CN107345155B - 一种加氢裂化方法 - Google Patents

一种加氢裂化方法 Download PDF

Info

Publication number
CN107345155B
CN107345155B CN201610289569.3A CN201610289569A CN107345155B CN 107345155 B CN107345155 B CN 107345155B CN 201610289569 A CN201610289569 A CN 201610289569A CN 107345155 B CN107345155 B CN 107345155B
Authority
CN
China
Prior art keywords
content
modified zeolite
catalyst
pore volume
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610289569.3A
Other languages
English (en)
Other versions
CN107345155A (zh
Inventor
刘昶
王凤来
关明华
杜艳泽
黄薇
赵红
郝文月
曹均丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201610289569.3A priority Critical patent/CN107345155B/zh
Publication of CN107345155A publication Critical patent/CN107345155A/zh
Application granted granted Critical
Publication of CN107345155B publication Critical patent/CN107345155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种加氢裂化方法。该方法包括直馏柴油原料与加氢裂化催化剂接触进行加氢裂化反应,得到的加氢裂化产物经分离,得到重石脑油、柴油、喷气燃料和加氢尾油;其中所用的加氢裂化催化剂采用改性Y型分子筛、无定形硅铝和氧化铝作为载体,其中的改性Y型分子筛是一种富含介孔、有效孔径分布集中的Y型分子筛。本发明方法特别适用于直馏柴油加氢转化生产喷气燃料的加氢裂化工艺中,具有很高的催化活性和航煤产品收率,而且产品质量得到改善。

