WO2020017467A1 - 固体電池用正極、固体電池用正極の製造方法、および固体電池 - Google Patents

固体電池用正極、固体電池用正極の製造方法、および固体電池 Download PDF

Info

Publication number
WO2020017467A1
WO2020017467A1 PCT/JP2019/027767 JP2019027767W WO2020017467A1 WO 2020017467 A1 WO2020017467 A1 WO 2020017467A1 JP 2019027767 W JP2019027767 W JP 2019027767W WO 2020017467 A1 WO2020017467 A1 WO 2020017467A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
solid
electrode active
current collector
Prior art date
Application number
PCT/JP2019/027767
Other languages
English (en)
French (fr)
Inventor
大田 正弘
拓哉 谷内
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2020531300A priority Critical patent/JP7046185B2/ja
Priority to US17/260,228 priority patent/US20210305630A1/en
Priority to CN201980047202.2A priority patent/CN112424975A/zh
Publication of WO2020017467A1 publication Critical patent/WO2020017467A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode for a solid battery, a method for producing a positive electrode for a solid battery, and a solid battery.
  • lithium ion secondary batteries have been widely used as secondary batteries having high energy density.
  • a lithium ion secondary battery has a structure in which a separator is present between a positive electrode and a negative electrode, and is filled with a liquid electrolyte (electrolyte solution).
  • a solid battery using an inorganic solid electrolyte instead of an organic liquid electrolyte has been proposed (see Patent Document 1).
  • a solid battery using a solid electrolyte can solve the problem of heat and can respond to a demand for higher capacity and higher voltage by lamination as compared with a battery using an electrolytic solution. In addition, it can contribute to downsizing.
  • the present invention has been made in view of the background art described above, and has as its object to suppress displacement of a lamination position generated in a lamination step in the production of a solid-state battery and cracks generated in a lamination press, and to achieve tab contact. It is an object of the present invention to provide a positive electrode for a solid battery, a method for producing the positive electrode for a solid battery, and a solid battery capable of suppressing a short circuit caused by the above.
  • the present invention is a positive electrode for a solid battery including a positive electrode current collector and a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector, wherein the positive electrode current collector is At least one side of the outer peripheral portion of the surface having the positive electrode active material layer has a positive electrode active material layer non-formed portion where the positive electrode active material layer is not formed, the positive electrode active material layer non-formed portion, and the positive electrode active material layer non-formed portion.
  • a positive electrode for a solid-state battery having a positive electrode current collector coating layer composed of an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte on an end face connected to a forming portion.
  • the thickness of the positive electrode current collector coating layer formed on the positive electrode current collector may be substantially the same as the thickness of the positive electrode active material layer.
  • the positive electrode for a solid state battery may have a positive electrode tab connected to the positive electrode current collector, and the positive electrode tab may have, at least in part, a positive electrode tab coating layer made of an insulating material.
  • Still another aspect of the present invention is a method for manufacturing a positive electrode for a solid battery including: a positive electrode current collector; and a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector.
  • Still another aspect of the present invention is a positive electrode for a solid battery including a positive electrode current collector, a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector, a negative electrode current collector, and the negative electrode.
  • a negative electrode active material layer including a negative electrode active material formed on a current collector, and a negative electrode for a solid battery including: a solid electrolyte layer disposed between the positive electrode for a solid battery and the negative electrode for a solid battery; Wherein the positive electrode for a solid state battery is the above-described positive electrode for a solid state battery.
  • the area of the positive electrode active material layer is preferably equal to or less than the area of the negative electrode active material layer.
  • the area of the positive electrode for a solid battery, the area of the negative electrode for a solid battery, and the area of the solid electrolyte layer may be substantially the same.
  • the negative electrode current collector has a negative electrode active material layer-free portion where the negative electrode active material layer is not formed on at least one side of an outer peripheral portion of a surface having the negative electrode active material layer, and the negative electrode active material layer-free portion. And an end face connected to the portion where the negative electrode active material layer is not formed, a negative electrode current collector coating layer comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte. Is also good.
  • the thickness of the negative electrode current collector coating layer may be substantially the same as the thickness of the negative electrode active material layer.
  • FIG. 1 is a sectional view of a solid-state battery according to one embodiment of the present invention.
  • the solid-state battery positive electrode of the present invention includes a positive electrode current collector, a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector, and a positive electrode current collector coating layer.
  • the positive electrode current collector has a positive electrode active material layer non-formed portion where the positive electrode active material layer is not formed on at least one side of the outer peripheral portion of the surface having the positive electrode active material layer.
  • a positive electrode current collector coating layer including an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte is provided on an end face of a side having a portion where the positive electrode active material layer is not formed.
  • FIG. 1 shows a positive electrode for a solid-state battery according to an embodiment of the present invention.
  • FIG. 1A is a top view of the positive electrode 20 for a solid-state battery
  • FIG. 1B is a perspective view.
  • a positive electrode active material layer 21 is formed on a positive electrode current collector 25.
  • the positive electrode active material layer non-formed portion 26 where the positive electrode active material layer is not formed exists on all sides (all four sides) of the outer periphery of the positive electrode active material layer 21.
  • the body 25 has a positive electrode current collector coating layer 24 on all the positive electrode active material layer non-formed portions 26 and all end faces connected to the positive electrode active material layer non-formed portions 26.
  • the positive electrode 20 for a solid state battery includes a positive electrode tab 22 connected to a positive electrode current collector 25.
  • the positive electrode for a solid battery of the present invention has a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector.
  • the positive electrode active material applicable to the present invention is not particularly limited, and a material known as a positive electrode active material for a solid battery can be used.
  • the composition is not particularly limited, and may include a solid electrolyte, a conductive additive, a binder, and the like.
  • Examples of the positive electrode active material contained in the positive electrode active material layer of the present invention include transition metal chalcogenides such as titanium disulfide, molybdenum disulfide, and niobium selenide, lithium nickel oxide (LiNiO 2 ), and lithium manganate (LiMnO 2). , LiMn 2 O 4 ) and lithium cobaltate (LiCoO 2 ).
  • transition metal chalcogenides such as titanium disulfide, molybdenum disulfide, and niobium selenide
  • LiNiO 2 lithium nickel oxide
  • LiMnO 2 lithium manganate
  • LiMn 2 O 4 lithium cobaltate
  • the current collector that can be applied to the positive electrode for a solid battery of the present invention is not particularly limited, and a known current collector that can be used for a positive electrode of a solid battery can be used.
  • a metal foil such as a SUS foil and an Al foil can be used.
  • a foamed metal, a conductive carbon sheet (for example, a graphite sheet or a CNT sheet), and the like are also included.
  • the positive electrode current collector in the positive electrode for a solid battery of the present invention has a positive electrode active material layer-free portion where the positive electrode active material layer is not formed on at least one side of the outer peripheral portion of the surface having the positive electrode active material layer. That is, the positive electrode active material layer does not exist in the portion where the positive electrode active material layer is not formed, and the positive electrode current collector is present as it is.
  • the solid battery In the solid battery, the portion where the positive electrode active material layer was not formed, since the positive electrode active material layer was not present and the positive electrode current collector was exposed as it was, in the solid battery manufacturing process, the solid electrolyte and the negative electrode for the solid battery were laminated. In this case, a region where a gap is formed at a height corresponding to the thickness of the positive electrode active material layer is obtained. Therefore, when the laminate is pressed after being formed, it is an area that induces cracks.
  • the positive electrode for a solid-state battery according to the present invention may include an insulating layer formed of an insulating material, and / or an end face of the positive electrode active material layer-free portion and the positive electrode current collector connected to the positive electrode active material layer-free portion. It has a positive electrode current collector coating layer composed of a solid electrolyte layer formed of a solid electrolyte.
  • the end surface of the positive electrode current collector is, as shown in FIG. 1B, a surface that becomes thicker in the positive electrode 20 for a solid battery, that is, a side surface in a stacking direction when a solid battery is formed. is there.
  • the positive electrode active material layer 21 has a rectangular shape, and the positive electrode active material layer non-formed portion 26 has the positive electrode active material layer 21 on the positive electrode current collector 25. It is present on all four sides of the outer periphery of the surface, and has a positive electrode active material layer-free portion 26 on all four sides and a positive electrode current collector coating layer 24 on an end face connected to the positive electrode active material layer-free portion.
  • the positive electrode for a solid battery of the present invention has a positive electrode current collector coating layer on a portion of the positive electrode current collector where the positive electrode active material layer is not formed, so that the solid battery positive electrode can be used for a solid electrolyte and a solid battery in a solid battery manufacturing process.
  • the positive electrode current collector coating layer supports the void. For this reason, generation of cracks can be suppressed.
  • the positive electrode for a solid battery of the present invention is characterized in that it has a positive electrode current collector coating layer not only on the positive electrode active material layer non-formed portion, but also on the end face connected to the positive electrode active material layer non-formed portion. .
  • the negative electrode connected to the negative electrode for a solid battery at the time of manufacturing a solid battery and at the time of using a solid battery Even when the tab contacts the positive electrode for a solid-state battery, short-circuiting can be prevented.
  • the positive electrode active material layer-unformed portion not only the positive electrode active material layer-unformed portion but also the end face connected to the positive electrode active material layer-unformed portion has a positive electrode current collector coating layer at the same time, so that the outer shape becomes clear, and the lamination generated during manufacturing The displacement can be suppressed.
  • the positive electrode current collector coating layer includes an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte. In the case of using both an insulating layer and a solid electrolyte layer, it is preferable to form a solid electrolyte layer outside the insulating layer after forming the insulating layer.
  • the insulating material constituting the insulating layer serving as the positive electrode current collector coating layer is not particularly limited.
  • resins having insulating properties can be mentioned, and examples thereof include thermoplastic insulating resins such as polyethylene, polypropylene, polystyrene, and ABS resins, and thermosetting insulating resins such as phenol resins, epoxy resins, polyurethanes, and alkyd resins.
  • the solid electrolyte constituting the solid electrolyte layer serving as the positive electrode current collector coating layer is not particularly limited, and an electrolyte forming a solid battery can be applied.
  • a sulfide-based inorganic solid electrolyte, a NASICON-type oxide-based inorganic solid electrolyte, a perovskite-type oxide inorganic solid-electrolyte-modified solid electrolyte, and the like can be given.
  • the thickness of the positive electrode current collector coating layer formed on the positive electrode current collector is preferably substantially the same as the thickness of the positive electrode active material layer. If the thickness of the positive electrode current collector coating layer is substantially the same as the thickness of the positive electrode active material layer, the height of the void of the positive electrode active material layer unformed portion existing at a height corresponding to the thickness of the positive electrode active material layer It is almost the same. For this reason, it is possible to minimize the flatness tolerance and the parallelism tolerance of the obtained positive electrode for a solid-state battery, and as a result, the volume when multilayered is reduced, and higher stacking is possible. Therefore, it can contribute to higher energy. Further, since the geometrical tolerance of the laminated body is small, the pressure can be uniformly applied in the laminating press at the time of manufacturing, and the generation of cracks can be suppressed.
  • the solid battery positive electrode of the present invention preferably has a positive electrode tab connected to the positive electrode current collector.
  • the positive electrode tab protrudes from an end of the positive electrode current collector, and serves to connect the positive electrode current collector to the positive electrode terminal.
  • the material is not particularly limited, for example, by using the same material as the positive electrode current collector, welding is facilitated and contact resistance can be reduced.
  • the positive electrode tab material include aluminum and stainless steel, and a surface treatment such as nickel plating may be performed as necessary.
  • the positive electrode tab has a positive electrode tab covering layer made of an insulating material in at least a part thereof.
  • FIG. 2 is a sectional view of a solid-state battery according to an embodiment of the present invention, which will be described later.
  • the solid-state battery positive electrode 20 (shown in FIG. 1), which is one embodiment of the solid-state battery positive electrode of the present invention, constitutes a part of a laminate to be the solid-state battery 100.
  • the positive electrode tab 22 of the positive electrode 20 for a solid battery is connected to the positive electrode current collector 25, and the outer periphery of the positive electrode tab 22 is provided near the connection portion, that is, near the end of the positive electrode current collector.
  • the positive electrode tab coating layer 23 is disposed so as to cover the positive electrode.
  • the positive electrode tab has the positive electrode tab covering layer made of an insulating material, even when the positive electrode tab and the negative electrode tab or the end portion of the negative electrode current collector are in contact with each other at the time of manufacturing the solid battery and at the time of using the solid battery, for example. Thus, it is possible to prevent a short circuit.
  • the method for producing a positive electrode for a solid battery of the present invention includes a positive electrode current collector, a positive electrode active material layer forming step of forming a positive electrode active material layer containing a positive electrode active material, and no positive electrode active material layer of the positive electrode current collector.
  • Forming a positive electrode current collector coating layer comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte in the region.
  • the positive electrode active material layer forming step is a step of forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector.
  • the method of forming the positive electrode active material layer is not particularly limited. For example, a method of preparing a positive electrode mixture containing a positive electrode active material, applying the positive electrode mixture on a positive electrode current collector, and drying the mixture. No.
  • the method of applying is not particularly limited, and examples thereof include a doctor blade method, spray application, and screen printing.
  • the positive electrode active material layer forming step it is preferable to perform intermittent coating in which coated portions to be coated with the positive electrode mixture and uncoated portions not to be coated are alternately provided on the positive electrode current collector.
  • intermittent coating a portion where the positive electrode active material layer is not formed can be formed between adjacent positive electrode active material layers.
  • rolling may be performed after applying and drying the positive electrode mixture layer to be the positive electrode active material layer.
  • the filling rate of the positive electrode active material can be improved, and a positive electrode for a solid battery having a large capacity can be obtained.
  • a positive electrode current collector comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte is formed in a region of the positive electrode current collector not having the positive electrode active material layer. This is a step of forming an electric conductor coating layer.
  • the method of forming the insulating layer and / or the solid electrolyte layer is not particularly limited, and can be appropriately selected according to the type of the insulating material and the solid electrolyte to be used.
  • the positive electrode active material layer is formed by intermittent coating, a material for forming an insulating layer and / or a solid electrolyte layer is applied to a portion where the positive electrode active material layer is not formed to form a positive electrode current collector.
  • the method of forming a body covering layer is mentioned.
  • a method in which a material for forming an insulating layer and / or a solid electrolyte layer is coated on the surface of a positive electrode current collector by a dry method or a wet method in a state where a portion where the positive electrode current collector coating layer is not formed is masked.
  • a dry method or a wet method in a state where a portion where the positive electrode current collector coating layer is not formed is masked.
  • the insulating layer and / or the solid electrolyte layer can be applied by spraying or the like.
  • the method for manufacturing a positive electrode for a solid battery of the present invention includes a punching step of individually punching a laminate having a positive electrode active material layer and a positive electrode current collector coating layer formed on a positive electrode current collector to form an electrode. It may be.
  • the above-described positive electrode current collector coating layer forming step may be performed on an end surface of the positive electrode current collector formed by the punching step.
  • a solid battery of the present invention includes a positive electrode for a solid battery including a positive electrode current collector, a positive electrode active material layer including a positive electrode active material formed on the positive electrode current collector, a negative electrode current collector, and a negative electrode current collector.
  • the positive electrode for a solid battery is the above-described positive electrode for a solid battery of the present invention.
  • FIG. 2 is a cross-sectional view of a solid-state battery according to an embodiment of the present invention.
  • the solid-state battery 100 shown in FIG. 2 has a structure in which a solid-state battery negative electrode 10, a solid-state battery positive electrode 20, and a solid electrolyte layer 30 interposed therebetween are repeatedly laminated.
  • a support plate 41 is arranged outside the negative electrode 10 for a solid battery, which is arranged as an outer layer of the laminate, via an insulating film 42.
  • the negative electrode active material layers 11 are laminated on both surfaces of the negative electrode current collector.
  • the negative electrode tab is connected to the negative electrode current collector (referred to as 12 in FIG. 2), and the outer periphery of the negative electrode tab is covered near the connection portion, that is, near the end of the negative electrode current collector. And a negative electrode tab covering layer 13.
  • the positive electrode 20 for a solid battery constituting the solid battery 100 has a positive electrode active material layer 21 laminated on both surfaces of a positive electrode current collector 25.
  • the positive electrode tab 22 is connected to the positive electrode current collector 25, and the positive electrode tab coating layer 23 is arranged near the connection portion, that is, near the end of the positive electrode current collector 25 so as to cover the outer periphery of the positive electrode tab 22. Have been.
  • the area of the positive electrode active material layer is preferably equal to or less than the area of the negative electrode active material layer. If the area of the negative electrode active material layer is smaller than the area of the positive electrode active material layer, the risk of Li electrodeposition at the end is increased, which is not preferable. Further, by making the area of the positive electrode active material layer smaller than the area of the negative electrode active material layer, the durability of the obtained solid battery can be improved.
  • the positive electrode for a solid battery of the present invention has a positive electrode current collector coating layer on the outer periphery of the positive electrode active material layer, and when the area of the positive electrode active material layer is smaller than the area of the negative electrode active material layer, thus, the effects of the present invention can be more significantly exerted.
  • the area of the solid battery positive electrode, the area of the solid battery negative electrode, and the area of the solid electrolyte layer are substantially the same.
  • At least the positive electrode for a solid battery includes a positive electrode current collector coating comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte on the outer periphery and the end face of the positive electrode current collector.
  • a positive electrode current collector coating comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte on the outer periphery and the end face of the positive electrode current collector.
  • the solid-state battery negative electrode constituting the solid-state battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector and containing a negative electrode active material.
  • the negative electrode active material applicable to the solid battery negative electrode constituting the solid battery of the present invention is not particularly limited, and a material known as a negative electrode active material for a solid battery can be used.
  • the composition is not particularly limited, and may include a solid electrolyte, a conductive additive, a binder, and the like.
  • Examples of the negative electrode active material contained in the negative electrode active material layer of the present invention include lithium metal, lithium alloys such as Li-Al alloy and Li-In alloy, lithium titanate such as Li 4 Ti 5 O 12 , carbon fiber and the like.
  • Examples include carbon materials such as graphite.
  • the current collector applicable to the solid-state battery negative electrode constituting the solid-state battery of the invention is not particularly limited, and a known current collector that can be used for a solid-state battery negative electrode can be used.
  • a metal foil such as a SUS foil and a Cu foil can be used.
  • the negative electrode current collector in the solid-state battery negative electrode constituting the solid-state battery of the present invention has a negative electrode active material layer-free portion where the negative electrode active material layer is not formed on at least one side of the outer peripheral portion of the surface having the negative electrode active material layer.
  • a negative electrode current collector comprising an insulating layer formed of an insulating material and / or a solid electrolyte layer formed of a solid electrolyte on an end surface connected to the portion where the negative electrode active material layer is not formed and the portion where the negative electrode active material layer is not formed. It is preferable to have a body covering layer.
  • the negative electrode current collector coating layer By arranging the negative electrode current collector coating layer not only on the positive electrode for a solid battery but also on the negative electrode for a solid battery, during lamination with the solid electrolyte and the positive electrode for the solid battery during the solid battery manufacturing process, the negative electrode active material layer
  • the negative electrode current collector coating layer can be present around the outer periphery of the void where the negative electrode active material layer is not formed at a height corresponding to the thickness. Therefore, in the pressing step at the time of manufacturing the solid state battery, the gap on the negative electrode side is supported by the negative electrode current collector coating layer, and the occurrence of cracks can be further suppressed.
  • the solid-state battery negative electrode has not only the negative electrode active material layer non-formed part but also the end face connected to the negative electrode active material layer non-formed part, and at the same time, the negative electrode current collector coating layer, When a solid battery is used, a short circuit can be prevented even when the positive electrode tab connected to the solid battery positive electrode is in contact with the solid battery negative electrode.
  • the negative electrode for a solid battery has a negative electrode current collector coating layer, so that the outer shape of the negative electrode for a solid battery becomes clear, and it is possible to further suppress the displacement of the lamination position that occurs during manufacturing. .
  • the negative electrode active material layer-free portion and the negative electrode current collector coating layer may have the same configuration as the positive electrode active material layer-free portion and the positive electrode current collector coating layer described above.
  • the thickness of the negative electrode current collector coating layer is preferably substantially the same as the thickness of the negative electrode active material layer. If the thickness of the negative electrode current collector coating layer is substantially the same as the thickness of the negative electrode active material layer, the height of the void of the negative electrode active material layer unformed portion existing at a height corresponding to the thickness of the negative electrode active material layer It is almost the same. Therefore, it is possible to minimize the flatness tolerance and the parallelism tolerance of the obtained positive electrode for a solid-state battery, and as a result, the volume when the multilayer is formed is reduced, which can contribute to higher energy. Further, since the geometrical tolerance of the laminated body is small, the pressure can be uniformly applied in the laminating press at the time of manufacturing, and the generation of cracks can be suppressed.
  • Solid electrolyte layer The thickness, shape, and the like of the solid electrolyte layer constituting the solid battery of the present invention are not particularly limited as long as ion conduction between the positive electrode for a solid battery and the negative electrode for a solid battery is possible. Also, the manufacturing method is not particularly limited.
  • the type of the solid electrolyte constituting the solid electrolyte layer is not particularly limited.
  • a sulfide-based inorganic solid electrolyte, a NASICON-type oxide-based inorganic solid electrolyte, a perovskite-type oxide inorganic solid-electrolyte-modified solid electrolyte, and the like can be given.
  • the solid electrolyte constituting the solid battery of the present invention contains a binder and the like as necessary.
  • the composition ratio of each substance contained in the solid electrolyte is not particularly limited as long as the battery can operate properly.
  • the solid state battery of the present invention can be modularized and used for various devices.
  • the solid state battery of the present invention can be suitably used as a power source for, for example, electric vehicles and hybrid vehicles as well as portable devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

固体電池製造時の積層工程で発生する積層位置ずれ、および積層プレスの際に発生するクラックを抑制するとともに、タブ接触による短絡を抑制できる固体電池用正極、固体電池用正極の製造方法、および固体電池を提供する。 電極層を構成する集電体において、活物質を含む活物質層の外側のみならず、集電体の端面にも同時に被覆層を設ける。具体的には、正極集電体の正極活物質層を有する面の外周部の少なくとも一辺を、正極活物質層が形成されない正極活物質層未形成部とし、正極集電体の正極活物質層未形成部、および正極集電体の正極活物質層未形成部を有する辺の端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を配置する。

Description

固体電池用正極、固体電池用正極の製造方法、および固体電池
 本発明は、固体電池用正極、固体電池用正極の製造方法、および固体電池に関する。
 従来、高エネルギー密度を有する二次電池として、リチウムイオン二次電池が幅広く普及している。リチウムイオン二次電池は、正極と負極との間にセパレータを存在させ、液体の電解質(電解液)が充填された構造を有する。
 リチウムイオン二次電池の電解液は、通常、可燃性の有機溶媒であるため、特に、熱に対する安全性が問題となる場合があった。そこで、有機系の液体の電解質に代えて、無機系の固体の電解質を用いた固体電池が提案されている(特許文献1参照)。固体電解質による固体電池は、電解液を用いる電池と比較して、熱の問題を解消するとともに、積層により高容量化や高電圧化の要請に対応することができる。また、コンパクト化にも寄与することができる。
 しかしながら、固体電池をさらに活用促進するためには、未だ、様々な改良が必要である。改良が必要な要素としては、例えば、製造時の積層工程で発生する積層位置ずれ、積層プレスの際に発生するクラック、タブ接触による短絡等が挙げられる。
 これらの要請に対して、正極層、負極層、電解質層の面積を特定の関係とし、かつ、正極層と負極層のいずれかに絶縁部材を配置して、これらの外径を一致させる方法が提案されている(特許文献2参照)。
 しかしながら、特許文献2に記載の方法では、タブ接触による短絡リスクについては未だ解消しておらず、さらなる改善が望まれていた。
特開2000-106154号公報 特開2015-125893号公報
 本発明は上記の背景技術に鑑みてなされたものであり、その目的は、固体電池製造時の積層工程で発生する積層位置ずれ、および積層プレスの際に発生するクラックを抑制するとともに、タブ接触による短絡を抑制できる固体電池用正極、固体電池用正極の製造方法、および固体電池を提供することにある。
 本発明者らは、上記課題のすべてを同時に解決するにあたり、固体電池の積層体において絶縁層を配置する場所について鋭意検討した。その結果、電極層を構成する集電体において、活物質を含む活物質層の外側のみならず、集電体の端面にも同時に被覆層を設けることで、製造時の積層工程で発生する積層位置ずれ、および積層プレスの際に発生するクラックを抑制するとともに、タブ接触による短絡を抑制できることを見出し、本発明を完成させるに至った。
 すなわち本発明は、正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極であって、前記正極集電体は、前記正極活物質層を有する面の外周部の少なくとも一辺に、前記正極活物質層が形成されない正極活物質層未形成部を有し、前記正極活物質層未形成部、および前記正極活物質層未形成部に連結する端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を有する、固体電池用正極である。
 前記正極集電体上に形成される前記正極集電体被覆層の厚さは、前記正極活物質層の厚さと略同一であってもよい。
 前記固体電池用正極は、前記正極集電体に連結する正極タブを有し、前記正極タブは、少なくとも1部に、絶縁性材料からなる正極タブ被覆層を有していてもよい。
 また別の本発明は、正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極の製造方法であって、前記正極集電体に、正極活物質を含む正極活物質層を形成する正極活物質層形成工程と、前記正極集電体の前記正極活物質層を有しない領域に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を形成する正極集電体被覆層形成工程と、を含む、固体電池用正極の製造方法である。
 また別の本発明は、正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極と、負極集電体と、前記負極集電体上に形成された負極活物質を含む負極活物質層と、を含む固体電池用負極と、前記固体電池用正極と前記固体電池用負極との間に配置された固体電解質層と、を備える固体電池であり、前記固体電池用正極は、上記の固体電池用正極である、固体電池である。
 前記正極活物質層の面積は、前記負極活物質層の面積以下であることが望ましい。
 前記固体電池用正極の面積と、前記固体電池用負極の面積と、前記固体電解質層の面積とは、略同一であってもよい。
 前記負極集電体は、前記負極活物質層を有する面の外周部の少なくとも一辺に、前記負極活物質層が形成されない負極活物質層未形成部を有し、前記負極活物質層未形成部、および前記負極活物質層未形成部に連結する端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる負極集電体被覆層を有していてもよい。
 前記負極集電体被覆層の厚さは、前記負極活物質層の厚さと略同一であってもよい。
 本発明のによれば、固体電池製造時の積層工程で発生する積層位置ずれ、および積層プレスの際に発生するクラックを抑制するとともに、タブ接触による短絡を抑制できる固体電池を実現することができる。
本発明の一実施形態に係る固体電池用正極を示す図である。 本発明の一実施形態に係る固体電池の断面図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。たたし、以下に示す実施形態は、本発明を例示するものであって、本発明は下記に限定されるものではない。
 <固体電池用正極>
 本発明の固体電池用正極は、正極集電体と、正極集電体上に形成された正極活物質を含む正極活物質層と、正極集電体被覆層と、を含む。正極集電体は、正極活物質層を有する面の外周部の少なくとも一辺に、正極活物質層が形成されない正極活物質層未形成部を有しており、この正極活物質層未形成部、および正極活物質層未形成部を有する辺の端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を有する。
 図1に、本発明の一実施形態に係る固体電池用正極を示す。図1(a)は、固体電池用正極20の上面図、図1(b)は斜視図である。図1に示される一実施形態に係る固体電池用正極20は、正極集電体25上に、正極活物質層21が形成されている。正極集電体25には、正極活物質層21の外周の全ての辺(4辺全て)に、正極活物質層が形成されない正極活物質層未形成部26が存在しており、正極集電体25は、その全ての正極活物質層未形成部26および当該正極活物質層未形成部26に連結する全ての端面に、正極集電体被覆層24を有する。また、固体電池用正極20は、正極集電体25に連結する正極タブ22を備える。
 [正極活物質層]
 本発明の固体電池用正極は、正極集電体上に、正極活物質を含む正極活物質層を有する。本発明に適用できる正極活物質としては、特に限定されるものではなく、固体電池の正極活物質として公知の物質を適用することができる。その組成についても特に制限はなく、固体電解質、導電助剤や結着剤等を含んでいてもよい。
 本発明の正極活物質層に含まれる正極活物質としては、例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ、等の遷移金属カルコゲナイド、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO、LiMn)、コバルト酸リチウム(LiCoO)等の遷移金属酸化物等が挙げられる。
 [正極集電体]
 本発明の固体電池用正極に適用できる集電体は、特に限定されるものではなく、固体電池の正極に用いうる公知の集電体を適用することができる。例えば、SUS箔、Al箔等の金属箔が挙げられる。また、発泡金属や導電性カーボンシート(例えば、グラファイトシートやCNTシート)等も挙げられる。
 (正極活物質層未形成部)
 本発明の固体電池用正極における正極集電体は、上記の正極活物質層を有する面の外周部の少なくとも一辺に、正極活物質層が形成されない正極活物質層未形成部を有する。すなわち、正極活物質層未形成部には正極活物質層は存在せず、正極集電体がそのままの状態で存在する部分となる。
 固体電池において、正極活物質層未形成部は、正極活物質層が存在せず正極集電体がそのまま露出していることから、固体電池製造過程において、固体電解質および固体電池用負極と積層した際に、正極活物質層の厚みに相当する高さで空隙が生じる領域となる。したがって、積層体とした後にプレスする際に、クラックの発生を誘引する領域となっていた。
 [正極集電体被覆層]
 本発明の固体電池用正極は、上記の正極活物質層未形成部、および正極活物質層未形成部に連結する正極集電体の端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を有する。
 本発明において正極集電体の端面とは、図1(b)に示すように、固体電池用正極20において、厚みとなる面であり、すなわち、固体電池を形成する際の積層方向における側面である。
 図1に示される固体電池用正極20においては、正極活物質層21は矩形を有しており、正極活物質層未形成部26は、正極集電体25上の正極活物質層21を有する面の外周部の四辺全てに存在しており、四辺全ての正極活物質層未形成部26、および正極活物質層未形成部に連結する端面に、正極集電体被覆層24を有する。
 本発明の固体電池用正極は、正極集電体の正極活物質層未形成部に正極集電体被覆層を有することで、固体電池製造過程において、固体電池用正極を固体電解質および固体電池用負極と積層した後のプレス工程において、正極集電体被覆層が空隙の支えとなる。このため、クラックの発生を抑制することができる。
 また、本発明の固体電池用正極は、正極活物質層未形成部のみならず、正極活物質層未形成部に連結する端面にも同時に、正極集電体被覆層を有することを特徴とする。本発明においては、正極活物質層未形成部に連結する端面にも同時に正極集電体被覆層を有することにより、固体電池製造時および固体電池使用時等において、固体電池用負極に連結する負極タブが、固体電池用正極に接触した場合であっても、短絡を防止することが可能となる。
 また、正極活物質層未形成部のみならず、正極活物質層未形成部に連結する端面にも同時に、正極集電体被覆層を有することで、その外形が明確となり、製造時に発生する積層位置ずれを抑制することができる。
 (材料)
 正極集電体被覆層は、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる。絶縁層および固体電解質層の両者で構成する場合には、絶縁層を形成した後に、その外側に固体電解質層を形成することが好ましい。
 正極集電体被覆層となる絶縁層を構成する絶縁性材料は、特に限定されるものではない。例えば、絶縁性を有する樹脂を挙げることができ、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂等の熱可塑性絶縁樹脂、フェノール樹脂、エポキシ樹脂、ポリウレタン、アルキド樹脂等の熱硬化性絶縁樹脂等が例示できる。
 正極集電体被覆層となる固体電解質層を構成する固体電解質は、特に限定されるものではなく、固体電池を形成する電解質を適用することができる。例えば、硫化物系無機固体電解質、NASICON型酸化物系無機固体電解質、ペロブスカイト型酸化物無機固体電改質解質等を挙げることができる。本発明においては、固体電池を構成する際の固体電解質層に用いられる固体電解質と同一の物質とすることが好ましく、特に、硫化物系無機固体電解質であることが好ましい。
 (厚み)
 正極集電体上に形成される正極集電体被覆層の厚さは、正極活物質層の厚さと略同一であることが好ましい。正極集電体被覆層の厚さが、正極活物質層の厚さと略同一であれば、正極活物質層の厚みに相当する高さで存在する正極活物質層未形成部の空隙の高さと略同一となる。このため、得られる固体電池用正極の平面度公差および平行度公差を最小にすることが可能となり、その結果、多層化した際の体積が小さくなり、また、より高積層化が可能となることから、高エネルギー化に貢献することができる。また、積層体とした際の幾何公差が小さいことから、製造時の積層プレスにおいて圧力を均一にかけることが可能となる上、クラックの発生を抑制することができる。
 [正極タブ]
 本発明の固体電池用正極は、正極集電体に連結する正極タブを有することが好ましい。正極タブは、正極集電体の端部から突出し、正極集電体と正極端子とを接続する役割を果たす。その材料は、特に限定されるものではないが、例えば、正極集電体と同一材料とすることで、溶接が容易なり、接触抵抗を低減することができる。正極タブ材としては、アルミニウムやステンレス等が挙げられ、必要に応じてニッケルメッキ等の表面処理を施してもよい。
 (正極タブ被覆層)
 正極タブは、少なくとも1部に、絶縁性材料からなる正極タブ被覆層を有することが好ましい。
 図2は、後記する、本発明の一実施形態に係る固体電池の断面図である。図2に示される固体電池100においては、本発明の固体電池用正極の一実施形態である固体電池用正極20(図1に示す)は、固体電池100となる積層体の一部を構成している。図2に示されるように、固体電池用正極20の正極タブ22は、正極集電体25に連結し、その連結部付近、すなわち、正極集電体の端部付近に、正極タブ22の外周を被覆するように、正極タブ被覆層23が配置されている。
 正極タブが、絶縁性材料からなる正極タブ被覆層を有することにより、固体電池製造時および固体電池使用時等において、正極タブと負極タブもしくは負極集電体端部が接触した場合であっても、短絡を防止することが可能となる。
 <固体電池用正極の製造方法>
 本発明の固体電池用正極の製造方法は、正極集電体に、正極活物質を含む正極活物質層を形成する正極活物質層形成工程と、正極集電体の正極活物質層を有しない領域に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を形成する正極集電体被覆層形成工程と、を含む。
 [正極活物質層形成工程]
 正極活物質層形成工程は、正極集電体に、正極活物質を含む正極活物質層を形成する工程である。正極活物質層を形成する方法は、特に限定されるものではないが、例えば、正極活物質を含む正極合材を調製し、正極合材を正極集電体上に塗布し、乾燥させる方法が挙げられる。塗布する方法についても特に限定されるものではなく、例えば、ドクターブレード法、スプレー塗布、スクリーン印刷等が挙げられる。
 正極活物質層形成工程においては、正極集電体上に、正極合材を塗工する塗工部分と塗工しない未塗工部分とを交互に設ける、間欠塗工を実施することが好ましい。間欠塗工によって、隣り合った正極活物質層同士の間に、正極活物質層未形成部を形成することができる。
 また、本発明の正極活物質層形成工程は、正極活物質層となる正極合材層を塗布、乾燥の後に、圧延を実施してもよい。圧延により、正極活物質の充填率を向上させることができ、容量の大きい固体電池用正極を得ることができる。
 [正極集電体被覆層形成工程]
 正極集電体被覆層形成工程は、正極集電体の正極活物質層を有しない領域に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を形成する工程である。
 絶縁層および/または固体電解質層を形成する方法は特に限定されず、用いる絶縁性材料や固体電解質の種類等に応じて、適宜選択することができる。
 例えば、正極活物質層を間欠塗工によって形成した場合には、形成される正極活物質層未形成部に、絶縁層および/または固体電解質層を形成する材料を塗工して、正極集電体被覆層を形成する方法が挙げられる。
 あるいは、正極集電体被覆層を形成しない部分をマスキングした状態で、絶縁層および/または固体電解質層を形成する材料を、乾式法または湿式法で、正極集電体表面にコーティングする方法が挙げられる。絶縁層および/または固体電解質層を、スプレー等によって塗布することも可能である。
 [その他の工程]
 本発明の固体電池用正極の製造方法は、正極集電体上に形成された正極活物質層および正極集電体被覆層を有する積層体を、個別に打ち抜いて電極とする、打ち抜き工程を有していてもよい。
 また、本発明の固体電池用正極の製造方法においては、打ち抜き工程により形成される正極集電体の端面に、上記の正極集電体被覆層形成工程を実施してもよい。
 <固体電池>
 本発明の固体電池は、正極集電体と、正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極と、負極集電体と、負極集電体上に形成された負極活物質を含む負極活物質層と、を含む固体電池用負極と、固体電池用正極と固体電池用負極との間に配置された固体電解質層と、を備えており、固体電池用正極は、上記した本発明の固体電池用正極であることを特徴とする。
 本発明の一実施形態である固体電池の断面図を、図2に示す。図2に示される固体電池100においては、固体電池用負極10と、固体電池用正極20と、その間に配置される固体電解質層30と、が繰り返し積層された構造を有する。積層体の外側層として配置される固体電池用負極10の外側には、絶縁フィルム42を介して、サポートプレート41が配置されている。
 一実施形態である固体電池100を構成する固体電池用負極10は、負極集電体の両面に、負極活物質層11が積層される。負極タブは、負極集電体に連結し(図2中では、併せて12とする)、その連結部付近、すなわち、負極集電体の端部付近に、負極タブの外周を被覆するように、負極タブ被覆層13が配置されている。
 また、固体電池100を構成する固体電池用正極20は、正極集電体25の両面に、正極活物質層21が積層される。正極タブ22は、正極集電体25に連結し、その連結部付近、すなわち、正極集電体25の端部付近に、正極タブ22の外周を被覆するように、正極タブ被覆層23が配置されている。
 [正極活物質層の面積]
 本発明の固体電池においては、正極活物質層の面積は、負極活物質層の面積以下であることが好ましい。正極活物質層の面積よりも負極活物質層の面積のほうが小さい場合には、端部にLi電析が発生するリスクが高くなるため好ましくない。また、正極活物質層の面積を負極活物質層の面積よりも小さくすることで、得られる固体電池の耐久性を向上させることができる。
 また、本発明の固体電池用正極には、正極活物質層の外周部に正極集電体被覆層を有するものであり、正極活物質層の面積が負極活物質層の面積よりも小さい場合に、本発明の効果をより大きく発揮することができる。
 [固体電池用正極の面積]
 本発明の固体電池においては、固体電池用正極の面積と、固体電池用負極の面積と、固体電解質層の面積とは、略同一であることが好ましい。固体電池の積層体を構成する全ての層の面積を略同一とすることにより、固体電池を形成する際の積層工程において、位置ずれの発生を抑制することができる。また、積層体を一体化するための積層プレス工程においても、クラックの発生を抑制することができる。
 本発明においては、少なくとも固体電池用正極は、正極集電体の外周および端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を有する。当該被覆層の厚みを制御することによって、固体電池用負極等の面積と略同一とすることができる。
 [固体電池用負極]
 本発明の固体電池を構成する固体電池用負極は、負極集電体と、負極集電体上に形成された負極活物質を含む負極活物質層と、を含む。
 (負極活物質層)
 本発明の固体電池を構成する固体電池用負極に適用できる負極活物質としては、特に限定されるものではなく、固体電池の負極活物質として公知の物質を適用することができる。その組成についても特に制限はなく、固体電解質、導電助剤や結着剤等を含んでいてもよい。
 本発明の負極活物質層に含まれる負極活物質としては、例えば、リチウム金属、Li-Al合金やLi-In合金等のリチウム合金、LiTi12等のチタン酸リチウム、炭素繊維や黒鉛等の炭素材料等が挙げられる。
 (負極集電体)
 発明の固体電池を構成する固体電池用負極に適用できる集電体は、特に限定されるものではなく、固体電池の負極に用いうる公知の集電体を適用することができる。例えば、SUS箔、Cu箔等の金属箔が挙げられる。
 (負極活物質層未形成部および負極集電体被覆層)
 本発明の固体電池を構成する固体電池用負極における負極集電体は、負極活物質層を有する面の外周部の少なくとも一辺に、負極活物質層が形成されない負極活物質層未形成部を有し、負極活物質層未形成部、および負極活物質層未形成部に連結する端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる負極集電体被覆層を有することが好ましい。
 固体電池用正極のみならず、固体電池用負極にも負極集電体被覆層を配置することで、固体電池製造過程において、固体電解質および固体電池用正極と積層した際に、負極活物質層の厚みに相当する高さで存在する負極活物質層未形成部の空隙の外周に、負極集電体被覆層を存在させることができる。したがって、固体電池製造時のプレス工程において、負極集電体被覆層によって負極側の空隙が支えられるようになり、クラックの発生をより抑制することができる。
 また、固体電池用負極が、負極活物質層未形成部のみならず、負極活物質層未形成部に連結する端面にも同時に、負極集電体被覆層を有することにより、固体電池製造時および固体電池使用時等において、固体電池用正極に連結する正極タブが、固体電池用負極に接触した場合であっても、短絡を防止することが可能となる。
 また、固体電池用正極のみならず、固体電池用負極が負極集電体被覆層を有することで、固体電池用負極の外形が明確となり、製造時に発生する積層位置ずれをより抑制することができる。
 なお、負極活物質層未形成部および負極集電体被覆層は、上記した正極活物質層未形成部および正極集電体被覆層と同様の構成でよい。
 (負極集電体被覆層の厚さ)
 負極集電体被覆層の厚さは、負極活物質層の厚さと略同一とすることが好ましい。負極集電体被覆層の厚さが、負極活物質層の厚さと略同一であれば、負極活物質層の厚みに相当する高さで存在する負極活物質層未形成部の空隙の高さと略同一となる。したがって、得られる固体電池用正極の平面度公差および平行度公差を最小にすることが可能となり、その結果、多層化した際の体積が小さくなり、高エネルギー化に貢献することができる。また、積層体とした際の幾何公差が小さいことから、製造時の積層プレスにおいて圧力を均一にかけることが可能となる上、クラックの発生を抑制することができる。
 [固体電解質層]
 本発明の固体電池を構成する固体電解質層は、固体電池用正極と固体電池用負極との間のイオン伝導が可能な状態であれば、厚みや形状等は特に限定されるものではない。また、製造方法も特に限定されるものではない。
 固体電解質層を構成する固体電解質の種類についても、特に限定されるものではない。例えば、硫化物系無機固体電解質、NASICON型酸化物系無機固体電解質、ペロブスカイト型酸化物無機固体電改質解質等を挙げることができる。
 また、本発明の固体電池を構成する固体電解質は、必要に応じて結着剤等を含む。固体電解質に含まれる各物質の組成比については、電池が適切に作動可能であれば、特に限定されるものではない。
 [固体電池の用途]
 本発明の固体電池は、例えばモジュール化して、各種の装置に用いることができる。本発明の固体電池は、携帯機器はもちろんのこと、例えば、電気自動車やハイブリッド車等の電源として、好適に用いることができる。
 100 固体電池
 10  固体電池用負極
 11  負極活物質層
 12  負極集電体および負極タブ
 13  負極タブ被覆層
 20  固体電池用正極
 21  正極活物質層
 22  正極タブ
 23  正極タブ被覆層
 24  正極集電体被覆層
 25  正極集電体
 26  正極活物質層未形成部
 30  固体電解質層
 41  サポートプレート
 42  絶縁フィルム

Claims (9)

  1.  正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極であって、
     前記正極集電体は、前記正極活物質層を有する面の外周部の少なくとも一辺に、前記正極活物質層が形成されない正極活物質層未形成部を有し、
     前記正極活物質層未形成部、および前記正極活物質層未形成部に連結する端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を有する、固体電池用正極。
  2.  前記正極集電体上に形成される前記正極集電体被覆層の厚さは、前記正極活物質層の厚さと略同一である、請求項1に記載の固体電池用正極。
  3.  前記固体電池用正極は、前記正極集電体に連結する正極タブを有し、
     前記正極タブは、少なくとも1部に、絶縁性材料からなる正極タブ被覆層を有する、請求項1または2に記載の固体電池用正極。
  4.  正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極の製造方法であって、
     前記正極集電体に、正極活物質を含む正極活物質層を形成する正極活物質層形成工程と、
     前記正極集電体の前記正極活物質層を有しない領域に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる正極集電体被覆層を形成する正極集電体被覆層形成工程と、を含む、固体電池用正極の製造方法。
  5.  正極集電体と、前記正極集電体上に形成された正極活物質を含む正極活物質層と、を含む固体電池用正極と、
     負極集電体と、前記負極集電体上に形成された負極活物質を含む負極活物質層と、を含む固体電池用負極と、
     前記固体電池用正極と前記固体電池用負極との間に配置された固体電解質層と、を備える固体電池であり、
     前記固体電池用正極は、請求項1~4いずれかに記載の固体電池用正極である、固体電池。
  6.  前記正極活物質層の面積は、前記負極活物質層の面積以下である、請求項5に記載の固体電池。
  7.  前記固体電池用正極の面積と、前記固体電池用負極の面積と、前記固体電解質層の面積とは、略同一である、請求項5または6に記載の固体電池。
  8.  前記負極集電体は、前記負極活物質層を有する面の外周部の少なくとも一辺に、前記負極活物質層が形成されない負極活物質層未形成部を有し、
     前記負極活物質層未形成部、および前記負極活物質層未形成部に連結する端面に、絶縁性材料で形成された絶縁層および/または固体電解質で形成された固体電解質層からなる負極集電体被覆層を有する、請求項5~7いずれかに記載の固体電池。
  9.  前記負極集電体被覆層の厚さは、前記負極活物質層の厚さと略同一である、請求項8に記載の固体電池。
PCT/JP2019/027767 2018-07-18 2019-07-12 固体電池用正極、固体電池用正極の製造方法、および固体電池 WO2020017467A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020531300A JP7046185B2 (ja) 2018-07-18 2019-07-12 固体電池用正極、固体電池用正極の製造方法、および固体電池
US17/260,228 US20210305630A1 (en) 2018-07-18 2019-07-12 Positive electrode for solid-state battery, manufacturing method for positive electrode for solid-state battery, and solid-state battery
CN201980047202.2A CN112424975A (zh) 2018-07-18 2019-07-12 固体电池用正极、固体电池用正极的制造方法、及固体电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135100 2018-07-18
JP2018-135100 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020017467A1 true WO2020017467A1 (ja) 2020-01-23

Family

ID=69164428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027767 WO2020017467A1 (ja) 2018-07-18 2019-07-12 固体電池用正極、固体電池用正極の製造方法、および固体電池

Country Status (4)

Country Link
US (1) US20210305630A1 (ja)
JP (1) JP7046185B2 (ja)
CN (1) CN112424975A (ja)
WO (1) WO2020017467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125296A (ja) * 2020-01-31 2021-08-30 トヨタ自動車株式会社 全固体電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139307A (ja) * 2021-03-11 2022-09-26 本田技研工業株式会社 固体電池
JP2022180893A (ja) * 2021-05-25 2022-12-07 本田技研工業株式会社 固体電池及び固体電池の製造方法
CN114497439A (zh) * 2022-01-07 2022-05-13 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的电池
WO2023191576A1 (ko) * 2022-03-31 2023-10-05 삼성에스디아이 주식회사 전고체 이차전지, 적층 전고체 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082105A (ja) * 2012-10-17 2014-05-08 Hitachi Zosen Corp 全固体電池およびその製造方法
JP2015125872A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 全固体電池の製造方法及び全固体電池
JP2017130281A (ja) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 全固体電池の製造方法
JP2017199668A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
JP2018055871A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265014B2 (ja) * 1998-12-22 2009-05-20 ソニー株式会社 薄型電池
JP5631537B2 (ja) * 2008-09-05 2014-11-26 日産自動車株式会社 双極型二次電池
JP5720779B2 (ja) * 2011-05-27 2015-05-20 トヨタ自動車株式会社 バイポーラ全固体電池
JP2014235990A (ja) * 2013-06-05 2014-12-15 トヨタ自動車株式会社 全固体電池、及び全固体電池の製造方法
JP2018092885A (ja) * 2016-11-25 2018-06-14 昭和電工株式会社 リチウムイオン二次電池、リチウムイオン二次電池の製造方法
KR102518686B1 (ko) * 2017-10-31 2023-04-05 현대자동차주식회사 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
JP7070052B2 (ja) * 2018-04-27 2022-05-18 トヨタ自動車株式会社 全固体電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014082105A (ja) * 2012-10-17 2014-05-08 Hitachi Zosen Corp 全固体電池およびその製造方法
JP2015125872A (ja) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 全固体電池の製造方法及び全固体電池
JP2017130281A (ja) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 全固体電池の製造方法
JP2017199668A (ja) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
JP2018055871A (ja) * 2016-09-27 2018-04-05 株式会社日立製作所 二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125296A (ja) * 2020-01-31 2021-08-30 トヨタ自動車株式会社 全固体電池
JP7322731B2 (ja) 2020-01-31 2023-08-08 トヨタ自動車株式会社 全固体電池

Also Published As

Publication number Publication date
JP7046185B2 (ja) 2022-04-01
US20210305630A1 (en) 2021-09-30
JPWO2020017467A1 (ja) 2021-08-02
CN112424975A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020017467A1 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
JP6319335B2 (ja) 全固体電池の製造方法
US7820337B2 (en) Electrochemical device
WO2012164642A1 (ja) バイポーラ全固体電池
US20120288747A1 (en) Electrochemical device
KR20180082491A (ko) 나노다공성 세퍼레이터층을 이용한 리튬 배터리
KR102158246B1 (ko) 전고체 전지
CN108695555B (zh) 层叠电池
WO2014162532A1 (ja) 全固体電池、および全固体電池の製造方法
JP2009163942A (ja) 非水系二次電池およびその製造方法
WO2011111200A1 (ja) 集電体及びその製造方法並びに電池及びその製造方法
JP2001126756A (ja) リチウム固体電解質電池およびその製造方法
KR102440683B1 (ko) 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지
JP2018181528A (ja) 全固体電池及び全固体電池の製造方法
JP2015153663A (ja) 全固体電池の製造方法
US20190140311A1 (en) All-solid state battery
JP2011204511A (ja) 全固体型リチウムイオン二次電池
JP4929592B2 (ja) エネルギーデバイスの製造法
JP7160922B2 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
WO2021182514A1 (ja) 電池の製造方法および電池
US20210020895A1 (en) Secondary battery and manufacturing method thereof
JP2020102311A (ja) 捲回型電池および捲回型電池の製造方法
JP2020126769A (ja) 二次電池
JP2022117028A (ja) 積層電極体、樹脂固定積層電極体、及び全固体電池
JP2018073518A (ja) 二次電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838834

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020531300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838834

Country of ref document: EP

Kind code of ref document: A1