CN103100417B - 一种加氢裂化催化剂及其制备方法 - Google Patents

一种加氢裂化催化剂及其制备方法 Download PDF

Info

Publication number
CN103100417B
CN103100417B CN201110350783.2A CN201110350783A CN103100417B CN 103100417 B CN103100417 B CN 103100417B CN 201110350783 A CN201110350783 A CN 201110350783A CN 103100417 B CN103100417 B CN 103100417B
Authority
CN
China
Prior art keywords
molecular sieve
catalyst
hours
beta
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110350783.2A
Other languages
English (en)
Other versions
CN103100417A (zh
Inventor
王凤来
杜艳泽
关明华
刘昶
赵红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201110350783.2A priority Critical patent/CN103100417B/zh
Publication of CN103100417A publication Critical patent/CN103100417A/zh
Application granted granted Critical
Publication of CN103100417B publication Critical patent/CN103100417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种加氢裂化催化剂及其制备方法。该加氢裂化催化剂包含由改性β分子筛、改性Y型分子筛、氧化铝组成的载体和加氢活性金属组分,其中改性β分子筛是将晶化后的β分子筛浆液直接进行铵交换、脱模板剂处理后,先经水热处理,后经铝盐溶液处理,这样在保持β分子筛高结晶度的条件下,均匀脱出部分非骨架铝,使得到的β分子筛具有高硅铝比、大比表面积、酸性和酸分布适宜、孔结构合理等特点,尤其对长链烷烃和芳烃、环烷烃的长侧链烷基有适宜的裂解作用和很好的异构作用,再与Y型分子筛协同作用,使加氢裂化催化剂具有很高的催化活性和中间馏分油选择性,而且柴油馏分的凝点降低幅度达,中间馏分油的产品性质得到改善。

Description

一种加氢裂化催化剂及其制备方法
技术领域
本发明涉及一种加氢裂化催化剂及其制备方法,特别是采用了β分子筛和Y型分子筛为主要裂化组分,具有很高催化活性和能够生产优质中间馏分油的加氢裂化催化剂及其制备方法。
背景技术
近年来,世界各国油品市场对高质量中间馏分油产品的需求量一直不断增长,随着经济的迅速发展,这种供需矛盾显得更为突出。加氢裂化技术以其独有的优势已成为重油深度加工生产优质清洁中间馏分油的最佳手段。
目前,世界各国中油型加氢裂化催化剂的活性不是很高,所得柴油的凝点也偏高,很难满足炼厂对现有装置进行改造或增加处理量以达到进一步增产中间馏分油的目的。
加氢裂化增产优质中间馏分油的关键在于开发和使用合适的催化剂。含单一分子筛组分的加氢裂化催化剂虽然有很高的活性,但其中油选择性较差,含复合分子筛的催化剂却表现出既能提高活性又能提高选择性的协同作用。
加氢裂化技术核心是催化剂,而此类催化剂中起裂化作用的关键组分多为Y型分子筛和β分子筛。相对于Y型分子筛,β分子筛具有三维十二元环孔结构,但没有像Y型分子筛那样的超笼结构,其主要特点是两个4元环和四个5元环的双6元环单位晶穴结构,主孔道直径在0.56-0.75nm,β分子筛的孔道特点使得它在裂解反应中对链状烃选择性断裂具有很好的作用,并具有很强的异构性能,作为裂解组分可用于多产低凝点中间油馏分,在工业上得到了广泛的应用。
CN101578353A中介绍了一种利用β沸石选择性的加氢裂化的方法。β沸石不进行水热处理或在相对低的温度下水热处理,二氧化硅和氧化铝的摩尔比小于30:1和至少28wt%的SF6吸附量,通过改性得到的这种β沸石作为裂解组分而制备的催化剂,中间馏分油的选择性不高。
CN1351121A公布了一种含改性β沸石的加氢裂化催化剂及其制备方法。该方法中提到β沸石改性方法为合成后的β沸石浆液直接进行铵盐交换,并经过焙烧脱铵、酸处理和水热处理而得到改性后的β沸石。该方法中,先对β沸石进行酸处理,然后再进行水热处理,在酸处理过程中是采用无机酸处理的,在这一过程中将会破坏部分分子筛的骨架结构,分子筛结晶度下降,形成大块的非骨架结构留在分子筛孔道中,难以被除去,影响改性分子筛的酸分布和酸强度,另外,在酸处理后还进行了高温水热处理,也会在分子筛中形成一定量的非骨架铝,这将直接影响分子筛的孔结构和酸性质,分子筛的酸分布和酸性质的变化将直接影响由此分子筛作为裂化组分的催化剂的性能,尤其是影响加氢裂化柴油和加氢尾油的性质。