Description

一种加氢裂化方法
技术领域
本发明涉及一种加氢裂化方法,特别是一种由直馏柴油转化生产航煤(也称为喷气燃料)的加氢裂化方法。
背景技术
随着国际航空运输业规模不断扩大,全球对航煤的需求量逐年增长,年增长率约为5.0%,远远高于汽柴油1.0%至1.5%的年增长率,极大程度带动了全球油品市场对优质航煤产品的需求。中国2014年国内航空运输业呈现出良好发展势头,在成品油市场需求增速整体放缓的大背景下,航煤市场仍保持供需两旺和高速增长的态势。国家统计局数据显示,2014年中国煤油消费量为2355万吨,与上年相比增长11.0%。从区域分布看,中国最大的航煤消费地区在东部(包括上海)、北部(包括北京)和南部(包括广州、深圳),占全国消费总量的80%。目前中国现有机场180座,预计到2020年中国机场数量将达到244座,航煤年消费量将超过4000万吨/年,这将极大推动炼油企业多产航煤产品应对市场需求,也将极大推动航煤生产技术快速发展。中国现有航煤生产技术主要是直馏航煤加氢精制技术和加氢裂化技术,航煤产品与柴油或汽油产品相比利润上更有优势,极大促进了各大炼油企业增产航煤产品,但其产量受到加工原油性质和两种航煤生产技术特点制约而不能满足市场需求。
常规的航煤低压加氢精制技术是在缓和的条件下对直馏航煤馏分进行加氢精制,大幅度降低航煤产品的硫醇硫含量,并提高航煤烟点0.5~1.0mm,但对航煤的冰点、密度、馏程、氮含量等指标没有明显改善作用,使得中国国内主要炼油厂一般控制直馏航煤干点在240℃以下,以保证航煤产品冰点指标合格。加氢裂化技术可以生产高品质的航煤产品,但受到所使用加氢裂化催化剂性能的影响,航煤冰点指标通常也要求将加氢裂化航煤产品干点控制在280℃以下。对于航煤需求量大的企业,通常选用多产航煤的加氢裂化催化剂,以应对市场对航煤需求的增长。
随着油品市场需求的变化,柴油的需求量逐步降低,而汽油和航煤的需求量增长较快,预计到2020年中国的柴汽比将下降到1.1以下。通常直馏柴油中的烃类分子碳数较大,链烷烃的冰点较高,环状烃的烟点较低,要求加氢转化催化剂具有强的异构及裂化性能,能够将原料中较高冰点的组分转化为低冰点的产品,并保持较高的航煤产品收率。另外,加氢裂化催化剂也需要有强的芳烃加氢饱和和开环能力,以使航煤产品的烟点和萘系烃含量能够满足航煤质量指标要求。因此,加氢裂化催化剂体系的选择至关重要。
加氢裂化技术以其原料适应性好、产品质量好,产品结构合理可调等优势,具有强劲的发展前景。加氢裂化技术的应用将成为提高石油产品质量、降低环境污染、增加市场应变能力的有效技术措施,已成为现代化炼厂最为重要的工艺装置。同时日趋严格的交通运输燃料排放标准使得加工劣质重油直接生产高质量清洁燃料的问题日益突出,最大量生产中间馏分油的加氢裂化技术及其配套的高中油型催化剂开发也更加活跃。
在重油加氢裂化领域中能够作为裂化活性组分的分子筛有Y型、β型和ZSM型分子筛等等,其中Y型分子筛应用最为普遍。目前工业生产Y型分子筛的方法基本上都是采用美国GRACE公司在USP 3639099和USP 4166099中提出的导向剂法,合成的Y型分子筛原粉孔道的孔口直径为0.74nm×0.74nm,其微孔孔体积约占总孔体积的95%以上。蜡油加氢裂化原料中的多环重组分分子直径通常在1nm以上,对于重组分大分子的裂化反应,适合其反应及产物扩散的理想孔道孔径范围是2nm~10nm的介孔范围,能够将更多的可接触的酸性中心外露,同时也利于原料大分子的吸附和反应以及目的产物的脱附和扩散,提高分子筛裂化选择性。为改善Y型分子筛介孔孔体积含量低不利于蜡油大分子反应的情况,通常对Y型分子筛原粉进行改性处理,可得到不同孔道结构和酸性分布的改性Y型分子筛。
CN201310240740.8公开了一种超稳Y分子筛(USY)的改性方法。该方法的特点是在改性过程中同时加入有机酸和无机盐脱铝试剂,进行有机酸-无机盐的结合改性。使用该方法实际制得的USY分子筛的介孔体积占总体积的50%以下,其结晶度均在85%以下。
CN201510147788.3公开了一种硅铝比高且二级孔丰富的Y分子筛及其制备方法。该方法包括:将Y型分子筛在300℃~600℃处理1~5h,得到干燥的Y型分子筛,降温至200~600℃;在无水干燥环境中,向干燥的Y型分子筛中通入被脱铝补硅剂饱和的干燥气体,反应0.5h~7h,或在无水干燥环境中,将温度匀速升温至500~700℃的同时向干燥的Y型沸石中通入被脱铝补硅剂饱和的干燥气体,反应0.5h~7h,得到粗产品;将粗产品在30~100℃下碱处理10min~5h,碱处理的固液质量比为1~50:1,得到硅铝比高且二级孔丰富的Y分子筛。
CN200410068935.X公开了一种生产喷气燃料的中压加氢裂化方法,原料油与氢气混合先进行加氢处理,加氢处理流出物不经分离直接进行加氢裂化,加氢裂化流出物经热高压分离后的气相物流直接进入第二个加氢处理反应器进行芳烃饱和,热高压分离器液相物流经降压后依次进入热低压分离器、冷低压分离器、分馏塔;第二个加氢处理反应器流出物经冷高压分离得到液相物流和气相物流,其中气相物流循环使用,液相物流经降压后依次进入冷低压分离器、分馏塔;分馏塔内液相物流经分离得到石脑油馏分、喷气燃料馏分、柴油馏分和尾油。
CN200980139679.X公开了一种用于由煤油原料生产喷气燃料的方法,其包括:在加氢处理条件下,在加氢处理催化剂存在下,对所述煤油原料加氢处理以产生加氢处理的煤油原料;在脱蜡条件下,在包括10元环1-D分子筛催化剂存在下,使加氢处理的煤油原料脱蜡以产生加氢脱蜡的煤油原料;和分馏所述加氢脱蜡的煤油原料以产生喷气燃料。
从具有裂化功能的分子筛在工业催化过程中的应用来看,其性能主要取决于以下两个方面:选择性吸附和反应。当反应物分子尺寸小于分子筛孔口并克服分子筛晶体表面能垒,才能扩散进入分子筛孔道内,发生特定的催化反应,这时被吸附分子穿过分子筛晶体的孔和笼的扩散性能起决定性的作用。常规改性方法制备的分子筛总孔体积和介孔孔体积均偏小,不利于原料分子的转化,因此孔结构开放、介孔含量高和酸中心暴露多的改性分子筛能够处理分子更大、油品更重的原料,可将直馏柴油中的重组分转化为航煤产品。
发明内容
为了克服现有技术中的不足之处,本发明提供了一种加氢裂化方法。本发明方法所用的加氢裂化催化剂是采用一种富含介孔结构、有效孔径分布更集中的Y型分子筛为裂化组分,特别是在中压条件下处理直馏柴油产品原料时,具有很高的催化活性和航煤产品收率,而且产品质量得到进一步改善。
本发明的加氢裂化方法,包括直馏柴油原料与加氢裂化催化剂接触进行加氢裂化反应,得到的加氢裂化产物经分离,得到重石脑油、柴油、航煤和加氢尾油;其中所用的加氢裂化催化剂,包括加氢活性金属组分和载体,载体包含改性Y型分子筛、无定形硅铝和氧化铝,其中所述的改性Y型分子筛,其性质如下:相对结晶度为110%~150%,SiO2/Al2O3摩尔比为55~100,晶胞参数为2.425~2.435nm,总孔体积为0.55~1.0mL/g,优选为0.6~1.0mL/g,介孔孔体积占总孔体积的70%以上,优选为80%~95%。
所述的改性Y型分子筛的晶粒度为1.0~2.5μm,优选为1.2~1.8μm。
所述的改性Y型分子筛中,介孔的孔直径为2~10nm。
所述的改性Y型分子筛的比表面积为650~1000m2/g,优选为750 ~1000m2/g。
所述的改性Y型分子筛的红外总酸量为0.1~0.5mmol/g。
所述的改性Y型分子筛中,Na2O的重量含量为0.15wt%以下。
所述的加氢裂化催化剂中,所述的载体,以载体的重量为基准,改性Y型分子筛的含量为10%~50%,优选为15%~45%,无定形硅铝的含量为5%~30%,优选为10%~25%,氧化铝的含量为20%~85%,优选为30%~75%。
所述的加氢活性金属一般采用第VIB族和第VIII族的金属,第VIB族金属优选为钼和/或钨,第VIII族金属优选为钴和/或镍。本发明加氢裂化催化剂催化剂中,以催化剂的重量为基准,第VIB族金属(以氧化物计)的含量为10.0%~30.0%,第VIII族金属(以氧化物计)的含量为4.0%~8.0%,载体的含量为62.0%~86.0%。
本发明加氢裂化催化剂的性质如下:比表面积为250~450m2/g,孔体积为0.30~0.50mL/g。
本发明加氢裂化催化剂的制备方法,包括载体的制备和负载加氢活性金属组分,其中载体的制备过程如下:将改性Y型分子筛、无定形硅铝、氧化铝混合,成型,然后干燥和焙烧,制成催化剂载体,其中改性Y型分子筛的制备方法,包括如下步骤:
(1)NaY型分子筛与(NH42SiF6水溶液接触进行反应,反应后经过滤和干燥;
(2)对步骤(1)所得Y型分子筛进行水热处理;水热处理条件:表压为0.20~0.40MPa,温度为600~800℃,处理时间为0.5~5.0小时;
(3)将步骤(2)所得Y型分子筛在有机模板剂存在的条件下进行水热晶化处理,然后经过滤和干燥;
(4)将步骤(3)所得的Y型分子筛在低温富氧气氛下焙烧,制得本发明的改性Y型分子筛。
本发明方法步骤(1)中,NaY型分子筛的性质如下:
SiO2/Al2O3摩尔比为3~6,优选为4.5~5.5,晶粒度为1.0~2.5μm,优选为1.2~1.8μm,相对结晶度为80%~110%,晶胞参数为2.465~2.470nm,Na2O的重量含量为6.0wt%~8.0wt%,比表面积为600~900m2/g,总孔体积为0.3~0.4 mL/g,微孔孔体积占总孔体积的75%以上。
本发明方法步骤(1)中,(NH42SiF6的加入量为NaY型分子筛干基重量的5wt%~20wt%。
本发明方法步骤(1)中,(NH42SiF6水溶液的质量浓度为50~100g/L。NaY型分子筛与(NH42SiF6水溶液接触进行反应的反应条件:温度为80~150℃,优选为90~120℃,反应时间为0.1~5.0小时,优选1.0~3.0小时。
本发明方法步骤(1)中,NaY型分子筛与(NH42SiF6水溶液接触进行反应后,分离分子筛和副产物,可以洗涤,再过滤、干燥,优选干燥后所得的Y型分子筛的干基为60wt%~80wt%。干燥的条件一般是在50~95℃下干燥0.5~5.0小时。
本发明方法步骤(2)中,水热处理是用饱和水蒸气处理步骤(1)中得到的分子筛,处理条件:表压0.20~0.40MPa,优选为0.25~0.40MPa,温度600~800℃,优选为610~750℃,处理时间0.5~5.0小时,优选1.0~3.0小时。
本发明方法步骤(3)中,有机模板剂为四乙基氢氧化铵、四甲基氢氧化铵、四丙基氢氧化铵的一种或几种。其中,将步骤(2)中得到的Y型分子筛与有机模板剂均匀混合后,进行水热晶化,过程如下:将步骤(2)中得到的Y型分子筛在有机模板剂水溶液中打浆,液固重量比为3:1~8:1,温度为70~90℃,时间为0.5~5.0小时,有机模板剂水溶液的质量浓度为3%~10%,然后将混合物料置于晶化釜中晶化,晶化温度为80~120℃,晶化时间为4~10h,表压为0.1~0.2MPa。晶化后,经过滤和干燥可以采用常规方法进行,一般干燥的条件如下:在50~110℃下干燥1~10h。
本发明方法中,步骤(4)是将步骤(3)得到的Y型分子筛进行低温富氧气氛下焙烧,其中富氧气氛是指氧气含量大于50v%,焙烧温度为300~450℃,焙烧时间为5~10h。焙烧一般采用程序升温再恒温条件下焙烧的方法,升温速率优选为1~2℃/min。
本发明的加氢裂化方法,所采用的加氢裂化操作条件如下:反应总压为5.0~10.0MPa,液时体积空速为0.5~2.0h-1,氢油体积比为400:1~1000:1,反应温度为350~435℃。
本发明的加氢裂化方法,可采用一段串联工艺流程,在加氢裂化催化剂之前装填少量加氢精制催化剂,加氢精制催化剂可采用常规的加氢精制催化剂或者加氢裂化预处理催化剂,一般采用氧化铝基载体,以第VIB族和第VIII族金属为加氢活性金属组分,第VIB族金属优选为钼和∕或钨,第VIII族的金属优选为钴和∕或镍。以催化剂的重量计,第VIB族金属(以氧化物计)的含量为15.0%~30.0%,第VIII族金属(以氧化物计)的含量为4.0%~8.0%。所述加氢精制的操作条件可与加氢裂化的操作条件相同,也可以不同,一般如下:反应总压为5.0~10.0MPa,液时体积空速为0.5~2.0h-1,氢油体积比为400:1~1000:1,反应温度为350~435℃。
本发明的加氢裂化方法特别适宜处理直馏柴油,其性质如下:初馏点为230~250℃,干点为350~370℃,硫含量0.5~1.0wt%,氮含量100~200mg/g。
本发明方法所采用的加氢裂化催化剂,其中Y型分子筛是采用(NH42SiF6对NaY分子筛进行改性处理,在实现调变分子筛硅铝比的同时,可将NaY分子筛中的钠离子一起脱出,然后在有机模板剂存在下对水热处理后的分子筛进行水热晶化,这样可使部分硅原子和铝原子在有机模板剂作用下进入分子筛骨架结构,在进一步稳定和完善改性分子筛的骨架结构的同时,消除分子筛水热处理过程中产生的非骨架结构,畅通孔道结构,部分有机模板剂也能够进入到分子筛的孔道中,配合后续的富氧低温处理,可将分子筛中的有机模板剂可控有序脱除,从而产生大量有序介孔结构,且孔分布更加集中。
本发明方法所采用的氢裂化催化剂中Y型分子筛酸性适宜、结晶度高、介孔所占比例高、孔径分布更加集中。由于该Y型分子筛具有更大的孔体积和介孔体积,更多的酸性中心暴露出来,有利于原料重油大分子进行裂解,而且还具有更佳的孔径分布范围,能够有效地控制反应物的裂解程度,并有利于产物在孔道中进行扩散,这样在裂化反应中,可相对增加活性中心,并可使重油大分子进行适宜程度的裂解反应,既提高了重油的裂化能力,同时降低焦炭产率,催化剂会表现出良好的裂化活性及产品选择性。
本发明方法特别适用于直馏柴油加氢转化生产航煤产品的加氢裂化工艺中,特别是在中压条件下处理直馏柴油产品原料时,具有很高的催化活性和航煤产品收率,而且产品质量得到进一步改善,同时催化剂的稳定性较好,加氢裂化催化剂的使用寿命长,能满足炼厂增大操作灵活性,增加装置处理能力,进一步提高炼厂的经济效益。
附图说明
图1为实施例1所得改性Y型分子筛的SEM电镜照片;
图2为对比例1所得改性Y型分子筛的SEM电镜照片;
图3为实施例1所得改性Y型分子筛的XRD衍射图。
具体实施方式
本发明加氢裂化催化剂载体中氧化铝可以采用常规加氢裂化催化剂中所用的氧化铝,如大孔氧化铝和小孔氧化铝,一般大孔氧化铝与小孔氧化铝的质量比为1:8~8:1。所述的大孔氧化铝的性质如下:孔体积为0.6~1.3mL/g,比表面积为300~450m2/g。
本发明所用粘合剂是由小孔氧化铝和无机酸和/或有机酸制成。所用的小孔氧化铝孔体积为0.3~0.5mL/g,比表面积为200~400m2/g。
本发明催化剂载体中所用的无定形硅铝可由共沉淀法或接枝共聚法制备,按文献中常规方法制备即可。制得的无定形硅铝中,SiO2的重量含量为10%~60%,优选为20%~55%,无定形硅铝的孔体积为0.6~1.1mL/g,优选为0.8~1.0mL/g,比表面积为300~500m2/g,优选为350~500m2/g。
本发明加氢催化剂载体制备的具体过程如下:将改性Y型分子筛、无定形硅铝、氧化铝混合,成型,然后干燥和焙烧,制备成载体;干燥可以在80℃~150℃温度下干燥3~6小时,焙烧是在500℃~600℃焙烧2.5~6.0小时。
本发明加氢裂化催化剂载体通过常规方式负载加氢活性金属组分(第VIB族和第VIII族金属组分如Co、Ni、Mo、W等),制备得加氢裂化催化剂。采用现有技术中常规的负载方法,优选浸渍法,可以是饱和浸、过量浸或络合浸,即用含有所需活性组分的溶液浸渍催化剂载体,浸渍后的载体在100℃~150℃干燥1~12小时,然后在450℃~550℃焙烧2.5~6.0小时,制得最终催化剂。
下面的实施例用于更详细地说明本发明的技术方案,但本发明的范围不只限于这些实施例的范围。本发明中,wt%为质量分数。
本发明分析方法:比表面积、孔体积、介孔孔体积采用低温液氮吸附法测定,相对结晶度和晶胞参数采用X光衍射法,硅铝摩尔比采用XRF法(X射线荧光光谱法)测定,分子筛的晶粒大小采用SEM(扫描电子显微镜)的方式测定。红外酸量采用吡啶吸附红外光谱法,钠含量采用等离子发射光谱法。
本发明实施例和对比例中所采用的NaY分子筛原粉为工业制备,性质如下:SiO2/Al2O3摩尔比为5.1,晶粒度为~1.7μm,相对结晶度为95%,晶胞参数2.468nm,Na2O的重量含量为6.5wt%,比表面积为856m2/g,总孔体积0.32mL/g,微孔孔体积占总孔体积的81.3%,干基72.0wt%。
实施例1
取NaY原粉278g放入到800mL净水中,升温到95℃,开始向分子筛浆液中滴加(NH42SiF6水溶液,在60分钟均匀滴加307mL溶液浓度为72g/L的(NH42SiF6溶液,滴加结束后恒温搅拌2小时,恒温结束后进行过滤和干燥,干燥后分子筛的干基为65.3wt%;将上述干燥后的分子筛加到水热处理装置中,在表压0.25MPa、温度610℃、处理时间1.0小时条件下对分子筛进行水热处理;取130g水热处理后的分子筛放入到520mL质量浓度为5.3%的四乙基氢氧化铵水溶液中,在80℃条件下恒温搅拌4小时,然后将混合物料转移至晶化釜中进行水热晶化,晶化温度90℃,表压0.1MPa,晶化时间10小时,晶化结束后进行过滤和干燥处理;将水热晶化得到的干燥样品在富氧状态下焙烧,焙烧气氛中氧气含量为70v%,升温速率为1℃/min,恒温焙烧温度为420℃,恒温焙烧时间为6小时,得到本发明分子筛。样品编号LAY-1,分子筛性质列于表1。
实施例2
取NaY原粉278g放入到800mL净水中,升温到100℃,开始向分子筛浆液中滴加(NH42SiF6水溶液,在60分钟均匀滴加182mL溶液浓度为55g/L的(NH42SiF6溶液,滴加结束后恒温搅拌2小时,恒温结束后进行过滤和干燥,干燥后分子筛的干基为68.0wt%;将上述干燥后的分子筛加入到水热处理装置中,在表压0.30MPa、温度670℃、处理时间2.0小时条件下对分子筛进行水热处理;取130g水热处理后的分子筛放入到910mL质量浓度为7.5%的四丙基氢氧化铵水溶液中,在90℃条件下恒温搅拌4小时,然后将混合物料转移至晶化釜中进行水热晶化,晶化温度110℃,表压0.1MPa,晶化时间10小时,晶化结束后进行过滤和干燥处理;将水热晶化得到的干燥样品在富氧状态下焙烧,焙烧气氛中氧气含量为65v%,升温速率为1℃/min,恒温焙烧温度为360℃,恒温焙烧时间为10小时,得到本发明分子筛。样品编号LAY-2,分子筛性质列于表1。
实施例3
取NaY原粉278g放入到1000mL净水中,升温到100℃,开始向分子筛浆液中滴加(NH42SiF6水溶液,在60分钟均匀滴加417mL溶液浓度为85g/L的(NH42SiF6溶液,滴加结束后恒温搅拌3小时,恒温结束后进行过滤和干燥,干燥后分子筛的干基为67.2wt%;将上述干燥后的分子筛加到水热处理装置中,在表压0.35MPa、温度700℃、处理时间3.0小时条件下对分子筛进行水热处理;取130g水热处理后的分子筛放入到1040mL质量浓度为3.5%的四乙基氢氧化铵水溶液中,在85℃条件下恒温搅拌3小时,然后将混合物料转移至晶化釜中进行水热晶化,晶化温度80℃,表压0.1MPa,晶化时间5小时,晶化结束后进行过滤和干燥处理;将水热晶化得到的干燥样品在富氧状态下焙烧,焙烧气氛中氧气含量为75v%,升温速率为1℃/min,恒温焙烧温度为320℃,恒温焙烧时间为8小时,得到本发明分子筛。样品编号LAY-3,分子筛性质列于表1。
实施例4
取NaY原粉278g放入到1400mL净水中,升温到95℃,开始向分子筛浆液中滴加(NH42SiF6水溶液,在60分钟均匀滴加200mL溶液浓度为60g/L的(NH42SiF6溶液,滴加结束后恒温搅拌2小时,恒温结束后进行过滤和干燥,干燥后分子筛的干基为68.1wt%;将上述干燥后的分子筛加入到水热处理装置中,在表压0.30MPa、温度750℃、处理时间2.0小时条件下对分子筛进行水热处理;取130g水热处理后的分子筛放入到520mL质量浓度为6.8%的四丙基氢氧化铵水溶液中,在90℃条件下恒温搅拌3小时,然后将混合物料转移至晶化釜中进行水热晶化,晶化温度95℃,表压0.1MPa,晶化时间8小时,晶化结束后进行过滤和干燥处理;将水热晶化得到的干燥样品在富氧状态下焙烧,焙烧气氛中氧气含量为70v%,升温速率为1℃/min,恒温焙烧温度为380℃,恒温焙烧时间为10小时,得到本发明分子筛。样品编号LAY-4,分子筛性质列于表1。
对比例1
取NaY原粉278g放入到1000mL硝酸铵浓度为1.5mol/L的溶液中,升温到95℃,恒温搅拌2小时,恒温结束后进行过滤、洗涤和干燥,干燥后分子筛的干基为63.8wt%;程序升温将分子筛在600℃焙烧3小时;然后重复进行一次铵交换,并过滤和干燥;取100g第二次铵交换后的分子筛放入到650mL质量浓度为7.5%的四乙基氢氧化铵水溶液中,在80℃条件下恒温搅拌2小时,然后将混合物料转移至晶化釜中进行晶化,晶化温度100℃,表压为0.1MPa,晶化时间8小时,晶化结束后进行过滤和干燥处理;将晶化得到的干燥样品在富氧状态下焙烧,焙烧气氛中氧气含量为60v%,升温速率为1℃/min,恒温焙烧温度为360℃,恒温焙烧时间为8小时,得到分子筛。样品编号LDAY-1,分子筛性质列于表1。
对比例2
取NaY原粉278g放入到1000mL硝酸铵浓度为1.5mol/L的溶液中,升温到95℃,恒温搅拌2小时,恒温结束后分进行过滤、洗涤和干燥,干燥后分子筛的干基为63.8wt%;程序升温将分子筛在600℃焙烧3小时;然后重复进行一次铵交换,并过滤和干燥;取100g第二次铵交换后的分子筛放入到800mL浓度为0.3mol/L的稀硝酸中,在80℃条件下恒温搅拌2小时,恒温结束后进行过滤和干燥处理;将上述干燥后的分子筛加到水热处理装置中,在表压0.30MPa、温度670℃、处理时间2.0小时条件下对分子筛进行水热处理得到分子筛;样品编号LDAY-2,分子筛性质列于表1。
对比例3
采用CN201510147788.3中实施例1的方法制备分子筛,样品编号LDAY-3,分子筛性质列于表1。
表1 Y型分子筛的性质
产品编号 LAY-1 LAY-2 LAY-3 LAY-4
比表面积,m<sup>2</sup>/g 912 887 941 923
孔体积,cm<sup>3</sup>/g 0.74 0.69 0.88 0.72
晶胞常数,nm 2.433 2.431 2.428 2.426
相对结晶度,% 131 119 140 132
平均晶粒粒度,μm 1.7 1.7 1.7 1.7
SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>摩尔比 73.6.3 62.3 81.9 65.8
介孔孔体积(孔直径2nm~10nm)占总孔体积比例,% 86 83 91 87
红外总酸量,mmol/g 0.45 0.33 0.30 0.21
Na<sub>2</sub>O,wt% 0.05 0.06 0.03 0.07
续表1
产品编号 LDAY-1 LDAY-2 LDAY-3
比表面积,m<sup>2</sup>/g 633 703 603
孔体积,cm<sup>3</sup>/g 0.44 0.37 0.38
晶胞常数,nm 2.439 2.433 2.449
相对结晶度,% 98 103 86
平均晶粒粒度,μm 1.7 1.7 1.7
SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>摩尔比 7.5 33.5 8.6
介孔孔体积(孔直径2nm~10nm)占总孔体积比例,% 47 31 37
红外总酸量,mmol/g 0.77 0.35 0.71
Na<sub>2</sub>O,wt% 0.21 0.19 0.45
实施例5
将100克LAY-1分子筛(干基90wt%)、64.3克无定形硅铝(SiO2含量25wt%,孔体积0.85mL/g,比表面积370m2/g,干基70wt%)、150克大孔氧化铝(孔体积1.0mL/g,比表面积400m2/g,干基70wt%)、200克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体ZS-1。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-1,载体及相应催化剂性质见表2。
实施例6
将50克LAY-1分子筛(干基90wt%)、50克无定形硅铝(SiO2含量25wt%,孔体积0.85mL/g,比表面积370m2/g,干基70wt%)、214.3克大孔氧化铝(孔体积1.0mL/g,比表面积400m2/g,干基70wt%)、200克粘合剂(干基30wt%,硝酸与小孔氧化铝的摩尔比为0.4)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体ZS-2。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂HC-2,载体及相应催化剂性质见表2。
实施例7~8
按实施例5的方法,将LAY-1分别换成LAY-2、LAY-3,制成载体ZS-3、ZS-4以及催化剂HC-3和HC-4,载体和催化剂组成见表2。
对比例4~6
按实施例5的方法,将LAY-1分别换成LDAY-1、LDAY-2、LDAY-2,制成载体DZS-1、DZS-2、DZS-3以及催化剂DHC-1、DHC-2和DHC-3,载体和催化剂组成见表3。
实施例9~12
本实施例介绍了本发明方法,分别采用加氢裂化催化剂HC-1、HC-2、 HC-3和HC-4。在固定床加氢试验装置上进行试验,操作条件为:反应总压8.0MPa,氢油体积比500,液时体积空速1.0h-1,使用直馏柴油作为原料油,原料性质列于表4,评价结果列于表5。
对比例7~9
本对比例分别采用本发明对比例制备的催化剂DHC-1、DHC-2和DHC-3。在固定床加氢试验装置上进行试验,操作条件为:反应总压8.0MPa,氢油体积比500,液时体积空速1.0h-1,使用直馏柴油作为原料油,原料性质列于表4,评价结果列于表5。
表2 催化剂载体及催化剂的组成和物化性质
载体组成及性质
编号 ZS-1 ZS-2 ZS-3 ZS-4
组成
改性Y型分子筛,wt% 30.0 15.0 30.0 30.0
无定形硅铝,wt% 15.0 15.0 15.0 15.0
大孔氧化铝,wt% 35.0 50.0 35.0 35.0
粘合剂,wt% 余量 余量 余量 余量
性质
孔体积,mL/g 0.65 0.70 0.67 0.69
比表面积,m<sup>2</sup>/g 529 445 538 521
催化剂组成及性质
编号 HC-1 HC-2 HC-3 HC-4
WO<sub>3</sub>,wt% 22.52 23.52 21.94 23.15
NiO,wt% 5.71 5.98 5.84 5.83
孔体积,mL/g 0.42 0.45 0.41 0.44
比表面积,m<sup>2</sup>/g 429 386 425 433
续表2
载体组成及性质
编号 DZS-1 DZS-2 DZS-3
组成
改性Y型分子筛,wt% 30.0 30.0 30.0
无定形硅铝,wt% 15.0 15.0 15.0
大孔氧化铝,wt% 35.0 35.0 35.0
粘合剂,wt% 余量 余量 余量
性质
孔体积,mL/g 0.51 0.50 0.54
比表面积,m<sup>2</sup>/g 422 433 428
催化剂组成及性质
编号 DHC-1 DHC-2 DHC-3
WO<sub>3</sub>,wt% 22.49 22.50 22.56
NiO,wt% 5.81 5.78 5.89
孔体积,mL/g 0.30 0.30 0.27
比表面积,m<sup>2</sup>/g 322 335 305
表3 原料油主要性质
原料油名称 直馏柴油
密度(20℃),g/cm<sup>3</sup> 0.8479
馏程.℃
IBP/10%/30%/50% 235/260/281/195
70%/90%/95%/EBP 310/336/352/358
硫,wt% 0.78
氮,mg/g 346
闪点,℃ 105
凝点,℃ -12
冷滤点,℃ -4
冰点,℃ -0.5
烟点,mm
芳烃,vol% 28.6
粘度(20℃),mm<sup>2</sup>/s 6.791
质谱组成,%
总链烷烃 46.7
总环烷烃 31.5
总芳烃 21.8
表4 对比评价结果
催化剂 HC-1 HC-2 HC-3 HC-4
原料油 直馏柴油 直馏柴油 直馏柴油 直馏柴油
操作条件
液时体积空速,h<sup>-1</sup> 1.0 1.0 1.0 1.0
氢油体积比 500:1 500:1 500:1 500:1
反应总压,MPa 8.0 8.0 8.0 8.0
反应温度,℃ 365 377 373 375
产品收率与性质
重石脑油
收率,wt% 12.5 13.2 15.6 17.1
芳潜,wt% 38.6 40.3 37.6 36.8
喷气燃料(130~282℃)
收率,wt% 53.5 52.3 51.8 56.8
烟点,mm 25.5 26.1 26.2 26.7
芳烃,v% 6.8 6.0 5.6 5.1
柴油
收率,wt% 32.0 32.6 30.8 24.6
十六烷值 61.3 62.5 63.4 63.8
液收,wt% 98.0 98.1 98.2 98.5
续表4
催化剂 DHC-1 DHC-2 DHC-3
原料油 直馏柴油 直馏柴油 直馏柴油
操作条件
液时体积空速,h<sup>-1</sup> 1.0 1.0 1.0
氢油体积比 500:1 500:1 500:1
反应总压,MPa 8.0 8.0 8.0
反应温度,℃ 385 388 392
产品收率与性质
重石脑油
收率,wt% 18.5 20.1 22.3
芳潜,wt% 35.6 34.3 33.8
喷气燃料(130~282℃)
收率,wt% 45.9 44.3 42.0
烟点,mm 21 21 20.5
芳烃,v% 15.5 16.6 14.2
柴油
收率,wt% 33.2 32.1 31.6
十六烷值 60.1 59.6 60.3
液收,wt% 97.6 96.5 95.9
续表4(催化剂稳定性试验)
催化剂 HC-1 HC-1 DHC-1 DHC-1
原料油 直馏柴油 直馏柴油 直馏柴油 直馏柴油
操作条件
留样时间,h 400 4000 400 400
液时体积空速,h<sup>-1</sup> 1.0 1.0 1.0 1.0
氢油体积比 500:1 500:1 500:1 500:1
反应总压,MPa 8.0 8.0 8.0 8.0
反应温度,℃ 365 366 385 391
产品收率与性质
重石脑油
收率,wt% 12.5 12.6 18.5 19.6
芳潜,wt% 38.6 38.5 35.6 35.3
喷气燃料(130~282℃)
收率,wt% 53.5 53.8 45.9 44.2
烟点,mm 25.5 25.4 21 20
芳烃,v% 6.8 6.9 15.5 18.6
柴油
收率,wt% 32.0 31.8 33.2 32.9
十六烷值 61.3 61.0 60.1 59.3
液收,wt% 98.0 97.8 97.6 96.8
由表4的评价结果可以看出,采用本发明方法,喷气燃料收率、产品质量和催化剂寿命均优于对比例方法。

Claims (20)

1.一种加氢裂化方法,包括直馏柴油原料与加氢裂化催化剂接触进行加氢裂化反应,得到的加氢裂化产物经分离,得到重石脑油、柴油、航煤和加氢尾油;其中所用的加氢裂化催化剂,包括加氢活性金属组分和载体,载体包含改性Y型分子筛、无定形硅铝和氧化铝,其中所述的改性Y型分子筛,其性质如下:相对结晶度为110%~150%,SiO2/Al2O3摩尔比为55~100,晶胞参数为2.425~2.435nm,总孔体积为0.55~1.0mL/g,介孔孔体积占总孔体积的70%以上。
2.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的性质如下:总孔体积为0.6~1.0mL/g,介孔孔体积占总孔体积的80%~95%。
3.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的晶粒度为1.0~2.5μm。
4.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的晶粒度为1.2~1.8μm。
5.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的介孔的孔直径为2nm~10nm。
6.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的比表面积为650m2/g~1000m2/g。
7.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛的比表面积为750m2/g~1000m2/g。
8.按照权利要求1所述的方法,其特征在于: 所述改性Y型分子筛的红外总酸量为0.1~0.5mmol/g。
9.按照权利要求1所述的方法,其特征在于:所述改性Y型分子筛中,Na2O的重量含量为0.15wt%以下。
10.按照权利要求1所述的方法,其特征在于:所述加氢裂化催化剂的性质如下:比表面积为250~450m2/g,孔体积为0.30~0.50mL/g。
11.按照权利要求1所述的方法,其特征在于:所述的加氢活性金属为第VIB族和第VIII族的金属,第VIB族金属为钼和/或钨,第VIII族的金属为钴和/或镍;以催化剂的重量为基准,第VIB族金属以氧化物计的含量为10.0%~30.0%,第VIII族金属以氧化物计的含量为4.0%~8.0%,载体的含量为62.0%~86.0%。
12.按照权利要求1或11所述的方法,其特征在于:所述的加氢裂化催化剂载体,以载体的重量为基准,改性Y型分子筛的含量为10%~50%,无定形硅铝的含量为5%~30%,氧化铝的含量为20%~85%。
13.按照权利要求1或11所述的方法,其特征在于:所述的加氢裂化催化剂载体,以载体的重量为基准,:改性Y型分子筛的含量为15%~45%,无定形硅铝的含量为10%~25%,氧化铝的含量为30%~75%。
14.按照权利要求1所述的方法,其特征在于:所述的无定形硅铝中,SiO2的重量含量为10%~60%,无定形硅铝的性质如下:孔体积为0.6~1.1mL/g,比表面积为300~500m2/g。
15.按照权利要求1所述的方法,其特征在于:所述的无定形硅铝中,SiO2的重量含量为20%~55%。
16.按照权利要求1所述的方法,其特征在于:所述的无定形硅铝的性质如下:孔体积为0.8~1.0mL/g,比表面积为350~500m2/g。
17.按照权利要求1所述的方法,其特征在于:所述直馏柴油的性质如下:初馏点为230~250℃,干点为350~370℃,硫含量0.5~1.0wt%,氮含量100~500μg/g。
18.按照权利要求1所述的方法,其特征在于所采用的加氢裂化操作条件如下:反应总压为5.0~10.0MPa,液时体积空速为0.5~2.0h-1,氢油体积比为400:1~1000:1,反应温度为350~435℃。
19.按照权利要求1所述的方法,其特征在于所述加氢裂化方法采用一段串联工艺流程,在加氢裂化催化剂之前装填加氢精制催化剂,其中加氢精制催化剂是采用氧化铝基载体,以第VIB族和第VIII族金属为加氢活性金属组分,第VIB族金属为钼和/或钨,第VIII族的金属为钴和/或镍,以催化剂的重量为基准,第VIB族金属以氧化物计的含量为15.0%~30.0%,第VIII族金属以氧化物计的含量为4.0%~8.0%。
20.按照权利要求19所述的方法,其特征在于:所述加氢精制的操作条件如下:反应总压为5.0~10.0MPa,液时体积空速为0.5~2.0h-1,氢油体积比为400:1~1000:1,反应温度为350~435℃。
CN201610289569.3A 2016-05-05 2016-05-05 一种加氢裂化方法 Active CN107345155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610289569.3A CN107345155B (zh) 2016-05-05 2016-05-05 一种加氢裂化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610289569.3A CN107345155B (zh) 2016-05-05 2016-05-05 一种加氢裂化方法

Publications (2)

Publication Number Publication Date
CN107345155A CN107345155A (zh) 2017-11-14
CN107345155B true CN107345155B (zh) 2019-03-19

Family

ID=60253109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610289569.3A Active CN107345155B (zh) 2016-05-05 2016-05-05 一种加氢裂化方法

Country Status (1)

Country Link
CN (1) CN107345155B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811819B (zh) 2020-10-22 2023-08-11 大陸商中國石油化工科技開發有限公司 多相態組合的反應系統和反應方法
CN112844450A (zh) * 2021-01-25 2021-05-28 中国石油天然气股份有限公司 加氢改质催化剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253990A (zh) * 1998-11-13 2000-05-24 中国石油化工集团公司 一种单段加氢裂化过程
CN1493665A (zh) * 2002-11-02 2004-05-05 中国石油化工股份有限公司 生产低硫柴油的中压加氢裂化和催化裂化联合工艺
CN1508226A (zh) * 2002-12-19 2004-06-30 中国石油化工股份有限公司 一种中油型加氢裂化催化剂
CN101173186A (zh) * 2006-11-01 2008-05-07 中国石油化工股份有限公司 一种中压加氢裂化方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049279A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 含有小晶粒y型分子筛分散材料的加氢裂化催化剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932454B2 (en) * 2008-09-18 2015-01-13 Exxonmobile Research And Engineering Co. Mesoporous Y hydrocracking catalyst and associated hydrocracking processes
FR2952380B1 (fr) * 2009-11-10 2012-05-18 Inst Francais Du Petrole Procede de production de distillat moyen a partir de cires fischer tropsch mettant en oeuvre un catalyseur a base de zeolithe modifiee par un traitement basique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1253990A (zh) * 1998-11-13 2000-05-24 中国石油化工集团公司 一种单段加氢裂化过程
CN1493665A (zh) * 2002-11-02 2004-05-05 中国石油化工股份有限公司 生产低硫柴油的中压加氢裂化和催化裂化联合工艺
CN1508226A (zh) * 2002-12-19 2004-06-30 中国石油化工股份有限公司 一种中油型加氢裂化催化剂
CN101173186A (zh) * 2006-11-01 2008-05-07 中国石油化工股份有限公司 一种中压加氢裂化方法
CN101450319A (zh) * 2007-12-04 2009-06-10 中国石油化工股份有限公司 一种中油型加氢裂化催化剂及其制备方法
CN102049279A (zh) * 2009-10-27 2011-05-11 中国石油化工股份有限公司 含有小晶粒y型分子筛分散材料的加氢裂化催化剂

Also Published As

Publication number Publication date
CN107345155A (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
CN103100400B (zh) 一种加氢裂化催化剂的制备方法
CN107345161B (zh) 一种煤焦油的加氢裂化方法
CN101343561B (zh) 一种加氢裂化催化剂及其制备方法
CN107344720B (zh) 一种y型分子筛及其制备方法
CN107345155B (zh) 一种加氢裂化方法
CN105712373B (zh) 一种改性y型分子筛及其制备方法
CN107344106B (zh) 一种加氢裂化催化剂及其制备方法
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
CN103191774A (zh) 制备加氢裂化催化剂的方法
CN101343559A (zh) 加氢裂化催化剂及其制备方法
CN107344102B (zh) 一种加氢裂化催化剂及其制法
CN107344105B (zh) 加氢裂化催化剂及其制备方法
CN107345156B (zh) 一种加氢裂化的方法
CN107345153A (zh) 一种生产低凝柴油的加氢裂化方法
CN105713657A (zh) 一种加氢裂化的方法
CN105709820A (zh) 一种加氢裂化催化剂及其制备方法
CN110404581A (zh) 一种加氢裂化催化剂的制备方法、劣/重柴油加氢裂化的方法
CN107344117B (zh) 加氢裂化催化剂及其制法
CN107345159B (zh) 一种生产低凝柴油的加氢裂化方法
CN107344120B (zh) 加氢裂化催化剂载体及其制法
CN107345160B (zh) 一种润滑油基础油的生产方法
CN107344119B (zh) 一种加氢裂化催化剂载体及其制备方法
CN103301873B (zh) 催化裂化催化剂的制备方法
CN107344121B (zh) 一种加氢改质催化剂载体及其制备方法
CN107344107B (zh) 一种加氢改质催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant