CN101343561A - 一种加氢裂化催化剂及其制备方法 - Google Patents

一种加氢裂化催化剂及其制备方法 Download PDF

Info

Publication number
CN101343561A
CN101343561A CNA2007100120817A CN200710012081A CN101343561A CN 101343561 A CN101343561 A CN 101343561A CN A2007100120817 A CNA2007100120817 A CN A2007100120817A CN 200710012081 A CN200710012081 A CN 200710012081A CN 101343561 A CN101343561 A CN 101343561A
Authority
CN
China
Prior art keywords
micro porous
porous molecular
modification
molecular sieve
molecular sieves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100120817A
Other languages
English (en)
Other versions
CN101343561B (zh
Inventor
张喜文
李瑞丰
凌凤香
尹泽群
张志智
樊宏飞
马静红
孙万付
方向晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN2007100120817A priority Critical patent/CN101343561B/zh
Publication of CN101343561A publication Critical patent/CN101343561A/zh
Application granted granted Critical
Publication of CN101343561B publication Critical patent/CN101343561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种加氢裂化催化剂,含有改性Y/β双微孔分子筛,以及其它载体材料和加氢活性组分。其中改性Y/β双微孔分子筛总的硅铝重量比为6.5~60.0,BET比表面积350~650m2/g,孔容为0.25~0.40ml/g,红外酸度为0.50~1.5mmol/g。本发明催化剂制备方法采用浸渍法,改性Y/β双微孔分子筛按先补硅后焙烧的方法进行改性处理。本发明加氢裂化催化剂用于重质馏分油加氢裂化时具有更高的活性,可以用于各种类型的加氢裂化过程。

Description

一种加氢裂化催化剂及其制备方法
技术领域
本发明涉及一种加氢裂化催化剂及其制备方法,特别是一种主要以双微孔分子筛作为催化剂裂化活性组分的高活性加氢裂化催化剂及其制备方法。
背景技术
加氢裂化技术是重油轻质化的主要手段之一,化工原料、轻质燃料油及中间馏分油是该技术的主要目的产品。目前,随着石化产品升级换代的进程加速,环保法规越来越严格,化工原料需求量的不断增加,加氢裂化技术在整个石油炼制行业中的地位得到了进一步提高。
在比较多的炼油加工过程中,开发最适用的催化剂被认为是最为关键、也最为理想的选择之一,加氢裂化也是如此。催化剂的活性,是衡量催化剂性能的主要指标,提高活性对降低能耗、调变产品分布等具有极其重要的意义。
加氢裂化催化剂主要由加氢组元和裂化组元构成。在催化剂制备过程中,主要提供裂化组元的催化剂载体(尤其是提供裂解活性中心的分子筛)是其中的关键。传统的含单一分子筛(主要为含Y型分子筛或β型分子筛等)的载体因为受多方面因素的影响,即使发挥了最大潜能,催化剂的活性仍然需进一步提高。经常需要在高温下操作,对装置性能提出了较高的要求,同时也增加了能耗。为解决加氢裂化催化剂活性较低的问题,研究人员做了很多工作。近年来,机械混合分子筛作为加氢裂化催化剂载体的重要组分表现出了不同于传统的单一分子筛作为加氢裂化载体组分的特性,可达到提高催化剂的活性或(和)中油选择性的目的。
较早提出采用机械混合的分子筛(Y型分子筛和β分子筛)作为催化剂组分的如US 5,536,687、US 5,447,623、US 5,350,501和US 5,279,726等。这些文献所公开的催化剂,在用于生产中间馏分油时,载体中含有0~15w%Y型分子筛、0~15w%β型分子筛以及适量的氧化铝和无定形硅铝,活性金属为钨和镍。但从使用效果来看,该类催化剂的反应活性仍然较差(大于392℃),中油选择性也没有得到显著的提高。