US 5,350,501、US 5,447,623、US 5,279,726、US 5,536,687介绍了一种含β沸石和Y沸石的催化剂。用于生产中间馏分油时,其组成为:Y分子筛(1~15w%),β分子筛(1~15w%),分散型硅铝,氧化铝,金属W和Ni。其中所用的β分子筛是经离子交换和焙烧除去模板剂的方式得到氢型β分子筛。该催化剂反应活性和中油选择性都不很高,难以满足生产厂家增大装置处理能力,进一步增产中间馏分油的需要。
CN1393521A公开了一种中油型加氢裂化催化剂及其制备方法,催化剂所用载体为无定形硅铝、氧化铝和Y和β的复合型分子筛。其中复合分子筛是将β分子筛原粉烧去模板剂后与改性Y分子筛混合后,再经H+和NH4 +混合溶液处理而得。该方法是将β分子筛原粉先烧去模板剂,这样对大幅度降低分子筛的结晶度,也影响分子筛的酸性,与其它组分相配合,该催化剂的催化活性不高,航煤和柴油的中间馏分油的产品质量一般,需进一步提高。
发明内容
为了克服现有技术中的不足之处,本发明提供了一种加氢裂化催化剂及其制备方法。该加氢裂化催化剂采用一种高硅铝比、大比表面积、酸性适宜、孔结构合理的β分子筛和一种改性的Y型分子筛共同做作为裂化组分。所使用的β型分子筛能够保持骨架完整的基础上,除去部分非骨架铝,又能与Y型分子筛协同作用,所制备的催化剂具有活性高和多产优质中间馏分油等特点。
本发明加氢裂化催化剂,包含由改性β分子筛、改性Y型分子筛和氧化铝组成的载体和加氢活性金属组分,其中所述的改性β分子筛,其性质如下:比表面450m2/g~750m2/g,优选为500~700m2/g,总孔容0.30ml/g~0.45mL/g,SiO2/Al2O3摩尔比40~100,优选50~80,相对结晶度为120%~140%,红外酸量0.1~0.5mmol/g,骨架铝∕非骨架铝的摩尔比为5~20,B酸/L酸为0.30~0.50,Na2O≤0.15wt%,优选为≤0.10wt%。
所述的加氢裂化催化剂,以载体的重量计,改性β分子筛的含量为5%~20%,改性Y型分子筛的含量为10%~40%,氧化铝的含量为40%~85%。
所述的加氢活性金属为第VIB族和∕或第VIII族的金属,第VIB族金属优选为钼和∕或钨,第VIII族的金属优选为钴和∕或镍。以催化剂的重量为基准,第VIB族金属(以氧化物计)的含量为10.0%~30.0%,第VIII族金属(以氧化物计)的含量为4.0%~8.0%。
所述的改性Y分子筛,其性质如下:比表面850m2/g~950m2/g,总孔容0.43mL/g~0.55mL/g,结晶度90%~130%,硅铝摩尔比20~150,晶胞参数2.425~2.433nm,红外酸量0.1~0.4mmol/g。该Y型分子筛可以采用现有技术制备。
本发明加氢裂化催化剂性质如下:比表面积是200~400m2/g,孔容是0.35~0.60mL/g。
本发明加氢裂化催化剂的制备方法,包括如下步骤:
将改性β分子筛、改性Y分子筛、氧化铝、粘合剂机械混合、成型,然后干燥和焙烧,制成催化剂载体;采用常规的方法在所得的催化剂载体上负载活性金属;
其中所述的改性β分子筛,包括如下制备步骤:
(1)晶化后的β分子筛浆液直接进行铵交换、过滤、洗涤、干燥;
(2)干燥后的β分子筛进行脱模板剂处理;
(3)脱完模板剂的β分子筛再进行水热处理。
(4)用铝盐水溶液处理步骤(3)所得的β型分子筛,然后过滤、水洗和干燥。
步骤(2)中,所述的脱模板剂处理是采用常规方法进行,一般采用有氧高温处理,在开放式的窑炉中处理干燥后的β分子筛,处理温度为400~800℃,处理时间为5~20小时。
步骤(3)中,所述的水热处理是在专用分子筛水热处理炉中操作,处理条件为:表压0.05~0.4MPa,优选为0.1~0.2MPa,温度450~750℃,优选为500~700℃,处理时间0.5~5小时,优选1~3小时。
步骤(4)中,所述铝盐的溶液中,铝盐的浓度(以Al3+计)0.1~2.0mol/L,优选0.5~1.5mol/L。所述铝盐的溶液可以采用铝盐加入水中配制而成,铝盐可以为硝酸铝、氯化铝、硫酸铝中的一种或多种。铝盐的溶液与分子筛的重量比为3:1~50:1。所述的处理条件:温度40~120℃,优选为70~100℃,时间为0.5~8.0小时,优选1.0~3.0小时。所述的水洗条件:直到洗涤液pH值接近中性为止,然后在100~120℃的条件下干燥3~6小时。
本发明所采用改性的β分子筛在脱铵后先进行水热处理,后采用铝盐处理的方法来改性β分子筛,可以在保持β分子筛高结晶度的条件下,均匀脱出部分非骨架铝,使分子筛具有适宜的酸分布和孔结构。使用铝盐处理是在一种相对缓和的条件下,能够保证不破坏分子筛骨架的前提下,均匀的将水热处理后形成的部分非骨架铝除去,提高了分子筛中骨架铝和非骨架铝的比例,改善了分子筛的孔道结构,使其更有利于反应物和产物的吸附、反应和扩散。另外,采用铝盐处理β分子筛,由于β分子筛本身的硅铝比较高,在处理过程中也将有少量的铝回迁到分子筛的骨架结构中,稳定了分子筛的骨架结构,提高了分子筛的结晶度,改善了改性分子筛的酸性质。该改性β分子筛具有高硅铝比、大比表面积、酸性和酸分布适宜、孔结构合理等特点。本发明选择的改性β分子筛对长链烷烃和芳烃、环烷烃的长侧链烷基有适宜的裂解作用和很好的异构作用,能在保持高柴油收率的同时,较大幅度降低柴油馏分的凝点,达到增产低凝柴油的作用。
本发明所采用的改性β分子筛与改性Y型分子筛共同作为裂化中心,即充分发挥了其各自的性能特点,又能够使两种分子筛产生的协同催化作用,即改性β型分子筛对链烷烃或芳烃上的长侧链有很好的异构作用,可以有效降低产品的凝点,同时Y型分子筛对芳烃有很高开环选择性,提高目的产品的产品性质。本发明加氢裂化催化剂具有活性高,可多产优质中间馏分油产品(航煤+柴油),同时可兼产优质的加氢尾油。
由本发明加氢裂化催化剂用于重质油加氢裂化时,特别是在高压条件(12~20MPa)和处理重蜡油(VGO、CGO和DAO)和或劣质柴油(焦化柴油和催化柴油等)混合油,具有很高的催化活性和中间馏分油选择性,而且柴油馏分的凝点降低幅度大,中间馏分油的产品性质得到改善,能满足炼厂增大操作灵活性、增加装置处理能力、进一步增产中间馏分油的需要。
具体实施方式
本发明加氢裂化催化剂中氧化铝可以采用常规加氢裂化催化剂中所用的氧化铝,如大孔氧化铝和∕或小孔氧化铝。
本发明加氢裂化催化剂所用的氧化铝孔容0.7~1.0mL/g,比表面积200~500m2/g。
本发明所用粘合剂是由小孔氧化铝和无机酸和/或有机酸制成。所用的小孔氧化铝孔容为0.3~0.5mL/g,比表面积为200~400m2/g。
本发明加氢裂化催化剂中改性β分子筛,具体制备方法如下:
(1)晶化后的β分子筛浆液直接进行铵交换、过滤、洗涤、干燥
上述晶化后的β分子筛一般是以有机铵(如四乙基氢氧化铵)为模板剂,用水热晶化法合成的。其化学SiO2/Al2O3(摩尔比)一般为20~30,Na2O的含量为3.0~4.0wt%。晶化后的β分子筛浆液直接进行铵盐交换,铵盐在浆液中的浓度为0.5~5.0mol/L,铵交换进行数次,使交换后分子筛中Na2O重量含量小于0.3%,一般铵交换1~5次,可以达到要求。铵盐交换后的β分子筛进行过滤、水洗、干燥;
(2)干燥后的β分子筛进行脱模板剂处理
在晶化合成β分子筛的过程中添加了模板剂,如果这种模板剂存在于分子筛中,将会对以β分子筛为裂化组分的催化剂有直接影响,堵塞β分子筛的孔道,进而形成积碳占据分子筛的酸性中心,影响催化剂的裂化性能发挥。因此需将模板剂去除,去除模板剂的方式一般采用有氧焙烧,即在开放式的窑炉中处理步骤(1)得到的β分子筛,处理温度为400~800℃,处理时间为5~20小时,控制残碳≤0.2 wt%;
(3)脱完模板剂的β分子筛再进行水热处理
水热处理步骤(2)中得到的分子筛是在专用的水热处理炉中进行,水热处理条件为:采用100wt%水蒸汽,在表压0.05~0.4MPa,优选为0.1~0.2MPa,温度450~750℃,优选为500~700℃,处理时间0.5~5.0小时,优选1.0~3.0小时;
(4)用铝盐的溶液处理步骤(3)所得的β分子筛,然后过滤、水洗和干燥
在带有回流系统并密闭的容器中加入铝盐水溶液,其中铝盐浓度(以Al3+计)0.1~2.0mol/L,优选0.5~1.5mol/L,搅拌并升温到40~120℃,优选为70~100℃,然后按铝盐溶液与分子筛的重量比为3:1~50:1,加入步骤(3)获得的分子筛,恒温搅拌0.5~8.0小时,优选1.0~3.0小时,过滤、洗涤,洗涤直到洗涤液pH值接近中性为止,并在100~120℃的条件下干燥3~6小时,得到本发明的β分子筛。其中铝盐的溶液可以是氯化铝、硝酸铝、硫酸铝中的一种或多种的水溶液。
本发明加氢催化剂制备的具体过程为:
将改性β分子筛、改性Y型分子筛、氧化铝和粘合剂混合,挤条成型,然后进行干燥和焙烧,制备成载体,所述的干燥可以在80℃至150℃的温度下进行3~6小时,焙烧是在500℃~600℃焙烧2.5~6小时。
本发明催化剂活性金属的负载,可采用现有技术中常规的负载方法,优选浸渍法,可以是饱和浸、过量浸或络合浸,即用含有所需活性组分的溶液浸渍催化剂载体,浸渍后的载体在100℃~150℃干燥1~12小时,然后在450℃~550℃焙烧2.5~6.0小时,制得最终催化剂。
下面的实施例用于更详细地说明本发明,但本发明的范围不只限于这些实施例的范围。
本发明分析方法:比表面积和孔容采用低温液氮物理吸附法,硅铝摩尔比采用化学法,骨架硅铝采由NMR法测定,红外酸量、B酸量和L酸量采用吡啶吸附红外光谱法,其中B酸量和L酸量的总和即为红外酸量,钠含量采用等离子发射光谱法,电镜采用投射电镜,相对结晶度采用XRD方法测定。本发明中,wt%为质量分数。
实施例 1
本发明所述改性β分子筛是以四乙基氢氧化铵为模板剂,采用水热晶化法合成的。取工业合成β分子筛原粉浆料10000mL,其中含有固相β分子筛约2000g,其化学硅铝SiO2/Al2O3(摩尔比)比为27.49,比表面积为101m2/g,孔容为0.19cm3/g,氧化钠含量为3.67wt%。在浆料中添加适量的净水,并添加一定量的硝酸铵,使液固比(重量)为10:1,硝酸铵的浓度为2mol/L,搅拌,升温到95~100℃,恒温搅拌2小时,然后过滤,滤饼再二次进行铵交换,交换的条件与第一次相同,最后洗涤β分子筛到pH值中性为止,放入干燥带中干燥,在100~120℃下干燥8小时。取干燥后的β分子筛进行脱出模板剂处理,采用开放式的窑炉处理,570℃恒温处理15小时。所得分子筛标号为B-1,性质见表1。
实施例2
取200g B-1为原料,对B-1进行水热处理,在水蒸汽压力0.15MPa,处理温度为550℃,处理时间为2小时。所得分子筛为B-2,性质见表1。
取200g B-1为原料,对B-1进行水热处理,在水蒸汽压力0.15MPa,处理温度为650℃,处理时间为2小时。所得分子筛为B-3,性质见表1。
实施例3
称取60g B-2分子筛放入带有回流装置并可以密闭的烧瓶中,加入含浓度0.8mol/L硫酸铝水溶液1000ml,在95℃下恒温搅拌1.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号B-4,分子筛性质见表1。
实施例4
称取60g B-2分子筛放入带有回流装置并可以密闭的烧瓶中,加入含浓度0.4mol/L硫酸铝水溶液1500ml,在90℃下恒温搅拌2小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时。得到本发明的β型分子筛,其编号B-5,分子筛性质见表1。
实施例5
称取60g B-3分子筛放入带有回流装置并可以密闭的烧瓶中,加入含浓度0.6mol/L硝酸铝水溶液2500ml,在80℃下恒温搅拌1.5小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号B-6,分子筛性质见表1。
实施例6
称取60g B-3分子筛放入带有回流装置并可以密闭的烧瓶中,加入含浓度1.0mol/L三氯化铝水溶液300ml,在90℃下恒温搅拌2.0小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤。滤饼在烘箱中120℃干燥5小时,得到本发明的β型分子筛,其编号B-7,分子筛性质见表1。
对比例1
取B-1分子筛300g,采用0.5mol/L的盐酸进行处理,处理条件是:液固比10:1,在温度70℃恒温搅拌2.5小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤,滤饼在烘箱中120℃干燥5小时。将干燥后的分子筛在水蒸汽压力0.15MPa,处理温度为550℃,处理时间为2小时。所得分子筛为B-8,性质见表1。
对比例2
取B-1分子筛300g,采用0.7mol/L的硝酸进行处理,处理条件是:液固比10:1,在温度80℃恒温搅拌2.5小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤,滤饼在烘箱中120℃干燥5小时。将干燥后的分子筛在水蒸汽压力0.1MPa,处理温度为600℃,处理时间为2小时。所得分子筛为B-9,性质见表1。
对比例3
取B-1分子筛300g,采用0.3mol/L的硫酸进行处理,处理条件是:液固比15:1,在温度95℃恒温搅拌2.5小时,过滤,并用热去离子水洗涤滤饼,以洗涤液的pH值接近7后停止洗涤,滤饼在烘箱中120℃干燥5小时。将干燥后的分子筛在水蒸汽压力0.2MPa,处理温度为650℃,处理时间为2小时。所得分子筛为B-10,性质见表1。
表1  实施例和对比例所得分子筛的性质
  实施例1 实施例2 实施例2 实施例3 实施例4
编号 B-1 B-2 B-3 B-4 B-5
硅铝摩尔比 27.80 27.80 27.80 59.9 63.4
比表面积,m2/g 685 653 639 691 689
孔容,ml/g 0.389 0.403 0.416 0.421 0.426
相对结晶度,% 96 93 91 132 135
红外酸度,mmol/g 1.1 0.42 0.31 0.37 0.34
骨架铝/非骨架铝       18.5 11.6
B酸/L酸       0.45 0.38
Na2O,wt% 0.23 0.23 0.23 0.03 0.02
表1 续
  实施例5 实施例6 对比例1 对比例2 对比例3
编号 B-6 B-7 B-8 B-9 B-10
硅铝摩尔比 71.6 61.3 51.6 56.9 49.8
比表面积,m2/g 677 647 621 632 643
孔容,ml/g 0.409 0.413 0.401 0.415 0.409
相对结晶度,% 131 138 123 120 125
红外酸度,mmol/g 0.26 0.27 0.35 0.30 0.25
骨架铝/非骨架铝 8.3 9.7 3.5 4.2 4.0
B酸/L酸 0.32 0.33 0.18 0.16 0.18
Na2O,wt% 0.02 0.03 0.06 0.05 0.06
实施例 7
将22.22克B-5分子筛(干基90wt%)、44.44克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、157.1克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCS-1。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-1,载体及相应催化剂性质见表2。
实施例 8
将33.33克B-5分子筛(干基90wt%)、44.44克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、142.86克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCS-2。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-2,载体及相应催化剂性质见表2。
实施例 9
将11.11克B-6分子筛(干基90wt%)、66.67克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、142.86克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCS-3。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-3,载体及相应催化剂性质见表2。
实施例 10
将44.44克B-6分子筛(干基90wt%)、55.56克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、88.89克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCS-4。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-4,载体及相应催化剂性质见表2。
对比例 4
将33.33克B-10分子筛(干基90wt%)、44.44克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、142.86克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCDS-1。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HCD-1,载体及相应催化剂性质见表2。
对比例 5
将11.11克B-10分子筛(干基90wt%)、66.67克Y型分子筛(SiO2/Al2O3=50,晶胞常数2.431nm,孔容0.45ml/g,比表面积900m2/g,干基90wt%)、142.86克大孔氧化铝(孔容1.0ml/g,比表面积400m2/g,干基70wt%)、100克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体HCDS-2。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HDC-2,载体及相应催化剂性质见表2。
对比例6
本对比例是将实施例8中的B-5分子筛换成B1分子筛,其它同实施例8制备载体HCDS-3,性质见表2。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HCD-3,载体及相应催化剂性质见表2。
实施例11
本实施例介绍了由本发明催化剂活性评价结果。在固定床加氢试验装置上进行评价,评价条件为:反应总压14.7MPa,氢油体积比1200,体积空速1.5h-1,使用减压馏分油(VGO)作为原料油,原料油性质列于表3。将催化剂HC-2、HCD-1和HCD-3在相同的工艺条件下评价,得到的评价结果列于表4。
由评价结果可以看出,本发明所制备催化剂在相同的工艺条件下,中间馏分油选择性、收率和产品质量均优于参比催化剂。
表2  催化剂载体及催化剂的物化性质
  实施例7 实施例8 实施例9 实施例10 对比例4 对比例5 对比例6
载体组成及性质              
编号 HCS-1 HCS-2 HCS-3 HCS-4 HCDS-1 HCDS-2 HCDS-3
改性β分子筛,wt% 10 15 5 20 15 5 15
改性Y分子筛,wt% 20 20 30 25 20 30 20
大孔氧化铝,wt% 55 50 50 40 50 50 50
粘合剂,wt% 15 15 15 15 15 15 15
孔容,mL/g 436 450 466 481 411 428 302
比表面积,m2/g 0.67 0.64 0.64 0.66 0.61 0.59 0.60
催化剂组成及性质              
编号 HC-1 HC-2 HC-3 HC-4 HCD-1 HCD-2 HCD-3
WO3,wt% 18.45 21.59 23.56 22.13 22.06 24.03 21.50
NiO,wt% 4.9 5.3 6.1 5.4 5.2 6.0 5.3
孔容,mL/g 334 329 326 349 299 286 232
比表面积,m2/g 0.51 0.47 0.45 0.48 0.44 0.41 0.37
表3 原料油性质
原料油 减压馏分油(VGO)
密度(20℃),g/cm3 0.9072
馏程,℃  
IBP/10% 305/361
30%/50% 394/417
70%/90% 443/481
95%/EBP 509/533
凝点,℃ 34
硫,wt% 1.98
氮,μg/g 1228
碳,wt% 85.28
氢,wt% 12.46
BMCI值 45.0
表4  HC-2、HCD-1和HCD-3性能评价结果
催化剂 HC-2 HCD-1 HCD-3
原料油 减压馏分油(VGO) 减压馏分油(VGO) 减压馏分油(VGO)
体积空速,h-1 1.5 1.5 1.5
反应总压,MPa 14.7 14.7 14.7
氢油体积比 1200 1200 1200
反应温度,℃ 372 374 380
产品收率与性质      
重石脑油      
收率,wt% 9.1 11.2 12.6
芳潜,wt% 65.8 62.3 59.8
喷气燃料      
收率,wt% 47.6 44.9 42.0
烟点,mm 28 26 24
芳烃,v% 4.5 4.8 5.6
柴油      
收率,wt% 22.8 22.5 21.6
凝点,℃ -18 -6 -5
十六烷值 68.6 67.3 61.7
尾油      
收率,wt% 15.9 15.1 16.1
  凝点,℃ 12 19 20
  BMCI值 12.4 14.6 15.3
中间馏分油选择性,wt% 83.7 80.6 77.0
化学氢耗,wt% 2.63 2.72 2.75
液收,wt% 97.9 96.7 96.1

Claims (17)

1.一种加氢裂化催化剂,包含由改性β分子筛、改性Y型分子筛和氧化铝组成的载体和加氢活性金属组分,其中所述的改性β分子筛,其性质如下:比表面积450m2/g~750m2/g,总孔容0.30ml/g~0.45ml/g,SiO2/Al2O3摩尔比40~100,相对结晶度为120%~140%,红外酸量0.1~0.5mmol/g,骨架铝∕非骨架铝的摩尔比为5~20,B酸/L酸为0.30~0.50,Na2O≤0.15wt%。
2.按照权利要求1所述的催化剂,其特征在于所述的改性β分子筛性质如下:比表面为500~700m2/g。
3.按照权利要求1或2所述的催化剂,其特征在于所述的改性β分子筛的SiO2/Al2O3摩尔比50~80。
4.按照权利要求1所述的催化剂,其特征在于所述的改性Y分子筛,其性质如下:比表面850m2/g~950m2/g,总孔容0.43mL/g~0.55mL/g,结晶度90%~130%,硅铝摩尔比20~150,晶胞参数2.425~2.433nm,红外酸量0.1~0.4mmol/g。
5.按照权利要求1、2或4所述的催化剂,其特征在于所述的加氢裂化催化剂,以载体的重量为基准,改性β分子筛的含量为5%~20%,改性Y型分子筛的含量为10%~40%,氧化铝的含量为40%~85%。
6.按照权利要求1所述的催化剂,其特征在于所述的加氢活性金属为第VIB族和第VIII族的金属,第VIB族金属为钼和∕或钨,第VIII族的金属为钴和∕或镍;以催化剂的重量为基准,第VIB族金属以氧化物计的含量为10.0%~30.0%,第VIII族金属以氧化物计的含量为4.0%~8.0%。
7.按照权利要求1所述的催化剂,其特征在于所述的加氢裂化催化剂性质如下:比表面积是200~400m2/g,孔容是0.35~0.60mL/g。
8.权利要求1~7任一所述的加氢裂化催化剂的制备方法,包括如下步骤:
将改性β分子筛、改性Y分子筛、氧化铝、粘合剂机械混合、成型,然后干燥和焙烧,制成催化剂载体;采用常规的方法在所得的催化剂载体上负载活性金属;
其中所述的改性β分子筛,包括如下制备步骤:
(1)晶化后的β分子筛浆液直接进行铵交换、过滤、洗涤、干燥;
(2)干燥后的β分子筛进行脱模板剂处理;
(3)脱完模板剂的β分子筛再进行水热处理;
(4)用铝盐水溶液处理步骤(3)所得的β型分子筛,然后过滤、水洗和干燥; 
步骤(3)中,所述的水热处理条件为:表压0.05~0.4MPa,温度450~750℃,处理时间0.5~5小时;步骤(4)中,所述铝盐的溶液中,铝盐的浓度以Al3+计为0.1~2.0mol/L,铝盐的溶液与分子筛的重量比为3:1~50:1,所述的处理条件:温度40~120℃,时间为0.5~8.0小时。
9.按照权利要求8所述的制备方法,其特征在于步骤(3)中,所述的水热处理条件为:表压0.1~0.2MPa,温度为500~700℃,处理时间为1~3小时。
10.按照权利要求8所述的制备方法,其特征在于步骤(4)中,所述铝盐的溶液中,铝盐的浓度以Al3+计为0.5~1.5mol/L。
11.按照权利要求8所述的制备方法,其特征在于步骤(4)所述的处理条件:温度为70~100℃,时间为1.0~3.0小时。
12.按照权利要求8所述的制备方法,其特征在于所述铝盐为硝酸铝、氯化铝、硫酸铝中的一种或多种。
13.按照权利要求8所述的制备方法,其特征在于步骤(4)所述的干燥条件如下:在100~120℃的条件下干燥3~6小时。
14.按照权利要求8所述的制备方法,其特征在于步骤(2)中,所述的脱模板剂处理采用有氧高温处理,处理温度为400~800℃,处理时间为5~20小时。
15.按照权利要求8所述的制备方法,其特征在于,经步骤(1)铵交换后β分子筛中Na2O重量含量小于0.3%。
16.按照权利要求8所述的制备方法,其特征在于,成型后,载体进行干燥和焙烧的条件如下:在80℃~150℃干燥3~6小时,在500℃~600℃焙烧2.5~6.0小时。
17.按照权利要求8所述的制备方法,其特征在于,采用浸渍法负载活性金属组分,浸渍后的载体在100℃~150℃干燥1~12小时,然后在450℃~550℃焙烧2.5~6.0小时,制得加氢裂化催化剂。
CN201110350783.2A 2011-11-09 2011-11-09 一种加氢裂化催化剂及其制备方法 Active CN103100417B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110350783.2A CN103100417B (zh) 2011-11-09 2011-11-09 一种加氢裂化催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110350783.2A CN103100417B (zh) 2011-11-09 2011-11-09 一种加氢裂化催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN103100417A CN103100417A (zh) 2013-05-15
CN103100417B true CN103100417B (zh) 2015-01-14

Family

ID=48308807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110350783.2A Active CN103100417B (zh) 2011-11-09 2011-11-09 一种加氢裂化催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN103100417B (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667969B (zh) * 2013-11-26 2017-03-22 中国石油化工股份有限公司 一种加氢裂化催化剂及其制法
CN104667970B (zh) * 2013-11-26 2017-07-14 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN104667968B (zh) * 2013-11-26 2017-04-12 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN104923292B (zh) * 2014-03-21 2018-11-02 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备和应用
CN105618113B (zh) * 2014-11-03 2017-10-03 中国石油化工股份有限公司 一种制备加氢裂化催化剂组合物的方法
CN105618112B (zh) * 2014-11-03 2018-03-16 中国石油化工股份有限公司 一种含y分子筛的加氢裂化催化剂及其制备方法
CN106669799B (zh) * 2015-11-09 2019-03-19 中国石油化工股份有限公司 最大量生产低凝柴油的加氢裂化催化剂制备方法
CN106669808B (zh) * 2015-11-09 2020-02-14 中国石油化工股份有限公司 一种生产低凝点加氢裂化尾油的催化剂制备方法
CN106669812B (zh) * 2015-11-09 2019-08-06 中国石油化工股份有限公司 生产低凝点尾油的加氢裂化催化剂及其制备方法
CN107344110B (zh) * 2016-05-05 2020-04-10 中国石油化工股份有限公司 用于生产低直链烷烃含量加氢裂化尾油的催化剂及其制备方法和应用
CN107344105B (zh) * 2016-05-05 2019-11-15 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN107344120B (zh) * 2016-05-05 2019-11-15 中国石油化工股份有限公司 加氢裂化催化剂载体及其制法
CN107344117B (zh) * 2016-05-05 2019-11-15 中国石油化工股份有限公司 加氢裂化催化剂及其制法
CN107344102B (zh) * 2016-05-05 2019-10-15 中国石油化工股份有限公司 一种加氢裂化催化剂及其制法
CN107344111B (zh) * 2016-05-05 2020-04-14 中国石油化工股份有限公司 最大量生产低凝柴油的加氢裂化催化剂及其制备方法和应用
CN107344112B (zh) * 2016-05-05 2020-02-14 中国石油化工股份有限公司 一种生产优质催化重整原料的加氢裂化催化剂及其制备方法和应用
CN107344116B (zh) * 2016-05-05 2019-11-15 中国石油化工股份有限公司 加氢裂化催化剂及其制法和应用
CN107344104B (zh) * 2016-05-05 2020-01-10 中国石油化工股份有限公司 一种生产优质乙烯原料的加氢裂化催化剂及其制备方法和应用
CN107344103B (zh) * 2016-05-05 2020-07-07 中国石油化工股份有限公司 一种最大量生产优质乙烯原料的加氢裂化催化剂及其制备方法和应用
CN108262066A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 加氢催化剂载体及其制备方法
CN108262065A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN108262076A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 加氢催化剂载体及其制备方法
CN108262063A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN108262064A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN108264927A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 加氢催化剂载体及其制备方法
CN108262074A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 加氢催化剂载体及其制备方法
CN108262067A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN110237856B (zh) * 2018-03-08 2022-03-29 中国石油天然气股份有限公司 一种劣质/重柴油加氢裂化催化剂的制备方法
CN110404581A (zh) * 2018-04-28 2019-11-05 中国石油天然气股份有限公司 一种加氢裂化催化剂的制备方法、劣/重柴油加氢裂化的方法
WO2020035016A1 (zh) 2018-08-17 2020-02-20 中国石油化工股份有限公司 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
US20210340449A1 (en) * 2018-09-29 2021-11-04 Uop Llc Process for maximizing production of heavy naphtha from a hydrocarbon stream
CN114471675B (zh) * 2020-10-27 2023-09-01 中国石油化工股份有限公司 一种用于临氢降凝的改性zsm-5分子筛及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209793A1 (en) * 1985-07-15 1987-01-28 W.R. Grace & Co.-Conn. Cracking catalyst
CN1351120A (zh) * 2000-10-26 2002-05-29 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
CN1393521A (zh) * 2001-07-02 2003-01-29 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN101343561A (zh) * 2007-07-09 2009-01-14 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0209793A1 (en) * 1985-07-15 1987-01-28 W.R. Grace & Co.-Conn. Cracking catalyst
CN1351120A (zh) * 2000-10-26 2002-05-29 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
CN1393521A (zh) * 2001-07-02 2003-01-29 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN101343561A (zh) * 2007-07-09 2009-01-14 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法

Also Published As

Publication number Publication date
CN103100417A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
CN103100417B (zh) 一种加氢裂化催化剂及其制备方法
CN103100427B (zh) 一种含β分子筛的加氢裂化催化剂载体及其制备方法
CN103100429B (zh) 一种柴油加氢改质催化剂载体及其制备方法
CN101450319B (zh) 一种中油型加氢裂化催化剂及其制备方法
CN101618348B (zh) 一种加氢裂化催化剂载体及其制备方法
CN101450320B (zh) 一种含y分子筛的加氢裂化催化剂及其制备方法
CN103100416B (zh) 一种柴油加氢改质催化剂及其制备方法
CN101380588B (zh) 一种加氢裂化催化剂载体及其制备方法
CN101343068B (zh) 一种y型分子筛及其制备方法
CN102049283B (zh) 加氢裂化催化剂及其制备方法
CN101380589A (zh) 一种加氢裂化催化剂及其制备方法
CN103101923B (zh) 一种β分子筛及其制备方法
CN103100430B (zh) 一种加氢裂化催化剂载体及其制备方法
CN107051575A (zh) 优化型柴油加氢裂化催化剂及其制备方法
CN106964397A (zh) 优化型柴油加氢裂化催化剂载体及其制备方法
CN104667984B (zh) 一种加氢改质催化剂载体及其制备方法
WO2015078256A1 (zh) β分子筛及其制备方法和含有该β分子筛的加氢催化剂
CN107008509A (zh) 改良型柴油加氢裂化催化剂载体及其制备方法
CN104667968B (zh) 一种加氢裂化催化剂载体及其制备方法
CN102049308B (zh) 加氢裂化催化剂载体及其制备方法
CN101618347B (zh) 一种含y分子筛的加氢裂化催化剂载体及其制备方法
CN104667969B (zh) 一种加氢裂化催化剂及其制法
CN104667955B (zh) 一种加氢改质催化剂及其制备方法
CN105713657B (zh) 一种加氢裂化的方法
CN104667970B (zh) 一种加氢裂化催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant