基)、置換または無置換のアルキル基、置換または無置換のアルコキシ基または置換または無置換のアリールオキシ基が好ましい。これらの基が置換基を有する場合の置換基としては、アリール基、ヘテロアリール基またはアルキル基が挙げられる。ここでいうアリール基、ヘテロアリール基、ジアリールアミノ基、ジヘテロアリールアミノ基、アリールヘテロアリールアミノ基、アルキル基、アルコキシ基、およびアリールオキシ基については、一般式(1)におけるこれらの基の説明を参照することができる。
 ベンゼン環の2位に結合したR14とベンゼン環の2位に結合したR15は、互いに結合して単結合または連結基を形成してもよい(ここでベンゼン環の1位は一般式(1a)に表示された窒素原子Nに結合する位置である)。また、ベンゼン環の2位に結合したR16とベンゼン環の2位に結合したR17は、互いに結合して単結合または連結基を形成してもよい(ここでベンゼン環の1位は一般式(1a)に表示された窒素原子Nに結合する位置である)。ここでいう連結基については、一般式(1)における連結基の記載を参照することができる。
 一般式(1a)におけるn11、n13~n17は、0~3のいずれかの整数であることが好ましく、0~2のいずれかの整数であることがより好ましい。
 一般式(1a)で表される化合物の中に、R11~R23として存在する置換基の数は0~26であることが好ましく、0~16であることがより好ましく、例えば1~8の中から選択したり、2~8の中から選択したり、0~4の中から選択したり、0~2の中から選択したりしてもよい。
 一般式(1a)で表される好ましい化合物群として、R18、R20、R21、R23が水素原子である化合物群を挙げることができ、より好ましい化合物群として、R18、R20、R21、R23が水素原子であって、n11~n17が各々独立に0~2のいずれかの整数である化合物群を挙げることができる。
 一般式(1a)で表される別の好ましい化合物群として、R18~R23が水素原子、置換または無置換のアリール基、置換または無置換のジアリールアミノ基、置換または無置換のアルキル基、置換または無置換のアルコキシ基または置換または無置換のアリールオキシ基である化合物群を挙げることができる。
 一般式(1a)で表されるさらに別の好ましい化合物群として、R19とR22が置換基である化合物群を挙げることができ、より好ましい化合物群としてR19とR22が置換または無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換または無置換のジアリールアミノ基、置換または無置換のアルキル基、置換または無置換のアルコキシ基または置換または無置換のアリールオキシ基である化合物群を挙げることができる。これらの基が置換基を有する場合の置換基としては、アリール基、ヘテロアリール基またはアルキル基が挙げられる。
 一般式(1)で表される好ましい化合物群として、例えば下記一般式(1b)で表される化合物群を挙げることもできる。
Figure JPOXMLDOC01-appb-C000015
 一般式(1b)において、R31~R37は各々独立に置換基を表し、n31~n33、n35は各々独立に0~5のいずれかの整数を表し、n34、n37は各々独立に0~3のいずれかの整数を表し、n36は0~4のいずれかの整数を表す。
 一般式(1b)におけるR31~R37が採りうる置換基は、置換または無置換のアリール基、置換または無置換のアルキル基が好ましい。これらのアリール基やアルキル基が置換基を有する場合の置換基としては、アリール基またはアルキル基が挙げられる。ここでいうアリール基とアルキル基については、一般式(1)におけるこれらの基の説明を参照することができる。特に一般式(1b)のR31~R37が採りうるアルキル基の炭素数は1~12であることが好ましく、1~4であることがより好ましい。また、特に一般式(1b)のR31~R37が採りうるアリール基は、炭素数6~10のアリール基であることが好ましく、フェニル基であることがより好ましい。
 一般式(1b)におけるn31~n37は、0~2のいずれかの整数であることが好ましく、0~1のいずれかの整数であることがより好ましい。
 一般式(1b)のn31~n37の合計は0~14であることが好ましく、0~8であることがより好ましく、例えば1~8の中から選択したり、2~8の中から選択したり、0~4の中から選択したり、0~2の中から選択したりしてもよい。
 一般式(1b)で表される好ましい化合物群として、R31~R37が置換もしくは無置換のフェニル基である化合物群を挙げることができ、より好ましい化合物群として、R31~R37が無置換のフェニル基である化合物群を挙げることができる。
 一般式(1b)で表される別の好ましい化合物群として、n35が1~5のいずれかの整数である化合物群、n35が1~3のいずれかの整数である化合物群、n35が1であってR35が置換もしくは無置換のフェニル基である化合物群を挙げることができる。また、n36が1~4のいずれかの整数である化合物群、n36が1~3のいずれかの整数である化合物群、n36が1であってR36が置換もしくは無置換のフェニル基である化合物群を挙げることができる。さらに、n35とn36が各々独立に1~3のいずれかの整数である化合物群、n35とn36が1である化合物群、n35とn36が1であってR35とR36が各々独立に置換もしくは無置換のフェニル基である化合物群を挙げることができる。
 一般式(1)や一般式(1a)で表される化合物は、特許第5935199号公報の段落番号[0281]~[0316]と合成例の記載を参照して合成することができる。また、既知の合成法を組み合わせることにより合成することも可能である。具体的な合成手順については、後述の合成例1を参照することができる。
 以下に、一般式(1)で表される化合物の具体例を挙げるが、本発明で採用することができる化合物は以下の具体例によって限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
<一般式(2)で表される化合物>
 本発明では、下記一般式(2)で表される化合物を用いる。
Figure JPOXMLDOC01-appb-C000018
 一般式(2)において、R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
 R31~R35が採りうるカルバゾール-9-イル基の置換基として、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のジアリールアミノ基、置換もしくは無置換のジヘテロアリールアミノ基、置換もしくは無置換のアリールヘテロアリールアミノ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、または置換もしくは無置換のアリールオキシ基を好ましく挙げることができる。これらの基はさらにこれらの置換基で置換されていてもよい。
 ここでいうアリール基、ヘテロアリール基、ジアリールアミノ基、ジヘテロアリールアミノ基、アリールヘテロアリールアミノ基、アルキル基、アルコキシ基、およびアリールオキシ基については、一般式(1)におけるこれらの基の説明を参照することができる。
 R31~R35が採りうるカルバゾール-9-イル基が置換されている場合、その置換基の結合位置は、カルバゾール環の3位か、3位と6位の両方であることが好ましい。
 R31~R35が採りうるカルバゾール-9-イル基の具体例として、3-メチルカルバゾール-9-イル基、3,6-ジメチルカルバゾール-9-イル基、3-エチルカルバゾール-9-イル基、3,6-ジエチルカルバゾール-9-イル基、3-t-ブチルカルバゾール-9-イル基、3,6-ジーt-ブチルカルバゾール-9-イル基、3-フェニルカルバゾール-9-イル基、3,6-ジフェニルカルバゾール-9-イル基、3-(カルバゾール-9-イル)カルバゾール-9-イル基、3,6-ビス(カルバゾール-9-イル)カルバゾール-9-イル基などを挙げることができる。
 R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。4つがいずれも異なっていてもよいが、好ましいのは3つが同じで1つが異なっている場合か、2つが同じで他の2つも同じである場合である。例えば、R31とR35が同じでR32とR34が同じである場合、R31とR32が同じでR34とR35が同じである場合、R31とR34が同じでR32とR35が同じである場合、R32とR34とR35が同じでR31だけが異なる場合、R31とR34とR35が同じでR32だけが異なる場合を挙げることができる。
 一般式(2)に存在する置換もしくは無置換のカルバゾール-9-イル基の相違点は、カルバゾール-9-イル基が置換基を有するか有さないかの相違であってもよいし、カルバゾール-9-イル基に結合している置換基の種類の相違であってもよいし、カルバゾール-9-イル基に結合している置換基の結合位置の相違であってもよい。好ましいのは、カルバゾール-9-イル基が置換基を有するか有さないかの相違と、カルバゾール-9-イル基に結合している置換基の種類の相違である。カルバゾール-9-イル基に結合している置換基の種類が相違する例として、アルキル基で置換されたカルバゾール-9-イル基とアリール基で置換されたカルバゾール-9-イル基を挙げることができる。カルバゾール-9-イル基に結合している置換基の結合位置が相違する例として、3位と6位がそれぞれアルキル基で置換されたカルバゾール-9-イル基と3位だけがアルキル基で置換されたカルバゾール-9-イル基を挙げることができる。
 R31~R35の残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。残りの1つが置換もしくは無置換のカルバゾール-9-イル基を表すとき、その置換もしくは無置換のカルバゾール-9-イル基は他の4つのうちの少なくとも1つと同一であってもよいし、他の4つとは異なっていてもよい。R31~R35の残りの1つが採りうるアリール基については、一般式(1)の説明におけるアリール基の記載を参照することができる。R31~R35の残りの1つが採りうるアリール基は置換されていてもよく、置換基として好ましいのはアルキル基またはアリール基である。R31~R35の残りの1つが採りうるアリール基として、例えば4位がアルキル基またはアリール基で置換されたフェニル基、3位と5位がアルキル基またはアリール基で置換されたフェニル基を挙げることができる。残りの1つが水素原子、置換もしくは無置換のアリール基、またはシアノ基であるとき、それはR31~R35のいずれであってもよいが、R33であることが好ましい。
 一般式(2)で表される好ましい化合物群として、例えば下記一般式(2a)で表される化合物群を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 一般式(2a)において、R41~R44、R46~R49は各々独立に置換基を表すが、一般式(2a)のベンゾニトリルに結合する4つの置換もしくは無置換のカルバゾール-9-イル基がすべて同一であることはない。n41~n44、n46~n49は各々独立に0~4のいずれかの整数を表す。R45は水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
 R41~R44、R46~R49が採りうる置換基については、一般式(2)の説明におけるR31~R35が採りうるカルバゾール-9-イル基の置換基の記載を参照することができる。R45が採りうる基については、一般式(2)の説明におけるR31~R35の残りの1つが採りうる基の記載を参照することができる。
 n41が2以上であるとき、複数のR41は互いに同一であっても異なっていてもよく、また、隣接する2つのR41は結合して環状構造を形成してもよいし形成しなくてもよい。n42が2以上であるとき、複数のR42は互いに同一であっても異なっていてもよく、また、隣接する2つのR42は結合して環状構造を形成してもよいし形成しなくてもよい。n43が2以上であるとき、複数のR43は互いに同一であっても異なっていてもよく、また、隣接する2つのR43は結合して環状構造を形成してもよいし形成しなくてもよい。n44が2以上であるとき、複数のR44は互いに同一であっても異なっていてもよく、また、隣接する2つのR44は結合して環状構造を形成してもよいし形成しなくてもよい。n46が2以上であるとき、複数のR46は互いに同一であっても異なっていてもよく、また、隣接する2つのR46は結合して環状構造を形成してもよいし形成しなくてもよい。n47が2以上であるとき、複数のR47は互いに同一であっても異なっていてもよく、また、隣接する2つのR47は結合して環状構造を形成してもよいし形成しなくてもよい。n48が2以上であるとき、複数のR48は互いに同一であっても異なっていてもよく、また、隣接する2つのR48は結合して環状構造を形成してもよいし形成しなくてもよい。n49が2以上であるとき、複数のR49は互いに同一であっても異なっていてもよく、また、隣接する2つのR49は結合して環状構造を形成してもよいし形成しなくてもよい。ここでいう環状構造については、一般式(1)における環状構造の説明を参照することができる。
 n41~n49は、0~3のいずれかの整数であることが好ましく、0~2のいずれかの整数であることがより好ましい。n41~n49の総和は、1~24であることが好ましく、1~16であることがより好ましく、1~8であることがさらに好ましい。
 n41~n44、n46~n49の組み合わせ例として、n41だけが1であり他が0である場合、n43だけが1であり他が0である場合、n41とn42が1であり他が0である場合、n43とn44が1であり他が0である場合、n41とn43が1であり他が0である場合、n41とn46が1であり他が0である場合、n41とn48が1であり他が0である場合、n41~n44が1であり他が0である場合、n41、n42、n46、n47が1であり他が0である場合、n43、n44、n46、n47が1であり他が0である場合、n41、n42が0であり他が1である場合、n43、n44が0であり他が1である場合を挙げることができる。
 一般式(2)や一般式(2a)で表される化合物は、後述の合成例2を参考にして合成することができる。すなわち、4-フェニル-2,3,5,6-テトラフルオロベンゾニトリルに置換もしくは無置換のカルバゾールを反応させることにより、2位と6位に置換もしくは無置換のカルバゾール-9-イル基を導入し、さらに置換もしくは無置換のジアリールカルバゾールと反応させることにより、3位と5位に置換もしくは無置換のジアリールカルバゾール-9-イル基を導入することにより合成することができる。また、既知の合成法を組み合わせることにより合成することも可能である。
 以下の表1および表2に、一般式(2)で表される化合物の具体例を挙げるが、本発明で採用することができる化合物は以下の具体例によって限定的に解釈されることはない。一般式(2)の中の置換基を表す一般式(3a)と一般式(3b)も以下に記載する。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-C000025
[一般式(1)で表される化合物と一般式(2)で表される化合物の組み合わせ]
 一般式(1)で表される化合物と一般式(2)で表される化合物は、有機発光素子用の材料として組み合わせて用いることができる。有機発光素子では、一般式(2)で表される化合物から一般式(1)で表される化合物へと効率よくエネルギー移動がなされ、そのエネルギーが発光に使用される。この機構を、一般式(1)で表される化合物と一般式(2)で表される化合物を含む有機エレクトロルミネッセンス素子を例にとって以下において説明する。
 有機エレクトロルミネッセンス素子では、電極から注入されたホールおよび電子の再結合によって励起エネルギーが発生すると、電極間の有機層に含まれる有機化合物が基底状態から励起一重項状態および励起三重項状態に遷移する。励起一重項状態の有機化合物(一重項励起子)と励起三重項状態の有機化合物(三重項励起子)との形成確率は、統計的に一重項励起子が25%、三重項励起子が75%である。そして、励起子のうち励起一重項状態の一般式(2)の化合物のエネルギーが一般式(1)の化合物に移動し、基底状態の一般式(1)の化合物が励起一重項状態に遷移する。励起一重項状態になった一般式(1)の化合物は、その後基底状態に戻るときに蛍光を放射する。あるいは、励起一重項状態になった一般式(1)の化合物のエネルギーが別の発光材料に移動し、基底状態の発光材料が励起一重項状態に遷移し、その後基底状態に戻るときに蛍光を放射する。
 このとき、本発明の有機エレクトロルミネッセンス素子では、一般式(2)の化合物が励起三重項状態から励起一重項状態に逆項間交差しやすい化合物であるため、この逆項間交差による一重項励起エネルギーも一般式(1)の化合物に移動する。このため、存在比率の大きい励起三重項状態のエネルギーも間接的に発光に寄与し、一般式(2)の化合物を含まない構成に比べて有機エレクトロルミネッセンス素子の発光効率を飛躍的に向上させることができる。
 一般式(2)の化合物は、できるだけ逆項間交差しやすい化合物であることが好ましい。このため、熱エネルギーの吸収によって励起三重項状態から励起一重項状態に逆項間交差する熱活性化型の遅延蛍光材料であることが好ましい。熱活性化型の遅延蛍光材料は、デバイスが発する熱を吸収して励起三重項状態から励起一重項状態へ比較的容易に逆項間交差し、その励起三重項エネルギーを効率よく発光に寄与させることができる。一般式(2)の化合物は、最低励起一重項状態でのエネルギー準位ES1と77Kの最低励起三重項状態でのエネルギー準位ET1の差ΔESTが0.3eV以下であることが好ましく、0.2eV以下であることがより好ましく、0.15eV以下であることがさらに好ましく、0.10eV以下であることがさらにより好ましい。エネルギー差ΔESTが小さい化合物は、励起三重項状態から励起一重項状態への逆項間交差が比較的容易に起こるため、その励起三重項エネルギーを効率よく発光に寄与させることができる。また、励起過程での三重項励起子の蓄積が効果的に抑制されるため、一般式(2)で表される化合物を用いることにより、三重項励起子の蓄積に起因する励起子消滅やデバイス劣化が抑えられ、より高い発光効率に加えて優れた高い耐久性を得ることもできる。また、励起子消滅が抑えられることにより、有機レーザーの実現にも大いに貢献することができる。
 一般式(1)で表される化合物と一般式(2)で表される化合物を有機発光素子に用いることにより、良好な青色光を発光する有機発光素子を実現することが可能である。例えば、CIE-XYZ表色系における色度座標xが0.23以下でyが0.40以下、好ましくはxが0.20以下でyが0.30以下、より好ましくはxが0.16以下でyが0.26以下である光を発光しうる有機発光素子を提供することが可能である。高い発光効率で良好な青色光を発光する有機発光素子として満足が行くものはほとんど提供されるに至っていないことから、本発明の有用性は極めて高い。なお、本発明の有機発光素子の発光色は、必ずしも青色に限定されるものではなく、青色以外の発光を実現する有機発光素子であっても、一般式(1)で表される化合物と一般式(2)で表される化合物を用いるものである限り、本発明の範囲内に含まれる。
[有機発光素子]
 一般式(1)で表される化合物と一般式(2)で表される化合物は、有機発光素子を構成するいずれかの層に一緒に含まれるようにしてもよいし、それぞれの化合物が異なる層に含まれるようにしてもよい。異なる層に含まれるようにする場合は、互いに隣接する層に各化合物が含まれるようにすることが好ましい。例えば、一般式(1)で表される化合物と一般式(2)で表される化合物が発光層にともに含まれるようにしたり、一般式(1)で表される化合物と一般式(2)で表される化合物が発光層に隣接する層にともに含まれるようにしたり、一般式(1)で表される化合物が発光層に含まれるようにして一般式(2)で表される化合物が発光層に隣接する層に含まれるようにしたりすることが可能である。
 有機発光素子には、一般式(1)で表される化合物よりも、一般式(2)で表される化合物を多量に用いるのが好ましい。これらの化合物の合計を100重量部としたとき、一般式(1)で表される化合物は0.01~49.9重量部で用いることが好ましく、1~35重量部で用いることがより好ましい。
 一般式(1)で表される化合物と一般式(2)で表される化合物が発光層にともに含まれるようにする場合は、これらの化合物の他にホスト材料が含まれるようにしてもよい。ホスト材料は、一般式(1)で表される化合物や一般式(2)で表される化合物よりも最低励起一重項エネルギーが大きい有機化合物であり、キャリアの輸送を担うホスト材料としての機能や一般式(1)で表される化合物のエネルギーを該化合物中に閉じ込める機能を有する。これにより、一般式(1)で表される有機化合物は、分子内でホールと電子とが再結合することによって生じたエネルギー、および、ホスト材料および一般式(2)で表される化合物から受け取ったエネルギーを効率よく発光に変換することができ、発光効率が高い有機エレクトロルミネッセンス素子を実現することができる。
 ホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物を採用することが好ましい。ホスト材料は、一般式(1)で表される化合物や一般式(2)で表される化合物よりも発光層に多く含まれるようにすることが好ましい。具体的には、発光層の全重量の40重量%以上とすることが好ましく、50重量%以上とすることがより好ましく、また、99.9重量%以下とすることが好ましく、95重量%以下とすることがより好ましい。発光層に一般式(1)で表される化合物と一般式(2)で表される化合物だけが含まれる場合と、発光層に一般式(1)で表される化合物と一般式(2)で表される化合物とホスト材料が含まれる場合は、一般式(2)で表される化合物から一般式(1)で表される化合物へのエネルギー移動を経て、主として一般式(1)で表される化合物から発光する。
 一般式(1)で表される化合物と一般式(2)で表される化合物が発光層にともに含まれるようにする場合は、これらの化合物の他に発光材料が含まれるようにしてもよい。発光材料は、一般式(1)で表される化合物よりも最低励起一重項エネルギーが小さい化合物である。このとき、発光層にはホスト材料も含まれていてもよい。発光材料は、一般式(1)で表される化合物、一般式(2)で表される化合物、またはこれらの両方からエネルギー移動を受け、発光する。このとき、一般式(1)で表される化合物からの発光が観測されることもある。発光層における発光材料の含有量は、発光層の全重量の0.01重量%~30重量%とすることが好ましく、0.1重量%~15重量%とすることがより好ましい。
 一般式(1)で表される化合物と一般式(2)で表される化合物が発光層に隣接する層にともに含まれるようにする場合は、発光層には発光材料が含まれるようにする。発光層には、一般式(1)で表される化合物が含まれていてもよい。発光層の発光材料は、隣接する層の一般式(1)で表される化合物、一般式(2)で表される化合物、またはこれらの両方からエネルギー移動を受け、発光する。
 一般式(1)で表される化合物が発光層に含まれるようにして一般式(2)で表される化合物が発光層に隣接する層に含まれるようにしてもよい。一般式(2)で表される化合物からエネルギー移動を受けた一般式(1)で表される化合物が発光するようにしてもよいし、発光層にさらに発光材料が含まれるようにして、発光材料から発光するようにしてもよい。
 有機発光素子における一般式(1)で表される化合物と一般式(2)で表される化合物の使用態様は、有機発光素子の製造目的や機能に応じて適宜アレンジすることができる。
 次に有機発光素子の構成について説明する。
 有機フォトルミネッセンス(PL)素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス(EL)素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。一般式(1)で表される化合物と一般式(2)で表される化合物を発光層に隣接する層に含まれるようにする場合、これらの化合物は発光層に隣接する上記のいずれかの層に含ませることができる。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層である。発光層には、一般式(1)で表される化合物と一般式(2)で表される化合物を含む層、一般式(1)で表される化合物と一般式(2)で表される化合物とホスト材料を含む層、一般式(1)で表される化合物と一般式(2)で表される化合物と発光材料を含む層、一般式(1)で表される化合物と一般式(2)で表される化合物と発光材料とホスト材料を含む層、発光材料を含む層、発光材料とホスト材料を含む層、発光材料と一般式(1)で表される化合物を含む層などとすることができる。発光層に一般式(1)で表される化合物が含まれていない場合は、発光層に隣接する層に一般式(1)で表される化合物が含まれる。発光層に一般式(2)で表される化合物が含まれていない場合は、発光層に隣接する層に一般式(2)で表される化合物が含まれる。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 まず、発光層のホスト材料として用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000031
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000039
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000040
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000044
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000045
 有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、燐光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、燐光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、一般式(1)で表される化合物と一般式(2)で表される化合物を含有させることにより、発光効率が高い有機発光素子を提供することができる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
[組成物および膜]
 本発明は、一般式(1)で表される化合物と一般式(2)で表される化合物を含む組成物も提供する。組成物は、溶液状態であってもよいし、固体状態であってもよい。溶液状態にある場合は、一般式(1)で表される化合物と一般式(2)で表される化合物がともに溶解する溶媒に溶解する。例えばトルエンを用いることができる。
 本発明は、一般式(1)で表される化合物と一般式(2)で表される化合物を含む膜も提供する。膜内において一般式(1)で表される化合物と一般式(2)で表される化合物は混合されていてもよいし、一般式(1)で表される化合物を含む層と一般式(2)で表される化合物を含む層が積層された構造を含んでいてもよい。一般式(1)で表される化合物と一般式(2)で表される化合物を含む膜は、有機発光素子用の膜として有用であるが、それ以外の用途に用いてもよい。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 以下に記載される発光特性の評価は、紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda950-PKA)、蛍光分光光度計(HORIBA社製:FluoroMax-4)、マルチチャンネル分光器(浜松ホトニクス社製:PMA-12C10027-01)、光励起絶対発光量子収率測定装置(浜松ホトニクス社製:C9920PMA-11)、蛍光寿命測定装置(浜松ホトニクス社製:C11367-25)、およびストリークカメラ(浜松ホトニクス社製:U8167-1)を用いて行った。また、本実施例では、発光寿命が100ns以下の蛍光を即時蛍光と判定し、発光寿命が0.1μs以上の蛍光を遅延蛍光と判定した。
(合成例1) 化合物1の合成
[第1段]
Figure JPOXMLDOC01-appb-C000046
 窒素雰囲気下、1,3-ジブロモベンゼン(25.0g、106mmol)、アニリン(20.3ml、223mmol)、トリス(ジベンジリデンアセトン)二パラジウム(0)(Pd(dba))(971mg、1.06mmol)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP:1.98g、3.18mmol)、NaOtBu(25.5g、265mmol)およびトルエン(400ml)の入ったフラスコを110℃に加熱し、18時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をトルエンに溶解させた後、適当量を減圧留去し、ヘキサンを加え再沈殿させることで、N,N-ジフェニルベンゼン-1,3-ジアミン(16.5g、収率60%)を白色固体として得た。
H-NMR(400MHz,CDCl):δ=5.63(s,2H)、6.60(dd,2H)、6.74(t,1H)、6.90(t,2H)、7.06(d,4H)、7.12(t,1H)、7.24(dt,4H).
[第2段]
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、1,3-ジブロモ-5-クロロベンゼン(8.11g、30mmol)、ジフェニルアミン(10.1g、60mmol)、Pd(dba)(550mg、0.6mmol)、2-ジシクロヘキシルフェニルホスフィノ-2’,6’-ジメトキシジフェニル(SPhos:0.493g、1.2mmol)、NaOtBu(8.60g、90mmol)およびトルエン(300ml)の入ったフラスコを80℃に加熱し、15時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をトルエンに溶解させた後、減圧留去することで飽和溶液を調製し、ヘキサンを加え再沈殿させることで、5-クロロ-N,N,N,N-テトラフェニルベンゼン-1,3-ジアミン(5.66g、収率43%)を白色固体として得た。
H-NMR(400MHz,CDCl):δ=6.56(d,2H)、6.64(t,1H)、7.00(t,4H)、7.05(d,8H)、7.21(dd,8H).
[第3段]
Figure JPOXMLDOC01-appb-C000048
 窒素雰囲気下、第1段で合成したN,N-ジフェニルベンゼン-1,3-ジアミン(1.34g、5.1mmol)、第2段で合成した5-クロロ-N,N,N,N-テトラフェニルベンゼン-1,3-ジアミン(4.80g、11mmol)、Pd(dba)(0.140g、0.15mmol)、トリ-tert-ブチルホスフィン(60.7mg、0.30mmol)、NaOtBu(1.47g、15mmol)およびトルエン(200ml)の入ったフラスコを110℃に加熱し、8時間撹拌した。反応液を室温まで冷却し、シリカゲルを用いて濾過し(溶離液:トルエン)、溶媒を減圧留去して粗生成物を得た。得られた粗生成物をヘキサン、メタノールの順に洗浄することで、N,N’-(1,3-フェニレン)ビス(N,N,N,N,N-ペンタフェニルベンゼン-1,3,5-トリアミン(4.80g、収率87%)を白色固体として得た。
H-NMR(400MHz,CDCl):δ=6.38(d,4H)、6.41(t,2H)、6.58(dd,2H)、6.70(t,1H)、6.88-6.90(m,14H)、6.85(t,1H)、6.99(d,16H)、7.08-7.15(m,20H).
[第4段]
Figure JPOXMLDOC01-appb-C000049
 N,N’-(1,3-フェニレン)ビス(N,N,N,N,N-ペンタフェニルベンゼン-1,3,5-トリアミン(3.24g、3.0mmol)およびオルトジクロロベンゼン(400ml)の入ったフラスコに、窒素雰囲気下、室温で、三臭化ホウ素(1.13ml、12mmol)を加えた。滴下終了後、180℃まで昇温して20時間撹拌した。その後、再び室温まで冷却して、N-ジイソプロピルエチルアミン(7.70ml、45mmol)を加え、発熱が収まるまで撹拌した。その後、60℃で減圧下、反応溶液を留去して粗生成物を得た。得られた粗生成物をアセトニトリル、メタノール、トルエンの順に洗浄し、シリカゲルカラムクロマトグラフィー(溶離液:トルエン)で精製後粗体をo-ジクロロベンゼンで2回再結晶を行い、その後1×10-4mmHgの減圧下、440℃にて昇華精製を行うことで、化合物1を1.17g得た。
H-NMR(400MHz,CDCl):δ=5.72(s,2H)、5.74(s,2H)、5.86(s,1H)、6.83(d,2H)、6.88-6.93(m,12H)、7.05(t,8H)、7.12-7.19(m,6H)、7.24-7.26(m,4H)、7.05(d,4H)、7.12(dd,8H)、7.12-7.19(m,6H)、7.32(d,4H)、7.38(dd,2H)、7.42(t,2H)、7.46(dd,2H)、7.47(dd,4H)、9.30(d,2H)、10.5(s,1H).
13C-NMR(101MHz,CDCl):99.5(2C+2C)、103.4(1C)、116.8(2C)、120.0(2C)、123.1(4C)、125.3(8C)、127.1(2C)、127.6(2C)、128.5(8C)、129.6(4C)、129.8(4C)、130.2(4C+2C)、130.3(4C)、135.0(2C)、142.1(2C)、142.5(2C)、143.3(1C)、146.8(4C)、147.9(2C+2C)、148.0(2C)、150.1(2C)、151.1(2C).
(合成例2) 化合物2-38の合成
[第1段および第2段]
Figure JPOXMLDOC01-appb-C000050
 窒素気流下、トリブチル錫クロリド(5.06g、4.45mL、13.78mmol)および、4-ブロモ-2,3,5,6-テトラフルオロベンゾニトリル(2.92g、11.50mmol)のトルエン溶液(50mL)に、トリ(о-トリル)ホスフィン(0.525g、1.72mmol)およびトリス(ジベンジリデンアセトン)パラジウム(0)(1.57g、1.72mmol)を加え、100℃に昇温し、21時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、セライトろ過した。次に、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:ヘキサン=1:2)で精製し、白色固体の化合物a(2.42g、9.63mmol、収率83.7%)を得た。
H-NMR(500MHz、CDCl):δ=7.56-7.51(m,3H),7.48-7.45(m,2H)
ASAPマススペクトル分析:理論値251.0、観測値251.1
 窒素気流下、水素化ナトリウム(60% 鉱物油分散物、0.125g、3.14mmol)のテトラヒドロフラン溶液(10mL)に9H-カルバゾール(0.397g、2.38mmol)を加え、室温1時間攪拌した。この混合物を-50℃に冷却し、化合物a(0.3g、1.19mmol)を加え、冷却バスを取り外し、徐々に室温に戻しながら22時間攪拌した。この反応混合物を氷水に加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:2)で精製し、黄色固体の化合物b(0.486g、0.89mmol、収率74.8%)を得た。
H-NMR(500MHz、CDCl):δ=8.16(d,J=7.5Hz,4H)、7.62-7.59(m,2H)、7.54-7.49(m,7H)、7.38(dt,J=7.5Hz,1.0Hz,4H),7.30(d,J=7.5Hz,4H)、
ASAPマススペクトル分析:理論値545.2、観測値545.2
[第3段]
Figure JPOXMLDOC01-appb-C000051
 窒素気流下、3,6-ジフェニルカルバゾール(0.66g、2.06mmol)と炭酸カリウム(0.43g、3.11mmol)の1-メチル-2-ピロリドン溶液(10mL)に化合物b(0.45g、0.825mmol)を加え、100℃、48時間攪拌した。この混合物を室温に戻し、水を加えてクエンチし、酢酸エチルにより抽出、有機層を飽和食塩水により洗浄、無水硫酸マグネシウムにより乾燥させた。これを減圧濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン=1:1)で精製し、黄色固体の化合物2-38(0.575g、0.502mmol、収率60.9%)を得た。
H-NMR(500MHz、CDCl):δ=7.81(d,J=1.5Hz,4H)、7.72-7.70(m,4H)、7.54-7.52(m,8H)、7.43(t,J=7.5Hz,8H)、7.32(t,J=7.5Hz、4H)、7.29-7.06(m,20H)、6.86-6.83(m,2H)、6.61-6.58(m,1H)、6.56-6.52(m,2H)
ASAPマススペクトル分析:理論値1143.4、観測値1143.4
(合成例3) 化合物2-117の合成
[第1段]
Figure JPOXMLDOC01-appb-C000052
 窒素雰囲気下で9H-カルバゾール(167mg、1mmol)を乾燥N,N-ジメチルホルムアミド(30mL)に溶解し、0℃でNaH(40mg、1mmol)を加えて室温で30分間撹拌した。その後、テトラフルオロベンゾニトリル(175mg、1mmol)を加え、室温で16時間撹拌した。水でクエンチして沈殿物を濾別し、粗生成物をカラムクロマトグラフィーにより精製することにより、中間体aを得た(収量193mg、収率60%)。
1H NMR (500 MHz, CDCl3, 298 K, relative to Me4Si): δ = 8.16 (d, 2H, 7.5 Hz), 7.53-7.58 (m, 1H), 7.48 (t, 2H, 7.0 Hz), 7.38 (t, 2H, 7.5 Hz), 7.11 (d, 2H, 8.0 Hz); 13C NMR (126 MHz, CDCl3): δ = 155.8, 155.7, 153.8, 153.7, 150.9, 150.8, 150.7, 150.1, 150.0, 149.9, 148.8, 148.7, 148.6, 148.0, 147.9, 147.8, 140.0, 126.6, 124.4, 124.3, 124.3, 124.2, 124.2, 121.6, 120.8, 112.2, 112.0, 111.9, 111.8, 109.4, 109.3, 109.2,109.2, 105.5, 105.4; 
19F NMR (471 MHz, CDCl3): δ = -114.32 (m, 1H), -128.05 (m, 1H), -130.54 (m, 1H); 
MS (APCI) calcd. for C19H9F3N2
m/z = 322.08; found: 322.17 [M]+.
[第2段]
Figure JPOXMLDOC01-appb-C000053
 窒素雰囲気下で3,6-ジフェニル-9H-カルバゾール(957mg、3mmol)を乾燥N、N-ジメチルホルムアミド(30mL)に溶解して、0℃でNaH(120mg、3mmol)を加えて、室温で30分間撹拌した。その後、2-(9H-カルバゾール-9-イル)-3,5,6-トリフルオロベンゾニトリル(322mg、1mmol)を加え、150℃で16時間加熱した。水でクエンチして沈殿物を濾別し、粗生成物をカラムクロマトグラフィーにより精製することにより、化合物2-117を得た(収量976mg、収率80%)。
1H NMR (500 MHz, Acetone-d6, 298 K, relative to Me4Si): δ = 9.07 (s, 1H), 8.36 (s, 2H), 8.29 (d, 4H, 10.0 Hz), 7.95-8.00 (m, 10H), 7.55-7.70 (m, 18H), 7.30-7.45 (m, 20H), 7.18 (t, 2H, 7.0 Hz). 13C NMR (126 MHz, Acetone-d6): δ = 143.1,143.1, 142.1, 142.0, 141.6, 141.5, 141.0, 140.7, 140.2, 140.0, 136.2, 135.9, 135.8, 130.6, 130.5, 128.8, 128.8, 128.7, 128.5, 128.4, 127.6, 126.8, 126.7, 126.7, 126.5, 126.42, 125.8, 122.9, 122.0, 120.5, 120.4, 120.4, 113.4, 112.9, 112.7, 112.7.
MS (APCI) calcd. for C91H57N5
m/z = 1220.5; found: 1221.0 [M]+. Elemental analysis calcd. (%) for C91H57N5: C 89.55, H 4.71, N 5.74; found: C 89.51, H 4.65, N 5.72.
(予備測定) 化合物1と化合物2-38の測定
 化合物1のトルエン溶液と化合物2-38のトルエン溶液を調製した(各濃度は10-5mol/L)。
 化合物1のトルエン溶液と化合物2-38のトルエン溶液について、300Kでスペクトル測定を行った結果を図2に示す。図2上段には、化合物1のトルエン溶液の吸収スペクトルと、化合物2-38のトルエン溶液に波長360nmの励起光を照射したときの発光スペクトルを示している。450nm前後の領域で、両者に重なりがあることが確認された。化合物1のトルエン溶液に波長360nmの励起光を照射したときの発光スペクトルは、図2下段に破線で示してある。
 化合物2-38の最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)を下記の方法にしたがって測定した。
(1)最低励起一重項エネルギー準位(ES1
 化合物2-38のトルエン溶液の発光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。ES1は2.79eVであった。
  換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー準位(ET1
 化合物2-38のトルエン溶液を77[K]に冷却し、励起光(337nm)を照射し、ストリークカメラを用いて燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
(3)測定結果
 化合物2-38の最低励起一重項エネルギー準位(ES1)は2.79eVであり、最低励起三重項エネルギー準位(ET1)は2.66eVであった。ES1-ET1を計算することにより、ΔESTは0.13eVと計算された。
(実施例1) 化合物1と化合物2-38を含む薄膜の調製と測定
 真空度5×10-4Pa以下で石英基板上に化合物1と化合物2-38とmCBP[3,3’-ジ(9H-カルバゾール-9-イル)-1,1’-ビフェニル]を異なる蒸着源から共蒸着させることにより厚さ50nmの薄膜を形成した(化合物1が1重量%、化合物2-38が25重量%、mCBPが74重量%)。この薄膜を、実施例1の薄膜とした。
 実施例1の薄膜に対して、波長360nmの励起光を照射したときの発光スペクトルを、図2下段に実線で示す(FWHMは20nm)。化合物1の発光スペクトルと一致していることが確認された。実施例1の薄膜のフォトルミネッセンス量子効率は75%であり、遅延成分は30%であった。ここでは、発光寿命が0.1μs未満の蛍光を即時蛍光と判定し、発光寿命が0.1μs以上の蛍光を遅延蛍光と判定して遅延成分の割合を求めた。
(実施例2) 化合物1と化合物2-38を含む有機エレクトロルミネッセンス素子の調製と測定
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2×10-5Paで積層した。
 まず、ITO上にHATCNを10nmの厚さに蒸着して正孔注入層を形成し、その上に、TrisPCzを30nmの厚さに蒸着して正孔輸送層を形成した。続いて、mCBPを5nmの厚さに蒸着して電子阻止層を形成した。次に、化合物1と化合物2-38とmCBPを異なる蒸着源から共蒸着させることにより厚さ50nmの発光層を形成した(化合物1が1重量%、化合物2-38が25重量%、mCBPが74重量%)。その上に、SF3-TRZを10nmの厚さに蒸着して正孔阻止層を形成し、その上に、SF3-TRZ:LiQ(重量比7:3)を20nmの厚さに蒸着して電子輸送層を形成した。さらにLiQを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに形成することにより陰極を形成することにより、実施例2の有機エレクトロルミネッセンス素子を作製した。
(実施例3) 化合物8と化合物2-117を含む有機エレクトロルミネッセンス素子の調製と測定
 膜厚50nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度2×10-5Paで積層した。
 まず、ITO上にHATCNを10nmの厚さに蒸着して正孔注入層を形成し、その上に、TrisPCzを30nmの厚さに蒸着して正孔輸送層を形成した。続いて、mCBPを5nmの厚さに蒸着して電子阻止層を形成した。次に、化合物8と化合物2-117とmCBPを異なる蒸着源から共蒸着させることにより厚さ30nmの発光層を形成した(化合物8が0.5重量%、化合物2-117が15重量%、mCBPが84.5重量%)。その上に、SF3-TRZを10nmの厚さに蒸着して正孔阻止層を形成し、その上に、SF3-TRZ:LiQ(重量比7:3)を20nmの厚さに蒸着して電子輸送層を形成した。さらにLiQを2nmの厚さに形成し、次いでアルミニウム(Al)を100nmの厚さに形成することにより陰極を形成することにより、実施例3の有機エレクトロルミネッセンス素子を作製した。
Figure JPOXMLDOC01-appb-C000054
 実施例2の有機エレクトロルミネッセンス素子からの発光は、CIE-XYZ表色系における色度座標xが0.151、yが0.256であり、良好な青色発光であった。実施例2の有機エレクトロルミネッセンス素子の蛍光スペクトルを測定したところ、化合物1と同じ発光極大波長を有していたことから、化合物1からの発光であることが確認された。実施例2の素子と、化合物1(1重量%)とmCBP(99重量%)からなる発光層に変えた点だけが異なる比較用の有機エレクトロルミネッセンス素子(比較素子1)と、化合物2-38(25重量%)とmCBP(75重量%)からなる発光層に変えた点だけが異なる比較用の有機エレクトロルミネッセンス素子(比較素子2)の各過渡減衰曲線を測定した結果を図3に示す。比較素子1から実施例2の素子になることにより、遅延成分の割合が増加していることから、化合物2-38から化合物1へのエネルギー移動がなされたことが確認された。
 実施例2の有機エレクトロルミネッセンス素子の外部量子効率は、1000nit(1.8lm/W)で20%を上回る高い値であった。化合物1(1重量%)とmCBP(99重量%)からなる発光層に変えた点だけが異なる比較用の有機エレクトロルミネッセンス素子(比較素子1)の外部量子効率が8%であったことから、実施例2の有機エレクトロルミネッセンス素子は大幅な量子効率の向上を達成している。また、実施例2の有機エレクトロルミネッセンス素子の発光強度が測定開始時の95%になるまでの時間(LT95)は、750nit(1.35lm/W)で約100時間であり、長い寿命を有することが確認された。
 また、実施例3の有機エレクトロルミネッセンス素子は発光極大波長が469nmであり、外部量子効率が最大22.5%であった。実施例3においても、本発明の有機エレクトロルミネッセンス素子が高い発光効率を有することが確認された。
 本発明の有機発光素子は高い発光効率を有する。また、本発明によれば、良好な青色を発光する高効率の有機発光素子を提供することが可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
 

Claims (11)

  1.  下記一般式(1)で表される構造を1つまたは複数有する化合物と下記一般式(2)で表される化合物をともに含む有機発光素子。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)において、a環、b環およびc環は、それぞれ独立して、他の環が縮合してアリール環またはヘテロアリール環を形成していてもよいベンゼン環を表し、これらの環における少なくとも1つの水素原子は置換されていてもよい。R、Rは、それぞれ独立して置換もしくは無置換のアリール基、またはベンゼン環で結合する置換もしくは無置換のヘテロアリール基を表す。Rは、-O-、-S-、-C(-Rc1-または単結合により前記a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により前記a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。前記Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)において、R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
  2.  前記一般式(1)で表される構造を1つまたは複数有する化合物が、前記一般式(1)で表される構造を2つ有する化合物である、請求項1に記載の有機発光素子。
  3.  前記一般式(1)で表される化合物が、下記一般式(1a)で表される化合物である、請求項2に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000003
    一般式(1a)において、R11~R17は各々独立に置換基を表し、R18~R23は各々独立に水素原子または置換基を表し、n11、n13、n14、n17は各々独立に0~5のいずれかの整数を表し、n12は0~2のいずれかの整数を表し、n15、n16は各々独立に0~4のいずれかの整数を表す。
  4.  R19およびR22が各々独立に置換基を表す、請求項3に記載の有機発光素子。
  5.  前記一般式(2)におけるR31~R35の少なくとも1つが、3位か6位の少なくとも一方が置換されたカルバゾール-9-イル基である、請求項1~4のいずれか1項に記載の有機発光素子。
  6.  前記一般式(2)におけるカルバゾール-9-イル基が、無置換であるか、あるいは、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のジアリールアミノ基、置換もしくは無置換のジヘテロアリールアミノ基、置換もしくは無置換のアリールヘテロアリールアミノ基、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、または置換もしくは無置換のアリールオキシ基で置換されている、請求項1~5のいずれか1項に記載の有機発光素子。
  7.  前記一般式(2)で表される化合物が、下記一般式(2a)で表される化合物である、請求項6に記載の有機発光素子。
    Figure JPOXMLDOC01-appb-C000004
    一般式(2a)において、R41~R44、R46~R49は各々独立に置換基を表すが、一般式(2a)のベンゾニトリルに結合する4つの置換もしくは無置換のカルバゾール-9-イル基がすべて同一であることはない。n41~n44、n46~n49は各々独立に0~4のいずれかの整数を表す。R45は水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
  8.  前記一般式(1)で表される化合物を発光層内に含有する、請求項1~7のいずれか1項に記載の有機発光素子。
  9.  前記一般式(1)で表される化合物と前記一般式(2)で表される化合物を同じ層内に含有する、請求項1~8のいずれか1項に記載の有機発光素子。
  10.  下記一般式(1)で表される化合物と下記一般式(2)で表される化合物をともに含む組成物。
    Figure JPOXMLDOC01-appb-C000005
    一般式(1)において、a環、b環およびc環は、それぞれ独立して、他の環が縮合してアリール環またはヘテロアリール環を形成していてもよいベンゼン環を表し、これらの環における少なくとも1つの水素原子は置換されていてもよい。R、Rは、それぞれ独立して置換もしくは無置換のアリール基、またはベンゼン環で結合する置換もしくは無置換のヘテロアリール基を表す。Rは、-O-、-S-、-C(-Rc1-または単結合により前記a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により前記a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。前記Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000006
    一般式(2)において、R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
  11.  下記一般式(1)で表される化合物と下記一般式(2)で表される化合物をともに含む膜。
    Figure JPOXMLDOC01-appb-C000007
    一般式(1)において、a環、b環およびc環は、それぞれ独立して、他の環が縮合してアリール環またはヘテロアリール環を形成していてもよいベンゼン環を表し、これらの環における少なくとも1つの水素原子は置換されていてもよい。R、Rは、それぞれ独立して置換もしくは無置換のアリール基、またはベンゼン環で結合する置換もしくは無置換のヘテロアリール基を表す。Rは、-O-、-S-、-C(-Rc1-または単結合により前記a環および/またはc環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。Rは、-O-、-S-、-C(-Rc2-または単結合により前記a環および/またはb環におけるNとの結合位置(原子)に隣接している炭素原子と結合していてもよい。前記Rc1およびRc2は、それぞれ独立して水素原子またはアルキル基を表す。
    Figure JPOXMLDOC01-appb-C000008
    一般式(2)において、R31~R35のうちの4つは各々独立に置換もしくは無置換のカルバゾール-9-イル基を表すが、4つがすべて同一であることはない。残りの1つは水素原子、置換もしくは無置換のアリール基、置換もしくは無置換のカルバゾール-9-イル基、またはシアノ基を表す。
PCT/JP2019/031127 2018-08-23 2019-08-07 有機発光素子、組成物および膜 WO2020039930A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/270,158 US11937495B2 (en) 2018-08-23 2019-08-07 Organic light emitting element, composition and membrane
EP19852474.6A EP3843168B1 (en) 2018-08-23 2019-08-07 Organic light emitting element, composition and membrane
CN201980055066.1A CN112585778A (zh) 2018-08-23 2019-08-07 有机发光元件、组合物及膜
KR1020217008517A KR20210055712A (ko) 2018-08-23 2019-08-07 유기 발광 소자, 조성물 및 막
JP2020538291A JP7226718B2 (ja) 2018-08-23 2019-08-07 有機発光素子、組成物および膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-156709 2018-08-23
JP2018156709 2018-08-23
JP2019-073933 2019-04-09
JP2019073933 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020039930A1 true WO2020039930A1 (ja) 2020-02-27

Family

ID=69593087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031127 WO2020039930A1 (ja) 2018-08-23 2019-08-07 有機発光素子、組成物および膜

Country Status (6)

Country Link
US (1) US11937495B2 (ja)
EP (1) EP3843168B1 (ja)
JP (1) JP7226718B2 (ja)
KR (1) KR20210055712A (ja)
CN (1) CN112585778A (ja)
WO (1) WO2020039930A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203211A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
CN112409240A (zh) * 2020-11-20 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN112409241A (zh) * 2020-11-27 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
JP2021521586A (ja) * 2018-04-11 2021-08-26 ナノコ テクノロジーズ リミテッド エレクトロルミネッセンス表示デバイス及びその製造方法
EP3923365A1 (en) * 2020-06-11 2021-12-15 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US20220093878A1 (en) * 2020-09-21 2022-03-24 Samsung Electronics Co., Ltd. Organic light-emitting device
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
WO2022107798A1 (ja) * 2020-11-17 2022-05-27 株式会社Kyulux 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
WO2022196603A1 (ja) 2021-03-16 2022-09-22 株式会社Kyulux 組成物、その組成物の発光組成物としての使用、膜、その膜の発光膜としての使用、有機エレクトロルミネッセンス素子、組成物の設計方法およびその設計方法を実施するためのプログラム
WO2022249750A1 (ja) * 2021-05-28 2022-12-01 株式会社Kyulux トップエミッション方式の有機エレクトロルミネッセンス素子およびその設計方法
WO2022270113A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
TWI795042B (zh) * 2020-10-23 2023-03-01 國立大學法人九州大學 含硼化合物、發光材料及使用其之發光元件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012308B2 (ja) * 2016-09-07 2022-01-28 学校法人関西学院 多環芳香族化合物
JP7325731B2 (ja) * 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
KR102666981B1 (ko) * 2019-10-28 2024-05-20 삼성디스플레이 주식회사 화합물 및 이를 포함하는 발광 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935199B2 (ja) 1976-03-23 1984-08-27 富士産業株式会社 リ−ド付電子部品の印刷配線基板への装架装置
JP5669163B1 (ja) 2013-08-14 2015-02-12 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
WO2018062278A1 (ja) * 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688137B (zh) * 2015-03-24 2020-03-11 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
JP2019204805A (ja) 2016-08-10 2019-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子、及び電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935199B2 (ja) 1976-03-23 1984-08-27 富士産業株式会社 リ−ド付電子部品の印刷配線基板への装架装置
JP5669163B1 (ja) 2013-08-14 2015-02-12 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2017188111A1 (ja) * 2016-04-26 2017-11-02 学校法人関西学院 有機電界発光素子
WO2018062278A1 (ja) * 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521586A (ja) * 2018-04-11 2021-08-26 ナノコ テクノロジーズ リミテッド エレクトロルミネッセンス表示デバイス及びその製造方法
WO2020203211A1 (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
JP2020167391A (ja) * 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
US11758801B2 (en) 2020-06-11 2023-09-12 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
EP3923365A1 (en) * 2020-06-11 2021-12-15 Samsung Display Co., Ltd. Organic electroluminescence device and fused polycyclic compound for organic electroluminescence device
US12063804B2 (en) * 2020-09-21 2024-08-13 Samsung Electronics Co., Ltd. Organic light-emitting device
US20220093878A1 (en) * 2020-09-21 2022-03-24 Samsung Electronics Co., Ltd. Organic light-emitting device
TWI795042B (zh) * 2020-10-23 2023-03-01 國立大學法人九州大學 含硼化合物、發光材料及使用其之發光元件
WO2022084505A1 (en) * 2020-10-23 2022-04-28 Cynora Gmbh Organic molecules for optoelectronic devices
WO2022107798A1 (ja) * 2020-11-17 2022-05-27 株式会社Kyulux 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
CN112409240A (zh) * 2020-11-20 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN112409241A (zh) * 2020-11-27 2021-02-26 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
WO2022196603A1 (ja) 2021-03-16 2022-09-22 株式会社Kyulux 組成物、その組成物の発光組成物としての使用、膜、その膜の発光膜としての使用、有機エレクトロルミネッセンス素子、組成物の設計方法およびその設計方法を実施するためのプログラム
KR20230156073A (ko) 2021-03-16 2023-11-13 가부시키가이샤 큐럭스 조성물, 그 조성물의 발광 조성물로서의 사용, 막, 그 막의 발광막으로서의 사용, 유기 일렉트로 루미네선스 소자, 조성물의 설계 방법 및 그 설계 방법을 실시하기 위한 프로그램
EP4310930A4 (en) * 2021-03-16 2024-10-16 Kyulux Inc COMPOSITION, USE OF THE COMPOSITION AS A LIGHT-EMITTING COMPOSITION, FILM, USE OF THE FILM AS A LIGHT-EMITTING FILM, ORGANIC LIGHT-EMITTING ELEMENT
WO2022249750A1 (ja) * 2021-05-28 2022-12-01 株式会社Kyulux トップエミッション方式の有機エレクトロルミネッセンス素子およびその設計方法
WO2022270113A1 (ja) * 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
EP4361158A4 (en) * 2021-06-23 2024-10-16 Kyulux Inc ORGANIC ELECTROLUMINESCENT ELEMENT

Also Published As

Publication number Publication date
CN112585778A (zh) 2021-03-30
EP3843168A4 (en) 2021-10-20
EP3843168B1 (en) 2023-10-11
US20210202851A1 (en) 2021-07-01
JPWO2020039930A1 (ja) 2021-09-02
JP7226718B2 (ja) 2023-02-21
US11937495B2 (en) 2024-03-19
EP3843168A1 (en) 2021-06-30
KR20210055712A (ko) 2021-05-17

Similar Documents

Publication Publication Date Title
WO2020039930A1 (ja) 有機発光素子、組成物および膜
KR101999881B1 (ko) 화합물, 발광 재료 및 유기 발광 소자
US20210104680A1 (en) Organic electroluminescent elemint, material for organic electroluminescent elements, and electronic device
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
WO2013161437A1 (ja) 発光材料および有機発光素子
WO2013154064A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP2020031162A (ja) 有機エレクトロルミネッセンス素子
KR20180020320A (ko) 유기 일렉트로 루미네센스 소자 및 전자 기기
US20220388991A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
JP2014009224A (ja) 発光材料、化合物および有機発光素子
KR20170057796A (ko) 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20140147829A (ko) 벤조플루오렌 화합물, 그 화합물을 사용한 발광층용 재료 및 유기 전계 발광 소자
WO2021015177A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
US11271164B2 (en) Compound, composition, organic electroluminescent element and electronic device
US20230011206A1 (en) Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
JP2021061262A (ja) 多環芳香族化合物の発光材料を用いた有機電界発光素子
JP2021077890A (ja) 有機電界発光素子、表示装置、および照明装置、ならびに発光層形成用組成物
WO2022196634A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP7018171B2 (ja) アルケニル基を有する多環芳香族化合物およびその多量体
WO2021149510A1 (ja) ピロメテンホウ素錯体、それを含有する発光素子、表示装置および照明装置
JP2021177526A (ja) 有機電界発光素子
WO2023171688A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2023158501A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20240045229A (ko) 조성물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008517

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019852474

Country of ref document: EP

Effective date: 20210323