CN1488726(介孔分子筛和Y型分子筛)和CN1667093(Y型分子筛和SAPO分子筛)等公开了含机械混合分子筛作为加氢裂化催化剂组分的技术,但在它们所涉及的方案中,主要针对处理含硫、氮等杂质含量较高的馏分油,催化剂活性未有明显提高。
CN1351120、CN1393521、CN1350886、CN1393287、CN1393287和CN1393522等,是专门针对中油性加氢裂化催化剂及其制备方法的发明。这些专利的共同特征是催化剂载体由改性Y分子筛、改性β分子筛、无定形硅铝、氧化铝组成。该载体在担载上第VIB和/或第VIII族活性金属组分后所制得的催化剂,可用于加氢裂化最大量生产优质中间馏分油。与传统的单一分子筛作为加氢裂化催化剂裂化组分的催化剂相比较,该类催化剂的活性和(或)中油选择性同时得到一定的提高。另外,含有适宜类型分子筛的催化剂可生产低凝点柴油,或可用于高硫高氮重质油的加氢裂化。尽管如此,更高活性的加氢裂化催化剂制备,还存在着很大的改善空间,尤其是在适用于催化剂载体的复合材料合成技术和方案日臻成熟之际。
一般来说,复合材料是两种或两种以上单一材料在一定条件下通过特定途径进行键合而生成的在性质上可能同时具有两种或两种以上单一材料特性的材料。它不是单一材料的机械混合,因而所表现出的性质在作为催化剂载体被赋予了很高的期望。
CN1583562A和CN1583563A所公开的内容中,展示了合成双微孔复合分子筛的方法,将该双微孔分子筛进行适当处理,可以获得理想的加氢裂化催化剂载体材料。
发明内容
在现有技术的基础上,本发明通过将合成双微孔分子筛进行适宜的处理,用于加氢裂化催化剂,得到一种具有更高活性和中间馏分油选择性的加氢裂化催化剂,本发明同时提供一种加氢裂化催化剂的制备方法。
本发明加氢裂化催化剂含有改性Y/β双微孔分子筛、无定形硅铝、大孔氧化铝、粘合剂、VIB族和VIII族金属氧化物组成;以催化剂的重量百分数为基准,所述催化剂中各组分的含量为:改性Y/β双微孔分子筛一般为10%~45%,较好为20%~40%;无定形硅铝一般为4%~25%,较好为10%~20%;大孔氧化铝一般为8%~25%,较好为10%~20%;粘合剂一般为8%~25%,较好为12%~20%;第VI族金属一般为10%~30%,较好为12%~25%;第VIII族金属一般为2%~10%,较好为3%~8%。
上述改性Y/β双微孔分子筛总的硅铝重量比为6.5~60.0,优选为10.0~50.0;BET比表面积350~650m2/g,优选为420~550m2/g;孔容为0.25~0.40ml/g,优选为0.30~0.38ml/g;红外酸度为0.50~1.5mmol/g,优选为0.65~1.2mmol/g;Na2O重量含量小于0.1%。改性Y/β双微孔分子筛中,采用X光衍射分析,其中Y型分子筛结构部分占10%~90%,优选占30%~80%。
上述的无定形硅铝中二氧化硅重量含量为25%~75%,一般为40%~60%;BET比表面积一般为200~550m2/g,优选为300~500m2/g。
上述的大孔氧化铝的孔容为0.6~1.5ml/g,优选为0.85~1.3ml/g,BET比表面积一般为300~600m2/g,优选为350~500m2/g。
上述的粘合剂为制备催化剂常用粘合剂,一般由小孔氧化铝(孔容为0.3~0.5ml/g,BET比表面积为150~300m2)通过用无机酸(盐酸、硝酸、磷酸或硫酸等,一般为硝酸或磷酸)和(或)有机酸(乙酸、乙二酸、丙酸或柠檬酸等,一般为乙酸或柠檬酸)胶溶后制成。制备过程中,酸与小孔氧化铝的摩尔比为0.10~0.55,一般为0.20~0.40。
本发明加氢裂化催化剂可以采用浸渍法制备。采用浸渍法制备时,将双微孔分子筛、无定形硅铝、大孔氧化铝等载体材料用粘合剂成型、干燥、焙烧得到催化剂载体,然后用含有活性金属组分的浸渍溶液浸渍、干燥、焙烧,得到最终加氢裂化催化剂。
其中的双微孔分子筛按文献CN1583562A或CN1583563A所述的方法合成,得到Y/β双微孔分子筛中,总的硅铝重量比为5.0~50.0,一般为7.0~40.0;BET比表面积460~860m2/g,一般为520~650m2/g;孔容为0.25~0.40ml/g,一般为0.30~0.38ml/g;平均孔径为1.5~2.5nm,一般为1.7~2.3nm;Na2O重量含量在5.0-10.0%之间。采用X光衍射分析,选择合成的产品中Y型孔道结构部分占10%~90%的产品,然后进行改性处理得到本发明加氢裂化催化剂所需要的材料。
合成后双微孔分子筛的改性过程可以采用现有常规的处理方式,如先进行铵盐交换,然后进行水热处理。但更推荐采用下面方法进行改性处理。
将卤代硅烷,一般为四卤代硅烷,最好为SiCl4或SiF4,与干燥的惰性气体,最好为高纯氮气混合气化后通入一装有双微孔分子筛原粉的密闭处理炉中,温度控制在室温-300℃,最好为150-250℃范围内使分子筛与混合气体充分接触。接触时间一般为0.1-8h,最好为2-4h。混合气体中卤代硅烷的浓度为0.1~100mmol/L,最好为10-50mmol/L。该过程完成后,停止通入混合气体,优选降至室温~70℃后,进行水热处理。水热处理在450~750℃下进行,温度较好为500~700℃,压力为0.1~0.5MPa,最好为0.1~0.3MPa,并在此条件下处理0.5~5.0h,最好为1.0~2.5h,然后泄压,温度降到室温。在卤代硅烷混合气处理及水热处理过程中,可以在氨气存在下进行,一般氨气有体积浓度为1%~20%。水热处理后的分子筛进行铵盐交换,用含有NH4 +的溶液与分子筛打浆,采用本领域普通操作方式和条件进行,铵盐交换进行1~4次,以最终产品中Na2O含量小于0.5%为止。焙烧铵盐交换后的分子筛即可以得到所需的改性双微孔分子筛材料。
本发明加氢裂化催化剂适用于重质油品加氢裂化生产中间馏分油,特别适用于至少有50v%的馏分沸点在433~542℃之间、硫含量介于1.0~3.0w%、氮含量介于0.1~0.3w%之间的重质油加氢裂化生产中间馏分油过程。
本发明加氢裂化催化剂具有具有活性高、中间馏分油(煤油和柴油馏分)收率高等特点,活性比现有加氢裂化催化剂有较大幅度的提高。
对于合成的Y/β双微孔分子筛,如文献所介绍,一般是先合成一种类型的分子筛,然后将此合成的分子筛加入另一种合成分子筛的体系中,最终得到双微孔结构的分子筛。但在实际工作中发现,该方法所合成的双微孔分子筛结构并不稳定,尤其在焙烧脱氨过程或直接水热处理过程中分子筛的结晶度降低比单一类型分子筛较为明显。采用普通的铵盐交换-水热处理得到的改性双微孔分子筛具有一定的反应性能,但可以通过更佳的改性过程使其具有更高的使用性能。本发明推荐过程中,将合成的双微孔分子筛首先进行补硅处理,然后进行水热处理,最后铵交换脱氨得到最终改性分子筛产品。采用该过程,在处理条件相近的情况下,分子筛的结晶度得到很好的保持。其原因是在分子筛进行苛刻条件处理前进行了补硅处理,使其结构中不稳定部分得到加强,其稳定性增强;部分卤代硅烷在水热处理过程中水解生成的硅酸、无机酸等在分子筛进行加压水热处理时,可以进一步增强补硅作用;分子筛水热处理过程先于焙烧过程进行,避免了分子筛因焙烧而导致的骨架坍塌问题。
具体实施方式
本发明加氢裂化催化剂所述的VIB族和VIII族金属一般选自钼、钨、钴和镍中的一种或几种。
本专利中分子筛和(或)催化剂的硅铝比、催化剂上活性金属含量均采用化学法分析;Na2O含量采用电感耦合等离子发射光谱法测定;分子筛酸性采用吡啶吸附红外光谱法分析;比表面、孔容、孔径采用低温氮吸附法分析;物相和Y型分子筛结构部分含量在X光衍射仪上测定。
本发明的催化剂制备方法如下:
(1)将经过脱铝补硅、水热处理、铵交换、焙烧等过程得到的Y/β双微孔分子筛与无定形硅铝、大孔氧化铝和粘合剂按一定比例混合,挤条成型,经过干燥及焙烧过程制备成载体;
(2)将步骤(1)制得的载体用活性组元的浸渍溶液进行浸渍,经过干燥及焙烧过程制备成催化剂。
一种具体制备过程如下:
将经过脱铝补硅、水热处理、铵交换、焙烧等过程得到的Y/β双微孔分子筛与无定形硅铝、大孔氧化铝按一定比例混合后放入碾压机中混碾20~60min,一般为30~40min。然后加入一定量的粘合剂,继续混碾20~60min,一般为30~40min。之后,添加适量的纯净水,继续混碾至糊膏。挤条后在100~120℃干燥2~4h,一般为2.5~3h。随后,升温到500~700℃焙烧3~8h,一般为4~6h。此时,催化剂载体的制备过程完成。
所制备的催化剂载体的组成为:以载体的重量百分数为基准,所述载体中各组分的含量为:改性Y/β双微孔分子筛一般为20%~55%,较好为30%~50%;无定形硅铝一般为5%~30%,较好为12%~25%;大孔氧化铝一般为10%~30%,较好为12%~25%;粘合剂一般为10%~30%,较好为15%~25%。
所制备的载体的孔容为0.4~0.65ml/g,BET比表面积为300~600m2/g。
浸渍液配制时所使用的化合物为:钨化合物来自于偏钨酸铵和钨酸中的一种或两种;钼化合物来自于各种钼酸铵、钼酸和氧化钼中的一种或几种;镍化合物来自于硝酸镍、醋酸镍、碱式碳酸镍中的一种或几种;钴化合物来自于硝酸钴和碱式碳酸钴中的一种或两种。配制时,可能要有助浸剂的介入。助浸剂可选择无机酸(主要是磷酸)、有机酸(甲酸、乙酸、乙二酸、丙酸或柠檬酸)或有机酸盐(甲酸铵、乙酸铵、柠檬酸铵等)。
制备催化剂时所使用的浸渍方法包括饱和浸、过量浸或喷浸,时间为1~24h,一般为1~8h。浸渍后的条样须在100~120℃下干燥2~24h,一般为4~10h。随后,升温到400~550℃焙烧3~6h,一般为4~5h,制得本发明催化剂。
本发明制备的催化剂,在XRD谱图上表现出比较明显的Y/β双微孔分子筛和大孔氧化铝的特征衍射峰,无活性金属聚集态的特征衍射峰。催化剂BET比表面积150~300m2/g,孔容为0.30~0.55ml/g。
改性双微孔分子筛的改性过程中,铵盐交换可以采用氯化铵或硝酸铵的水溶液,铵离子在溶液中的浓度一般为0.1~8.0mol/l,较好为0.5~5.0mol/l。在该铵盐交换过程中,应充分搅拌,并保持溶液温度在25~100℃范围内,交换时间一般为1.0~10.0h,较好为2.0~5.0h。交换数次,使Na2O含量不大于0.5%。如此铵盐交换后的样品,经过滤、水洗、干燥至干基重量含量不小于80.0%后,进行焙烧脱铵处理。焙烧过程通常在空气能够流动的马弗炉中进行,采用分步法。第一步温度控制在130~200℃,时间为1.0~3.0h,以脱除水分;第二步,以不超过10℃/min的升温速度将样品温度控制在450~650℃,时间为4.0~12.0h,以使铵盐分解。即得到本发明中所需要的改性Y/β双微孔分子筛。
下面通过实施例进一步说明本发明的方案和效果。
实施例1
Y/β双微孔复合分子筛采用中国专利CN1583562A所公开的双微孔复合分子筛合成方法合成,具体步骤按照该专利中的实施方式2进行。所得到Y/β双微孔分子筛编号为YB1。
实施例2
Y/β双微孔复合分子筛采用中国专利CN1583563A所公开的双微孔复合分子筛合成方法合成,具体步骤按照该专利中的实施方式4进行。所得到Y/β双微孔复合分子筛编号为YB2。
实施例3
将100gYB1原粉装入密闭处理炉中,以15ml/min的流速通入SiCl4浓度为50mmol/L的SiCl4和氮气混合气体,以5℃/min的升温速度将处理炉温度提升到200℃恒温3h。该过程完成后,停止通入混合气体,将温度降到室温进行水热处理。具体条件为以2.0℃/min的升温速度将温度提升到650℃、并保持压力为0.1MPa,处理2h后泄压,温度降到室温。洗涤后的双微孔分子筛用蒸馏水将其稀释到固液重量比为1∶12,然后加入硝酸铵使其在溶液中的浓度为1.0mol/l,在75℃充分搅拌3.0h。如此交换2次后,使Na2O含量不大于0.5%。在空气能够流动的马弗炉于150℃恒温2.0h以脱除水分;然后以5℃/min的升温速度将样品温度控制在550℃焙烧8.0h以使铵盐分解。得到编号为YB1-1的处理后分子筛。
实施例4
将100gYB2原粉装入密闭处理炉中,以20ml/min的流速通入SiF4浓度为20mmol/L的SiF4和氮气混合气体,以8℃/min的升温速度将处理炉温度提升到150℃恒温4h。该过程完成后,停止通入混合气体,将温度降到室温进行水热处理。具体条件为以10.0℃/min的升温速度将温度提升到575℃、并保持压力为0.2MPa,处理2h后泄压,温度降到室温。洗涤后的双微孔分子筛用蒸馏水将其稀释到固液重量比为1∶18,然后加入硝酸铵使其在溶液中的浓度为1.0mol/l,在35℃充分搅拌3.0h。如此交换3次后,使Na2O含量不大于0.5%。在空气能够流动的马弗炉于150℃恒温2.0h以脱除水分;然后以5℃/min的升温速度将样品温度控制在550℃焙烧8.0h以使铵盐分解。得到编号为YB2-1的处理分子筛。
实施例1~4所得到的YB1、YB1-1、YB2和YB2-1主要物化性质见表1。
表1Y/β双微孔复合分子筛的主要物化性质
Figure A20071001208100121
实施例5
将90gYB 1-1、90g无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、90g大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)放到碾压机内混碾30min,然后加入360g粘合剂(含小孔氧化铝25w%),继续碾压40min,之后加入80ml蒸馏水碾压至糊膏状,挤条,在110℃下干燥3h,随后在550℃下焙烧4h得到载体YB1-1-1S。
YB 1-1S用含钨、镍的浸渍液(WO3浓度为50.6g/100ml,NiO浓度为14.5g/100ml)浸泡3h。滤掉残液后,120℃下干燥6h,随后在500℃下焙烧4h得到催化剂YB1-1-1C。
实施例6
将200gYB1-1、60g无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、60g大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)放到碾压机内混碾30min,然后加320g粘合剂(含小孔氧化铝25w%),继续碾压40min,之后加入80ml蒸馏水碾压至糊膏状,挤条,在110℃下干燥6h,随后在550℃下焙烧4h得到载体YB1-1-2S。
YB1-1S用含钨、镍的浸渍液(WO3浓度为50.6g/100ml,NiO浓度为14.5g/100ml)浸泡2h。滤掉残液后,120℃下干燥6h,随后在500℃下焙烧4h得到催化剂YB1-1-2C。
实施例7
将150gYB2-1、60g无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、60g大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)放到碾压机内混碾30min,然后加入240g粘合剂(含小孔氧化铝25w%),继续碾压40min,之后加入80ml蒸馏水碾压至糊膏状,挤条,在110℃下干燥6h,随后在550℃下焙烧4h得到载体YB2-1-1S。
YB2Y1B1-1S用含钨、镍的浸渍液(WO3浓度为50.6g/100ml,NiO浓度为14.5g/100ml)浸泡2h。滤掉残液后,120℃下干燥6h,随后在500℃下焙烧4h得到催化剂YB2-1-1C。
实施例8
将80gYB2-1、60g无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、60g大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)放到碾压机内混碾30min,然后加入240g粘合剂(含小孔氧化铝25w%),继续碾压40min,之后加入80ml蒸馏水碾压至糊膏状,挤条,在110℃下干燥6h,随后在550℃下焙烧4h得到载体YB2-1-2S。
YB2-1-2S用含钼、镍的浸渍液(MoO3浓度为41.2g/100ml,NiO浓度为14.5g/100ml)浸泡2h。滤掉残液后,120℃下干燥6h,随后在500℃下焙烧4h得到催化剂YB2-1-2C。
实施例5~8中得到的YB1-1-1C、YB1-1-2C、YB2-1-1C和YB2-1-2C的物化性质如表2。
表2催化剂的主要物化性质
Figure A20071001208100141
实施例9
按照实施例3有所述的操作条件,只是先将合成的双微孔分子筛YB1先进行铵离子交换和焙烧使铵盐分解,然后进行水热处理,得到改性双微孔分子筛YB1-2,但该处理过的双微孔分子筛中Y型分子筛结构部分几乎消失。然后按照施例5的方法,以改性双微孔分子筛YB1-2代替实施例5中的改性双微孔分子筛YB1-1,得到加氢裂化催化剂YB1-2-1C。所制备的催化剂其主要组分含量为WO3含量为19.1w%,NiO含量为5.0w%,SiO2含量为15.2wt%;BET比表面积230m2/g。
比较例1
进行比较的催化剂A为按照专利US5,536,687所介绍的方法制备。制备过程中,载体采用的原料为改性Y型分子筛(晶胞参数为
Figure A20071001208100151
相对结晶度为87%,硅铝重量比为5.31,BET比表面积587m2/g)、β分子筛(硅铝重量比为27.51,BET比表面积557m2/g)、无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)和粘合剂(含小孔氧化铝25w%)。催化剂的具体制备过程与实施例12相同。催化剂A中含Y型分子筛15%,β分子筛12%,MoO3含量为18.5w%,NiO含量为5.5w%,BET比表面积243m2/g。
比较例2
进行比较的催化剂B为按照专利CN00123130.8所介绍的方法制备。制备过程中,载体采用的原料为SSY型分子筛(晶胞参数为
Figure A20071001208100152
相对结晶度为104%,硅铝重量比为8.3,BET比表面积723m2/g)、改性β分子筛(硅铝重量比为68.5,BET比表面积537m2/g)、无定形硅铝(SiO2含量为46.9w%,孔容为0.70ml/g,BET比表面积342m2/g)、大孔氧化铝(孔容为1.05ml/g,BET比表面积403m2/g)和粘合剂(含小孔氧化铝25w%)。催化剂的具体制备过程与实施例9相同。催化剂A中含Y型分子筛16%,β分子筛10%,WO3含量为21.5w%,NiO含量为4.9w%,BET比表面积269m2/g。
实施例10
将本发明中所制备的YB1-1-1C、YB1-2-1C和参比催化剂A、B分别在小型装置上进行了活性评价,活性评价主要用于不同方法制备的催化剂相对活性比较,小型装置数据主要用于不同催化剂的性能对比评价,因此一些数据可能不具有实际意义,因此用基准的形式给出,这是本领域科研究的常用表达方式。所采用的原料油性质如表3。评价结果如表4。
表3用于催化剂活性评价的原料油性质
Figure A20071001208100161
表4催化剂对比评价结果
Figure A20071001208100171
从表4对比实验可以看出,本发明的加氢裂化催化剂,其活性明显优于参比催化剂。
将本发明的加氢裂化催化剂YB1-1-2C、YB2-1-1C、Y32-1-2C和YB1-2-1C采用同样的原料油、在相同工艺条件下进行了活性评价,结果见表5。
表5本发明制备的催化剂的活性评价结果
从表5可以看出,本发明所制备的催化剂YB1-1-2C、YB2-1-1C和YB2-1-2C均可以重复本发明的效果。
从表5还可以看出,实施例9中所制备的催化剂YB1-2-1C,因为在双微孔分子筛处理过程中Y型分子筛结构部分几乎消失,因此其转化率要远低于本发明所制备的催化剂。

Claims (10)

1、一种加氢裂化催化剂,含有改性Y/β双微孔分子筛、无定形硅铝、大孔氧化铝、粘合剂、VIB族和VIII族金属氧化物;以催化剂的重量百分数为基准,所述催化剂中各组分的含量为:改性Y/β双微孔分子筛为10%~45%,无定形硅铝为4%~25%,大孔氧化铝为8%~25%,粘合剂为8%~25%,第VIB族金属为10%~30%,第VIII族金属为2%~10%。
2、按照权利要求1所述的催化剂,其特征在于所述催化剂中各组分的含量为:改性Y/β双微孔分子筛为20%~40%,无定形硅铝为10%~20%,大孔氧化铝为10%~20%,粘合剂为12%~20%,第VIB族金属为12%~25%,第VIII族金属为3%~8%。
3、按照权利要求1所述的催化剂,其特征在于所述的改性Y/β双微孔分子筛总的硅铝重量比为6.5~60.0,BET比表面积350~650m2/g,孔容为0.25~0.40ml/g,红外酸度为0.50~1.5mmol/g,Na2O重量含量小于0.1%,改性Y/β双微孔分子筛中,采用X光衍射分析,其中Y型分子筛结构部分占10%~90%。
4、按照权利要求1所述的催化剂,其特征在于所述的改性Y/β双微孔分子筛总的硅铝重量比为10.0~50.0,BET比表面积为420~550m2/g,孔容为0.30~0.38ml/g,红外酸度为0.65~1.2mmol/g。
5、按照权利要求1所述的催化剂,其特征在于所述的上述的无定形硅铝中二氧化硅重量含量为25%~75%,BET比表面积一般为200~550m2/g。
6、按照权利要求1所述的催化剂,其特征在于所述的大孔氧化铝的孔容为0.6~1.5ml/g,BET比表面积一般为300~600m2/g。
7、一种权利要求1所述催化剂的制备方法,采用浸渍法制备,将改性双微孔分子筛、无定形硅铝和大孔氧化铝用粘合剂成型、干燥、焙烧得到催化剂载体,然后用含有活性金属组分的浸渍溶液浸渍、干燥、焙烧,得到最终加氢裂化催化剂。
8、按照权利要求7所述的方法,其特征在于所述的改性双微孔分子筛以合成双微孔分子筛为原料,然后进行改性处理得到所需的改性双微孔分子筛;合成双微孔分子筛的性质为:总的硅铝重量比为5.0~50.0,BET比表面积460~860m2/g,孔容为0.25~0.40ml/g,Na2O重量含量在5.0%~10.0%之间;采用X光衍射分析,选择具有Y型分子筛孔道结构部分占10%~90%的产品。
9、按照权利要求8所述的方法,其特征在于所述的改性处理方法为先进行铵盐交换,然后进行水热处理。
10、按照权利要求8所述的方法,其特征在于所述的改性处理过程包括:将卤代硅烷与干燥的惰性气体混合气化后通入一装有双微孔分子筛原粉的密闭处理炉中,温度控制在室温-300℃,使分子筛与混合气体充分接触,接触时间一般为0.1-8h,混合气体中卤代硅烷的浓度为0.1~100mmol/L;然后进行水热处理,水热处理在450~750℃下进行,压力为0.1~0.5MPa,并在此条件下处理0.5~5.0h,然后泄压温度降到室温;水热处理后的分子筛进行铵盐交换至以分子筛产品中Na2O含量小于0.5%为止,最后焙烧得到改性双微孔分子筛。
CN2007100120817A 2007-07-09 2007-07-09 一种加氢裂化催化剂及其制备方法 Active CN101343561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007100120817A CN101343561B (zh) 2007-07-09 2007-07-09 一种加氢裂化催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007100120817A CN101343561B (zh) 2007-07-09 2007-07-09 一种加氢裂化催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN101343561A true CN101343561A (zh) 2009-01-14
CN101343561B CN101343561B (zh) 2012-07-18

Family

ID=40245679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100120817A Active CN101343561B (zh) 2007-07-09 2007-07-09 一种加氢裂化催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN101343561B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898154B (zh) * 2009-05-25 2011-11-30 中国石油化工股份有限公司 一种甲苯歧化与烷基转移催化剂及其应用
CN102309999A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种加氢催化剂载体及其制备方法
CN102553638A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种双微孔-介孔复合分子筛加氢裂化催化剂
CN102553637A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种中油型加氢裂化催化剂及其制备和应用
CN103100417A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN103100430A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN113318718A (zh) * 2020-02-28 2021-08-31 中国石油化工股份有限公司 含有二氯二甲基硅烷改性棒状介孔材料的碳四烯烃裂解增产丙烯催化剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350501A (en) * 1990-05-22 1994-09-27 Union Oil Company Of California Hydrocracking catalyst and process
CN1162325C (zh) * 2001-06-29 2004-08-18 中国石油天然气股份有限公司 一种中微孔复合分子筛组合物的分步晶化合成方法
CN1151238C (zh) * 2001-07-02 2004-05-26 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN1308238C (zh) * 2004-06-08 2007-04-04 太原理工大学 双微孔沸石分子筛及制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898154B (zh) * 2009-05-25 2011-11-30 中国石油化工股份有限公司 一种甲苯歧化与烷基转移催化剂及其应用
CN102309999A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种加氢催化剂载体及其制备方法
CN102309999B (zh) * 2010-07-07 2013-05-01 中国石油化工股份有限公司 一种加氢催化剂载体及其制备方法
CN102553638B (zh) * 2010-12-17 2013-10-16 中国石油天然气股份有限公司 一种双微孔-介孔复合分子筛加氢裂化催化剂
CN102553638A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种双微孔-介孔复合分子筛加氢裂化催化剂
CN102553637A (zh) * 2010-12-17 2012-07-11 中国石油天然气股份有限公司 一种中油型加氢裂化催化剂及其制备和应用
CN102553637B (zh) * 2010-12-17 2014-11-19 中国石油天然气股份有限公司 一种中油型加氢裂化催化剂及其制备和应用
CN103100430A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN103100417A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN103100417B (zh) * 2011-11-09 2015-01-14 中国石油化工股份有限公司 一种加氢裂化催化剂及其制备方法
CN103100430B (zh) * 2011-11-09 2015-04-15 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法
CN113318718A (zh) * 2020-02-28 2021-08-31 中国石油化工股份有限公司 含有二氯二甲基硅烷改性棒状介孔材料的碳四烯烃裂解增产丙烯催化剂及其制备方法和应用
CN113318718B (zh) * 2020-02-28 2023-05-09 中国石油化工股份有限公司 含有二氯二甲基硅烷改性棒状介孔材料的碳四烯烃裂解增产丙烯催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101343561B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN101343561B (zh) 一种加氢裂化催化剂及其制备方法
CN101172260A (zh) 一种加氢催化剂的制备方法
CN101343559B (zh) 加氢裂化催化剂及其制备方法
CN101632938A (zh) 一种中间馏分油型加氢裂化催化剂
CN101343560B (zh) 一种高活性加氢裂化催化剂的制备方法
CN103889572B (zh) 用于制备介孔化催化剂的方法、由此获得的催化剂及其在催化工艺中的用途
CN107345155B (zh) 一种加氢裂化方法
CN102553638A (zh) 一种双微孔-介孔复合分子筛加氢裂化催化剂
CN103191774B (zh) 制备加氢裂化催化剂的方法
CN105709820B (zh) 一种加氢裂化催化剂及其制备方法
CN103657712B (zh) 一种催化裂化催化剂及其制备方法
CN107344106B (zh) 一种加氢裂化催化剂及其制备方法
CN102553650A (zh) 一种加氢裂化催化剂载体及其制备方法
CN107345153A (zh) 一种生产低凝柴油的加氢裂化方法
CN105713657A (zh) 一种加氢裂化的方法
CN102604669B (zh) 一种重质烃油加氢裂化制备化工原料的方法
CN107344102B (zh) 一种加氢裂化催化剂及其制法
CN107345156B (zh) 一种加氢裂化的方法
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
CN107344105B (zh) 加氢裂化催化剂及其制备方法
CN105435836B (zh) 一种加氢裂化催化剂及其制备和应用
CN107345159B (zh) 一种生产低凝柴油的加氢裂化方法
CN107344112A (zh) 一种生产优质催化重整原料的加氢裂化催化剂及其制备方法和应用
CN107344120B (zh) 加氢裂化催化剂载体及其制法
CN109718834B (zh) 改性分子筛及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant