WO2020035016A1 - 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 - Google Patents

改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 Download PDF

Info

Publication number
WO2020035016A1
WO2020035016A1 PCT/CN2019/100733 CN2019100733W WO2020035016A1 WO 2020035016 A1 WO2020035016 A1 WO 2020035016A1 CN 2019100733 W CN2019100733 W CN 2019100733W WO 2020035016 A1 WO2020035016 A1 WO 2020035016A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
modified
weight
acid
type molecular
Prior art date
Application number
PCT/CN2019/100733
Other languages
English (en)
French (fr)
Inventor
周灵萍
姜秋桥
袁帅
沙昊
许明德
陈振宇
张蔚琳
田辉平
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810942057.1A external-priority patent/CN110833852B/zh
Priority claimed from CN201810940921.4A external-priority patent/CN110833849B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to US17/268,679 priority Critical patent/US11691132B2/en
Priority to SG11202011585VA priority patent/SG11202011585VA/en
Priority to JP2020573175A priority patent/JP7340551B2/ja
Publication of WO2020035016A1 publication Critical patent/WO2020035016A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/24After treatment, characterised by the effect to be obtained to stabilize the molecular sieve structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/16Clays or other mineral silicates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present disclosure relates to the technical field of molecular sieves and catalytic cracking, and more particularly to a modified Y-type molecular sieve, a catalytic cracking catalyst including the same, and a method for preparing and using the same.
  • Light aromatic hydrocarbons such as benzene, toluene, and xylene (BTX) are important basic organic chemical raw materials. They are widely used in the production of polyester, chemical fiber, and so on. Demand has been strong in recent years. Light aromatics such as benzene, toluene and xylene (BTX) are mainly derived from catalytic reforming and steam cracking processes using naphtha as raw materials. Due to the shortage of naphtha raw materials, there is a large market gap for light aromatics.
  • Catalytic cracking light cycle oil is an important by-product of catalytic cracking. It is large in quantity, rich in aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons, and belongs to inferior diesel oil fractions. With the development and change of market demand and environmental protection requirements, LCO as a diesel blending component has been greatly restricted.
  • the hydrocarbon composition of LCO includes paraffins, naphthenes (containing a small amount of olefins), and aromatics. Depending on the FCC feedstock and the severity of the operation, the hydrocarbon composition of LCOs varies widely, but aromatics are their main components. The mass fraction is greater than 70%, and some even reach about 90%, and the rest are paraffins and naphthenes.
  • the highest content of bicyclic aromatic hydrocarbons in LCO belongs to its typical components, and it is also a key component that affects the production of light aromatics by catalytic cracking.
  • polycyclic aromatic hydrocarbons are difficult to be ring-opened and cracked into light aromatics.
  • polycyclic aromatic hydrocarbons are more likely to be saturated with alkylbenzenes and cycloalkylbenzenes (indanes, tetrahydronaphthalenes). And indene) and other heavy monocyclic aromatic hydrocarbons.
  • Such heavy monocyclic aromatic hydrocarbons are potential components for catalytic cracking to produce light aromatics, and can be cracked into light aromatics under the conditions of catalytic cracking. Therefore, LCO is a potential and cheap resource for the production of light aromatics.
  • the production of light aromatics through the hydrotreating-catalytic cracking technology route has important research value.
  • a moderate hydrogenation of LCO is used to first saturate most of the polycyclic aromatic hydrocarbons therein to a hydrogenated aromatic hydrocarbon containing a naphthene ring and an aromatic ring.
  • the cracking reaction is carried out in the presence of a catalytic cracking catalyst to produce BTX light aromatics.
  • the cracking performance of hydrogenated aromatics obtained by hydrogenation of LCO is worse than that of conventional catalytic cracking raw materials, and the hydrogen transfer performance is much higher than that of general catalytic cracking raw materials. Therefore, the conventional catalytic cracking catalysts used in the prior art cannot meet the hydrogenated LCO catalysis The need for cracking.
  • Y-type molecular sieve has been the main active component of catalytic cracking (FCC) catalyst since it was first used in the 1960s.
  • FCC catalytic cracking
  • the content of polycyclic compounds in the FCC feedstock increased significantly, and its diffusion ability in the molecular sieve channels decreased significantly.
  • the main active component the pore size of Y-type molecular sieve is only 0.74nm, which is directly used to process heavy fractions such as residual oil.
  • the accessibility of the active center of the catalyst will become a major obstacle to the cracking of polycyclic compounds contained therein.
  • the pore structure of the molecular sieve is closely related to the cracking reaction performance.
  • the secondary pores of the molecular sieve can increase the accessibility of the residue macromolecules and their active centers, thereby improving the cracking ability of the residue.
  • Hydrothermal dealumination is one of the most widely used industrial methods for the preparation of ultra-stable molecular sieves with secondary pores.
  • This method first exchanges NaY molecular sieves with an aqueous solution of ammonium ions to reduce the sodium ion content in the molecular sieve. Then, The ammonium ion-exchanged molecular sieve is calcined at 600-825 ° C in a water vapor atmosphere to make it super-stabilized.
  • the method is low in cost and easy for industrialized large-scale production.
  • the obtained ultra-stable Y-type molecular sieve has rich secondary pores, but the crystallinity of the ultra-stable Y-type molecular sieve is seriously lost.
  • ultra-stable Y-type molecular sieves are generally an improvement on the above-mentioned hydrothermal roasting process.
  • the method of two exchanges and two roasts is adopted.
  • the purpose is to adopt milder roasting conditions in steps to solve the harsh roasting conditions.
  • the prepared ultra-stable Y molecular sieve also has a certain amount of secondary pores. However, the proportion of secondary pores with larger pores in the total secondary pores is lower.
  • the specific surface and crystallinity of superstable molecular sieves need to be further improved.
  • the purpose of the present invention is to develop a modified molecular sieve with high stability that has both strong cracking ability and weak hydrogen transfer performance as a new active group.
  • This new active component further develops a catalytic cracking catalyst for the production of BTX light aromatics suitable for hydrocracking LCO catalytic cracking, strengthens the cracking reaction, controls the hydrogen transfer reaction, and further improves the conversion efficiency of the hydrohydro LCO to maximize production.
  • One of the objectives of the present disclosure is to provide a modified Y-type molecular sieve, a catalytic cracking catalyst including the same, and a preparation method and application thereof.
  • the catalytic cracking catalyst prepared by using the modified Y-type molecular sieve as an active component has higher properties. Hydrogenated LCO conversion efficiency, better coke selectivity, and higher BTX-rich gasoline yield.
  • the present disclosure provides a modified Y-type molecular sieve, based on the dry basis weight of the modified Y-type molecular sieve, the rare earth content of the modified Y-type molecular sieve in terms of oxide is About 4-11% by weight, the content of phosphorus as P 2 O 5 is about 0.05-10% by weight, the content of sodium as sodium oxide does not exceed about 0.5% by weight, and the content of gallium as gallium oxide is about 0.1-2.5 % By weight, the content of zirconium based on zirconia is about 0.1-2.5% by weight; the total pore volume of the modified Y-type molecular sieve is about 0.36-0.48 mL / g, and the pore volume of secondary pores having a pore diameter of 2-100 nm The proportion of the total pore volume is about 20-40%; the unit cell constant of the modified Y-type molecular sieve is about 2.440-2.455nm, the lattice collapse
  • the present disclosure provides a method for preparing a modified Y-type molecular sieve, including the following steps:
  • the phosphorus-modified molecular sieve is brought into contact with gallium and zirconium in a solution for modification treatment, and is calcined to obtain the modified Y-type molecular sieve.
  • the present disclosure provides a catalytic cracking catalyst based on a dry basis weight of the catalyst, the catalyst containing about 10-50% by weight of a modified Y-type molecular sieve, and about 10-40 based on alumina. Wt% alumina binder and about 10-80 wt% clay on a dry basis; wherein the modified Y-type molecular sieve is a modified Y-type molecular sieve according to the present disclosure or a modified Y-type molecular sieve prepared by the method of the present disclosure. Sex Y molecular sieve.
  • the present disclosure provides an application of a modified Y-type molecular sieve according to the present disclosure in a catalytic cracking reaction of a hydrocarbon feedstock, particularly a hydrogenated light cycle oil, including making the hydrocarbon feedstock under catalytic cracking conditions.
  • a catalytic cracking catalyst comprising the modified Y-type molecular sieve.
  • the method for preparing the modified Y-type molecular sieve provided by the present disclosure includes performing rare earth exchange, hydrothermal ultra-stable treatment, and gas-phase ultra-stable treatment on the Y-type molecular sieve, cleaning the pores of the molecular sieve by combining acid treatment, and using active elements gallium and zirconium, and Modification of phosphorus element can produce high-silicon Y-type molecular sieve rich in secondary pores with high crystallinity, high thermal stability, and high hydrothermal stability, which can make molecular sieve have a relatively high degree of superstabilization. High crystallinity.
  • the prepared molecular sieve has uniform aluminum distribution, low non-framework aluminum content, and smooth secondary pore channels.
  • the modified Y-type molecular sieve of the present disclosure can be used as an active component of a catalytic cracking catalyst for catalytic cracking of hydrogenated LCO.
  • the catalytic cracking catalyst using this molecular sieve as the active component has high LCO conversion efficiency (for example, high effective LCO conversion rate) and lower coke selectivity when used for processing hydrogenated LCO, and has higher and rich BTX Gasoline yield, as well as high propylene yield.
  • any specific numerical value (including the end of the numerical range) disclosed herein is not limited to the exact value of the value, but should be understood to also encompass values close to the exact value, such as within the range of ⁇ 5% of the exact value All possible values.
  • one or more new values can be obtained by arbitrarily combining between the endpoint values of the range, between the endpoint values and specific point values within the range, and between the specific point values. Numerical ranges, these new numerical ranges should also be considered as specifically disclosed herein.
  • any matter or matter not mentioned applies directly to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of the present invention, and should not be It is considered to be something new that has not been disclosed or anticipated herein unless the person skilled in the art believes that the combination is obviously unreasonable.
  • RIPP test method for the RIPP test method involved in the present invention, please refer to "Petrochemical Analysis Method (RIPP Test Method)", edited by Yang Cuiding, etc., Science Press, September 1990, first edition, ISBN: 7-03-001894-X, section 412-415 and 424-426, which are incorporated herein by reference in their entirety.
  • Y molecular sieve and “Y zeolite” are used interchangeably, and the terms “NaY molecular sieve” and “NaY zeolite” are also used interchangeably.
  • second pore refers to pores having a pore size (referring to a diameter) in the molecular sieve of 2-100 nm.
  • inorganic acids above moderate strength refers to inorganic acids having an acid strength above HNO 2 (nitrite), including but not limited to HClO 4 (perchloric acid), HI (hydrogen iodide), HBr ( Hydrobromic acid), HCl (hydrochloric acid), HNO 3 (nitric acid), H 2 SeO 4 (selenoic acid), H 2 SO 4 (sulfuric acid), HClO 3 (chloric acid), H 2 SO 3 (sulfurous acid), H 3 PO 3 (phosphoric acid) and HNO 2 (nitrite) and so on.
  • HClO 4 perchloric acid
  • HI hydrogen iodide
  • HBr Hydrobromic acid
  • HNO 3 nitric acid
  • H 2 SeO 4 senoic acid
  • H 2 SO 4 sulfuric acid
  • HClO 3 chloric acid
  • H 2 SO 3 sulfurous acid
  • H 3 PO 3 phosphoric acid
  • rare earth solution and “rare earth salt solution” are used interchangeably, preferably an aqueous solution of a rare earth salt.
  • Y-type molecular sieve of conventional unit cell size means that the unit cell constant of the Y-type molecular sieve is in the range of the unit cell constant of conventional NaY molecular sieves, preferably in the range of about 2.465 nm to about 2.472 nm.
  • normal pressure means a pressure of about 1 atm.
  • the dry basis weight of a substance refers to the weight of a solid product obtained by firing the substance at 800 ° C for 1 hour.
  • the present disclosure provides a modified Y-type molecular sieve, based on the dry basis weight of the modified Y-type molecular sieve, the modified Y-type molecular sieve has a rare earth content in terms of oxide of about 4- 11% by weight, the content of phosphorus as P 2 O 5 is about 0.05-10% by weight, the content of sodium as sodium oxide does not exceed about 0.5% by weight, and the content of gallium as gallium oxide is about 0.1-2.5% by weight, The content of zirconium based on zirconia is about 0.1-2.5% by weight; the total pore volume of the modified Y-type molecular sieve is about 0.36-0.48 mL / g, and the pore volume of secondary pores with a pore diameter of 2-100 nm accounts for the total pores The volume ratio is about 20-40%; the unit cell constant of the modified Y-type molecular sieve is about 2.440-2.455nm, the lattice collapse temperature is not lower than about 10
  • the modified Y-type molecular sieve disclosed by the present invention has a high degree of superstabilization, high crystallinity, uniform aluminum distribution, low non-framework aluminum content, and smooth secondary pore channels.
  • the modified Y-type molecular sieve When used for processing hydrogenated LCO, it has high LCO conversion efficiency, lower coke selectivity, higher yield of gasoline rich in BTX, and high yield of propylene.
  • the modified Y-type molecular sieve of the present disclosure contains a rare earth. Based on the dry basis weight of the modified Y-type molecular sieve, the modified Y-type molecular sieve may have a rare earth content of about 4-11% by weight based on oxides, preferably It is about 4.5-10% by weight, for example about 5-9% by weight.
  • the kind and composition of the rare earth are not particularly limited.
  • the rare earth may include La, Ce, Pr, or Nd, or a combination of two, three, or four of them; optionally, the rare earth may further include La, Ce, Pr, and Nd. Of other rare earth elements.
  • the modified Y-type molecular sieve of the present disclosure contains active elements gallium and zirconium.
  • the gallium content based on gallium oxide (also referred to herein as gallium oxide content) may be 0.1-2.5% by weight. Preferably, it is about 0.2-2.0% by weight, or about 0.3-1.8% by weight.
  • the content of zirconium based on zirconia (also referred to herein as zirconia content) may be 0.1-2.5% by weight, preferably about 0.2-2.0% by weight. %, Or about 0.5-2% by weight.
  • the modified Y-type molecular sieve catalyzes the conversion efficiency of LCO higher, the coke selectivity is lower, and it is more beneficial to obtain higher yields of gasoline and propylene rich in BTX aromatics.
  • the modified Y-type molecular sieve of the present disclosure contains a modified elemental phosphorus to further improve the coke selectivity of the molecular sieve.
  • the phosphorus content in terms of P 2 O 5 (also referred to herein as P 2 O 5 content) is 0.05-10% by weight, for example, about 0.1-6% by weight, preferably about 1-5.5% by weight.
  • the modified Y-type molecular sieve may further contain a small amount of sodium, and based on the dry basis weight of the molecular sieve, the content of sodium is calculated based on sodium oxide (also referred to herein as sodium oxide for short) (Content) may be about 0.05-0.5% by weight, for example, about 0.1-0.4% by weight, about 0.05-0.3% by weight, or about 0.05-0.2% by weight.
  • sodium oxide also referred to herein as sodium oxide for short
  • Constent may be about 0.05-0.5% by weight, for example, about 0.1-0.4% by weight, about 0.05-0.3% by weight, or about 0.05-0.2% by weight.
  • the contents of rare earth, sodium, and active elements gallium and zirconium in the modified Y-type molecular sieve can be measured by X-ray fluorescence spectroscopy, respectively.
  • the pore structure of the modified Y-type molecular sieve can be further optimized to obtain more suitable catalytic cracking reaction performance.
  • the total pore volume of the modified Y-type molecular sieve may be preferably about 0.36-0.48 mL / g, more preferably about 0.38-0.42 or 0.4-0.48 mL / g; the pore volume of the secondary pores having a pore diameter of 2-100 nm accounts for the total pores
  • the proportion of the volume may be about 20% to 40%, preferably about 28 to 38%, for example about 25 to 35%.
  • the pore volume of the secondary pores having a pore diameter of 2.0-100 nm may be about 0.08-0.18 mL / g, preferably about 0.10-0.16 mL / g.
  • it can be measured according to the adsorption isotherm according to the RIPP 151-190 standard method (see “Analytical Method of Petrochemical Engineering (RIPP Test Method)", edited by Yang Cuiding et al., Science Press, 1990, pp. 424-426.
  • the total pore volume of the molecular sieve is obtained, and then the micropore volume of the molecular sieve is determined from the adsorption isotherm according to the T drawing method.
  • the total pore volume is subtracted from the micropore volume to obtain the secondary pore volume.
  • the modified Y-type molecular sieve provided by the present disclosure is a rare earth-containing super-stable Y molecular sieve rich in secondary pores.
  • the distribution curve of secondary pores with a pore diameter of 2-100 nm in the molecular sieve has a bi-several pore distribution, of which the smaller pore size is secondary
  • the maximum pore diameter of the pores is about 2-5 nm, and the maximum pore diameter of the secondary pores with larger pore diameters may be about 6-20 nm, preferably about 8-18 nm.
  • the ratio of the pore volume to the total pore volume of the secondary pores with a pore diameter of 2-100 nm may be about 28-35%, or about 25-35%.
  • the modified Y zeolite surface area may be about 600-670m 2 / g, for example from about 610-670m 2 / g, or about 640-670m 2 / g, or about 646- 667m 2 / g.
  • the specific surface area of the modified Y molecular sieve refers to the BET specific surface area, and the specific surface area can be measured according to ASTM D4222-98 standard method.
  • the cell constant of the modified Y-type molecular sieve is further preferably about 2.440-2.455 nm, for example, about 2.442-2.453 nm or 2.442-2.451 nm or 2.441-2.453 nm.
  • the lattice collapse temperature of the modified Y-type molecular sieve is preferably about 1065-1085 ° C, and more preferably about 1065-1083 ° C.
  • the relative crystallinity of the modified Y-type molecular sieve may be not less than about 70%, for example, about 70-80%, preferably about 70-76%.
  • the modified Y-type molecular sieve of the present disclosure has high resistance to hydrothermal aging. After being aged for 100 hours with steam at 800 ° C. for 17 hours, the relative crystallinity retention rate of the modified Y-type molecular sieve by XRD measurement is about More than 38%, such as about 38-60%, or about 50-60%, or about 46-58%.
  • the lattice collapse temperature of the modified Y-type molecular sieve can be measured by differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the cell constant and relative crystallinity of molecular sieves are determined by X-ray powder diffraction (XRD) using RIPP145-90 and RIPP146-90 standard methods (see “Analytical Methods in Petrochemical Engineering (RIPP Test Method)", edited by Yang Cuiding, Science Press, Published 1990, pp. 412-415).
  • the framework silicon-aluminum ratio of the modified Y-type molecular sieve is calculated from the following formula:
  • a 0 is the unit cell constant and the unit is nm.
  • the total silicon-aluminum ratio of the modified Y-type molecular sieve is calculated according to the Si and Al element content determined by X-ray fluorescence spectrometry.
  • the skeleton silicon-aluminum ratio determined by XRD method and the total silicon-aluminum ratio determined by XRF can be calculated. Calculate the ratio of skeleton Al to total Al, and then calculate the ratio of non-skeletal Al to total Al.
  • the relative crystallinity retention ratio of the modified Y-type molecular sieve (relative crystallinity of aged samples / relative crystallinity of fresh samples) ⁇ 100%.
  • the modified Y-type molecular sieve of the present disclosure has a low non-framework aluminum content, and the ratio of the non-framework aluminum content to the total aluminum content is not higher than about 10%, more preferably about 5-9.8%, or about 6-9.8%;
  • the framework silicon-aluminum ratio of the modified Y-type molecular sieve may be about 7-14, and preferably about 8.5. -12.6 or 9.2-11.4 or 7.8-12.6.
  • the ratio of the amount of B acid to the amount of L acid in the strong acid amount of the modified Y-type molecular sieve is not less than about 3.5, and preferably about 3.5 -6.5, for example, about 3.5-5.8 or 3.5-4.8.
  • the ratio of the amount of B acid to the amount of L acid in the strong acid amount of the modified Y-type molecular sieve can be measured at 350 ° C using a pyridine adsorption infrared method.
  • the amount of strong acid refers to the total amount of strong acid on the surface of the molecular sieve
  • the strong acid refers to the acid obtained by measuring at 350 ° C using a pyridine adsorption infrared method.
  • the rare earth content of the modified Y-type molecular sieve in terms of oxide may be about 4.5-10% by weight.
  • the content of phosphorus in P 2 O 5 is about 0.5-5% by weight
  • the content of sodium oxide may be about 0.05-3% by weight
  • the content of gallium oxide may be about 0.1-2.5% by weight, for example, about 0.2-2% by weight, or About 0.3-1.8% by weight
  • the zirconia content may be about 0.1-2.5% by weight, for example, about 0.5-2.0% by weight, or about 0.2-2% by weight
  • the cell constant of the modified Y-type molecular sieve may be about 2.442 -2.451 nm
  • the framework silicon-aluminum ratio of the modified Y-type molecular sieve may be about 8.5-12.6.
  • the present disclosure provides a method for preparing a modified Y-type molecular sieve, including the following steps:
  • the phosphorus-modified molecular sieve is brought into contact with gallium and zirconium in a solution for modification treatment, and is calcined to obtain the modified Y-type molecular sieve.
  • the method of the present disclosure includes the following steps:
  • the NaY molecular sieve is brought into contact with a rare earth salt to perform an ion exchange reaction, and after filtering and first washing, an ion exchanged molecular sieve is obtained. Based on the dry basis weight of the ion exchanged molecular sieve, the ion exchange The sodium oxide content of the subsequent molecular sieve does not exceed about 9.5% by weight;
  • the phosphorus-modified molecular sieve is brought into contact with gallium and zirconium in a solution for modification treatment, and after drying and second baking, the modified Y-type molecular sieve is obtained.
  • the preparation method of the present disclosure can prepare a high-silicon Y-type molecular sieve rich in secondary pores with high crystallinity, high thermal stability, and high hydrothermal stability, which can make the molecular sieve have a higher degree of superstability. Crystallinity, the distribution of aluminum in the prepared molecular sieve is uniform, the content of non-framework aluminum is small, and the secondary pore channels are unobstructed.
  • the modified Y-type molecular sieve has high LCO conversion efficiency and low coke selection when used to process hydrogenated LCO. Performance, higher and BTX aromatic-rich gasoline yields, and high propylene yields.
  • an NaY molecular sieve is subjected to an ion exchange reaction with a rare earth solution to obtain a conventional unit cell size Y-type molecular sieve with a rare earth containing a reduced sodium oxide content.
  • the reaction method may be well known to those skilled in the art.
  • the ion exchange reaction method may include: mixing NaY molecular sieve with water, adding a rare earth salt and / or an aqueous solution of a rare earth salt under stirring to perform an ion exchange reaction, and performing filtration and washing. .
  • the water used in step (1) is deionized water; the NaY molecular sieve can be purchased commercially or prepared in accordance with existing methods.
  • the cell constant of the NaY molecular sieve can be It is about 2.465-2.472nm, the framework silicon-aluminum ratio (SiO 2 / Al 2 O 3 molar ratio) is about 4.5-5.2, the relative crystallinity is about 85% or more, for example, about 85-95%, and the sodium oxide content is about 13.0-13.8% by weight.
  • the conditions of the ion exchange reaction may be reaction conditions conventional in the art.
  • the exchange temperature in the ion exchange reaction between the NaY molecular sieve and the rare earth solution may be about 15-95 ° C, preferably about 65-95 ° C;
  • the exchange time may be about 30-120min, preferably It is about 45-90min;
  • the weight ratio of NaY molecular sieve (based on dry basis): rare earth salt (based on RE 2 O 3 ): H 2 O may be about 1: (0.01-0.18): (5-20), preferably It is about 1: (0.5-0.17): (6-14).
  • the NaY molecular sieve, the rare earth salt and water may be formed into a mixture according to a weight ratio of NaY molecular sieve: rare earth salt: H 2 O of about 1: (0.01-0.18) :( 5-20), The exchange of rare earth ions and sodium ions is performed at about 15-95 ° C, for example, about 65-95 ° C, and preferably for about 30-120 minutes.
  • forming a mixture of NaY molecular sieve, rare earth salt and water may include forming a slurry of NaY molecular sieve and water, and then adding a rare earth salt and / or an aqueous solution of a rare earth salt to the slurry.
  • the rare earth salt is preferably rare earth chloride and / or rare earth nitrate.
  • the rare earth may be any kind of rare earth, and there is no particular limitation on the kind and composition thereof, such as one or more of La, Ce, Pr, Nd, and mixed rare earth.
  • the mixed rare earth contains La Or more, or may further contain at least one of rare earths other than La, Ce, Pr, and Nd.
  • the purpose of the washing in step (1) is to wash out the exchanged sodium ions, which can be washed with deionized water.
  • the rare earth content of the ion-exchanged molecular sieve obtained in step (1) may be about 4.5-13% by weight, based on RE 2 O 3 , for example, about 5.5-13% by weight or 5.5-12% by weight, and the content of sodium oxide Not more than about 9.5% by weight, for example, about 5.5-9.5% by weight, and the unit cell constant is about 2.465-2.472nm.
  • a Y-type molecular sieve having a conventional unit cell size containing rare earth is calcined at a temperature of 350-480 ° C. and about 30-90 vol% water vapor atmosphere for about 4.5- 7h for processing.
  • the baking temperature in step (2) is about 380-460 ° C
  • the baking atmosphere is about 40-80 vol% water vapor atmosphere
  • the baking time is about 5-6h.
  • the water vapor atmosphere may further contain other gases, such as one or more of air, helium, or nitrogen.
  • the relaxed hydrothermal ultra-stable modified molecular sieve obtained in step (2) may have a cell constant of about 2.450-2.462 nm.
  • the 30-90% by volume water vapor atmosphere means that the atmosphere contains about 30-90% by volume of water vapor, and the rest is one or more selected from air, helium, or nitrogen.
  • the 30% by volume water vapor atmosphere may be an atmosphere containing 30% by volume water vapor and 70% by volume air.
  • the molecular sieve may be dried before step (3) to reduce the water content in the molecular sieve, and used in step (3) for contacting with SiCl
  • the moisture content of the 4 contact molecular sieve does not exceed about 1% by weight, and the drying treatment is, for example, baking drying in a rotary baking furnace or a muffle furnace.
  • the contact reaction conditions in step (3) can be changed within a relatively large range.
  • the weight ratio of SiCl 4 to the mitigated hydrothermal ultrastable modified molecular sieve (on a dry basis) obtained in step (2) may be about (0.1-0.7): 1, preferably about (0.2-0.6): 1, the temperature of the contact reaction may be about 200-650 ° C, preferably about 350-500 ° C, and the reaction time may be about 10min to about 5h, preferably about 0.5- 4h; step (3) can be performed with or without the second washing and second filtering, and the second filtering can be dried or not dried.
  • the second washing method can use a conventional washing method, and can be washed with deionized water, in order to remove the molecular sieve Soluble by-products such as Na + , Cl ⁇ and Al 3+ in water
  • the washing method may include: the pH value of the washing solution is about 2.5-5.0, the washing temperature may be about 30-60 ° C., the amount of water used and the unwashed
  • the weight ratio of the gas phase ultra-stable modified molecular sieve may be about (5-20): 1, preferably about (6-15): 1. Further, the washing can prevent free Na + , Cl ⁇ and Al 3+ plasma from being detected in the washing liquid after washing.
  • step (4) the gas-phase ultra-stable modified molecular sieve obtained in step (3) is brought into contact with an acid solution to perform channel cleaning and modification to make secondary pores Unblocked, referred to as hole clearing.
  • the contacting the gas-phase ultra-stable modified molecular sieve obtained in step (3) with an acid solution to perform the reaction is to mix the molecular-phase sieve subjected to the gas-phase ultra-stable modification treatment with an acid solution.
  • the temperature at which the gas-phase ultra-stable modified molecular sieve is contacted with an acid solution for acid treatment may be about 60-100 ° C, preferably about 80-99 ° C, further preferably about 88-98 ° C, and the acid treatment time may be about 1 -4h, preferably about 1-3h;
  • the acid solution may include an organic acid and / or an inorganic acid, an acid in an acid solution, water in an acid solution, and the gas-phase ultra-stable modification on a dry basis weight
  • the weight ratio of the molecular sieve may be about (0.001-0.15): (5-20): 1, preferably about (0.002-0.1): (8-15): 1 or (0.01-0.05): (8-15): 1.
  • the step (4) may further include washing the obtained acid-treated molecular sieve, wherein the purpose of washing is to remove soluble by-products such as Na + , Cl ⁇ and Al 3+ remaining in the molecular sieve.
  • the washing method may be the same as the step (3)
  • the washing method is the same or different, for example, it may include: the pH value of the washing liquid is about 2.5-5.0, the washing temperature may be about 30-60 ° C, and the weight ratio of the amount of water to the molecular sieve without acid treatment may be It is about (5-20): 1, preferably about (6-15): 1. Further, the washing can prevent free Na + , Cl ⁇ and Al 3+ plasma from being detected in the washing liquid after washing.
  • the acid in the acid solution is at least one organic acid and at least one inorganic acid having a medium strength or higher.
  • the organic acid may include oxalic acid, malonic acid, succinic acid, methylsuccinic acid, malic acid, tartaric acid, citric acid, or salicylic acid, or a combination of two, three, or four of them.
  • the above-indicated inorganic acid may include phosphoric acid, hydrochloric acid, nitric acid, or sulfuric acid, or a combination of two, three, or four of them.
  • the contact temperature is preferably about 80-99 ° C, such as about 85-98 ° C, and the contact time is about 60 minutes or more, such as about 60-240 minutes or 90-180 minutes.
  • the weight ratio of the organic acid to the molecular sieve is preferably about (0.02-0.05): 1; the weight ratio of the inorganic acid and the molecular sieve with a medium strength or higher is preferably about (0.01-0.06): 1, for example, about (0.02 -0.05): 1, and the weight ratio of water to molecular sieve is preferably about (5-20): 1, for example, about (8-15): 1.
  • the acid treatment in step (4) is performed in two steps, wherein an inorganic acid, preferably an inorganic acid having a medium strength or higher, and the gas-phase ultra-stable modification are used first.
  • the molecular sieve is subjected to the first contact, wherein the weight ratio of the inorganic acid and molecular sieve with a medium strength or more may be about (0.01-0.05): 1, for example, about (0.02-0.05): 1, and the weight ratio of water to the molecular sieve is preferably (5-20): 1, for example, about (8-15): 1, the temperature of the contact reaction is about 80-99 ° C, preferably 90-98 ° C, and the reaction time is about 60-120min; and then obtained after the treatment
  • the molecular sieve is in a second contact with an organic acid.
  • the weight ratio of the organic acid to the molecular sieve may be about (0.02-0.10): 1, for example, about (0.05-0.08): 1.
  • the weight ratio of water to the molecular sieve is preferably About (5-20): 1, for example, about (8-15): 1, the temperature of the contact reaction is about 80-99 ° C, preferably 90-98 ° C, and the reaction time is about 60-120min. Wherein the weight ratio, the molecular sieve is on a dry basis.
  • the method for preparing a modified Y-type molecular sieve provided in the present disclosure further includes performing a phosphorus modification treatment on the acid-treated molecular sieve obtained in step (4) in step (5).
  • a phosphorus compound may be used for the phosphorus modification treatment, and the phosphorus modification treatment may be performed one or more times to introduce a required amount of phosphorus into the molecular sieve.
  • the phosphorus modification treatment usually includes an acid-treated molecular sieve and phosphorus containing The solution of the compound is contacted, and the contact is usually performed at about 15-100 ° C, preferably about 30-95 ° C, for about 10-100 minutes, and then filtered and washed.
  • the weight ratio of phosphorus in the solution as P 2 O 5 is about (0.0005-0.10) :( 2-5): 1, that is, the weight ratio of water to the molecular sieve is about (2-5) 1, preferably about (3-4) to 1, phosphorus (as P 2 O 5 basis) weight ratio of about molecular sieve (0.0005-0.10) to 1, It is preferably about (0.001-0.06): 1.
  • the phosphorus compound may be selected from one or more of phosphoric acid, ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate.
  • the washing may be, for example, washing with about 5-15 times the weight of the molecular sieve, such as deionized water.
  • the conditions for the phosphorus modification treatment are: adding the acid-treated molecular sieve to a solution containing a phosphorus compound, reacting at a temperature of about 15-100 ° C for about 10-100 minutes, and filtering , Washing; wherein the weight ratio of water to molecular sieve in the solution is about (2-5): 1, preferably about (3-4): 1, the weight ratio of phosphorus (calculated as P 2 O 5 ) to molecular sieve It is about (0.0005-0.10): 1, preferably about (0.001-0.06): 1.
  • the active element gallium and zirconium can be supported by modifying and / or impregnating the phosphorus-modified molecular sieve with a solution containing gallium and zirconium by contacting in step (6) with a solution containing gallium and zirconium.
  • the contact with the active elements gallium and zirconium in solution can be performed one or more times to introduce the required amount of active elements.
  • a molecular sieve may be contacted with a gallium salt and a zirconium salt in a solution, wherein the molecular sieve is in contact with the gallium salt and the zirconium salt. Contacts can be made simultaneously or in steps.
  • the molecular sieve and the gallium salt and the zirconium salt can be contacted simultaneously.
  • the step (6) further includes: making the phosphorus-modified molecular sieve and an aqueous solution containing the gallium salt and the zirconium salt. Mix well and let stand for a while.
  • phosphorus-modified molecular sieves can be added to a solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 in a stirred state to impregnate gallium and zirconium components. Set about 24-36h.
  • the slurry containing the phosphorus-modified molecular sieve and Ga (NO 3 ) 3 and Zr (NO 3 ) 4 was stirred for about 20 minutes to make the mixture uniform, and dried and second roasted.
  • the drying may be any drying method, such as flash drying, drying, and air drying.
  • the drying method is, for example, transferring the slurry to a rotary evaporator, and performing rotary evaporation by heating in a water bath.
  • the second roasting may include placing the steam-dried material into a rotary roaster, roasting at about 450-600 ° C for about 2-5 hours, and further preferably roasting at about 480-580 ° C for about 2.2-4.5 hours.
  • the gallium salt may be Ga (NO 3 ) 3 , Ga 2 (SO 4 ) 3 or GaCl 3 , or a combination of two or three of them, preferably Ga (NO 3 ) 3 ; and /
  • the zirconium salt may be Zr (NO 3 ) 4 , Zr (SO 4 ) 2 or ZrCl 4 , or a combination of two or three of them, preferably Zr (NO 3 ) 4 .
  • the weight ratio of gallium oxide, zirconium oxide, and phosphorus-modified molecular sieve in an aqueous solution containing gallium salt and zirconium salt may be about (0.001-0.025): (0.001- 0.025): 1, preferably about (0.002-0.02) :( 0.002-0.02): 1;
  • the weight ratio of water in the aqueous solution containing gallium salt and zirconium salt to phosphorus-modified molecular sieve on a dry basis may be It is about (2-3): 1, preferably about (2.2-2.6): 1.
  • the molecular sieve may be contacted with the gallium salt and the zirconium salt in stages, for example, the molecular sieve is first contacted with an aqueous solution containing a gallium salt and then with an aqueous solution containing a zirconium salt; or, the molecular sieve is first contacted with an aqueous solution containing a zirconium salt; The zirconium salt-containing aqueous solution is contacted and then contacted with the gallium salt-containing aqueous solution, and the contact conditions such as temperature, time, and gallium and zirconium concentrations may be the same as described above.
  • a method for preparing a modified Y-type molecular sieve includes the following steps:
  • ion exchanged molecular sieve (1) contacting a NaY molecular sieve with a rare earth solution to perform an ion exchange reaction, filtering, and washing to obtain an ion exchanged molecular sieve; the ion exchanged molecular sieve has a reduced sodium oxide content, contains a rare earth element, and has a conventional unit cell size; said Ion exchange is usually carried out under stirring at a temperature of about 15-95 ° C, preferably about 65-95 ° C, for about 30-120min;
  • SiCl 4 the weight ratio of the relaxed hydrothermal ultra-stable modified molecular sieve (on a dry basis) is About (0.1-0.7): 1, contacting the reaction at a temperature of about 200-650 ° C for about 10min to about 5h, optionally washing and optional filtering, to obtain a gas-phase ultra-stable modified molecular sieve;
  • the gas-phase ultra-stable modified molecular sieve is contacted with an acid solution for acid treatment modification, wherein the gas-phase ultra-stable modified molecular sieve is first mixed with a medium-strength or higher inorganic acid and water at about 80 Contact at -99 ° C, preferably about 90-98 ° C for at least about 30min, such as about 60-120min, and then add an organic acid, contact at about 80-99 ° C, preferably about 90-98 ° C for at least about 30min, such as about 60- 120min, after filtration, optional washing and optional drying, the molecular sieve after acid treatment is obtained; preferably, the weight ratio of the organic acid to the molecular-phase superstabilized molecular sieve on a dry basis is about (0.02-0.10) ): 1, the weight ratio of the inorganic acid with medium strength or higher and the molecular weight sieve of the gas phase ultra-stable modification on a dry basis is about (0.01-0.05): 1, and the weight ratio of
  • the acid-treated molecular sieve to a solution containing a phosphorus compound, reacting at a temperature of about 15-100 ° C. for about 10-100 min, filtering, washing, and optionally drying to obtain a phosphorus-modified molecular sieve;
  • the weight ratio of water to molecular sieve in the solution is about 2-5, preferably 3-4, and the weight ratio of phosphorus (calculated as P 2 O 5 ) to molecular sieve is about 0.005-0.10, preferably about 0.01-0.05; as well as
  • the phosphorus-modified molecular sieve is added to the mixed solution of Ga (NO 3 ) 3 and Zr (NO 3 ) 4 in the stirring solution to impregnate the gallium and zirconium components, and the phosphorus-modified molecular sieve is mixed with The mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 is stirred uniformly and left at room temperature.
  • Ga (NO 3 ) contained in the mixed solution of Ga (NO 3 ) 3 and Zr (NO 3 ) 4 3 The weight ratio of the amount of 3 to Ga 2 O 3 and phosphorus-modified molecular sieve is about 0.1-2.5: 100, and the amount of Zr (NO 3 ) 4 contained in the mixed solution is the weight of the molecular sieve to ZrO 2 The ratio is about 0.1-2.5: 100, and the weight ratio of the amount of water added to the mixed solution of Ga (NO 3 ) 3 and Zr (NO 3 ) 4 to the modified molecular sieve (dry basis) of phosphorus is about (2-3 ): 1, the immersion time is about 24h, and then, the mixed slurry containing the modified Y molecular sieve and Ga (NO 3 ) 3 and Zr (NO3) 4 is stirred for about 20 minutes to make the mixture uniform.
  • the mixture is transferred to a rotary evaporator for slow and uniform heating and spin-drying, and then the steam-dried material is placed in a muffle furnace and roasted at about 450-600 ° C for about 2-5 hours to obtain the modification of the present disclosure.
  • Sex Y molecular sieve Sex Y molecular sieve.
  • the present disclosure provides a catalytic cracking catalyst based on a dry basis weight of the catalyst, the catalyst containing about 10-50% by weight of a modified Y-type molecular sieve, and about 10- 40% by weight of alumina binder and approximately 10-80% by weight of clay on a dry basis, wherein the modified Y-type molecular sieve is a modified Y-type molecular sieve according to the present disclosure or prepared by a method of the present disclosure Modified Y molecular sieve.
  • the catalytic cracking catalyst used in the present disclosure When used to process hydrogenated LCO, it has high LCO conversion efficiency, lower coke selectivity, higher yield of gasoline rich in BTX, and high yield of propylene.
  • the catalytic cracking catalyst provided by the present disclosure may also contain other molecular sieves other than the modified Y-type molecular sieve. Based on the weight of the catalytic cracking catalyst, the content of the other molecular sieve may be about 0-40 weight on a dry basis. %, Such as about 0-30% by weight, or about 1-20% by weight.
  • the other molecular sieves may be selected from molecular sieves commonly used in catalytic cracking catalysts, such as zeolites having an MFI structure, Beta zeolites, other Y-type zeolites, or non-zeolitic molecular sieves, or a combination including two, three, or four of them.
  • the content of the other Y-type zeolite does not exceed about 40% by weight on a dry basis, for example, it may be about 0-40% by weight, or about 1-20% by weight.
  • the other Y-type zeolites are, for example, REY, REHY, DASY, SOY, or PSRY, or two, three, or a combination of them, and MFI structure zeolites such as HZSM-5, ZRP, or ZSP, or two or three of them Or a combination of the four, beta zeolites such as H ⁇ , non-zeolitic molecular sieves such as aluminum phosphate molecular sieve (AlPO molecular sieve) and / or silicoaluminophosphate molecular sieve (SAPO molecular sieve).
  • AlPO molecular sieve aluminum phosphate molecular sieve
  • SAPO molecular sieve silicoaluminophosphate molecular sieve
  • the content of the modified Y-type molecular sieve on a dry basis is about 10-50% by weight, preferably about 15-45% by weight, for example, about 25-40% by weight.
  • the clay is selected from one or more of clays used as a cracking catalyst component, for example, selected from kaolin, multi-kaolin, montmorillonite, diatomaceous earth, halloysite , Saponite, rector, sepiolite, attapulgite, hydrotalcite or bentonite, or a combination of two, three or four of them.
  • clays used as a cracking catalyst component
  • the content of the clay in the catalytic cracking catalyst of the present disclosure on a dry basis is about 20-55% by weight, or about 30-50% by weight.
  • the content of the alumina binder based on alumina is about 10-40% by weight, for example, about 20-35% by weight.
  • the alumina binder may be selected from one or more of various forms of alumina, hydrated alumina, and aluminum sol that are commonly used in cracking catalysts. For example, selected from ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, pseudoboehmite, boehmite, gibbsite, Bayer Bayerite or alumina sol, or a combination of two, three or four of them, preferably pseudo-boehmite and alumina sol.
  • the catalytic cracking catalyst contains about 2-15% by weight based on alumina, Preference is given to about 3-10% by weight alumina sol, about 10-30% by weight based on alumina, preferably about 15-25% by weight pseudo-boehmite.
  • the present disclosure provides a method for preparing a catalytic cracking catalyst, comprising the steps of: providing a modified Y-type molecular sieve, forming a slurry including the modified Y-type molecular sieve, an alumina binder, clay, and water And spray drying, optionally washing and optionally drying, to obtain the catalytic cracking catalyst, wherein the providing a modified Y-type molecular sieve comprises providing a modified Y-type molecular sieve according to the present disclosure, or preparing a modification according to the method of the present disclosure. Y molecular sieve.
  • steps of the catalyst preparation method of the present disclosure may refer to existing methods, for example, according to the methods described in Chinese Patent Application Publications CN1098130A and CN1362472A.
  • the spray drying, washing, and drying can adopt the prior art, and the present invention has no special requirements.
  • the amount of the modified Y-type molecular sieve may be a conventional amount in the art.
  • the content of the modified Y-type molecular sieve in the prepared catalyst on a dry basis may be About 10-50% by weight, preferably about 15-45% by weight, such as about 25-40% by weight.
  • the clay may be selected from one or more of clays used as cracking catalyst components, for example, selected from kaolin, multi-kaolin, montmorillonite, diatomite, elo One or more of stone, soapstone, rector, sepiolite, attapulgite, hydrotalcite, and bentonite. These clays are well known to those skilled in the art.
  • the amount of the clay may be a conventional amount in the art, and preferably, the content of the clay in the catalytic cracking catalyst prepared on a dry basis may be about 20-55% by weight, or about 30-50% by weight.
  • the alumina binder may be selected from one or more of various forms of alumina, hydrated alumina, and aluminum sol commonly used in cracking catalysts. For example, selected from ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, pseudoboehmite, boehmite, gibbsite, Bayer One or more of Bayerite or alumina sol, preferably pseudoboehmite and / or alumina sol.
  • the amount of the alumina binder may be a conventional amount in the art.
  • the amount of the alumina binder is about 10-40% by weight of the prepared catalytic cracking catalyst based on alumina, such as About 20-35% by weight.
  • the alumina binder is pseudo-boehmite and alumina sol
  • the prepared catalytic cracking catalyst contains about 2-15% by weight, preferably about 3-10% by weight of alumina sol, based on alumina, And about 10-30% by weight of alumina, preferably about 15-25% by weight of pseudo-boehmite.
  • the present disclosure provides an application of a modified Y-type molecular sieve according to the present disclosure in a catalytic cracking reaction of a hydrocarbon feedstock, in particular a hydrogenated light cycle oil, including making the hydrocarbons under catalytic cracking conditions.
  • the raw material is contacted with a catalytic cracking catalyst comprising the modified Y-type molecular sieve.
  • the present disclosure provides an application of a catalytic cracking catalyst according to the present disclosure in a catalytic cracking reaction of a hydrocarbon feedstock, particularly a hydro-recycling light cycle oil, including the step of catalytically cracking the hydrocarbon feedstock with a catalytic cracking condition.
  • the catalytic cracking catalyst is contacted.
  • the present disclosure provides a catalytic cracking method for processing a hydrogenated light cycle oil (hydrogenated LCO), comprising, under catalytic cracking conditions, causing the hydrogenated LCO and the catalytic cracking catalyst of the present disclosure or A step of contacting a catalytic cracking catalyst comprising a modified Y-type molecular sieve of the present disclosure.
  • hydrogenated LCO hydrogenated light cycle oil
  • the catalytic cracking conditions may include: a reaction temperature of about 500-610 ° C., a weight hourly space velocity of about 2-16 h -1 , and a weight ratio of agent to oil of about 3-10.
  • the hydrogenated LCO may have the following properties: density (20 ° C) is about 0.850-0.920 g / cm 3 , H content is about 10.5-12 wt%, S content is ⁇ 50 ⁇ g / g, N content ⁇ 10 ⁇ g / g, total aromatics content is about 70-85% by weight, and polycyclic aromatics content is ⁇ 15% by weight.
  • the present disclosure provides the following technical solutions:
  • a modified Y-type molecular sieve characterized in that, based on the dry basis weight of the modified Y-type molecular sieve, the rare earth content of the modified Y-type molecular sieve in terms of oxide is about 4-11% by weight
  • the content of phosphorus as P 2 O 5 is about 0.05-10% by weight, the content of sodium oxide does not exceed about 0.5% by weight, the content of gallium oxide is about 0.1-2.5% by weight, and the content of zirconia is about 0.1-2.5% by weight.
  • the total pore volume of the modified Y-type molecular sieve is about 0.36-0.48 mL / g, and the ratio of the pore volume of the secondary pores having a pore diameter of 2-100 nm to the total pore volume is about 20-40%;
  • the unit cell constant of the Y-type molecular sieve is about 2.440-2.455nm, and the lattice collapse temperature is not lower than about 1060 ° C; the proportion of the non-framework aluminum content of the modified Y-type molecular sieve to the total aluminum content is not higher than about 10%,
  • the ratio of the amount of B acid to the amount of L acid in the strong acid amount of the modified Y-type molecular sieve is not less than about 3.5.
  • the modified Y-type molecular sieve according to item A1 wherein the ratio of the pore volume of the secondary pores having a pore size of 2-100 nm to the total pore volume of the modified Y-type molecular sieve is about 28-38%.
  • modified Y-type molecular sieve according to item A1 wherein the ratio of the non-framework aluminum content of the modified Y-type molecular sieve to the total aluminum content is about 5-9.5%; and n (SiO 2 ) / n ( Al 2 O 3 ), the modified silicon zeolite has a silica-alumina ratio of about 7-14.
  • the ratio of the amount of B acid to the amount of L acid in the strong acid amount was measured using a pyridine adsorption infrared method at 350 ° C.
  • the modified Y-type molecular sieve according to any one of items A1-A7, wherein, based on the dry basis weight of the modified Y-type molecular sieve, the modified Y-type molecular sieve is an oxide of rare earth
  • the content is about 4.5-10% by weight
  • the phosphorus content is about 0.5-5% by weight based on P 2 O 5
  • the sodium oxide content is about 0.05-0.3% by weight
  • the gallium oxide content is about 0.2-2% by weight
  • the zirconia content About 0.5-2% by weight
  • the unit cell constant of the modified Y-type molecular sieve is about 2.442-2.451 nm
  • the framework silicon-aluminum ratio is about 8.5-12.6
  • the rare earth includes La, Ce, Pr, or Nd, or a combination of two, three, or four of them.
  • the NaY molecular sieve is brought into contact with a rare earth salt to perform an ion exchange reaction, and after filtering and first washing, an ion exchanged molecular sieve is obtained. Based on the dry basis weight of the ion exchanged molecular sieve, the ion exchange The sodium oxide content of the subsequent molecular sieve does not exceed about 9.0% by weight;
  • the phosphorus-modified molecular sieve is brought into contact with gallium and zirconium in a solution, and after drying and second baking, the modified Y-type molecular sieve is obtained.
  • the method according to item A9, wherein the method of ion exchange reaction comprises: mixing NaY molecular sieve with water, adding a rare earth salt and / or an aqueous solution of a rare earth salt under stirring to perform an ion exchange reaction, and filtering and washing;
  • the conditions of the ion exchange reaction include: a temperature of about 15-95 ° C, a time of about 30-120 minutes, and a weight ratio of the NaY molecular sieve, a rare earth salt and water is about 1: (0.01-0.18): (5-20 ).
  • step (2) includes: performing the first firing at a temperature of about 380-460 ° C and about 40-80 vol% water vapor for about 5-6 hours.
  • step (3) the weight ratio of SiCl 4 to the relaxed hydrothermal ultra-stable modified molecular sieve on a dry basis is about (0.1-0.7): 1
  • the temperature of the contact reaction is about 200-650 ° C., and the reaction time is about 10 min to about 5 h.
  • the second washing method includes water washing until no free Na + , Cl ⁇ is detected in the washing solution after washing. Al 3+ plasma, the washing conditions may be: the pH value of the washing solution is about 2.5-5.0, the washing temperature is about 30-60 ° C., and the weight ratio of the amount of water to the unwashed gas phase ultra-stable modified molecular sieve is: About (6-15): 1.
  • A16 The method according to item A9, wherein the conditions of the acid treatment in step (4) include: acid treatment temperature is about 80-99 ° C, acid treatment time is about 1-4h, and the acid solution includes organic acid and The weight ratio of the inorganic acid, the acid in the acid solution, the water in the acid solution and the gas phase ultra-stable modified molecular sieve on a dry basis is about (0.001-0.15): (5-20): 1 .
  • step (4) comprises: first bringing the gas-phase superstable modified molecular sieve into first contact with an inorganic acid solution, and then carrying out the first contact with an organic acid solution.
  • the conditions of the first contact include: a time of about 60-120 min, a contact temperature of about 90-98 ° C, an inorganic acid in an inorganic acid solution, water in the inorganic acid solution, and the gas phase superabsorbent on a dry basis weight.
  • the weight ratio of the stably modified molecular sieve is about (0.01-0.05): (5-20): 1;
  • the conditions of the second contact include: time is about 60-120min, contact temperature is about 90-98 ° C, organic
  • the weight ratio of the organic acid in the acid solution, the water in the organic acid solution, and the gas-phase ultra-stable modified molecular sieve on a dry basis weight is about (0.02-0.1): (5-20): 1.
  • A18 The method according to item A16 or A17, wherein the organic acid is oxalic acid, malonic acid, succinic acid, methylsuccinic acid, malic acid, tartaric acid, citric acid, or salicylic acid, or a combination thereof A combination of two, three, or four of them; the inorganic acid is phosphoric acid, hydrochloric acid, nitric acid, or sulfuric acid, or a combination of two, three, or four of them.
  • the phosphorus compound is phosphoric acid, ammonium phosphate, ammonium dihydrogen phosphate, or diammonium hydrogen phosphate, or a combination of two, three, or four of them; the phosphorus
  • the modification treatment includes: contacting the acid-treated molecular sieve with a solution containing a phosphorus compound, reacting at a temperature of about 15-100 ° C. for about 10-100 min, and performing filtration and washing.
  • the solution is treated with P 2 O
  • the weight ratio of 5 counts of phosphorus, water in the solution, and the molecular sieve after the acid treatment is about (0.0005-0.10): (2-5): 1.
  • step (6) comprises: after the phosphorus-modified molecular sieve is uniformly mixed with an aqueous solution containing a gallium salt and a zirconium salt, the temperature is about 15-40 ° C.
  • the weight ratio of gallium as oxide, zirconium as oxide and the phosphorus-modified molecular sieve on a dry basis in the aqueous solution containing gallium salt and zirconium salt is about (0.001-0.025): (0.001-0.025): 1, and the weight ratio of the water in the aqueous solution to the phosphorus-modified molecular sieve on a dry basis is about (2-3): 1.
  • step (6) the conditions for the second roasting include: a roasting temperature of about 450-600 ° C and a roasting time of about 2-5h.
  • a catalytic cracking catalyst characterized in that, based on the dry basis weight of the catalyst, the catalyst contains about 10-50% by weight of a modified Y-type molecular sieve, and about 10-40% by weight based on alumina. Alumina binder and about 10-80% by weight clay on a dry basis;
  • the modified Y-type molecular sieve Based on the dry basis weight of the modified Y-type molecular sieve, the modified Y-type molecular sieve has a rare earth content of about 4-11% by weight as an oxide and a phosphorus content of about 0.05- as a P 2 O 5 .
  • the content of sodium oxide does not exceed about 0.5% by weight
  • the content of gallium oxide is about 0.1-2.5% by weight
  • the content of zirconia is about 0.1-2.5% by weight
  • the total pore volume of the modified Y-type molecular sieve is about 0.36-0.48mL / g, the ratio of the pore volume of the secondary pores with a pore volume of 2-100nm to the total pore volume is about 20-40%
  • the unit cell constant of the modified Y-type molecular sieve is about 2.440-2.455nm
  • the lattice collapse temperature is not lower than about 1060 ° C
  • the proportion of non-framework aluminum content of the modified Y-type molecular sieve to the total aluminum content is not higher than about 10%
  • the ratio to the amount of L acid is not less than about 3.5.
  • the catalytic cracking catalyst according to any one of items B1-B7, wherein, based on the dry basis weight of the modified Y-type molecular sieve, the rare earth content of the modified Y-type molecular sieve in terms of oxide is About 4.5-10% by weight, the phosphorus content as P 2 O 5 is about 0.5-5% by weight, the sodium oxide content is about 0.05-0.3% by weight, the gallium oxide content is about 0.2-2% by weight, and the zirconia content is about 0.5-2% by weight; the unit cell constant of the modified Y-type molecular sieve is about 2.442-2.451 nm; based on n (SiO 2 ) / n (Al 2 O 3 ), the framework silicon of the modified Y-type molecular sieve
  • the aluminum ratio is about 8.5-12.6; the rare earth includes La, Ce, Pr, or Nd, or a combination of two, three, or four of them.
  • the catalytic cracking catalyst according to item B1 wherein the clay is kaolin, kaolin, montmorillonite, diatomite, halloysite, saponite, rector, sepiolite, attapulgite , Hydrotalcite or bentonite, or a combination of two, three, or four of them; the alumina binder is alumina, hydrated alumina, or aluminum sol, or two, three, or four of them Of the combination.
  • the preparation of the modified Y-type molecular sieve includes the following steps:
  • the NaY molecular sieve is brought into contact with a rare earth salt to perform an ion exchange reaction, and after filtering and first washing, an ion exchanged molecular sieve is obtained. Based on the dry basis weight of the ion exchanged molecular sieve, the ion exchange The sodium oxide content of the subsequent molecular sieve does not exceed about 9.0% by weight;
  • the phosphorus-modified molecular sieve is brought into contact with gallium and zirconium in a solution, and after drying and second baking, the modified Y-type molecular sieve is obtained.
  • the conditions of the ion exchange reaction include: a temperature of about 15-95 ° C, a time of about 30-120 minutes, and a weight ratio of the NaY molecular sieve, a rare earth salt and water is about 1: (0.01-0.18): (5-20 ).
  • step (2) includes: performing the first roasting at a temperature of about 380-460 ° C and about 40-80 vol% water vapor for about 5-6 hours.
  • step (3) the weight ratio of SiCl 4 to the mitigated hydrothermal ultra-stable modified molecular sieve on a dry basis is about (0.1-0.7): 1 , the contact reaction temperature is about 200-650 deg.] C, the reaction time is about 10min to about 5H;
  • the second washing method comprising: washing solution after washing with water until no free detection of Na +, Cl - And Al 3+ plasma, the washing conditions may be: the pH value of the washing solution is about 2.5-5.0, the washing temperature is about 30-60 ° C., and the weight ratio of the amount of water to the unwashed gas phase ultra-stable modified molecular sieve It is about (6-15): 1.
  • step (4) comprises: first bringing the gas phase superstabilized modified molecular sieve into first contact with an inorganic acid solution, and then carrying out the first contact with an organic acid solution.
  • the conditions of the first contact include: a time of about 60-120 min, a contact temperature of about 90-98 ° C, an inorganic acid in an inorganic acid solution, water in the inorganic acid solution, and the gas phase superabsorbent on a dry basis weight.
  • the weight ratio of the stably modified molecular sieve is about (0.01-0.05): (5-20): 1;
  • the conditions of the second contact include: time is about 60-120min, contact temperature is about 90-98 ° C, organic
  • the weight ratio of the organic acid in the acid solution, the water in the organic acid solution, and the gas-phase ultra-stable modified molecular sieve on a dry basis weight is about (0.02-0.1): (5-20): 1.
  • the modification treatment includes: contacting the acid-treated molecular sieve with a solution containing a phosphorus compound, reacting at a temperature of about 15-100 ° C. for about 10-100 min, and performing filtration and washing.
  • the solution is treated with P 2 O
  • the weight ratio of 5 counts of phosphorus, water in the solution, and the molecular sieve after the acid treatment is about (0.0005-0.10): (2-5): 1.
  • step (6) comprises: after the phosphorus-modified molecular sieve is mixed with an aqueous solution containing a gallium salt and a zirconium salt uniformly, at a temperature of about 15-40 ° C.
  • the weight ratio of gallium as oxide, zirconium as oxide and the phosphorus-modified molecular sieve on a dry basis in the aqueous solution containing gallium salt and zirconium salt is about (0.001-0.025): (0.001-0.025): 1, and the weight ratio of the water in the aqueous solution to the phosphorus-modified molecular sieve on a dry basis is about (2-3): 1.
  • step (6) The method according to item B10, wherein in step (6), the conditions for the second roasting include: a roasting temperature of about 450-600 ° C and a roasting time of about 2-5 hours.
  • a catalytic cracking method for processing hydro-LCO comprising the step of contacting the hydro-LCO with the catalyst according to any one of items B1 to B9 under catalytic cracking conditions; wherein the catalytic cracking conditions include: The reaction temperature is about 500-610 ° C, the weight hourly space velocity is about 2-16 h -1 , and the weight ratio of agent to oil is about 3-10.
  • NaY molecular sieves also referred to as NaY zeolites
  • the sodium oxide content is 13.5% by weight
  • the framework silicon-alumina ratio (SiO 2 / Al 2 O 3 (Molar ratio) is 4.6, the unit cell constant is 2.470nm, and the relative crystallinity is 90%
  • rare earth chloride, rare earth nitrate, gallium nitrate, and zirconium nitrate are chemically pure reagents produced by Beijing Chemical Plant
  • the boehmite is Shandong Aluminum
  • the plant produces industrial products with a solid content of 61% by weight.
  • Kaolin is a kaolin special for cracking catalysts produced by Suzhou China Kaolin Company, with a solid content of 76% by weight.
  • the aluminum sol is provided by Qilu Branch of Sinopec Catalysts Co., Ltd., with alumina content of 21% by weight. .
  • the element content of the molecular sieve was determined by X-ray fluorescence spectroscopy; the unit cell constant and relative crystallinity of the molecular sieve were determined by the X-ray powder diffraction method (XRD) using RIPP145-90 and RIPP146-90 standard methods (see “Analytical Method of Petrochemical Engineering (RIPP Test Method)", edited by Yang Cuiding et al., Science Press, 1990, pp. 412-415) for determination.
  • XRD X-ray powder diffraction method
  • the skeletal silica-alumina ratio of the molecular sieve is calculated from the following formula:
  • a 0 is the unit cell constant and the unit is nm.
  • the total silicon-aluminum ratio of the molecular sieve is calculated based on the Si and Al element content determined by X-ray fluorescence spectrometry.
  • the ratio of skeleton silicon-aluminum measured by XRD method and the total silicon-aluminum ratio measured by XRF can calculate the ratio of skeleton Al to total Al. Furthermore, the ratio of non-framework Al to total Al was calculated.
  • the lattice collapse temperature was measured by differential thermal analysis (DTA).
  • the type of acid center of the molecular sieve and its acid amount were determined by infrared analysis using pyridine adsorption.
  • Experimental instrument Bruker's IFS113V FT-IR (Fourier transform infrared) spectrometer. The amount of acid was measured by a pyridine adsorption infrared method at 350 ° C.
  • Experimental method The sample is self-supporting and compressed, placed in an in-situ cell of an infrared spectrometer and sealed; the temperature is raised to 400 ° C, and the vacuum is evacuated to 10 -3 Pa, and the temperature is maintained for 2 hours to remove the gas molecules adsorbed by the sample; The introduction pressure is 2.67Pa.
  • Pyridine vapor is used to keep the adsorption equilibrium for 30min. Then the temperature is raised to 350 ° C, the vacuum is desorbed to 10 -3 Pa for 30min, and the temperature is reduced to room temperature.
  • the scanning wave number range is 1400-1700cm -1 .
  • the method for measuring the secondary pore volume is as follows: according to the RIPP151-90 standard method (see “Analytical Method of Petrochemical Engineering (RIPP Test Method)", edited by Yang Cuiding, etc., published by Science Press, 1990, (Pp. 424-426) Determine the total pore volume of the molecular sieve according to the adsorption isotherm, and then determine the micropore volume of the molecular sieve from the adsorption isotherm according to the T drawing method. Subtract the micropore volume from the total pore volume to obtain the secondary pore volume. .
  • Examples 1-4 are preparation examples of the modified Y-type molecular sieve and the catalytic cracking catalyst according to the present invention.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide. Then, it is sent to a roasting furnace for modification: controlling the atmosphere temperature of the material at 390 ° C. and baking at 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6 hours; then, the molecular sieve material is introduced into the baking furnace for baking and drying treatment.
  • the atmosphere temperature of the material is 500 ° C, dry air atmosphere (water vapor content is less than 1% by volume), and calcined for 2.5h to make the water content less than 1% by weight; a Y-type molecular sieve with a reduced cell constant is obtained, and the cell constant is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas phase superstability reactor for a gas phase superstability reaction.
  • the tail gas absorption process is carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions are as follows: the weight ratio of SiCl 4 : Y zeolite is 0.5: 1, the feed amount of molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the filter cake was added to a 4000 L solution in which 36.67 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 128.94 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O were dissolved.
  • the modified Y molecular sieve and the mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 were stirred uniformly, and then allowed to stand at room temperature for an immersion time of 24 h. Then, the modified Y molecular sieve and Ga (NO 3 ) The mixed slurry of 3 and Zr (NO 3 ) 4 is stirred for another 20 minutes to make the mixture uniform.
  • Relative crystallinity retention rate (relative crystallinity of aged samples / relative crystallinity of fresh samples) ⁇ 100%.
  • alumina sol with 21% by weight of alumina Take 714.5g of alumina sol with 21% by weight of alumina and add it to 1565.5g of deionized water, start stirring, and add 2763g of kaolin with solid content of 76% by weight to disperse for 60min.
  • 2049 g of pseudo-boehmite having an alumina content of 61% by weight was added to 8146 g of deionized water, 210 ml of 36% hydrochloric acid was added under stirring, and acidified for 60 min. Then, the dispersed kaolin slurry was added, and then 1500 g (dry basis) of ground SZ1 molecular sieve was added. After being stirred uniformly, spray drying and washing treatment were performed, and the catalyst was obtained by drying, which was recorded as SC1.
  • the SC1 catalyst obtained contained 30% by weight of SZ1 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight
  • the conventional Y-type molecular sieve containing rare earth has a sodium oxide content of 5.5% by weight, a unit cell constant of 2.471nm, and a rare earth content of 11.3% by weight as an oxide. Then, it is sent to a roasting furnace and baked at a temperature (atmosphere temperature) of 450 ° C and 80% water vapor for 5.5 hours.
  • the molecular sieve material enters the roasting furnace for roasting and drying treatment, and the roasting temperature is controlled at 500 ° C.
  • the roasting atmosphere is dry In air atmosphere, the calcination time is 2 hours, the water content of the molecular sieve is lower than 1% by weight, and a Y-type molecular sieve with a reduced cell constant is obtained.
  • the cell constant is 2.461 nm.
  • the Y-type molecular sieve material with a reduced cell constant is directly sent to a continuous gas phase superstable reactor for a gas phase superstability reaction.
  • the molecular gas sieve in a continuous gas phase superstable reactor has a gas phase superstability reaction process and subsequent exhaust gas absorption.
  • the process was carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions were as follows: the weight ratio of SiCl 4 : Y zeolite was 0.25: 1, the feed amount of molecular sieve was 800 kg / h, and the reaction temperature was 490 ° C.
  • the molecular sieve material after the gas phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of deionized water, and the molecular sieve material added to the secondary exchange tank weighs 2000 kg. (Dry basis weight), stir well.
  • the molecular sieve cake is then directly added to the solution containing diammonium hydrogen phosphate.
  • the weight of the molecular sieve is: the weight ratio of phosphorus (calculated as P 2 O 5 ) to the molecular sieve is 0.03, and the weight ratio of water to the molecular sieve is 3.0, reacted at 60 ° C for 50min, filtered and washed.
  • the filter cake was added to 4500 L of a solution in which 74.41 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 71.63 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O were dissolved.
  • the modified Y molecular sieve and the mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 were stirred uniformly, and then allowed to stand at room temperature for an immersion time of 24 h. Then, the modified Y molecular sieve and Ga (NO 3 ) The mixed slurry of 3 and Zr (NO 3 ) 4 is stirred for another 20 minutes to make the mixture uniform.
  • the preparation method of Reference Example 1 is used to prepare a catalytic cracking catalyst: SZ2 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst is denoted as SC2.
  • the obtained SC2 catalyst contained 30% by weight of SZ2 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing conventional unit cells has a sodium oxide content of 7.5% by weight, a unit cell constant of 2.471nm, and an oxide-based rare earth content of 8.5% by weight. Then, it is sent to a roasting furnace for hydrothermal modification.
  • the conditions of the hydrothermal modification are: roasting temperature: 470 ° C, roasting under an atmosphere containing 70% by volume of water vapor for 5 hours; then, the molecular sieve material enters the roasting furnace for roasting and drying treatment to control the roasting.
  • the temperature is 500 ° C
  • the roasting atmosphere is a dry air atmosphere.
  • the roasting time is 1.5 hours, and the water content is lower than 1% by weight.
  • a Y-type molecular sieve with a reduced cell constant is obtained.
  • the cell constant is 2.458 nm.
  • the Y-type molecular sieve material with a reduced cell constant is sent to a continuous gas-phase super-stable reactor to perform a gas-phase super-stable reaction.
  • the gas phase superstability reaction process of molecular sieves in a continuous gas phase superstability reactor and its subsequent tail gas absorption process are performed according to the method of Example 1 disclosed in the CN103787352A patent publication, and the process conditions are: SiCl 4 : Y-type zeolite weight ratio is 0.45: 1.
  • the feed amount of the molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of deionized water, and the molecular sieve material added to the secondary exchange tank weighs 2000 kg. (Dry basis weight), stir well. Thereafter, 1.2 m 3 of a nitric acid solution having a nitric acid concentration of 5% by weight was slowly added, and the temperature was raised to 95 ° C. and stirred for 90 minutes; then, 90 kg of citric acid and 40 kg of oxalic acid were added, and the mixture was stirred at 93 ° C. for 70 minutes, filtered, and washed.
  • the molecular sieve cake was directly added to the solution containing ammonium phosphate, and the amount of molecular sieve added was: the weight ratio of phosphorus (as P 2 O 5 ) to the molecular sieve was 0.015, and the weight ratio of water to molecular sieve was 2.8.
  • the reaction was carried out at 70 ° C for 30 minutes, and then filtered and washed.
  • the filter cake was added to 4800 L of a solution containing 110.03 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 43.1 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O, impregnating the gallium component and the zirconium component,
  • the modified Y molecular sieve and the mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 were stirred uniformly, and then allowed to stand at room temperature for an immersion time of 24 h. Then, the modified Y molecular sieve and Ga (NO 3 ) The mixed slurry of 3 and Zr (NO 3 ) 4 is stirred for another 20 minutes to make the mixture uniform.
  • the mixture is transferred to a rotary evaporator for slow and uniform heating and rotary evaporation, and then the dried material is placed in a muffle furnace and baked at 600 ° C for 2 hours to obtain a composite modified Y rich in secondary pores.
  • Molecular sieves designated as SZ3. Its physical and chemical properties are listed in Table 1.
  • the preparation method of Reference Example 1 prepares a catalytic cracking catalyst: SZ3 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst is denoted as SC3.
  • the obtained SC3 catalyst contained 30% by weight of SZ3 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide.
  • the gas phase superstable reaction process of molecular sieve in a continuous gas phase superstable reactor and its subsequent tail gas absorption process are performed according to the method of Example 1 disclosed in the CN103787352A patent publication, and the process conditions are as follows: the weight ratio of SiCl 4: Y zeolite is 0.2: 1.
  • the feed amount of the molecular sieve is 800 kg / h, and the reaction temperature is 250 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the filter cake was added to a 4000 L solution in which 36.67 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 128.94 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O were dissolved, and impregnated the gallium component and the zirconium component.
  • the modified Y molecular sieve and the mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 were stirred uniformly, and then allowed to stand at room temperature for an immersion time of 24 h. Then, the modified Y molecular sieve and Ga (NO 3 ) The mixed slurry of 3 and Zr (NO 3 ) 4 is stirred for another 20 minutes to make the mixture uniform.
  • the preparation method of Reference Example 1 is used to prepare a catalytic cracking catalyst: SZ4 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol are formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst is denoted as SC4.
  • the obtained SC4 catalyst contained 30% by weight of SZ4 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • Comparative Examples 1 to 8 are preparation examples of modified Y-type molecular sieves and catalytic cracking catalysts other than the present invention.
  • a second hydrothermal modification treatment was performed.
  • the conditions of the hydrothermal modification treatment were: baking at 100 ° C for 5h at a temperature of 650 ° C to obtain two hydrothermally stable non-ionic Hydrothermal ultra-stable Y-type molecular sieve containing rare earth, which is denoted as DZ1.
  • Table 1 shows the composition and physical and chemical properties of DZ1.
  • the DZ1 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was referred to as DC1 (reference Preparation method of Example 1).
  • the obtained DC1 catalyst contained 30% by weight of DZ1 molecular sieve, 42% by weight of kaolin, 25% by weight of boehmite, and 3% by weight of aluminum sol.
  • DZ2 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was recorded as DC2 (reference Preparation method of Example 1).
  • the obtained DC2 catalyst contained 30% by weight of DZ2 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the gas phase superstability reaction process of molecular sieves in a continuous gas phase superstability reactor and its subsequent tail gas absorption process are carried out according to the method of Example 1 disclosed in the CN103787352A patent publication, and the process conditions are: the weight ratio of SiCl 4 : Y zeolite is 0.4: 1.
  • the feed amount of the molecular sieve is 800 kg / h, and the reaction temperature is 580 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • DZ3 molecular sieve, kaolin, water, pseudo-boehmite binder and alumina sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was referred to as DC3 (reference Preparation method of Example 1).
  • the DC3 catalyst obtained contained 30% by weight of DZ3 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide. Then, it is sent to a roasting furnace for modification: controlling the atmosphere temperature of the material at 390 ° C. and baking at 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6 hours; then, the molecular sieve material is introduced into the baking furnace for baking and drying treatment.
  • the atmosphere temperature of the material is 500 ° C, dry air atmosphere (water vapor content is less than 1% by volume), and calcined for 2.5h to make the water content less than 1% by weight; a Y-type molecular sieve with a reduced cell constant is obtained, and the cell constant is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas phase superstability reactor for a gas phase superstability reaction.
  • the tail gas absorption process is carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions are as follows: the weight ratio of SiCl 4 : Y zeolite is 0.5: 1, the feed amount of molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the molecular sieve cake was directly added to the solution containing ammonium phosphate, and the amount of molecular sieve added was: the weight ratio of phosphorus (as P 2 O 5 ) to the molecular sieve was 0.04, and the weight ratio of water to molecular sieve was 2.5
  • the reaction was performed at 50 ° C for 60 minutes, filtered, washed, and the filter cake was dried at 120 ° C to modify the Y molecular sieve and recorded as DZ4. Its physical and chemical properties are listed in Table 1.
  • the DZ4 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was referred to as DC4 (reference Preparation method of Example 1).
  • the obtained DC4 catalyst contained 30% by weight of DZ4 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide. Then, it is sent to a roasting furnace for modification: controlling the atmosphere temperature of the material at 390 ° C. and baking at 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6 hours; then, the molecular sieve material is introduced into the baking furnace for baking and drying treatment.
  • the atmosphere temperature of the material is 500 ° C, dry air atmosphere (water vapor content is less than 1% by volume), and calcined for 2.5h to make the water content less than 1% by weight; a Y-type molecular sieve with a reduced cell constant is obtained, and the cell constant is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas phase superstability reactor for a gas phase superstability reaction.
  • the tail gas absorption process is carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions are as follows: the weight ratio of SiCl 4 : Y zeolite is 0.5: 1, the feed amount of molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the filter cake was added to 4000 L of a mixed solution in which 267.5 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 195.51 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O were dissolved and impregnated, and
  • the modified Y molecular sieve is mixed with a mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 , and then it is left at room temperature for a immersion time of 24 h. Then, the modified Y molecular sieve and Ga (NO 3 ) are added. 3 and Zr (NO 3 ) 4 mixed slurry and stirred for 20 minutes to make the mixture uniform.
  • the DZ5 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was recorded as DC5 (reference Preparation method of Example 1).
  • the DC5 catalyst obtained contained 30% by weight of DZ5 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide.
  • a roaster for baking at a temperature of 390 ° C and 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6h; then, at a temperature of 500 ° C, a dry air atmosphere (a water vapor content of less than 1% by volume) ) Roasted for 2.5 h to make the water content less than 1% by weight to obtain a Y-type molecular sieve with a reduced cell constant, the cell constant of which is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas-phase super-stable reactor to perform a gas-phase super-stable reaction.
  • the gas phase superstability reaction process of molecular sieves in a continuous gas phase superstability reactor and its subsequent tail gas absorption process are performed according to the method of Example 1 disclosed in the CN103787352A patent publication, and the process conditions are as follows: the weight ratio of SiCl 4: Y zeolite is 0.5: 1. The feed amount of the molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas phase ultra-stable reaction was washed with 20m 3 of deionized water, and then filtered, and the filter cake was added to 4000 L of 36.67 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O and 128.94 kg of Zr (NO 3 ) Impregnate the gallium component and zirconium component in the 4 ⁇ 5H 2 O solution, and stir the modified Y molecular sieve and the mixed solution containing Ga (NO 3 ) 3 and Zr (NO 3 ) 4 to homogeneously, and then stand at room temperature.
  • the immersion time is 24 hours.
  • the mixed slurry containing the modified Y molecular sieve and Ga (NO 3 ) 3 and Zr (NO 3 ) 4 is stirred for 20 minutes to make the mixture uniform.
  • the mixture is transferred to a rotary evaporator for slow and uniform heating and rotary evaporation, and then the dried material is placed in a muffle furnace and baked at 550 ° C for 2.5 hours to obtain a modified Y molecular sieve product, which is recorded as DZ6. Its physical and chemical properties are listed in Table 1.
  • the DZ6 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was recorded as DC6 (reference Preparation method of Example 1).
  • the DC6 catalyst obtained contained 30% by weight of DZ6 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide. Then, it is sent to a roasting furnace for modification: controlling the atmosphere temperature of the material at 390 ° C. and baking at 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6 hours; then, the molecular sieve material is introduced into the baking furnace for baking and drying treatment.
  • the atmosphere temperature of the material is 500 ° C, dry air atmosphere (water vapor content is less than 1% by volume), and calcined for 2.5h to make the water content less than 1% by weight; a Y-type molecular sieve with a reduced cell constant is obtained, and the cell constant is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas phase superstability reactor for a gas phase superstability reaction.
  • the tail gas absorption process is carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions are as follows: the weight ratio of SiCl 4 : Y zeolite is 0.5: 1, the feed amount of molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the filter cake was added to 4000 L of a solution of 60.88 kg of Zr (NO 3 ) 4 ⁇ 5H 2 O in which the zirconium component was impregnated, and the modified Y molecular sieve and the solution containing Zr (NO 3 ) 4 were evenly stirred. Then, it was left to stand at room temperature for a immersion time of 24 h. Then, the slurry containing the modified Y molecular sieve and Zr (NO 3 ) 4 was stirred for another 20 minutes to make the mixture uniform.
  • the DZ7 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was recorded as DC7 (reference Preparation method of Example 1).
  • the obtained DC7 catalyst contained 30% by weight of DZ7 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • the reduced Y-type molecular sieve containing a conventional unit cell has a sodium oxide content of 7.0% by weight, a unit cell constant of 2.471nm, and a rare earth content of 8.8% by weight as an oxide. Then, it is sent to a roasting furnace for modification: controlling the atmosphere temperature of the material at 390 ° C. and baking at 50% water vapor (the atmosphere contains 50% by volume of water vapor) for 6 hours; then, the molecular sieve material is introduced into the baking furnace for baking and drying treatment.
  • the atmosphere temperature of the material is 500 ° C, dry air atmosphere (water vapor content is less than 1% by volume), and calcined for 2.5h to make the water content less than 1% by weight; a Y-type molecular sieve with a reduced cell constant is obtained, and the cell constant is 2.455 nm. Then, the Y-type molecular sieve material with the reduced cell constant is directly sent to a continuous gas phase superstability reactor for a gas phase superstability reaction.
  • the tail gas absorption process is carried out according to the method of Example 1 disclosed in CN103787352A patent.
  • the process conditions are as follows: the weight ratio of SiCl 4 : Y zeolite is 0.5: 1, the feed amount of molecular sieve is 800 kg / h, and the reaction temperature is 400 ° C.
  • the molecular sieve material after the gas-phase ultra-stable reaction is separated by a gas-solid separator and sent to a secondary exchange tank.
  • the secondary exchange tank is pre-filled with 20 m 3 of water.
  • the molecular sieve material added to the secondary exchange tank weighs 2000 kg (dry). Basis weight), stir well.
  • the filter cake was added to 4000 L of a solution of 71.33 kg of Ga (NO 3 ) 3 ⁇ 9H 2 O, and the gallium component was impregnated, and the modified Y molecular sieve and the solution containing Ga (NO 3 ) 3 were evenly stirred. Then, it was left to stand at room temperature for a immersion time of 24 h. Then, the slurry containing the modified Y molecular sieve and Ga (NO 3 ) 3 was stirred for another 20 minutes to make the mixture uniform.
  • the DZ8 molecular sieve, kaolin, water, pseudo-boehmite binder and aluminum sol were formed into a slurry according to the conventional preparation method of catalytic cracking catalyst, and spray-dried to prepare a microsphere catalyst.
  • the prepared catalytic cracking catalyst was referred to as DC8 (reference Preparation method of Example 1).
  • the DC8 catalyst obtained contained 30% by weight of DZ8 molecular sieve, 42% by weight of kaolin, 25% by weight of pseudoboehmite, and 3% by weight of aluminum sol.
  • This comparative example uses the conventional FCC catalyst used in Example 1 of Chinese Patent Application Publication CN 104560187A, which is referred to as catalyst DC9.
  • the DC1-DC9 catalyst was aged at 800 ° C and 100% water vapor for 12 hours, and then the performance of the catalytic cracking reaction for processing hydrogenated LCO was evaluated on a small fixed fluidized bed reactor (ACE).
  • ACE small fixed fluidized bed reactor
  • the highly stable modified Y-type molecular sieve provided by the present disclosure also has the following advantages: low sodium oxide content, less non-framework aluminum content when the silica-aluminum of the molecular sieve is relatively high, and the pore size of the molecular sieve of 2.0-100 nm
  • the pore volume of the secondary pores accounts for a higher percentage of the total pore volume, and the B acid / L acid (the ratio of the amount of strong B acid to the amount of L acid) is higher, and the cell constant is smaller in the molecular sieve, and the rare earth content is higher.
  • the crystallinity value measured at this time is high and has high thermal stability.
  • the modified Y-type molecular sieve provided by the present disclosure has a relatively high retention of relative crystallinity after aging under severe conditions at 800 ° C for 17 hours in the naked state, indicating that the modified Y-type molecular sieve provided by the present disclosure has a relatively high retention rate.
  • Molecular sieves have high hydrothermal stability.
  • the catalytic cracking catalyst provided by the present disclosure has high hydrothermal stability, significantly lower coke selectivity, and significantly higher gasoline yield, and BTX in gasoline
  • the yield of (benzene + toluene + xylene) was significantly improved, the propylene yield was increased, and the propylene concentration in the liquefied gas was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种改性Y型分子筛、包含它的催化裂化催化剂、及其制备和应用,改性Y型分子筛以氧化物计稀土含量4-11重%,以P2O5计磷含量0.05-10重%,以氧化钠计钠含量不超过0.5重%,以氧化镓计镓含量0.1-2.5重%,以氧化锆计锆含量0.1-2.5重%;分子筛总孔体积为0.36-0.48mL/g,2-100nm的二级孔占总孔体积20-40%;晶胞常数为2.440-2.455nm,崩塌温度不低于1060℃;非骨架铝占总铝含量不高于10%,强酸量中B酸量与L酸量比值不低于3.5。催化剂用于加工加氢LCO时,具有高LCO转化率,低焦炭选择性,更高且富含BTX芳烃的汽油收率和高丙烯收率,液化气中丙烯浓度高。

Description

改性Y型分子筛、包含它的催化裂化催化剂、及其制备和应用
相关申请的交叉引用
本申请要求申请人于2018年8月17日向中国专利局提交的申请号为201810940921.4、名称为“改性Y型分子筛及其制备方法和应用”的专利申请的优先权;以及,申请人2018年8月17日向中国专利局提交的申请号为201810942057.1、名称为“催化裂化催化剂及其制备方法和应用”的专利申请的优先权,上述专利申请的内容经此引用全文并入本文。
技术领域
本公开涉及分子筛和催化裂化的技术领域,更具体地涉及一种改性Y型分子筛、包含它的催化裂化催化剂、它们的制备方法和应用。
背景技术
苯、甲苯及二甲苯(BTX)等轻质芳烃是重要的基本有机化工原料,广泛用于生产聚酯、化纤等,近年来需求强劲。苯、甲苯及二甲苯(BTX)等轻质芳烃主要来自以石脑油为原料的催化重整和蒸汽裂解工艺过程。由于石脑油原料紧缺,致使轻质芳烃存在较大的市场缺口。
催化裂化轻循环油(LCO)是催化裂化的重要副产物,数量大,富含芳烃,尤其是多环芳烃,属于劣质柴油馏分。随着市场需求和环保要求的发展变化,LCO作为柴油调合组分受到较大限制。LCO的烃类组成包括链烷烃、环烷烃(含少量烯烃)和芳烃,随催化裂化原料油不同和操作苛刻度不同,LCO的烃类组成差异较大,但芳烃均为其主要组分,通常质量分数大于70%,有的甚至达到90%左右,其余为链烷烃和环烷烃。LCO中的双环芳烃含量最高,属于其典型组分,也是影响催化裂化生产轻质芳烃的关键组分。在催化裂化反应条件下,多环芳烃难以开环裂化为轻质芳烃,而在加氢处理条件下,多环芳烃比较容易饱和为烷基苯和环烃基苯(茚满类、四氢萘类和茚类)等重质单环芳烃。此类重质单环芳烃是催化裂化生产轻质芳烃的潜在组分,在催化裂化条件下能够裂化为轻质芳烃。因此,LCO是生产轻质芳烃 的潜在且廉价的资源,通过加氢处理-催化裂化技术路线生产轻质芳烃具有重要的研究价值。
中国专利申请公开Nos.CN103923698A、CN104560185A和CN104560187A记载的现有技术中,采用LCO适度加氢,先将其中的大部分多环芳烃饱和成含有环烷环和一个芳环的氢化芳烃,然后,在催化裂化催化剂存在下进行裂化反应生产BTX轻质芳烃。但是,LCO加氢得到的氢化芳烃的裂化性能比常规催化裂化原料差,而氢转移性能远高于一般催化裂化原料,因此,现有技术中所用的常规的催化裂化催化剂不能满足加氢LCO催化裂化的需要。
Y型分子筛自上世纪60年代首次使用以来,一直是催化裂化(FCC)催化剂的主要活性组元。然而,随着原油重质化的加剧,FCC原料中的多环化合物含量显著增多,其在分子筛孔道中的扩散能力却显著下降。而作为主要活性组元的Y型分子筛的孔径仅有0.74nm,直接用来加工渣油等重质馏分,催化剂活性中心的可接近性将成为其中所含多环化合物裂化的主要障碍。分子筛孔结构与裂化反应性能关系密切,特别是对渣油裂化催化剂,分子筛的二级孔能增加渣油大分子与其活性中心的可接近性,进而提高对渣油的裂解能力。
水热脱铝法是工业上应用最广泛的制备具有二级孔的超稳分子筛的方法之一,该方法先将NaY分子筛用铵离子的水溶液交换,以降低分子筛中的钠离子含量,然后,于600-825℃在水蒸气气氛下焙烧铵离子交换后的分子筛,使其超稳化。该方法成本低且易于工业化大规模生产,得到的超稳Y型分子筛具有较丰富的二级孔,但超稳Y分子筛结晶度损失严重。
目前,工业上生产超稳Y型分子筛一般是对上述水热焙烧工艺的改进,采用两次交换两次焙烧的方法,其目的是分步采取较温和的焙烧条件,以解决在苛刻的焙烧条件下所发生的结晶度严重损失的问题,所制备的超稳Y分子筛也具有一定量的二级孔,但是,较大孔径的二级孔在总的二级孔里的比例较低,另外,超稳分子筛的比表面和结晶度还有待进一步提高。
为了更好地满足加氢LCO催化裂化多产BTX轻质芳烃的需要,本发明的目的是开发同时具备强的裂化能力及较弱的氢转移性能的高稳定性的改性分子筛作为新活性组元,以此新活性组元进一步开发适 合加氢LCO催化裂化的多产BTX轻质芳烃的催化裂化催化剂,强化裂化反应,控制氢转移反应,进一步提高加氢LCO的转化效率,最大程度地生产富含苯、甲苯和二甲苯(BTX)的催化汽油。
发明内容
本公开的目的之一是提供一种改性Y型分子筛、包含它的催化裂化催化剂、它们的制备方法和应用,以该改性Y型分子筛作为活性组元制备的催化裂化催化剂具有更高的加氢LCO转化效率、更好的焦炭选择性及更高的富含BTX的汽油产率。
为了实现上述目的,一方面,本公开提供了一种改性Y型分子筛,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4-11重%,以P 2O 5计磷的含量为约0.05-10重%,以氧化钠计钠的含量不超过约0.5重%,以氧化镓计镓的含量为约0.1-2.5重%,以氧化锆计锆的含量为约0.1-2.5重%;所述改性Y型分子筛的总孔体积为约0.36-0.48mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约20-40%;所述改性Y型分子筛的晶胞常数为约2.440-2.455nm,晶格崩塌温度不低于约1060℃;非骨架铝含量占总铝含量的比例不高于约10%,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5。
另一方面,本公开提供了一种改性Y型分子筛的制备方法,包括以下步骤:
(1)使NaY分子筛与稀土盐溶液接触进行离子交换反应,得到离子交换后的分子筛;
(2)使所述离子交换后的分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
(3)使所述缓和水热超稳改性的分子筛与气态SiCl 4接触反应进行气相超稳改性,得到气相超稳改性的分子筛;
(4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得到酸处理后的分子筛;
(5)使所述酸处理后的分子筛与磷化合物接触进行磷改性处理,得到磷改性分子筛;以及
(6)使所述磷改性分子筛在溶液中与镓和锆接触进行改性处理, 并经过焙烧,得到所述改性Y型分子筛。
另一方面,本公开提供了一种催化裂化催化剂,以所述催化剂的干基重量为基准,所述催化剂含有约10-50重%的改性Y型分子筛、以氧化铝计约10-40重%的氧化铝粘结剂和以干基计约10-80重%的粘土;其中所述改性Y型分子筛为根据本公开的改性Y型分子筛或者通过本公开的方法制备得到的改性Y型分子筛。
又一方面,本公开提供了根据本公开的改性Y型分子筛在烃类原料,特别是加氢轻循环油,的催化裂化反应中的应用,包括在催化裂化条件下使所述烃类原料与包含所述改性Y型分子筛的催化裂化催化剂接触。
本公开提供的改性Y型分子筛制备方法通过对Y型分子筛进行稀土交换、水热超稳处理和气相超稳处理,结合酸处理对分子筛的孔道进行清理,并采用活性元素镓和锆、以及磷元素进行改性,可以制得高结晶度、高热稳定性及高水热稳定性的富含二级孔的高硅Y型分子筛,可以使分子筛在超稳化程度大大提高的情况下具有较高的结晶度。所制备的分子筛中铝分布均匀,非骨架铝含量少,二级孔孔道畅通。
本公开的改性Y型分子筛可以用作催化裂化催化剂的活性组元,用于加氢LCO的催化裂化。以此分子筛为活性组元的催化裂化催化剂用于加工加氢LCO时,具有高的LCO转化效率(例如LCO有效转化率高)和较低的焦炭选择性,并且具有更高的且富含BTX的汽油收率,以及高的丙烯收率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间, 以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
本发明中涉及的RIPP试验方法具体可参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年9月第一版,ISBN:7-03-001894-X,第412-415和424-426页,其经此引用全文并入本文。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
在本申请中,术语“Y型分子筛”和“Y型沸石”可互换使用,且术语“NaY分子筛”和“NaY沸石”也可互换使用。
在本文中,术语“二级孔”是指分子筛中孔径(指直径)为2-100nm的孔。
在本文中,术语“中等强度以上的无机酸”是指酸强度在HNO 2(亚硝酸)以上的无机酸,包括但不限于HClO 4(高氯酸)、HI(碘化氢)、HBr(氢溴酸)、HCl(盐酸)、HNO 3(硝酸)、H 2SeO 4(硒酸)、H 2SO 4(硫酸)、HClO 3(氯酸)、H 2SO 3(亚硫酸)、H 3PO 3(磷酸)和HNO 2(亚硝酸)等等。
在本文中,术语“稀土溶液”和“稀土盐溶液”可互换使用,优选为稀土盐的水溶液。
在本文中,表述“常规晶胞大小的Y型分子筛”表示该Y型分子筛的晶胞常数在常规NaY分子筛的晶胞常数的范围内,优选在约2.465nm至约2.472nm的范围内。
在本申请中,术语“常压”表示压力为约1atm。
在本申请中,物质的干基重量是指该物质在800℃焙烧1小时得到的固体产物重量。
在第一方面,本公开提供了一种改性Y型分子筛,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4-11重%,以P 2O 5计磷的含量为约0.05-10重%,以氧化钠计钠的含量不超过约0.5重%,以氧化镓计镓的含量为约0.1-2.5重%,以氧化锆计锆的含量为约0.1-2.5重%;所述改性Y型分子筛的总孔体积为约0.36-0.48mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约20-40%;所述改性Y型分子筛的晶胞常数为约2.440-2.455nm,晶格崩塌温度不低于约1060℃;非骨架铝含量占总铝含量的比例不高于约10%,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5。
本公开的改性Y型分子筛的超稳化程度高,具有较高的结晶度,铝分布均匀,非骨架铝含量少,二级孔孔道畅通。该改性Y型分子筛用于加工加氢LCO时,具有高的LCO转化效率,较低的焦炭选择性,更高的且富含BTX的汽油收率,以及高的丙烯收率。
本公开的改性Y型分子筛含有稀土,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量可以为约4-11重%,优选为约4.5-10重%,例如约5-9重%。
根据本公开,所述稀土的种类和组成没有特殊限制。优选地,所述稀土可以包括La、Ce、Pr或Nd,或者它们中两者、三者或四者的组合;任选地,所述稀土中还可以包括La、Ce、Pr和Nd之外的其他稀土元素。
本公开的改性Y型分子筛含有活性元素镓和锆,以所述分子筛的干基重量为基准,以氧化镓计镓的含量(本文中也可简称氧化镓含量)可以为0.1-2.5重%,优选为约0.2-2.0重%,或约0.3-1.8重%,以氧化锆计锆的含量(本文中也可简称氧化锆含量)可以为0.1-2.5重%,优选为约0.2-2.0重%,或约0.5-2重%。在上述优选的含量范围内,改性Y型分子筛催化LCO的转化效率更高,焦炭选择性更低且更有利于得到更高收率的富含BTX芳烃的汽油和丙烯。
本公开的改性Y型分子筛含有改性元素磷,以进一步改善分子筛的焦炭选择性,以所述分子筛的干基重量为基准,以P 2O 5计的磷含量 (本文中也可简称P 2O 5含量)为0.05-10重%,例如为约0.1-6重%,优选为约1-5.5重%。
根据本公开,在某些实施方式中,所述改性Y型分子筛还可以含有少量钠,以所述分子筛的干基重量为基准,以氧化钠计钠的含量(本文中也可简称氧化钠含量)可以为约0.05-0.5重%,例如为约0.1-0.4重%,约0.05-0.3重%或约0.05-0.2重%。
根据本公开,所述改性Y型分子筛中的稀土、钠和活性元素镓和锆的含量可以分别采用X射线荧光光谱法进行测定。
根据本公开,所述改性Y型分子筛的孔结构可以进一步优化,以取得更适宜的催化裂化反应性能。改性Y型分子筛的总孔体积可以优选为约0.36-0.48mL/g,进一步优选为约0.38-0.42或0.4-0.48mL/g;孔径为2-100nm的二级孔的孔体积占总孔体积的比例可以为约20%-40%,优选为约28-38%,例如为约25-35%。例如,孔径为2.0-100nm的二级孔的孔体积可以为约0.08-0.18mL/g,优选为约0.10-0.16mL/g。在本公开中,可以按照RIPP 151-90标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版,第424-426页)根据吸附等温线测定出分子筛的总孔体积,然后从吸附等温线按照T作图法测定出分子筛的微孔体积,将总孔体积减去微孔体积得到二级孔体积。
本公开提供的改性Y型分子筛,为富含二级孔的含稀土超稳Y分子筛,分子筛中孔径为2-100nm的二级孔分布曲线呈双可几孔分布,其中较小孔径二级孔的最可几孔径为约2-5nm,较大孔径的二级孔的最可几孔径可以为约6-20nm,优选为约8-18nm。优选地,孔径为2-100nm的二级孔的孔体积占总孔体积的比例可以为约28-38%,或约25-35%。
在本公开的一种优选实施方式中,改性Y型分子筛的比表面积可以为约600-670m 2/g,例如为约610-670m 2/g或约640-670m 2/g或约646-667m 2/g。其中,改性Y型分子筛的比表面积是指BET比表面积,比表面积可以按照ASTM D4222-98标准方法测得。
根据本公开,所述改性Y型分子筛的晶胞常数进一步优选为约2.440-2.455nm,例如为约2.442-2.453nm或2.442-2.451nm或2.441-2.453nm。
根据本公开,改性Y型分子筛的晶格崩塌温度优选为约1065-1085 ℃,更优选为约1065-1083℃。
根据本公开,所述改性Y型分子筛的相对结晶度可以不低于约70%,例如为约70-80%,优选为约70-76%。本公开的改性Y型分子筛具有较高的耐水热老化性能,在800℃常压下经100%水蒸气老化17h后,所述改性Y型分子筛经XRD测定的相对结晶度保留率为约38%以上,例如为约38-60%,或约50-60%,或约46-58%。
根据本公开,改性Y型分子筛的晶格崩塌温度可以由差热分析法(DTA)测定。分子筛的晶胞常数、相对结晶度由X射线粉末衍射法(XRD)采用RIPP145-90、RIPP146-90标准方法(见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版,第412-415页)测定。
根据本公开,所述改性Y型分子筛的骨架硅铝比由下式计算而得:
骨架SiO 2/Al 2O 3摩尔比=(2.5858-a 0)×2/(a 0-2.4191),
其中,a 0为晶胞常数,单位为nm。
根据本公开,所述改性Y型分子筛的总硅铝比依据X射线荧光光谱法测定的Si与Al元素含量计算得到,由XRD法测定的骨架硅铝比与XRF测定的总硅铝比可计算骨架Al与总Al的比值,进而计算非骨架Al与总Al的比值。
根据本公开,所述改性Y型分子筛的相对结晶度保留率=(老化样品的相对结晶度/新鲜样品的相对结晶度)×100%。
本公开的改性Y型分子筛的非骨架铝含量较低,非骨架铝含量占总铝含量的比例不高于约10%,进一步优选为约5-9.8%,或约6-9.8%;以n(SiO 2)/n(Al 2O 3)(即SiO 2/Al 2O 3摩尔比)计,所述改性Y型分子筛的骨架硅铝比可以为约7-14,优选为约8.5-12.6或9.2-11.4或7.8-12.6。
根据本公开,为了保证改性Y型分子筛具有适宜的表面酸中心类型和强度,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5,优选约3.5-6.5,例如为约3.5-5.8或3.5-4.8。所述改性Y型分子筛的强酸量中B酸量与L酸量的比值,即强的B酸酸量与强的L酸酸量之比,可以采用吡啶吸附红外法在350℃时进行测量,其中,强酸量是指分子筛表面的强酸的总量,强酸是指采用吡啶吸附红外法在350℃时进行测量所得到的酸。
在本公开的一种具体实施方式中,以所述改性Y型分子筛的干基 重量为基准,所述改性Y型分子筛以氧化物计的稀土含量可以为约4.5-10重%,以P 2O 5计磷的含量为约0.5-5重%,氧化钠含量可以为约0.05-3重%,氧化镓含量可以为约0.1-2.5重%,例如为约0.2-2重%,或约0.3-1.8重%,氧化锆含量可以为约0.1-2.5重%,例如约0.5-2.0重%,或约0.2-2重%;所述改性Y型分子筛的晶胞常数可以为约2.442-2.451nm;以n(SiO 2)/n(Al 2O 3)计,所述改性Y型分子筛的骨架硅铝比可以为约8.5-12.6。
在第二方面,本公开提供了一种改性Y型分子筛的制备方法,包括以下步骤:
(1)使NaY分子筛与稀土盐溶液接触进行离子交换反应,得到离子交换后的分子筛;
(2)使所述离子交换后的分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
(3)使所述缓和水热超稳改性的分子筛与气态SiCl 4接触反应进行气相超稳改性,得到气相超稳改性的分子筛;
(4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得到酸处理后的分子筛;
(5)使所述酸处理后的分子筛与磷化合物接触进行磷改性处理,得到磷改性分子筛;以及
(6)使所述磷改性分子筛在溶液中与镓和锆接触进行改性处理,并经过焙烧,得到所述改性Y型分子筛。
在一具体实施方式中,本公开的方法包括以下步骤:
(1)使NaY分子筛与稀土盐接触进行离子交换反应,并进行过滤和第一洗涤后,得到离子交换后的分子筛,以所述离子交换后的分子筛的干基重量为基准,所述离子交换后的分子筛的氧化钠含量不超过约9.5重%;
(2)使所述离子交换后的分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下进行第一焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
(3)使所述缓和水热超稳改性的分子筛与气体SiCl 4接触反应,进行或不进行第二洗涤和第二过滤后,得到气相超稳改性的分子筛;
(4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得 到酸处理后的分子筛;
(5)采用磷化合物对所述酸处理后的分子筛进行磷改性处理,得到磷改性分子筛;
(6)使所述磷改性分子筛在溶液中与镓和锆接触进行改性处理,并经过干燥和第二焙烧后,得到所述改性Y型分子筛。
本公开的制备方法可以制备高结晶度、高热稳定性及高水热稳定性的富含二级孔的高硅Y型分子筛,可以使分子筛在超稳化程度大大提高的情况下具有较高的结晶度,所制备的分子筛中铝分布均匀,非骨架铝含量少,二级孔孔道畅通,该改性Y型分子筛用于加工加氢LCO时,具有高的LCO转化效率,较低的焦炭选择性,更高的且富含BTX芳烃的汽油收率,以及高的丙烯收率。
本公开提供的改性Y型分子筛制备方法中,步骤(1)中将NaY分子筛与稀土溶液进行离子交换反应,以得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,离子交换反应的方法可以为本领域技术人员熟知的,例如,离子交换反应的方法可以包括:将NaY分子筛与水混合,搅拌下加入稀土盐和/或稀土盐水溶液进行离子交换反应,并进行过滤和洗涤。
在优选的实施方式中,步骤(1)中所用的水为去离子水;所述NaY分子筛,可以商购或者按照现有方法制备,在一种实施方式中,所述NaY分子筛晶胞常数可以为约2.465-2.472nm,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为约4.5-5.2,相对结晶度为约85%以上,例如为约85-95%,氧化钠含量为约13.0-13.8重%。
根据本公开,所述离子交换反应的条件可以为本领域常规的反应条件。优选地,为了促进离子交换反应进行,NaY分子筛与稀土溶液进行的离子交换反应中的交换温度可以为约15-95℃,优选为约65-95℃;交换时间可以为约30-120min,优选为约45-90min;NaY分子筛(以干基计)∶稀土盐(以RE 2O 3计)∶H 2O的重量比可以为约1∶(0.01-0.18)∶(5-20),优选为约1∶(0.5-0.17)∶(6-14)。
在本公开的一种实施方式中,可以按照NaY分子筛∶稀土盐∶H 2O为约1∶(0.01-0.18)∶(5-20)的重量比将NaY分子筛、稀土盐和水形成混合物,在约15-95℃,例如约65-95℃搅拌,优选搅拌约30-120min进行稀土离子与钠离子的交换。其中,将NaY分子筛、稀土盐和水形 成混合物可以包括,将NaY分子筛和水形成浆液,然后在所述的浆液中加入稀土盐和/或稀土盐的水溶液。所述的稀土盐优选为氯化稀土和/或硝酸稀土。所述的稀土可以为任意种类的稀土,其种类和组成没有特殊限制,例如为La、Ce、Pr、Nd以及混合稀土中的一种或多种,优选的,所述的混合稀土中含有La、Ce、Pr和Nd中的一种或多种,或还可以含有除La、Ce、Pr和Nd以外的稀土中的至少一种。
根据本公开,步骤(1)所述的洗涤,目的是洗去交换出的钠离子,可以使用去离子水洗涤。优选地,步骤(1)得到的离子交换后的分子筛的稀土含量以RE 2O 3计可以为约4.5-13重%,例如为约5.5-13重%或5.5-12重%,氧化钠含量不超过约9.5重%,例如为约5.5-9.5重%,晶胞常数为约2.465-2.472nm。
本公开提供的改性Y型分子筛制备方法中,步骤(2)中将含稀土的常规晶胞大小的Y型分子筛在温度350-480℃和约30-90体积%水蒸汽气氛下焙烧约4.5-7h进行处理。优选地,步骤(2)所述的焙烧温度为约380-460℃,焙烧气氛为约40-80体积%水蒸汽气氛,焙烧时间为约5-6h。任选地,所述的水蒸汽气氛中还可以含有其它气体,例如空气、氦气或氮气中的一种或多种。优选地,步骤(2)得到的缓和水热超稳改性的分子筛,其晶胞常数可以为约2.450-2.462nm。
根据本公开,所述的30-90体积%水蒸汽气氛是指气氛中含有体积含量为约30-90%的水蒸气,其余为选自空气、氦气或氮气中的一种或多种,例如30体积%水蒸气气氛可以是含有30体积%水蒸气和70体积%空气的气氛。
为了保证气相超稳改性的效果,本公开的一种实施方式中,在步骤(3)之前可以将分子筛进行干燥处理,以降低分子筛中的水含量,使步骤(3)中用于与SiCl 4接触的分子筛的含水量不超过约1重%,干燥处理例如为在旋转焙烧炉或马弗炉中进行焙烧干燥。
本公开提供的改性Y型分子筛制备方法中,步骤(3)的接触反应条件可以在较大范围内变化。为了进一步促进气相超稳处理效果,优选地,SiCl 4与步骤(2)所得的所述缓和水热超稳改性的分子筛(以干基计)的重量比可以为约(0.1-0.7)∶1,优选为约(0.2-0.6)∶1,所述接触反应的温度可以为约200-650℃,优选为约350-500℃,反应时间可以为约10min至约5h,优选为约0.5-4h;步骤(3)可以进行或不进 行第二洗涤和第二过滤,第二过滤后可以干燥或不干燥,第二洗涤方法可以采用常规的洗涤方法,可用去离子水洗涤,目的是除去分子筛中残存的Na +,Cl -及Al 3+等可溶性副产物,洗涤方法可以包括:洗涤液pH值为约2.5-5.0,洗涤温度可以为约30-60℃,水的用量与未经洗涤的所述气相超稳改性的分子筛的重量比可以为约(5-20)∶1,优选为约(6-15)∶1。进一步地,所述洗涤可以使洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子。
本发明提供的改性Y型分子筛制备方法中,步骤(4)中,将步骤(3)得到的气相超稳改性的分子筛与酸溶液接触进行反应,以进行孔道清理改性使二级孔畅通,简称孔道清理。在本公开的一种实施方式中,所述的将步骤(3)得到的气相超稳改性的分子筛与酸溶液接触进行反应,是将经过气相超稳改性处理的分子筛与酸溶液混合,并反应一段时间,然后将反应后的分子筛与酸溶液分离,例如经过过滤分离,然后经任选的洗涤和任选的干燥,得到本发明提供的改性Y型分子筛。所述气相超稳改性的分子筛与酸溶液接触进行酸处理的温度可以为约60-100℃,优选为约80-99℃,进一步优选为约88-98℃,酸处理时间可以为约1-4h,优选为约1-3h;所述酸溶液可以包括有机酸和/或无机酸,酸溶液中的酸、酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比可以为约(0.001-0.15)∶(5-20)∶1,优选为约(0.002-0.1)∶(8-15)∶1或(0.01-0.05)∶(8-15)∶1。任选地,所述步骤(4)可以进一步包括对所得酸处理的分子筛进行洗涤,其中洗涤目的是除去分子筛中残存的Na +,Cl -及Al 3+等可溶性副产物,洗涤方法可以与步骤(3)的洗涤方法相同或不同,例如可以包括:洗涤液pH值为约2.5-5.0,洗涤温度可以为约30-60℃,水的用量与未经洗涤的酸处理的分子筛的重量比可以为约(5-20)∶1,优选为约(6-15)∶1。进一步地,所述洗涤可以使洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子。
在优选的实施方式中,所述酸溶液(酸的水溶液)中的酸为至少一种有机酸和至少一种中等强度以上的无机酸。所述有机酸可以包括草酸,丙二酸、丁二酸、甲基丁二酸、苹果酸、酒石酸、柠檬酸或水杨酸,或者为它们中两者、三者或四者的组合,所述中等强度以上的无机酸可以包括磷酸、盐酸、硝酸或硫酸,或者为它们中两者、三者 或四者的组合。所述接触的温度优选为约80-99℃,例如约85-98℃,接触时间为约60min以上,例如为约60-240min或90-180min。所述的有机酸与分子筛的重量比优选为约(0.02-0.05)∶1;所述中等强度以上的无机酸与分子筛的重量比优选为约(0.01-0.06)∶1,例如为约(0.02-0.05)∶1,水与分子筛的重量比优选为约(5-20)∶1,例如为约(8-15)∶1。
在某些优选的实施方式中,步骤(4)的酸处理,也称为孔道清理改性,分两步进行,其中先用无机酸优选中等强度以上的无机酸与所述气相超稳改性的分子筛进行第一接触,其中中等强度以上的无机酸与分子筛的重量比可以为约(0.01-0.05)∶1,例如为约(0.02-0.05)∶1,水与分子筛的重量比优选为约(5-20)∶1,例如为约(8-15)∶1,接触反应的温度为约80-99℃,优选90-98℃,反应时间为约60-120min;然后将该处理后得到的分子筛与有机酸进行第二接触,所述的有机酸与分子筛的重量比可以为约(0.02-0.10)∶1,例如为约(0.05-0.08)∶1,水与分子筛的重量比优选为约(5-20)∶1,例如为约(8-15)∶1,接触反应的温度为约80-99℃,优选90-98℃,反应时间为约60-120min。其中所述重量比中,分子筛以干基计。
本公开提供的改性Y型分子筛制备方法中,还包括在步骤(5)中对步骤(4)得到的酸处理后的分子筛进行磷改性处理。可以采用磷化合物进行磷改性处理,所述磷改性处理可以进行一次或多次,以在分子筛中引入需要量的磷,所述磷改性处理通常包括将酸处理后的分子筛与含有磷化合物的溶液接触,所述接触通常在约15-100℃,优选约30-95℃下进行约10-100min,然后过滤,洗涤。其中,所述溶液中以P 2O 5计的磷、所述溶液中的水与所述分子筛的重量比为约(0.0005-0.10)∶(2-5)∶1,即所述溶液中的水与分子筛的重量比为约(2-5)∶1,优选约(3-4)∶1,磷(以P 2O 5计)与分子筛的重量比为约(0.0005-0.10)∶1,优选约(0.001-0.06)∶1。所述磷化合物可选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵中的一种或多种。所述洗涤可以为例如用分子筛重量约5-15倍的水,例如去离子水进行洗涤。
在一种优选实施方式中,所述的磷改性处理条件为:将所述酸处理后的分子筛加入含有磷化合物的溶液中,在约15-100℃的条件下反应约10-100min,过滤,洗涤;其中,所述溶液中的水与分子筛的重量 比为约(2-5)∶1,优选约(3-4)∶1,磷(以P 2O 5计)与分子筛的重量比为约(0.0005-0.10)∶1,优选约(0.001-0.06)∶1。
根据本公开的制备方法中,可以通过在步骤(6)中将磷改性后的分子筛与包含镓和锆的溶液接触,进行交换和/或浸渍处理,以将活性元素镓和锆负载在改性Y型分子筛上,所述与活性元素镓和锆在溶液中的接触可以进行一次或多次,以引入需要量的活性元素。为了便于提高镓元素和锆元素改性处理的效果,在本公开的一种优选实施方式中,可以将分子筛在溶液中与镓盐和锆盐接触,其中所述分子筛与镓盐和锆盐的接触可以同步进行,也可以分步完成。
在一种优选实施方式中,所述分子筛与镓盐和锆盐可以同步接触,此时所述步骤(6)进一步包括:使所述磷改性后的分子筛与含有镓盐和锆盐的水溶液混合均匀后静置一段时间。例如,可以将磷改性后的分子筛加入到搅拌状态下的含有Ga(NO 3) 3和Zr(NO 3) 4的溶液中浸渍镓和锆组分,搅拌均匀后约15-40℃下静置约24-36h。然后将含有磷改性后的分子筛与Ga(NO 3) 3和Zr(NO 3) 4的浆液再搅拌约20min使其混合均匀,并进行干燥和第二焙烧。所述干燥可以是任何一种干燥方法,例如闪蒸干燥、烘干、气流干燥。在一种优选实施方式中,干燥方法例如为将浆液转移至旋转蒸发仪中进行水浴加热旋转蒸干。优选地,所述第二焙烧可以包括将上述蒸干的物料放入旋转焙烧炉中,于约450-600℃焙烧约2-5h,进一步优选约480-580℃焙烧约2.2-4.5h。
优选地,所述镓盐可以为Ga(NO 3) 3、Ga 2(SO 4) 3或GaCl 3,或者为它们中两者或三者的组合,优选为Ga(NO 3) 3;和/或,所述锆盐可以为Zr(NO 3) 4、Zr(SO 4) 2或ZrCl 4,或者为它们中两者或三者的组合,优选为Zr(NO 3) 4。含有镓盐和锆盐的水溶液中以氧化物计的镓、以氧化物计的锆和以干基重量计的磷改性后的分子筛的重量比可以为约(0.001-0.025)∶(0.001-0.025)∶1,优选为约(0.002-0.02)∶(0.002-0.02)∶1;含有镓盐和锆盐的水溶液中的水和以干基重量计的磷改性后的分子筛的重量比可以为约(2-3)∶1,优选为约(2.2-2.6)∶1。
在另一优选实施方式中,所述分子筛可以与镓盐和锆盐分步接触,例如所述分子筛先与含有镓盐的水溶液接触,再与含有锆盐的水溶液接触;或者,所述分子筛先与含有锆盐的水溶液接触,再与含有镓盐的水溶液接触,所述接触的条件如温度、时间和镓、锆的浓度可以与 上述相同。
在本公开的一种具体实施方式中,制备改性Y型分子筛的方法包括以下步骤:
(1)将NaY分子筛与稀土溶液接触进行离子交换反应,过滤,洗涤,得到离子交换后的分子筛,该离子交换后的分子筛氧化钠含量降低、含稀土元素且具有常规的晶胞大小;所述离子交换通常在搅拌、温度为约15-95℃、优选约65-95℃的条件下,进行约30-120min;
(2)将所述离子交换后的分子筛在约350-480℃的温度和含约30-90体积%水蒸汽的气氛下焙烧约4.5-7h,干燥,得到水含量低于约1重量%的缓和水热超稳改性的分子筛,该缓和水热超稳改性的分子筛的晶胞常数降低至约2.450-2.462nm;
(3)将所述缓和水热超稳改性的分子筛与经加热汽化的SiCl 4气体接触,其中SiCl 4:所述缓和水热超稳改性的分子筛(以干基计)的重量比为约(0.1-0.7)∶1,在温度为约200-650℃的条件下接触反应约10min至约5h,任选洗涤和任选过滤,得到气相超稳改性的分子筛;
(4)将所述气相超稳改性的分子筛与酸溶液接触进行酸处理改性,其中,先将所述气相超稳改性的分子筛与中等强度以上的无机酸以及水混合,在约80-99℃、优选约90-98℃下接触至少约30min、例如约60-120min,然后加入有机酸,在约80-99℃、优选约90-98℃下接触至少约30min、例如约60-120min,经过滤、任选的洗涤和任选的干燥,得到酸处理后的分子筛;其中优选地,有机酸与以干基计的气相超稳改性的分子筛的重量比为约(0.02-0.10)∶1,中等强度以上的无机酸与以干基计的气相超稳改性的分子筛的重量比为约(0.01-0.05)∶1,水与气相超稳改性的分子筛的重量比为约(5-20)∶1;
(5)将所述酸处理后的分子筛加入含有磷化合物的溶液中,在约15-100℃的条件下反应约10-100min,过滤,洗涤,任选干燥,得到磷改性后的分子筛;其中,所述溶液中的水与分子筛的重量比为约2-5,优选3-4,磷(以P 2O 5计)与分子筛的重量比为约0.005-0.10,优选约0.01-0.05;以及
(6)将所述磷改性后的分子筛在搅拌中加入到Ga(NO 3) 3及Zr(NO 3) 4的混合溶液中浸渍镓和锆组分,并将磷改性后的分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4的混合溶液搅拌均匀后室温下静置,其中, Ga(NO 3) 3及Zr(NO 3) 4的混合溶液中所含的Ga(NO 3) 3的量以Ga 2O 3计与磷改性后的分子筛的重量比为约0.1-2.5∶100,混合溶液所含的Zr(NO 3) 4的量以ZrO 2计与分子筛的重量比为约0.1-2.5∶100,Ga(NO 3) 3及Zr(NO 3) 4的混合溶液中所加的水量与磷改性后的分子筛(干基)的重量比为约(2-3)∶1,浸渍时间为约24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO3)4的混合浆液再搅拌约20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于约450-600℃焙烧约2-5h,得到本公开的改性Y分子筛。
在第三方面,本公开提供了一种催化裂化催化剂,以所述催化剂的干基重量为基准,所述催化剂含有约10-50重%的改性Y型分子筛、以氧化铝计约10-40重%的氧化铝粘结剂和以干基计约10-80重%的粘土,其中所述改性Y型分子筛为根据本公开的改性Y型分子筛或者通过本公开的方法制备得到的改性Y型分子筛。
本公开的催化裂化催化剂用于加工加氢LCO时,具有高的LCO转化效率,较低的焦炭选择性,更高的且富含BTX的汽油收率,以及高的丙烯收率。
本公开提供的催化裂化催化剂还可含有所述改性Y型分子筛以外的其它分子筛,以所述催化裂化催化剂的重量为基准,以干基计所述其它分子筛的含量可以为约0-40重%、例如为约0-30重%,或约1-20重%。所述其它分子筛可选自催化裂化催化剂中常用的分子筛,例如具有MFI结构沸石、Beta沸石、其它Y型沸石或非沸石分子筛,或者包括它们中两者、三者或四者的组合。优选地,以干基计所述其它Y型沸石的含量不超过约40重%,例如可以为约0-40重%,或为约1-20重%。所述其它Y型沸石例如REY、REHY,DASY、SOY或PSRY,或者它们中两者、三者或四者的组合,MFI结构沸石例如HZSM-5、ZRP或ZSP,或者它们中两者、三者或四者的组合,beta沸石例如Hβ,非沸石分子筛例如磷酸铝分子筛(AlPO分子筛)和/或硅铝磷分子筛(SAPO分子筛)。
本公开提供的催化裂化催化剂中,以干基计所述改性Y型分子筛的含量为约10-50重%,优选为约15-45重%,例如为约25-40重%。
本公开提供的催化裂化催化剂中,所述粘土选自用作裂化催化剂 组分的粘土中的一种或多种,例如选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石或膨润土,或者它们中两者、三者或四者的组合。这些粘土为本领域普通技术人员所公知的。优选地,以干基计本公开的催化裂化催化剂中所述粘土的含量为约20-55重%,或约30-50重%。
本发明提供的催化裂化催化剂中,以氧化铝计所述氧化铝粘结剂的含量为约10-40重%,例如为约20-35重%。所述氧化铝粘结剂,可选自裂化催化剂通常所使用的各种形态的氧化铝、水合氧化铝以及铝溶胶中的一种或多种。例如,选自γ-氧化铝、η-氧化铝、θ-氧化铝、χ-氧化铝、拟薄水铝石(pseudoboehmite)、一水铝石(boehmite)、三水铝石(gibbsite)、拜耳石(Bayerite)或铝溶胶,或者它们中两者、三者或四者的组合,优选拟薄水铝石和铝溶胶,例如所述催化裂化催化剂中含有以氧化铝计约2-15重%、优选约3-10重%的铝溶胶、以氧化铝计约10-30重%、优选约15-25重%的拟薄水铝石。
在第四方面,本公开提供了一种制备催化裂化催化剂的方法,包括如下步骤:提供改性Y型分子筛,形成包括所述改性Y型分子筛、氧化铝粘结剂、粘土和水的浆液,以及喷雾干燥,任选洗涤和任选干燥,得到所述催化裂化催化剂,其中所述提供改性Y型分子筛包括提供根据本公开的改性Y型分子筛,或者按照本公开的方法制备改性Y型分子筛。
除了所述提供改性Y型分子筛的步骤之外,本公开的催化剂制备方法的其它步骤可参考现有方法,例如按照中国专利申请公开CN1098130A和CN1362472A所记载的方法进行。
本公开提供的催化剂的制备方法中,所述喷雾干燥、洗涤和干燥可以采用现有技术,本发明没有特殊要求。
本公开提供的催化剂的制备方法中,所述改性Y型分子筛的用量可以为本领域常规的用量,优选地,所制备的催化剂中以干基计所述改性Y型分子筛的含量可以为约10-50重%,优选为约15-45重%,例如为约25-40重%。
本公开提供的催化剂制备方法中,所述粘土可以选自用作裂化催化剂组分的粘土中的一种或多种,例如选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石、 膨润土中的一种或多种。这些粘土为本领域普通技术人员所公知。所述粘土的用量可以为本领域常规的用量,优选地,以干基计所制备的催化裂化催化剂中所述粘土的含量可以为约20-55重%,或约30-50重%。
本公开提供的催化剂制备方法中,所述氧化铝粘结剂可以选自裂化催化剂常用的各种形态的氧化铝、水合氧化铝以及铝溶胶中的一种或多种。例如,选自γ-氧化铝、η-氧化铝、θ-氧化铝、χ-氧化铝、拟薄水铝石(pseudoboehmite)、一水铝石(boehmite)、三水铝石(gibbsite)、拜耳石(Bayerite)或铝溶胶中的一种或多种,优选拟薄水铝石和/或铝溶胶。所述氧化铝粘结剂的用量可以为本领域常规的用量,优选地,所述氧化铝粘结剂的用量以氧化铝计为所制备的催化裂化催化剂的约10-40重%,例如为约20-35重%。在一种实施方式中,氧化铝粘结剂为拟薄水铝石和铝溶胶,所制备的催化裂化催化剂含有以氧化铝计约2-15重量%、优选约3-10重量%的铝溶胶,和以氧化铝计约10-30重量%、优选约15-25重量%的拟薄水铝石。
在第五方面,本公开提供了根据本公开的改性Y型分子筛在烃类原料,特别是加氢轻循环油,的催化裂化反应中的应用,包括在催化裂化条件下使所述烃类原料与包含所述改性Y型分子筛的催化裂化催化剂接触。
在第六方面,本公开提供了根据本公开的催化裂化催化剂在烃类原料,特别是加氢轻循环油,的催化裂化反应中的应用,包括在催化裂化条件下使所述烃类原料与所述催化裂化催化剂接触。
在第七方面,本公开提供了一种用于加工加氢轻循环油(加氢LCO)的催化裂化方法,包括在催化裂化条件下,使所述加氢LCO与本公开的催化裂化催化剂或者包含本公开的改性Y型分子筛的催化裂化催化剂接触的步骤。
根据本公开,优选地,所述催化裂化条件可以包括:反应温度为约500-610℃,重时空速为约2-16h -1,剂油重量比为约3-10。
根据本公开,优选地,所述加氢LCO可以具有以下性质:密度(20℃)为约0.850-0.920g/cm 3,H含量为约10.5-12wt%,S含量<50μg/g,N含量<10μg/g,总芳烃含量为约70-85wt%,多环芳烃含量≤15wt%。
在某些优选的实施方式中,本公开提供了以下的技术方案:
A1、一种改性Y型分子筛,其特征在于,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4-11重%,以P 2O 5计磷的含量为约0.05-10重%,氧化钠的含量不超过约0.5重%,氧化镓含量为约0.1-2.5重%,氧化锆含量为约0.1-2.5重%;所述改性Y型分子筛的总孔体积为约0.36-0.48mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约20-40%;所述改性Y型分子筛的晶胞常数为约2.440-2.455nm,晶格崩塌温度不低于约1060℃;所述改性Y型分子筛的非骨架铝含量占总铝含量的比例不高于约10%,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5。
A2、根据项目A1所述的改性Y型分子筛,其中,所述改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约28-38%。
A3、根据项目A1所述的改性Y型分子筛,其中,所述改性Y型分子筛的非骨架铝含量占总铝含量的比例为约5-9.5%;以n(SiO 2)/n(Al 2O 3)计,所述改性Y型分子筛的骨架硅铝比为约7-14。
A4、根据项目A1所述的改性Y型分子筛,其中,所述改性Y型分子筛的晶格崩塌温度为约1065-1085℃。
A5、根据项目A1所述的改性Y型分子筛,其中,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值为约3.5-6.5;所述改性Y型分子筛的强酸量中B酸量与L酸量的比值采用吡啶吸附红外法在350℃时进行测量。
A6、根据项目A1所述的改性Y型分子筛,其中,所述改性Y型分子筛的相对结晶度为约70-80%。
A7、根据项目A1所述的改性Y型分子筛,其中,在800℃下经100%水蒸气老化17h后,所述改性Y型分子筛经XRD测定的相对结晶度保留率为约38%以上。
A8、根据项目A1-A7中任意一项所述的改性Y型分子筛,其中,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4.5-10重%,以P 2O 5计磷含量为约0.5-5重%,氧化钠含量为约0.05-0.3重%,氧化镓含量为约0.2-2重%,氧化锆含量为约0.5-2重%;所述改性Y型分子筛的晶胞常数为约2.442-2.451nm; 以n(SiO 2)/n(Al 2O 3)计,所述改性Y型分子筛的骨架硅铝比为约8.5-12.6;所述稀土包括La、Ce、Pr或Nd,或者包括它们中两者、三者或四者的组合。
A9、制备项目A1-A8中任意一项所述的改性Y型分子筛的方法,其特征在于,该方法包括以下步骤:
(1)使NaY分子筛与稀土盐接触进行离子交换反应,并进行过滤和第一洗涤后,得到离子交换后的分子筛,以所述离子交换后的分子筛的干基重量为基准,所述离子交换后的分子筛的氧化钠含量不超过约9.0重%;
(2)使所述离子交换后的分子筛在约350-480℃的温度,并在约30-90体积%水蒸汽存在下进行第一焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
(3)使所述缓和水热超稳改性的分子筛与SiCl 4接触反应,进行或不进行第二洗涤和第二过滤后,得到气相超稳改性的分子筛;
(4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得到酸处理后的分子筛;
(5)采用磷化合物对所述酸处理后的分子筛进行磷改性处理,得到磷改性分子筛;
(6)使所述磷改性分子筛在溶液中与镓和锆接触,并经过干燥和第二焙烧后,得到所述改性Y型分子筛。
A10、根据项目A9所述的方法,其中,所述离子交换反应的方法包括:将NaY分子筛与水混合,搅拌下加入稀土盐和/或稀土盐水溶液进行离子交换反应,并进行过滤和洗涤;
所述离子交换反应的条件包括:温度为约15-95℃,时间为约30-120min,所述NaY分子筛、稀土盐和水的重量比为约1∶(0.01-0.18)∶(5-20)。
A11、根据项目A9或A10所述的方法,其中,所述离子交换后的分子筛的晶胞常数为约2.465-2.472nm,以氧化物计稀土含量为约4.5-13重%,氧化钠含量为约4.5-9.5重%。
A12、根据项目A9或A10所述的方法,其中,所述稀土盐为氯化稀土或者硝酸稀土。
A13、根据项目A9所述的方法,其中,步骤(2)的处理条件包 括:在约380-460℃的温度和约40-80体积%水蒸汽下进行第一焙烧约5-6h。
A14、根据项目A9或A13所述的方法,其中,所述缓和水热超稳改性的分子筛的晶胞常数为约2.450-2.462nm,所述缓和水热超稳改性的分子筛的含水量不超过约1重%。
A15、根据项目A9所述的方法,其中,步骤(3)中,SiCl 4与以干基重量计的所述缓和水热超稳改性的分子筛的重量比为约(0.1-0.7)∶1,所述接触反应的温度为约200-650℃,反应时间为约10min至约5h;所述第二洗涤的方法包括水洗至洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子,洗涤条件可以为:洗涤液pH值为约2.5-5.0,洗涤温度为约30-60℃,水的用量与未经洗涤的所述气相超稳改性的分子筛的重量比为约(6-15)∶1。
A16、根据项目A9所述的方法,其中,步骤(4)中酸处理的条件包括:酸处理温度为约80-99℃,酸处理时间为约1-4h,所述酸溶液包括有机酸和/或无机酸,酸溶液中的酸、酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.001-0.15)∶(5-20)∶1。
A17、根据项目A9所述的方法,其中,步骤(4)中酸处理的方法包括:使所述气相超稳改性的分子筛先与无机酸溶液进行第一接触,再与有机酸溶液进行第二接触;
所述第一接触的条件包括:时间为约60-120min,接触温度为约90-98℃,无机酸溶液中的无机酸、无机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.01-0.05)∶(5-20)∶1;所述第二接触的条件包括:时间为约60-120min,接触温度为约90-98℃,有机酸溶液中的有机酸、有机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.02-0.1)∶(5-20)∶1。
A18、根据项目A16或A17所述的方法,其中,所述有机酸为草酸,丙二酸、丁二酸、甲基丁二酸、苹果酸、酒石酸、柠檬酸或水杨酸,或者为它们中两者、三者或四者的组合;所述无机酸为磷酸、盐酸、硝酸或硫酸,或者为它们中两者、三者或四者的组合。
A19、根据项目A9所述的方法,其中,所述磷化合物为磷酸、磷酸铵、磷酸二氢铵或磷酸氢二铵,或者为它们中两者、三者或四者的 组合;所述磷改性处理包括:将所述酸处理后的分子筛与含有磷化合物的溶液接触,在约15-100℃的条件下反应约10-100min,并进行过滤和洗涤,所述溶液中以P 2O 5计的磷、所述溶液中的水与所述酸处理后的分子筛的重量比为约(0.0005-0.10)∶(2-5)∶1。
A20、根据项目A9所述的方法,其中,步骤(6)所述的接触的方法包括:使所述磷改性分子筛与含有镓盐和锆盐的水溶液混合均匀后,在约15-40℃下静置约24-36h,所述含有镓盐和锆盐的水溶液中以氧化物计的镓、以氧化物计的锆和以干基重量计的所述磷改性分子筛的重量比为约(0.001-0.025)∶(0.001-0.025)∶1,所述水溶液中的水和以干基重量计的所述磷改性分子筛的重量比为约(2-3)∶1。
A21、根据项目A9所述的方法,其中,步骤(6)中,所述第二焙烧的条件包括:焙烧温度为约450-600℃,焙烧时间为约2-5h。
B1、一种催化裂化催化剂,其特征在于,以所述催化剂的干基重量为基准,所述催化剂含有约10-50重%的改性Y型分子筛、以氧化铝计约10-40重%的氧化铝粘结剂和以干基计约10-80重%的粘土;
以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4-11重%,以P 2O 5计磷的含量为约0.05-10重%,氧化钠的含量不超过约0.5重%,氧化镓含量为约0.1-2.5重%,氧化锆含量为约0.1-2.5重%;所述改性Y型分子筛的总孔体积为约0.36-0.48mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约20-40%;所述改性Y型分子筛的晶胞常数为约2.440-2.455nm,晶格崩塌温度不低于约1060℃;所述改性Y型分子筛的非骨架铝含量占总铝含量的比例不高于约10%,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5。
B2、根据项目B1所述的催化裂化催化剂,其中,所述改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约28-38%。
B3、根据项目B1所述的催化裂化催化剂,其中,所述改性Y型分子筛的非骨架铝含量占总铝含量的比例为约5-9.5%;以n(SiO 2)/n(Al 2O 3)计,所述改性Y型分子筛的骨架硅铝比为约7-14。
B4、根据项目B1所述的催化裂化催化剂,其中,所述改性Y型分子筛的晶格崩塌温度为约1065-1085℃。
B5、根据项目B1所述的催化裂化催化剂,其中,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值为约3.5-6.5;所述改性Y型分子筛的强酸量中B酸量与L酸量的比值采用吡啶吸附红外法在350℃时进行测量。
B6、根据项目B1所述的催化裂化催化剂,其中,所述改性Y型分子筛的相对结晶度为约70-80%。
B7、根据项目B1所述的催化裂化催化剂,其中,在800℃下经100%水蒸气老化17h后,所述改性Y型分子筛经XRD测定的相对结晶度保留率为约38%以上。
B8、根据项目B1-B7中任意一项所述的催化裂化催化剂,其中,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4.5-10重%,以P 2O 5计磷含量为约0.5-5重%,氧化钠含量为约0.05-0.3重%,氧化镓含量为约0.2-2重%,氧化锆含量为约0.5-2重%;所述改性Y型分子筛的晶胞常数为约2.442-2.451nm;以n(SiO 2)/n(Al 2O 3)计,所述改性Y型分子筛的骨架硅铝比为约8.5-12.6;所述稀土包括La、Ce、Pr或Nd,或者包括它们中两者、三者或四者的组合。
B9、根据项目B1所述的催化裂化催化剂,其中,所述粘土为高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石或膨润土,或者为它们中两者、三者或四者的组合;所述氧化铝粘结剂为氧化铝、水合氧化铝或铝溶胶,或者为它们中两者、三者或四者的组合。
B10、制备项目B1-B9中任意一项所述的催化裂化催化剂的方法,其特征在于,该方法包括:制备改性Y型分子筛,形成包括所述改性Y型分子筛、氧化铝粘结剂、粘土和水的浆液,以及喷雾干燥得到所述催化裂化催化剂;
其中,所述制备改性Y型分子筛包括以下步骤:
(1)使NaY分子筛与稀土盐接触进行离子交换反应,并进行过滤和第一洗涤后,得到离子交换后的分子筛,以所述离子交换后的分子筛的干基重量为基准,所述离子交换后的分子筛的氧化钠含量不超过约9.0重%;
(2)使所述离子交换后的分子筛在约350-480℃的温度,并在约 30-90体积%水蒸汽存在下进行第一焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
(3)使所述缓和水热超稳改性的分子筛与SiCl 4接触反应,进行或不进行第二洗涤和第二过滤后,得到气相超稳改性的分子筛;
(4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得到酸处理后的分子筛;
(5)采用磷化合物对所述酸处理后的分子筛进行磷改性处理,得到磷改性分子筛;
(6)使所述磷改性分子筛在溶液中与镓和锆接触,并经过干燥和第二焙烧后,得到所述改性Y型分子筛。
B11、根据项目B10所述的方法,其中,所述离子交换反应的方法包括:将NaY分子筛与水混合,搅拌下加入稀土盐和/或稀土盐水溶液进行离子交换反应,并进行过滤和洗涤;
所述离子交换反应的条件包括:温度为约15-95℃,时间为约30-120min,所述NaY分子筛、稀土盐和水的重量比为约1∶(0.01-0.18)∶(5-20)。
B12、根据项目B10或B11所述的方法,其中,所述离子交换后的分子筛的晶胞常数为约2.465-2.472nm,以氧化物计稀土含量为约4.5-13重%,氧化钠含量为约4.5-9.5重%。
B13、根据项目B10或B11所述的方法,其中,所述稀土盐为氯化稀土或者硝酸稀土。
B14、根据项目B10所述的方法,其中,步骤(2)的处理条件包括:在约380-460℃的温度和约40-80体积%水蒸汽下进行第一焙烧约5-6h。
B15、根据项目B10或B14所述的方法,其中,所述缓和水热超稳改性的分子筛的晶胞常数为约2.450-2.462nm,所述缓和水热超稳改性的分子筛的含水量不超过约1重%。
B16、根据项目B10所述的方法,其中,步骤(3)中,SiCl 4与以干基重量计的所述缓和水热超稳改性的分子筛的重量比为约(0.1-0.7)∶1,所述接触反应的温度为约200-650℃,反应时间为约10min至约5h;所述第二洗涤的方法包括:水洗至洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子,洗涤条件可以为:洗涤液pH值为约2.5-5.0, 洗涤温度为约30-60℃,水的用量与未经洗涤的所述气相超稳改性的分子筛的重量比为约(6-15)∶1。
B17、根据项目B10所述的方法,其中,步骤(4)中酸处理的条件包括:酸处理温度为约80-99℃,酸处理时间为约1-4h,所述酸溶液包括有机酸和/或无机酸,酸溶液中的酸、酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.001-0.15)∶(5-20)∶1。
B18、根据项目B10所述的方法,其中,步骤(4)中酸处理的方法包括:使所述气相超稳改性的分子筛先与无机酸溶液进行第一接触,再与有机酸溶液进行第二接触;
所述第一接触的条件包括:时间为约60-120min,接触温度为约90-98℃,无机酸溶液中的无机酸、无机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.01-0.05)∶(5-20)∶1;所述第二接触的条件包括:时间为约60-120min,接触温度为约90-98℃,有机酸溶液中的有机酸、有机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.02-0.1)∶(5-20)∶1。
B19、根据项目B17或B18所述的方法,其中,所述有机酸为草酸,丙二酸、丁二酸、甲基丁二酸、苹果酸、酒石酸、柠檬酸或水杨酸,或者为它们中两者、三者或四者的组合;所述无机酸为磷酸、盐酸、硝酸或硫酸,或者为它们中两者、三者或四者的组合。
B20、根据项目B10所述的方法,其中,所述磷化合物为磷酸、磷酸铵、磷酸二氢铵或磷酸氢二铵,或者为它们中两者、三者或四者的组合;所述磷改性处理包括:将所述酸处理后的分子筛与含有磷化合物的溶液接触,在约15-100℃的条件下反应约10-100min,并进行过滤和洗涤,所述溶液中以P 2O 5计的磷、所述溶液中的水与所述酸处理后的分子筛的重量比为约(0.0005-0.10)∶(2-5)∶1。
B21、根据项目B10所述的方法,其中,步骤(6)所述的接触的方法包括:使所述磷改性分子筛与含有镓盐和锆盐的水溶液混合均匀后,在约15-40℃下静置约24-36h,所述含有镓盐和锆盐的水溶液中以氧化物计的镓、以氧化物计的锆和以干基重量计的所述磷改性分子筛的重量比为约(0.001-0.025)∶(0.001-0.025)∶1,所述水溶液中的水和以干基重量计的所述磷改性分子筛的重量比为约(2-3)∶1。
B22、根据项目B10所述的方法,其中,步骤(6)中,所述第二焙烧的条件包括:焙烧温度为约450-600℃,焙烧时间为约2-5h。
B23、项目B1-B9中任意一项所述的催化裂化催化剂在烃类原料的催化裂化反应中的应用。
B24、一种加工加氢LCO的催化裂化方法,包括在催化裂化条件下,将加氢LCO与项目B1至B9中任一项所述的催化剂接触的步骤;其中,所述催化裂化条件包括:反应温度为约500-610℃,重时空速为约2-16h -1,剂油重量比为约3-10。
实施例
下面的实施例将对本公开予以进一步的说明,但并不因此而限制本公开。
在下述的实施例中和对比例中,NaY分子筛(也称NaY沸石)为中国石化催化剂有限公司齐鲁分公司提供,氧化钠含量为13.5重%,骨架硅铝比(SiO 2/Al 2O 3摩尔比)为4.6,晶胞常数为2.470nm,相对结晶度为90%;氯化稀土、硝酸稀土、硝酸镓及硝酸锆为北京化工厂生产的化学纯试剂;拟薄水铝石为山东铝厂生产工业产品,固含量61重%;高岭土为苏州中国高岭土公司生产的裂化催化剂专用高岭土,固含量76重%;铝溶胶由中国石化催化剂有限公司齐鲁分公司提供,其中氧化铝含量21重%。
对比例和实施例中所用化学试剂未特别注明的,均为市售产品,其规格为化学纯。
分析方法:
在各对比例和实施例中,分子筛的元素含量由X射线荧光光谱法测定;分子筛的晶胞常数、相对结晶度由X射线粉末衍射法(XRD)采用RIPP145-90、RIPP146-90标准方法(见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版,第412-415页)测定。
分子筛的骨架硅铝比由下式计算而得:
骨架SiO 2/Al 2O 3摩尔比=(2.5858-a 0)×2/(a 0-2.4191),
其中,a 0为晶胞常数,单位为nm。
分子筛的总硅铝比是依据X射线荧光光谱法测定的Si与Al元素 含量计算的,由XRD法测定的骨架硅铝比与XRF测定的总硅铝比可计算骨架Al与总Al的比值,进而计算非骨架Al与总Al的比值。
晶格崩塌温度由差热分析法(DTA)测定。
在各对比例和实施例中,分子筛的酸中心类型及其酸量采用吡啶吸附的红外法分析测定。实验仪器:美国Bruker公司IFS113V型FT-IR(傅立叶变换红外)光谱仪。用吡啶吸附红外法在350℃时测定酸量。实验方法:将样品自支撑压片,置于红外光谱仪的原位池中密封;升温至400℃,并抽真空至10 -3Pa,恒温2h,脱除样品吸附的气体分子;降至室温,导入压力为2.67Pa吡啶蒸气保持吸附平衡30min;然后升温至350℃,抽真空至10 -3Pa下脱附30min,降至室温摄谱,扫描波数范围:1400-1700cm -1,获得样品经350℃脱附的吡啶吸附红外光谱图。根据吡啶吸附红外光谱图中1540cm -1和1450cm -1特征吸附峰的强度,得到分子筛中强的
Figure PCTCN2019100733-appb-000001
酸中心(B酸中心)与Lewis酸中心(L酸中心)的相对量。
在各对比例和实施例中,二级孔体积的测定方法如下:按照RIPP151-90标准方法(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版,第424-426页)根据吸附等温线测定出分子筛的总孔体积,然后从吸附等温线按照T作图法测定出分子筛的微孔体积,将总孔体积减去微孔体积得到二级孔体积。
以下的实施例1-4为根据本发明的改性Y型分子筛和催化裂化催化剂的制备实施例。
实施例1
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉进行改性:控制物料气氛温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,分子筛物料引入焙烧炉进行焙烧干燥处理,控制物料气氛温度500℃,干燥空气气氛(水蒸汽含量低于1体 积%),焙烧2.5h,使其水含量低于1重量%;得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为10重%的盐酸0.6m 3,并升温至90℃,继续搅拌60min;然后,加入140kg柠檬酸,90℃下继续搅拌60min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.04,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤。然后将滤饼在搅拌中加入到4000L的溶有36.67kg Ga(NO 3) 3·9H 2O及128.94kg Zr(NO 3) 4·5H 2O的溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4的混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO 3) 4的混合浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得到富含二级孔的复合改性Y分子筛,记为SZ1。其物化性质列于表1中。
将SZ1在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析SZ1老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2,其中:
相对结晶度保留率=(老化样品的相对结晶度/新鲜样品的相对结晶度)×100%。
取714.5g氧化铝含量为21重%的铝溶胶加入1565.5g去离子水中,开启搅拌,加入2763g固含量为76重%的高岭土分散60min。取2049g氧化铝含量为61重%的拟薄水铝石加入8146g去离子水中,在搅拌状态下加入210ml浓度为36%的盐酸,酸化60min。然后,加入分散好的高岭土浆液,然后加入磨细的SZ1分子筛1500g(干基),搅拌均匀 后,进行喷雾干燥和洗涤处理,烘干得到催化剂,记为SC1。其中所得到的SC1催化剂中含有SZ1分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
实施例2
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3去离子水的一次交换罐中,于90℃下,搅拌均匀。再加入800L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min;过滤,洗涤,滤饼送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为5.5重%,晶胞常数为2.471nm,以氧化物计稀土含量为11.3重%。然后,将其送入焙烧炉,在温度(气氛温度)450℃、80%水蒸汽气氛下焙烧5.5h;然后,分子筛物料进入焙烧炉进行焙烧干燥处理,控制焙烧温度500℃,焙烧气氛为干燥空气气氛,焙烧时间2h,使分子筛的水含量低于1重%,得到晶胞常数降低的Y型分子筛,其晶胞常数为2.461nm。然后,直接将晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.25∶1,分子筛的进料量为800kg/h,反应温度为490℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的去离子水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为7重%的硫酸溶液0.9m 3,并升温至93℃,然后搅拌80min;然后,加入70kg柠檬酸和50kg酒石酸,93℃下继续搅拌70min之后,过滤,洗涤。之后将分子筛滤饼直接加入到含有磷酸氢二铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.03,并且,水与分子筛的重量比为3.0,在60℃的条件下反应50min,过滤,洗涤。然后将滤饼在搅拌中加入到4500L的溶有74.41kg Ga(NO 3) 3·9H 2O及71.63kg Zr(NO 3) 4·5H 2O的溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4的混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO 3) 4的混合浆液再搅拌20min 使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于500℃焙烧3h,得到富含二级孔的复合改性Y分子筛,记为SZ2。其物化性质列于表1中。
将SZ2在裸露状态经800℃,100%水蒸气老化17h后,用XRD分析了SZ2老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
参考实施例1的制备方法制备催化裂化催化剂:将SZ2分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为SC2。所得到的SC2催化剂中含有SZ2分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
实施例3
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3去离子水的一次交换罐中于95℃下搅拌均匀。再加入570L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.5重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.5重%。然后,将其送入焙烧炉进行水热改性,水热改性条件:焙烧温度470℃,含70体积%水蒸汽气氛下焙烧5h;然后,分子筛物料进入焙烧炉进行焙烧干燥处理,控制焙烧温度500℃,焙烧气氛为干燥空气气氛,焙烧时间1.5h,使其水含量低于1重%,得到晶胞常数降低的Y型分子筛,其晶胞常数为2.458nm。然后,将晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应。分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.45∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的去离子水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入硝酸浓度为5 重%的硝酸溶液1.2m 3,并升温至95℃,搅拌90min;然后,加入90kg柠檬酸和40kg草酸,93℃下搅拌70min之后,过滤,洗涤。将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.015,并且,水与分子筛的重量比为2.8,在70℃的条件下反应30min,过滤,洗涤。然后将滤饼在搅拌中加入到4800L的溶有110.03kg Ga(NO 3) 3·9H 2O及43.1kg Zr(NO 3) 4·5H 2O的溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4的混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO 3) 4的混合浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于600℃焙烧2h,得到富含二级孔的复合改性Y分子筛,记为SZ3。其物化性质列于表1中。
将SZ3在裸露状态经800℃,100%水蒸气老化17h后,用XRD分析SZ3老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
参考实施例1的制备方法制备催化裂化催化剂:将SZ3分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为SC3。所得到的SC3催化剂中含有SZ3分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
实施例4
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),继续搅拌60min后,过滤,洗涤,滤饼送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉在温度365℃,30%水蒸汽(气氛中含有30体积%水蒸汽)下焙烧4.5h;然后,在温度500℃,干燥空气气氛(水蒸汽含量低于1体积%)焙烧2.5h,使其水含量低于1重量%,得到晶胞常数降低的Y型分子筛, 其晶胞常数为2.460nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应。分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为,SiCl 4∶Y型沸石的重量比为0.2∶1,分子筛的进料量为800kg/h,反应温度为250℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,加入浓度为10重%的盐酸0.2m 3,并升温至85℃,搅拌60min后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量使得磷(以P 2O 5计)与分子筛的重量比为0.055∶1,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤。然后将滤饼在搅拌中加入到4000L的溶有36.67kg Ga(NO 3) 3·9H 2O及128.94kg Zr(NO 3) 4·5H 2O的溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4的混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO 3) 4的混合浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得改性Y型分子筛产品,记为SZ4。其物化性质列于表1中。
将SZ4在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析SZ4老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2。
参考实施例1的制备方法制备催化裂化催化剂:将SZ4分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为SC4。所得到的SC4催化剂中含有SZ4分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
以下的对比例1-8为非本发明的改性Y型分子筛和催化裂化催化剂的制备实施例。
对比例1
取2000g NaY分子筛(干基)加入到20L去离子水中搅拌使其混 合均匀,加入1000g(NH 4) 2SO 4,搅拌,升温至90-95℃保持1h,然后过滤、洗涤。滤饼于120℃干燥之后进行水热改性处理,水热改性处理的条件:温度650℃,100%水蒸汽下焙烧5h。之后,加入到20L去离子水中搅拌使其混合均匀,加入1000g(NH 4) 2SO 4,搅拌,升温至90-95℃保持1h,然后过滤、洗涤。滤饼于120℃干燥之后进行第二次水热改性处理,水热改性处理的条件:温度650℃,100%水蒸汽下焙烧5h,得到两次离子交换两次水热超稳的不含稀土的水热超稳Y型分子筛,记为DZ1。表1给出了DZ1的组成和物化性质。
将DZ1在裸露状态经800℃,100%水蒸气老化17h后,用XRD的方法分析了DZ1老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
将DZ1分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC1(参考实施例1的制备方法)。其中,所得到的DC1催化剂中含有DZ1分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例2
取2000g NaY分子筛(干基)加入到20L去离子水中搅拌使其混合均匀,加入1000g(NH 4) 2SO 4,搅拌,升温至90-95℃保持1h,然后过滤、洗涤。滤饼于120℃干燥之后进行水热改性处理,水热改性处理的条件:温度650℃、100%水蒸汽下焙烧5h。之后,加入到20L去离子水中搅拌使其混合均匀,加入200ml的RE(NO 3) 3溶液(以RE 2O 3计稀土溶液浓度为:319g/L)及900g(NH 4) 2SO 4,搅拌,升温至90-95℃保持1h,然后过滤、洗涤。滤饼于120℃干燥之后进行第二次水热改性处理,水热改性处理的条件:温度650℃,100%水蒸汽下焙烧5h,得到两次离子交换两次水热超稳的含稀土的水热超稳Y型分子筛,记为DZ2。其物化性质列于表1中。
将DZ2在裸露状态经800℃,100%水蒸气老化17h后,用XRD分析了DZ2老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
将DZ2分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化 剂,所制备的催化裂化催化剂记为DC2(参考实施例1的制备方法)。其中以干基计,所得到的DC2催化剂中含有DZ2分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例3
取2000kgNaY分子筛(干基)加入到20m 3水中搅拌使其混合均匀,加入650L的RE(NO 3) 3溶液(319g/L),搅拌,升温至90-95℃保持1h,然后过滤、洗涤。滤饼连续送入闪蒸及焙烧炉进行焙烧干燥处理,控制焙烧温度500℃,焙烧气氛为干燥空气气氛,焙烧时间2h,使其水含量低于1重%,然后,将干燥后分子筛物料送入连续化气相超稳反应器中进行气相超稳反应。分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.4∶1,分子筛的进料量为800kg/h,反应温度为580℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入5重%的硝酸1.2m 3,并升温至95℃,继续搅拌90min;然后,加入90kg柠檬酸和40kg草酸,93℃下继续搅拌70min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P2O5计)与分子筛的重量比为:0.015,并且,水与分子筛的重量比为2.8,在70℃的条件下反应30min,过滤,洗涤,烘干,记为DZ3。其物化性质列于表1中。将DZ3在裸露状态经800℃,100%水蒸气老化17h后,用XRD分析了DZ3老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
将DZ3分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC3(参考实施例1的制备方法)。其中,所得到的DC3催化剂中含有DZ3分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例4
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水 的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉进行改性:控制物料气氛温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,分子筛物料引入焙烧炉进行焙烧干燥处理,控制物料气氛温度500℃,干燥空气气氛(水蒸汽含量低于1体积%),焙烧2.5h,使其水含量低于1重量%;得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为10重%的盐酸0.6m 3,并升温至90℃,继续搅拌60min;然后,加入140kg柠檬酸,90℃下继续搅拌60min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.04,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤,滤饼于120℃干燥之后改性Y分子筛,记为DZ4。其物化性质列于表1中。
将DZ4在裸露状态经800℃,100%水蒸气老化17h后,用XRD的方法分析了DZ4老化前后的分子筛的结晶度,并计算了老化后的相对结晶度保留率,结果见表2。
将DZ4分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC4(参考实施例1的制备方法)。其中,所得到的DC4催化剂中含有DZ4分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例5
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉进行改性:控制物料气氛温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,分子筛物料引入焙烧炉进行焙烧干燥处理,控制物料气氛温度500℃,干燥空气气氛(水蒸汽含量低于1体积%),焙烧2.5h,使其水含量低于1重量%;得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为10重%的盐酸0.6m 3,并升温至90℃,继续搅拌60min;然后,加入140kg柠檬酸,90℃下继续搅拌60min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.04,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤。然后将滤饼在搅拌中加入到4000L的溶有267.5kgGa(NO 3) 3·9H 2O及195.51kgZr(NO 3) 4·5H 2O的混合溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3及Zr(NO 3) 4混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3及Zr(NO 3) 4混合浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得到富含二级孔的复合改性Y分子筛,记为DZ5。其物化性质列于表1中。
将DZ5在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析DZ5老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2。
将DZ5分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC5(参考实施例1的制备方法)。其中,所得到的DC5催化剂中含有DZ5分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例6
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),继续搅拌60min后,过滤,洗涤,滤饼送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉在温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,在温度500℃,干燥空气气氛(水蒸汽含量低于1体积%)焙烧2.5h,使其水含量低于1重量%,得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应。分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为,SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料用20m 3去离子水洗涤,然后过滤,然后将滤饼在搅拌中加入到4000L的溶有36.67kg Ga(NO 3) 3·9H 2O及128.94kg Zr(NO 3) 4·5H 2O的溶液中浸渍镓组分和锆组分,并将改性Y分子筛与含有Ga(NO 3) 3和Zr(NO 3) 4的混合溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3和Zr(NO 3) 4的混合浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得改性Y型分子筛产品,记为DZ6。其 物化性质列于表1中。
将DZ6在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析DZ6老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2。
将DZ6分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC6(参考实施例1的制备方法)。其中,所得到的DC6催化剂中含有DZ6分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例7
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉进行改性:控制物料气氛温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,分子筛物料引入焙烧炉进行焙烧干燥处理,控制物料气氛温度500℃,干燥空气气氛(水蒸汽含量低于1体积%),焙烧2.5h,使其水含量低于1重量%;得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为10重%的盐酸0.6m 3,并升温至90℃,继续搅拌60min;然后,加入140kg柠檬酸,90℃下继续搅拌60min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入 量为:磷(以P 2O 5计)与分子筛的重量比为:0.04,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤。然后将滤饼在搅拌中加入到4000L的溶有60.88kgZr(NO 3) 4·5H 2O的溶液中浸渍锆组分,并将改性Y分子筛与含有Zr(NO 3) 4的溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Zr(NO 3) 4的浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得到富含二级孔的复合改性Y分子筛,记为DZ7。其物化性质列于表1中。
将DZ7在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析DZ7老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2。
将DZ7分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC7(参考实施例1的制备方法)。其中,所得到的DC7催化剂中含有DZ7分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例8
将2000kg(干基重)骨架SiO 2/Al 2O 3为4.6的NaY型沸石(氧化钠含量13.5重%,中石化催化剂齐鲁分公司出品)加入到装有20m 3水的一次交换罐中于25℃下搅拌均匀。再加入600L RECl 3溶液(RECl 3溶液中的稀土浓度以RE 2O 3计为319g/L),搅拌60min后,过滤,洗涤,滤饼连续送入闪蒸干燥炉进行干燥,得到氧化钠含量降低的含稀土的常规晶胞大小的Y型分子筛,其氧化钠含量为7.0重%,晶胞常数为2.471nm,以氧化物计稀土含量为8.8重%。然后,将其送入焙烧炉进行改性:控制物料气氛温度390℃,50%水蒸汽(气氛中含有50体积%水蒸汽)下焙烧6h;然后,分子筛物料引入焙烧炉进行焙烧干燥处理,控制物料气氛温度500℃,干燥空气气氛(水蒸汽含量低于1体积%),焙烧2.5h,使其水含量低于1重量%;得到晶胞常数降低的Y型分子筛,其晶胞常数为2.455nm。然后,直接将所述晶胞常数降低的Y型分子筛物料送入连续化气相超稳反应器中进行气相超稳反应,分子筛在连续化气相超稳反应器中的气相超稳反应工艺及其后续尾气吸 收工艺按照CN103787352A专利公开的实施例1的方法进行,工艺条件为:SiCl 4∶Y型沸石的重量比为0.5∶1,分子筛的进料量为800kg/h,反应温度为400℃。气相超稳反应后的分子筛物料经气固分离器分离后送入二次交换罐中,二次交换罐中预先加有20m 3的水,加入二次交换罐中的分子筛物料重量为2000kg(干基重),搅拌均匀。之后,缓慢加入浓度为10重%的盐酸0.6m 3,并升温至90℃,继续搅拌60min;然后,加入140kg柠檬酸,90℃下继续搅拌60min之后,过滤,洗涤。之后,将分子筛滤饼直接加入到含有磷酸铵的溶液中,分子筛的加入量为:磷(以P 2O 5计)与分子筛的重量比为:0.04,并且,水与分子筛的重量比为2.5,在50℃的条件下反应60min,过滤,洗涤。然后将滤饼在搅拌中加入到4000L的溶有71.33kgGa(NO 3) 3·9H 2O的溶液中浸渍镓组分,并将改性Y分子筛与含有Ga(NO 3) 3的溶液搅拌均匀后在室温下静置,浸渍时间为24h,然后,将含有改性Y分子筛与Ga(NO 3) 3的浆液再搅拌20min使其混合均匀。之后,将混合物料转移至旋转蒸发器中进行缓慢均匀加热旋转蒸干,之后,再将蒸干的物料放入马弗炉中于550℃焙烧2.5h,得到富含二级孔的复合改性Y分子筛,记为DZ8。其物化性质列于表1中。
将DZ8在裸露状态经800℃、常压、100%水蒸气老化17h后,用XRD分析DZ8老化前后的分子筛的相对结晶度,并计算老化后的相对结晶度保留率,结果见表2。
将DZ8分子筛、高岭土、水、拟薄水铝石粘结剂以及铝溶胶按常规的催化裂化催化剂的制备方法形成浆液、喷雾干燥制备成微球催化剂,所制备的催化裂化催化剂记为DC8(参考实施例1的制备方法)。其中,所得到的DC8催化剂中含有DZ8分子筛30重%,高岭土42重%,拟薄水铝石25重%,铝溶胶3重%。
对比例9
本对比例采用中国专利申请公开CN 104560187A实施例1中所用的常规FCC催化剂,记为催化剂DC9。
测试实施例1-4
分别对实施例1-4所得的催化裂化催化剂的催化裂化反应性能进行测试。
用于加工加氢LCO的裂化性能评价条件:将SC1-SC4催化剂先在 800℃,100%水蒸汽下老化12h,然后在小型固定流化床反应器(ACE)上评价,原料油为SJZHLCO(加氢LCO)(性质见表3),反应温度500℃。结果列于表4。
其中,LCO有效转化率/%=100-柴油产率-干气产率-焦炭产率-重油产率。
测试对比例1-9
分别对对比例1-8提供的方法制备的催化裂化催化剂DC1-DC8及对比例9的常规FCC催化剂DC9的催化裂化反应性能进行测试。
DC1-DC9催化剂先在800℃,100%水蒸气下老化12h,然后在小型固定流化床反应器(ACE)上评价其用于加工加氢LCO的催化裂化反应性能,评价方法见测试实施例1,ACE实验的原料性质见表3,结果列于表4。
其中,LCO有效转化率/%=100-柴油产率-干气产率-焦炭产率-重油产率。
Figure PCTCN2019100733-appb-000002
由表1可见,本公开提供的高稳定性的改性Y型分子筛同时具备以下优点:氧化钠含量低,分子筛的硅铝比较高时的非骨架铝含量较少,分子筛中孔径2.0-100nm的二级孔的孔体积占总孔体积百分比较高,并且,B酸/L酸(强的B酸酸量与L酸酸量之比)较高,在分子筛晶胞常数较小稀土含量较高时测定的结晶度值较高,具有高的热稳定性。
表2实施例1-4和对比例1-8所得分子筛的老化测试结果
Figure PCTCN2019100733-appb-000003
由表2可知,本公开提供的改性Y型分子筛,在裸露状态下经过800℃,17h的苛刻条件老化后,分子筛样品具有较高的相对结晶度保留率,表明本发明提供的改性Y型分子筛具有高的水热稳定性。
表3加氢LCO(SJZHLCO)的性质
项目 数值
碳含量/% 88.91
氢含量/% 11.01
20℃密度/(kg/m 3) 910.7
质谱烃质量组成/%
链烷烃 10.1
总环烷烃 16.9
总单环芳烃 60.3
总双环芳烃 11.5
三环芳烃 1.2
总芳烃 73
胶质 0
总重量 100
氮含量/mg/L 0.9
硫含量/mg/L 49
Figure PCTCN2019100733-appb-000004
由表2及表4所列的结果可见,本公开提供的催化裂化催化剂具有很高的水热稳定性,明显更低的焦炭选择性,以及明显更高的汽油收率,并且,汽油中BTX(苯+甲苯+二甲苯)的产率显著提高,丙烯收率提高,液化气中丙烯浓度高。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (16)

  1. 一种改性Y型分子筛,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4-11重%,以P 2O 5计磷的含量为约0.05-10重%,以氧化钠计钠的含量不超过约0.5重%,以氧化镓计镓的含量为约0.1-2.5重%,以氧化锆计锆的含量为约0.1-2.5重%;所述改性Y型分子筛的总孔体积为约0.36-0.48mL/g,孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约20-40%;所述改性Y型分子筛的晶胞常数为约2.440-2.455nm,晶格崩塌温度不低于约1060℃;非骨架铝含量占总铝含量的比例不高于约10%,所述改性Y型分子筛的强酸量中B酸量与L酸量的比值不低于约3.5。
  2. 根据权利要求1所述的改性Y型分子筛,其中所述改性Y型分子筛具有以下特性中的一项或多项:
    所述改性Y型分子筛的孔径为2-100nm的二级孔的孔体积占总孔体积的比例为约28-38%;
    所述改性Y型分子筛的非骨架铝含量占总铝含量的比例为约5-9.8%;
    所述改性Y型分子筛的骨架硅铝比以n(SiO 2)/n(Al 2O 3)计为约7-14;
    所述改性Y型分子筛的晶格崩塌温度为约1065-1085℃;
    采用吡啶吸附红外法在350℃测得的所述改性Y型分子筛的强酸量中B酸量与L酸量的比值为约3.5-6.5;
    所述改性Y型分子筛的相对结晶度为约70-80%;和/或
    在800℃下经100%水蒸气老化17h后,所述改性Y型分子筛经XRD测定的相对结晶度保留率为约38%以上。
  3. 根据前述权利要求中任一项所述的改性Y型分子筛,其中,以所述改性Y型分子筛的干基重量为基准,所述改性Y型分子筛以氧化物计的稀土含量为约4.5-10重%,以P 2O 5计磷的含量为约0.5-5重%,以氧化钠计钠的含量为约0.05-0.3重%,以氧化镓计镓的含量为约0.2-2重%,以氧化锆计锆的含量为约0.5-2重%;所述改性Y型分子筛的晶胞常数为约2.442-2.451nm;骨架硅铝比以n(SiO 2)/n(Al 2O 3)计为约8.5-12.6;
    优选地,所述稀土包括选自La、Ce、Pr、Nd,和它们的任意组合 的稀土元素。
  4. 一种改性Y型分子筛的制备方法,包括以下步骤:
    (1)使NaY分子筛与稀土盐溶液接触进行离子交换反应,得到离子交换后的分子筛;
    (2)使所述离子交换后的分子筛在约350-480℃的温度和约30-90体积%水蒸汽气氛下焙烧约4.5-7h,得到缓和水热超稳改性的分子筛;
    (3)使所述缓和水热超稳改性的分子筛与气态SiCl 4接触反应进行气相超稳改性,得到气相超稳改性的分子筛;
    (4)使所述气相超稳改性的分子筛与酸溶液接触进行酸处理,得到酸处理后的分子筛;
    (5)使所述酸处理后的分子筛与磷化合物接触进行磷改性处理,得到磷改性分子筛;以及
    (6)使所述磷改性分子筛在溶液中与镓和锆接触进行改性处理,并经过焙烧,得到所述改性Y型分子筛。
  5. 根据权利要求4所述的方法,其中,所述步骤(1)进一步包括使NaY分子筛与稀土盐在水溶液中接触进行离子交换反应,其中所述离子交换反应的条件包括:
    温度为约15-95℃,时间为约30-120min,所述NaY分子筛、稀土盐和水的重量比为约1∶(0.01-0.18)∶(5-20);
    优选地,以所述离子交换后的分子筛的干基重量为基准,所述离子交换后的分子筛的钠含量以氧化钠计不超过约9.5重%。
  6. 根据权利要求4或5所述的方法,其中,所述离子交换后的分子筛的晶胞常数为约2.465-2.472nm,以氧化物计稀土含量为约4.5-13重%,以氧化钠计钠含量为约4.5-9.5重%。
  7. 根据权利要求4-6中任一项所述的方法,其中,所述稀土盐为氯化稀土或者硝酸稀土。
  8. 根据权利要求4-7中任一项所述的方法,其中,在步骤(2)中,使所述离子交换后的分子筛在约380-460℃的温度和约40-80体积%水蒸汽气氛下焙烧约5-6h;
    优选地,所得缓和水热超稳改性的分子筛的晶胞常数为约2.450-2.462nm,含水量不超过约1重%。
  9. 根据权利要求4-8中任一项所述的方法,其中,在步骤(3)中, SiCl 4与以干基重量计的所述缓和水热超稳改性的分子筛的重量比为约(0.1-0.7)∶1,所述接触反应的温度为约200-650℃,反应时间为约10min至约5h;
    优选地,所述步骤(3)进一步包括用水对所得气相超稳改性的分子筛进行洗涤至洗涤后的洗涤液中检测不出游离的Na +,Cl -及Al 3+等离子,洗涤条件可以为:洗涤液pH值为约2.5-5.0,洗涤温度为约30-60℃,水的用量与未经洗涤的所述气相超稳改性的分子筛的重量比为约(6-15)∶1。
  10. 根据权利要求4-9中任一项所述的方法,其中,步骤(4)中酸处理的条件包括:酸处理温度为约80-99℃,酸处理时间为约1-4h,所述酸溶液包括有机酸和/或无机酸,所述酸溶液中的酸、所述酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.001-0.15)∶(5-20)∶1;
    优选地,所述有机酸选自草酸,丙二酸、丁二酸、甲基丁二酸、苹果酸、酒石酸、柠檬酸、水杨酸和它们的任意组合;和/或
    优选地,所述无机酸选自磷酸、盐酸、硝酸、硫酸,和它们的任意组合。
  11. 根据权利要求10所述的方法,其中,步骤(4)中所述的酸处理进一步包括:使所述气相超稳改性的分子筛先与无机酸溶液接触,再与有机酸溶液进行接触;
    其中,与无机酸溶液接触的条件包括:时间为约60-120min,接触温度为约90-98℃,所述无机酸溶液中的无机酸、所述无机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.01-0.05)∶(5-20)∶1;以及
    与有机酸溶液接触的条件包括:时间为约60-120min,接触温度为约90-98℃,所述有机酸溶液中的有机酸、所述有机酸溶液中的水和以干基重量计的所述气相超稳改性的分子筛的重量比为约(0.02-0.1)∶(5-20)∶1。
  12. 根据权利要求4-11中任一项所述的方法,其中,所述磷化合物选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵,和它们的任意组合;
    优选地,所述步骤(5)进一步包括:将所述酸处理后的分子筛与含有磷化合物的溶液接触,在约15-100℃的条件下接触反应约 10-100min,所述含有磷化合物的溶液中以P 2O 5计的磷、所述含有磷化合物的溶液中的水与所述酸处理后的分子筛的重量比为约(0.0005-0.10)∶(2-5)∶1。
  13. 根据权利要求4-12中任一项所述的方法,其中,所述步骤(6)进一步包括:使所述磷改性分子筛与含有镓盐和锆盐的水溶液混合均匀后,在约15-40℃下静置约24-36h,所述含有镓盐和锆盐的水溶液中以氧化物计的镓、以氧化物计的锆和以干基重量计的所述磷改性分子筛的重量比为约(0.001-0.025)∶(0.001-0.025)∶1,所述水溶液中的水和以干基重量计的所述磷改性分子筛的重量比为约(2-3)∶1。
  14. 根据权利要求4-13中任一项所述的方法,其中,步骤(6)中所述的焙烧在如下条件下进行:焙烧温度为约450-600℃,焙烧时间为约2-5h。
  15. 一种催化裂化催化剂,以所述催化剂的干基重量为基准,所述催化剂含有约10-50重%的改性Y型分子筛、以氧化铝计约10-40重%的氧化铝粘结剂和以干基计约10-80重%的粘土;其中所述改性Y型分子筛为根据权利要求1-3中任一项所述的改性Y型分子筛或者通过权利要求4-14中任一项所述的方法制备得到的改性Y型分子筛;
    优选地,所述粘土选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石、膨润土,和它们的任意组合;和/或
    优选地,所述氧化铝粘结剂选自氧化铝、水合氧化铝、铝溶胶,和它们的任意组合。
  16. 权利要求1-3中任一项所述的改性Y型分子筛在烃类原料的催化裂化反应中的应用,包括在催化裂化条件下使所述烃类原料与包含所述改性Y型分子筛的催化裂化催化剂接触,
    优选地,所述烃类原料为加氢轻循环油(LCO);和/或
    优选地,所述催化裂化条件包括:反应温度为约500-610℃,重时空速为约2-16h -1,剂油重量比为约3-10。
PCT/CN2019/100733 2018-08-17 2019-08-15 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用 WO2020035016A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/268,679 US11691132B2 (en) 2018-08-17 2019-08-15 Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
SG11202011585VA SG11202011585VA (en) 2018-08-17 2019-08-15 Modified y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
JP2020573175A JP7340551B2 (ja) 2018-08-17 2019-08-15 改質y型分子篩、それを含む接触分解触媒、及びそれらの作製と使用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810942057.1A CN110833852B (zh) 2018-08-17 2018-08-17 催化裂化催化剂及其制备方法和应用
CN201810940921.4 2018-08-17
CN201810942057.1 2018-08-17
CN201810940921.4A CN110833849B (zh) 2018-08-17 2018-08-17 改性y型分子筛及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020035016A1 true WO2020035016A1 (zh) 2020-02-20

Family

ID=69525184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100733 WO2020035016A1 (zh) 2018-08-17 2019-08-15 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用

Country Status (6)

Country Link
US (1) US11691132B2 (zh)
JP (1) JP7340551B2 (zh)
FR (1) FR3085006B1 (zh)
SG (1) SG11202011585VA (zh)
TW (1) TWI816857B (zh)
WO (1) WO2020035016A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394114B2 (ja) * 2018-08-17 2023-12-07 中国石油化工股▲ふん▼有限公司 改質y型分子篩、それを含む接触分解触媒、それらの作製及びそれらの応用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049302A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种分子筛催化剂的制备方法
US20140021098A1 (en) * 2012-07-23 2014-01-23 W. R. Grace & Co.-Conn. High matrix surface area catalytic cracking catalyst stabilized with magnesium and silica
CN106145152A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 改性y沸石及其制备方法和应用
CN106276961A (zh) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 小晶粒气相超稳高硅稀土y型沸石、催化裂化催化剂及其制备方法以及催化裂化的方法
CN107973315A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含磷和稀土的y分子筛及其制备方法
CN108452833A (zh) * 2017-02-22 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN108452832A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种富含二级孔的含磷和稀土改性y型分子筛及其制备方法
CN108452830A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1026217C (zh) * 1992-02-22 1994-10-19 中国石油化工总公司 含磷和稀土超稳y沸石的裂化催化剂
CN1261216C (zh) * 2003-05-30 2006-06-28 中国石油化工股份有限公司 一种含分子筛的烃类裂化催化剂及其制备方法
CN1333044C (zh) * 2003-09-28 2007-08-22 中国石油化工股份有限公司 一种烃油裂化方法
US7347930B2 (en) * 2003-10-16 2008-03-25 China Petroleum & Chemical Corporation Process for cracking hydrocarbon oils
EP1762299B1 (en) 2004-03-31 2018-05-30 China Petroleum & Chemical Corporation A catalyst containing zeolite for hydrocarbon converting and preparation thereof, and a hydrocarbon oil converting method using said catalyst
CN1317359C (zh) * 2004-03-31 2007-05-23 中国石油化工股份有限公司 一种含稀土超稳y型沸石的石油烃裂化催化剂
US9764314B2 (en) * 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks
CN102806099B (zh) * 2011-05-30 2014-04-30 中国石油化工股份有限公司 一种含稀土的y型分子筛裂化催化剂及其制备方法
CN102806098B (zh) * 2011-05-30 2014-05-28 中国石油化工股份有限公司 一种含稀土的y型分子筛裂化催化剂及其制备方法
CN103073024B (zh) 2011-10-26 2014-12-31 中国石油化工股份有限公司 一种改性y型分子筛及其制备方法
CN103100417B (zh) 2011-11-09 2015-01-14 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN103787352B (zh) 2012-10-26 2016-05-25 中国石油化工股份有限公司 一种制备分子筛的方法
CN103923698B (zh) 2013-01-11 2016-01-20 中国石油化工股份有限公司 一种生产芳香族化合物的催化转化方法
GB2521515B (en) 2013-10-22 2021-04-28 China Petroleum & Chem Corp A metal modified Y zeolite, its preparation and use
CN104556120B (zh) 2013-10-22 2017-01-25 中国石油化工股份有限公司 一种金属改性y型分子筛的制备方法
CN104560185B (zh) 2013-10-28 2016-05-25 中国石油化工股份有限公司 一种生产富含芳香族化合物汽油的催化转化方法
CN104560187B (zh) 2013-10-28 2016-05-25 中国石油化工股份有限公司 一种生产富含芳烃汽油的催化转化方法
CN106145153B (zh) * 2015-03-31 2018-06-19 中国石油化工股份有限公司 改性y沸石及其制备和应用
CN106140254B (zh) * 2015-03-31 2018-11-02 中国石油化工股份有限公司 改性y沸石、其制备方法及含该改性y沸石的裂化催化剂
CN106145154B (zh) 2015-03-31 2018-06-19 中国石油化工股份有限公司 一种改性y沸石及其制备方法
RU2755891C2 (ru) 2017-02-22 2021-09-22 Чайна Петролеум Энд Кемикал Корпорейшен Катализатор каталитического крекинга и его получение

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049302A (zh) * 2009-10-30 2011-05-11 中国石油化工股份有限公司 一种分子筛催化剂的制备方法
US20140021098A1 (en) * 2012-07-23 2014-01-23 W. R. Grace & Co.-Conn. High matrix surface area catalytic cracking catalyst stabilized with magnesium and silica
CN106145152A (zh) * 2015-03-31 2016-11-23 中国石油化工股份有限公司 改性y沸石及其制备方法和应用
CN106276961A (zh) * 2015-05-18 2017-01-04 中国石油化工股份有限公司 小晶粒气相超稳高硅稀土y型沸石、催化裂化催化剂及其制备方法以及催化裂化的方法
CN107973315A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种含磷和稀土的y分子筛及其制备方法
CN108452832A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种富含二级孔的含磷和稀土改性y型分子筛及其制备方法
CN108452830A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN108452833A (zh) * 2017-02-22 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂

Also Published As

Publication number Publication date
TWI816857B (zh) 2023-10-01
FR3085006A1 (fr) 2020-02-21
JP2021533974A (ja) 2021-12-09
SG11202011585VA (en) 2020-12-30
US20210170372A1 (en) 2021-06-10
TW202017864A (zh) 2020-05-16
JP7340551B2 (ja) 2023-09-07
US11691132B2 (en) 2023-07-04
FR3085006B1 (fr) 2021-12-31

Similar Documents

Publication Publication Date Title
TWI812772B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833850B (zh) 催化裂化催化剂及其制备方法和应用
WO2020035016A1 (zh) 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
WO2020035014A1 (zh) 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
TWI812773B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途
CN110833855A (zh) 催化裂化催化剂及其制备方法和应用
CN110833857A (zh) 催化裂化催化剂及其制备方法和应用
CN110833853B (zh) 改性y型分子筛及其制备方法
CN110833863B (zh) 催化裂化催化剂及其制备方法和应用
CN110833854B (zh) 催化裂化催化剂及其制备方法和应用
CN110835114B (zh) 改性y型分子筛及其制备方法
CN110833856B (zh) 改性y型分子筛及其制备方法
CN110833851B (zh) 催化裂化催化剂及其制备方法和应用
CN110833852A (zh) 催化裂化催化剂及其制备方法和应用
CN110841696A (zh) 一种用于加工加氢lco的催化裂化催化剂及其制备方法
CN110833849B (zh) 改性y型分子筛及其制备方法和应用
CN110833860B (zh) 催化裂化催化剂及其制备方法和应用
CN110835113B (zh) 改性y型分子筛及其制备方法
CN110841694B (zh) 一种用于加工加氢lco的催化裂化催化剂及其制备方法
CN110833861B (zh) 改性y型分子筛及其制备方法
CN110833858B (zh) 改性y型分子筛及其制备方法
CN110841697B (zh) 一种改性y型分子筛及其制备方法
CN110841692A (zh) 一种用于加工加氢lco的催化裂化催化剂及其制备方法
CN110841690A (zh) 一种改性y型分子筛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020573175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850483

Country of ref document: EP

Kind code of ref document: A1