WO2011111200A1 - 集電体及びその製造方法並びに電池及びその製造方法 - Google Patents

集電体及びその製造方法並びに電池及びその製造方法 Download PDF

Info

Publication number
WO2011111200A1
WO2011111200A1 PCT/JP2010/054087 JP2010054087W WO2011111200A1 WO 2011111200 A1 WO2011111200 A1 WO 2011111200A1 JP 2010054087 W JP2010054087 W JP 2010054087W WO 2011111200 A1 WO2011111200 A1 WO 2011111200A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
disposed
positive electrode
electrode layer
insulating substrate
Prior art date
Application number
PCT/JP2010/054087
Other languages
English (en)
French (fr)
Inventor
広和 川岡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/054087 priority Critical patent/WO2011111200A1/ja
Priority to CN201080003221.4A priority patent/CN103003992B/zh
Priority to US13/062,812 priority patent/US8512888B2/en
Priority to JP2010545299A priority patent/JP5348144B2/ja
Publication of WO2011111200A1 publication Critical patent/WO2011111200A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a current collector, a manufacturing method thereof, a battery, and a manufacturing method thereof.
  • Lithium ion secondary batteries are characterized by higher energy density than other secondary batteries and capable of operating at high voltages. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte disposed therebetween, and the electrolyte is composed of a non-aqueous liquid or solid.
  • electrolytic solution a non-aqueous liquid
  • the electrolytic solution penetrates into the positive electrode layer. Therefore, an interface between the positive electrode active material of the positive electrode layer and the electrolyte is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • the solid electrolyte is nonflammable, the above system can be simplified.
  • solid battery a lithium ion secondary battery having a layer containing a non-combustible solid electrolyte (hereinafter, sometimes referred to as “solid electrolyte layer”).
  • solid electrolyte layer a layer containing a non-combustible solid electrolyte
  • Patent Document 1 discloses a plurality of planar storage units arranged in a line and electrically connected to each other.
  • this power storage element alignment structure there is disclosed a planar alignment structure of power storage elements in which a reinforcing member is provided that is suspended with a degree of freedom in bending between a plurality of power storage elements.
  • Patent Document 2 includes a mixture layer containing an active material or a host material capable of occluding and releasing lithium ions, and a current collector includes an insulating base, communication holes that connect both sides of the base, and a base The battery current collector is characterized in that each of the conductors located on both sides of the base body is electrically connected through a communication hole.
  • Patent Document 3 arranges and stores power generation elements vertically and horizontally in a container body, and connects the entire power generation elements in series while electrically connecting adjacent power generation elements with lead terminals, and a positive electrode terminal extending from one end thereof, and A battery module is disclosed in which a negative electrode terminal extending from the other end is projected from the peripheral edge of the container body.
  • a positive electrode active material layer is formed on a positive electrode current collector layer of a composite current collector in which one surface is a positive electrode current collector layer and the other surface is a negative electrode current collector layer.
  • a sheet battery having a negative electrode active material layer on the negative electrode current collector layer and a solid electrolyte is disclosed, and the bipolar electrode unit and the solid electrolyte are alternately stacked. A form is disclosed.
  • JP 2005-268138 A Japanese Patent Laid-Open No. 10-241699 JP 2007-95597 A Japanese Patent Laid-Open No. 2000-1000047
  • the technique disclosed in Patent Document 1 it is considered that the bending flexibility can be secured because the reinforcing member is suspended between the plurality of power storage units with bending flexibility.
  • the technique disclosed in Patent Document 1 requires a step of attaching a reinforcing member separately, and thus has a problem in that productivity tends to decrease.
  • the insulating substrate is difficult to bend, and thus there is a problem in that productivity is easily lowered.
  • Patent Document 3 is difficult to reduce the dead space that does not contribute to charging and discharging, and is also in contact because the peripheral portion of the power generation element and the lower surface of the lid member facing the power generation element are thermally bonded. There was a problem that the stability of the resistance was lacking.
  • Patent Document 4 has a problem in that productivity is likely to decrease compared to winding or the like because the sheet electrode and the solid electrolyte are laminated.
  • a current collector having an insulating substrate, and electron conducting portions respectively disposed on one surface and the other surface of the insulating substrate, On the surface, at least two or more electron conductive portions are disposed at intervals in the plane direction, and the electron conductive portion disposed on the other surface is disposed on one surface with the insulating substrate interposed therebetween.
  • An electronic current collector disposed on the other surface is connected through an electronic conductor disposed in a hole penetrating the insulating substrate.
  • a current collector having an insulating substrate and electron conducting portions respectively disposed on one surface and the other surface of the insulating substrate, and in contact with the current collector. And a positive electrode layer and a negative electrode layer, and a method of manufacturing a battery comprising an electrolyte layer disposed so as to be in contact with the positive electrode layer and the negative electrode layer.
  • a step of producing a current collector by such a method of producing a current collector, a step of arranging a positive electrode layer and a negative electrode layer so as to be in contact with an electron conductive portion arranged on the surface of the insulating substrate, and a positive electrode layer And / or a process of disposing an electrolyte layer in contact with the negative electrode layer and a process of bending or scraping between adjacent electron conductive portions disposed on one surface of the insulating substrate. And laminating or winding the electrical conductor, the positive electrode layer, the negative electrode layer, and the electrolyte layer. Characterized the door, it is a manufacturing method of a battery.
  • the current collector according to the first aspect of the present invention has two or more electron conducting portions arranged at intervals in the plane direction.
  • the current collector of the present invention has two or more electron conducting portions arranged at intervals, a battery provided with the current collector of the present invention by an insulating substrate present between the electron conducting portions. It is possible to prevent a short circuit between the electrodes. Therefore, according to the 1st aspect of this invention, the electrical power collector which can improve the productivity and stability of a battery can be provided.
  • the battery according to the second aspect of the present invention includes the current collector according to the first aspect of the present invention, which can improve the productivity and stability of the battery. Therefore, according to the 2nd aspect of this invention, the battery which can improve productivity and stability can be provided.
  • the current collector according to the first aspect of the present invention can be manufactured. Therefore, according to the 3rd aspect of this invention, the manufacturing method of the electrical power collector which can manufacture the electrical power collector which can improve the productivity and stability of a battery can be provided.
  • the battery according to the second aspect of the present invention can be manufactured. Therefore, according to the 4th aspect of this invention, the manufacturing method of a battery which can manufacture the battery which can improve productivity and stability can be provided.
  • FIG. 1 is a front view of a current collector 1.
  • FIG. It is a flowchart explaining the manufacturing method of a collector.
  • 3 is a cross-sectional view of a laminated body 8.
  • FIG. 3 is a front view of a laminated body 8.
  • FIG. 3 is a front view of a wound body 9.
  • FIG. It is a flowchart explaining the manufacturing method of a battery.
  • 3 is a cross-sectional view of an electrode body 5.
  • FIG. 3 is a cross-sectional view of an electrode body 6.
  • FIG. 2 is a cross-sectional view of a structure body 10.
  • FIG. 3 is a cross-sectional view of a structure body 11.
  • FIG. It is sectional drawing of structure 10 '.
  • FIG. 3 is a front view of a wound body 9.
  • FIG. 3 is a cross-sectional view of a laminated body 16.
  • FIG. 3 is a cross-sectional view of a wound body 17.
  • FIG. It is a flowchart explaining the manufacturing method of a battery.
  • 3 is a cross-sectional view of an electrode body 18.
  • FIG. It is sectional drawing of the winding body 17 '. 2 is a cross-sectional view of a stacked body 20.
  • FIG. 3 is a cross-sectional view of a wound body 21.
  • FIG. It is a flowchart explaining the manufacturing method of a battery.
  • 3 is a cross-sectional view of an electrode body 23.
  • FIG. It is sectional drawing of the winding body 21 '.
  • FIG. 3 is a cross-sectional view of a laminated body 24.
  • FIG. 3 is a cross-sectional view of a structure 25.
  • FIG. It is a flowchart explaining the manufacturing method of a battery.
  • 3 is a cross-sectional view of a structure body 26.
  • a battery having a structure manufactured by winding or folding a stacked body formed by stacking current collectors, electrodes (positive electrode layer, negative electrode layer), electrolyte layer, and the like It has been developed.
  • the number of layers (sheets) constituting the laminate tends to increase.
  • the winding speed or folding speed tends to decrease, and thus the battery productivity tends to decrease.
  • the electrode or the like is likely to slide off, and a short circuit is likely to occur. Therefore, the stability of the battery is likely to decrease. Therefore, in order to obtain a battery with improved productivity and stability, it is necessary to increase the number of sheets and reduce slipping of electrodes and the like.
  • the present inventor formed an electron conducting portion on a part of each of the front and back surfaces of the insulating substrate with an interval between them, and insulated the electron conducting portion on the front side and the electron conducting portion on the back side. It has been found that the battery productivity and stability can be improved by using a current collector having a structure connected by a conductive substance disposed in a hole penetrating the conductive substrate.
  • the present invention has been made based on such knowledge.
  • the main object of the present invention is to provide a current collector and a battery including the current collector, a method for producing the current collector, and a method for producing the battery, which can improve productivity and stability.
  • the gist is to provide a current collector and a battery including the current collector, a method for producing the current collector, and a method for producing the battery, which can improve productivity and stability.
  • the form of the insulating substrate in the present invention includes a sheet form and a film form.
  • FIG. 1 is a cross-sectional view of the current collector 1 of the present invention
  • FIG. 2 is a front view of the current collector 1.
  • the current collector 1 includes an insulating substrate 1a, and electron conducting portions 1x, 1x,... Formed on the one surface of the insulating substrate 1a with a space therebetween. And the electron conductive portions 1x, 1x,... And the electron conductive portions 1y, 1y,... Formed on the other surface of the insulating substrate 1a at intervals.
  • the insulating substrate 1a is formed so as to face each other.
  • the insulating substrate 1a has a plurality of holes 1b, 1b,...
  • the conductive substrate 1a can prevent a short circuit between the electrodes of the battery having the current collector 1. Therefore, according to the current collector 1, it becomes possible to improve battery productivity and stability.
  • FIG. 3 is a flowchart for explaining a method of manufacturing a current collector according to the present invention.
  • the current collector manufacturing method of the present invention includes a covering step (S1), a hole forming step (S2), an electron conductor disposing step (S3), and an electron conducting portion disposing step. (S4) and a removal step (S5).
  • S1 a covering step
  • S2 a hole forming step
  • S3 an electron conductor disposing step
  • S5 an electron conducting portion disposing step
  • an example of a method for manufacturing the current collector 1 will be described with reference to FIGS. 1 to 3.
  • the covering step (hereinafter, sometimes referred to as “S1”) is a step of forming a plating resist layer on a portion of the surface of the insulating substrate 1a where the electron conductive portion is not desired to be disposed. If the plating resist layer formed on a part of the surface of the insulating substrate 1a in S1 is made of a material capable of continuing to cover the surface of the insulating substrate 1a until the formation of the electron conducting portion is completed.
  • the form is not particularly limited.
  • the form of S1 is not particularly limited as long as a plating resist layer can be formed on a part of the insulating substrate 1a where it is not desired to provide an electron conducting portion.
  • a constituent material of the plating resist layer is applied to the entire surface of one surface and the other surface of the insulating substrate 1a formed of a polypropylene sheet having a thickness of 10 ⁇ m by a known method, and the electron conductive portion is arranged.
  • a process of forming a plurality of plating resist layers at intervals is performed by developing light after irradiating light only to a place to be provided and changing the solubility.
  • S2 hole forming step
  • holes 1b, 1b,... Penetrating through the insulating substrate 1a are formed in the insulating substrate 1a where the plating resist layer is not formed in S1.
  • the form of S2 is not particularly limited as long as holes 1b, 1b,.
  • S2 can be, for example, a step of forming holes 1b, 1b,... By punching press in the insulating substrate 1a where the electron conducting portion is to be disposed.
  • the diameter of the holes 1b, 1b,... Formed in S2 is not particularly limited as long as the electron conductor 1z can be disposed in the holes 1b, 1b,.
  • interval of adjacent hole 1b, 1b is also not specifically limited, For example, they can be 100 micrometers or more and 500 micrometers or less.
  • S2 is performed after S1
  • the present invention is not limited to a mode in which the hole forming step is performed after the covering step, and the covering step is performed after the hole forming step. It may be broken.
  • the electron conductor disposing step (hereinafter referred to as “S3”) is a step of disposing the electron conductors 1z, 1z,... In the holes 1b, 1b,.
  • the shape of S3 is not particularly limited as long as the electron conductors 1z, 1z,... Can be disposed in the holes 1b, 1b,.
  • S3 can be set as the process of arrange
  • S3 is a step of disposing metal Ni in the holes 1b, 1b,... By electroless plating, the form of electroless plating is not particularly limited, and a known electroless plating method may be appropriately used. it can.
  • S4 plating is performed in S1 so as to contact the electron conductors 1z, 1z,... Disposed in the holes 1b, 1b,.
  • the electron conductive portions 1x, 1x,... Are disposed on one surface of the insulating substrate 1a on which the resist layer is not formed, and the plating resist in S1 so as to be in contact with the electron conductors 1z, 1z,.
  • This is a step of disposing the electron conductive portions 1y, 1y,... On the other surface of the insulating substrate 1a on which no layer is formed.
  • S4 can form the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,...
  • S4 is made of stainless steel (hereinafter referred to as “SUS” by a known method such as a vapor deposition method, a sputtering method, or a gas deposition method so as to be in contact with the metal Ni disposed in the holes 1b, 1b,. ..))
  • SUS stainless steel
  • the step of forming the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,. the step of forming the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,. .
  • the thicknesses of the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,... Formed in S4 are not particularly limited, but may be 1 ⁇ m, for example.
  • S4 can also be set as the form which forms an electronic conduction part simultaneously on the surface and the other surface, for example by plating.
  • the removal step (hereinafter referred to as “S5”) is a step of removing the plating resist layer formed in S1 after the end of S4. If the plating resist layer formed in S11 can be removed without removing the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,. It is not limited. S5 can be set as the process of removing a plating resist layer, for example using a well-known alkaline processing liquid.
  • the current collector 1 can be manufactured. As described above, according to the current collector 1, it becomes possible to increase the productivity and stability of the battery. Therefore, according to the present invention, the current collector 1 that can increase the productivity and stability of the battery is provided.
  • the manufacturing method of the electrical power collector which can be manufactured can be provided.
  • the method for manufacturing a current collector of the present invention is not limited to this form.
  • the manufacturing method of the current collector of the present invention can also be configured without S5.
  • the electron conductors 1z, 1z,... Disposed in the holes 1b, 1b,... And the electrons disposed on the front and back surfaces of the insulating substrate 1a respectively.
  • the conduction parts 1x, 1x,... And the electron conduction parts 1y, 1y,... are made of different materials, the present invention is not limited to these forms.
  • the electron conductor disposed in the hole penetrating the insulating substrate and the electron conducting portion disposed on the front and back surfaces of the insulating substrate may be made of the same material.
  • the same material can be, for example, SUS.
  • the method of disposing SUS on the front and back surfaces of the holes and the insulating substrate is not particularly limited.
  • SUS is filled in the holes by vapor deposition or sputtering, and an electron conducting portion is formed with a gap between the front and back surfaces of the insulating substrate, or an average particle diameter of several ⁇ m (by a gas deposition method)
  • a known method such as a mode in which the hole is filled with SUS powder (about 3 ⁇ m) and the electron conductive portion is formed with a space between the front and back surfaces of the insulating substrate can be used as appropriate.
  • FIG. 4 is a cross-sectional view of a laminated body 8 having the laminated current collector 1 of the present invention, electrodes (positive electrode layer 2 and negative electrode layer 3), and electrolyte layer 4, and FIG. 5 is shown in FIG. 3 is a front view of a laminated body 8.
  • FIG. FIG. 6 is a front view of the wound body 9 provided in the battery of the present invention. The wound body 9 is manufactured through a process of winding the laminated body 8, and the illustration of the electrolyte layer 4 disposed on the outermost periphery is omitted in FIG. 6.
  • the laminated body 8 includes the electrolyte layers 4, the electrode bodies 6, the electrolyte layers 4, and the electrode bodies 5 that are alternately arranged in the vertical direction of the paper in FIG. 4 (front / backward direction of the paper in FIG. 5). .
  • the electrode bodies 5 and 6 have a current collector 1, positive electrode layers 2, 2,..., And negative electrode layers 3, 3,.
  • the body 5 has a terminal 7 connected to the rightmost electron conducting portion 1x
  • the electrode body 6 has a terminal 7 connected to the leftmost electron conducting portion 1y.
  • the positive electrode layer 2 and / or the negative electrode layer 3 are in contact with all the electron conductive portions 1x, 1x,... And the electron conductive portions 1y, 1y,.
  • the negative electrode layers 3, 3,... are disposed so that the pair of positive electrode layers 2, 2 or the pair of negative electrode layers 3, 3 face each other with the current collector 1 interposed therebetween.
  • the pair of the positive electrode layer 2 and the negative electrode layer 3 are disposed so as to face each other with the electrolyte layer 4 disposed between the two electrode bodies 5 and 6 interposed therebetween.
  • the positive electrode layers 2, 2, ... and the negative electrode layers 3, 3, ... are in contact with the electron conducting portion 1x, the electron conducting portion 1y, and the electrolyte layer 4, but are not in contact with the insulating substrate 1a. .
  • the wound body 9 is produced, for example, through a process of winding the laminated body 8 so that the back side of the sheet of FIG. 5 is convex.
  • the unit cell constituted by a set of the positive electrode layer 2, the electrolyte layer 4, and the negative electrode layer 3 is connected in parallel in the vertical direction on the paper surface of FIG. Connected in series in the direction.
  • the wound body 9 provided in the battery of the present invention has current collectors 1 and 1. Further, the electron conducting portions 1x, 1x,... Formed on one surface side of the current collectors 1, 1 are formed of a plurality of electrodes (except for the electron conducting portion 1x disposed at the right end in FIG. The positive electrode layer 2 and the negative electrode layer 3. The same applies to the description of the current collector 1, and the electron conductive portions 1y, 1y,. 4 is in contact with a plurality of electrodes except for the electron conducting portion 1y disposed at the left end of FIG. With this configuration, when a battery including the wound body 9 is manufactured, a plurality of electrodes and the electron conductive portions 1x, 1x,... Or the electron conductive portions 1y, 1y,.
  • the productivity of the battery including the wound body 9 can be increased. Further, since the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,... Are formed at intervals in the plane direction, the electron conducting portions 1x, 1x,.
  • the insulating substrate 1a existing between the electrodes it is possible to prevent a short circuit between the electrodes separated in the plane direction by the insulating substrate 1a. Therefore, by adopting a configuration in which the wound body 9 is provided, according to the present invention, it is possible to provide a battery capable of improving productivity and stability.
  • FIG. 7 is a flowchart for explaining the battery manufacturing method of the present invention.
  • the battery manufacturing method of the present invention includes a current collector manufacturing step (S11), an electrode disposing step (S12), an electrolyte disposing step (S13), and a pressing step (S14). And a slitting step (S15), a terminal connecting step (S16), a winding step (S17), and an insertion sealing step (S18).
  • 8 to 14 are diagrams for explaining the manufacturing process of the battery of the present invention provided with the wound body 8.
  • 8 is a cross-sectional view of the electrode body 5 manufactured by the electrode disposing step
  • FIG. 9 is a cross-sectional view of the electrode body 6 manufactured by the electrode disposing step
  • FIG. 10 is a structure having the electrolyte layer 4 and the electrode body 5.
  • FIG. 11 is a cross-sectional view of the structure 11 having the electrolyte layer 4 and the electrode body 6.
  • 12 is a cross-sectional view of the structure 10 ′ to which the terminal 7 is connected in the terminal connection process
  • FIG. 13 is a cross-sectional view of the structure 11 ′ to which the terminal 7 is connected in the terminal connection process
  • FIG. 14 is a winding process. It is a front view which shows the winding body 9 produced by.
  • the current collector manufacturing step (hereinafter referred to as “S11”) is a step of manufacturing the current collector 1. More specifically, S11 is a step of manufacturing the current collector 1 by the above S1 to S5.
  • the positive electrode layer is in contact with the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,.
  • the electrode body 5 shown in FIG. 8 and the electrode body 6 shown in FIG. 9 by arranging 2, 2,... And the negative electrode layers 3, 3,. If the positive electrode layers 2, 2,... And the negative electrode layers 3, 3,... Can be disposed so as to be in contact with the electron conductive portions 1 x, 1 x,. Is not particularly limited.
  • S12 for example, by first applying the composition for the positive electrode and the composition for the negative electrode to the surface of all the electron conductive portions 1x, 1x,...
  • the positive electrode layer 2, 2 or the pair of negative electrode layers 3, 3 are placed on the surface of all the electron conducting portions 1 y, 1 y,.
  • the composition and the negative electrode composition are alternately applied at intervals and dried. Through this process, the positive electrode layer 2, 2,... And the negative electrode layers 3, 3,... Can be formed at one time on one surface side and the other surface side of the current collector 1, respectively.
  • the bodies 5 and 6 can be easily produced.
  • the composition for the positive electrode applied to the surfaces of the electron conductive portions 1x, 1x,... And the electron conductive portions 1y, 1y,... In S12 is not particularly limited as long as it is used when the positive electrode of the battery is manufactured. .
  • a composition prepared by mixing in a solvent a mixture prepared such that the positive electrode active material: electrolyte: conductive auxiliary agent: binder 45: 45: 9: 1 by mass ratio.
  • sulfide solid electrolytes prepared by mixing Li 2 S and P 2 S 5 known organic solid electrolytes can be used.
  • S12 for example, acetylene black can be used as the conductive additive, and, for example, polyvinylidene fluoride (PVDF) can be used as the binder.
  • PVDF polyvinylidene fluoride
  • the width of the positive electrode 2 formed on the surface of the electron conducting portions 1x, 1x,... And the electron conducting portions 1y, 1y,... In S12 can be set to 50 mm, for example, and the positive electrode layer 2 provided in the wound body 8;
  • the thickness of 2,... Can be set to 30 ⁇ m, for example.
  • the negative electrode composition applied to the surfaces of the electron conductive portions 1x, 1x,... And the electron conductive portions 1y, 1y,. is not.
  • known organic solid electrolytes can be used.
  • acetylene black can be used, for example, and a polyvinylidene fluoride (PVDF) can be used as a binder, for example.
  • PVDF polyvinylidene fluoride
  • the width of the negative electrode 3 formed on the surfaces of the electron conductive portions 1x, 1x,... And the electron conductive portions 1y, 1y,... In S12 can be set to 52 mm, for example, and the negative electrode layer 3 provided in the wound body 8;
  • the thickness of 3,... can be set to 35 ⁇ m, for example.
  • the electrolyte disposing step covers the positive electrode layers 2, 2... And the negative electrode layers 3, 3... Disposed on one side of the electrode body 5 produced in S 12.
  • the electrolyte layer 4 is disposed on the electrode body 6, and the electrolyte layer 4 is disposed so as to cover the positive electrode layers 2, 2,... And the negative electrode layers 3, 3,. It is a process to do.
  • S13 is an electrolyte layer 4, 4 so that the electrolyte layer 4 is in contact with all of the positive electrode layers 2, 2, ... and the negative electrode layers 3, 3, ... arranged on one side of the electrode body 5 and the electrode body 6.
  • the form is not particularly limited.
  • an electrolyte composition is applied by a gravure printing method so as to cover the positive electrode layers 2, 2,... And the negative electrode layers 3, 3,. It can be set as the process which each arrange
  • the electrolyte composition applied to the surfaces of the positive electrode layers 2, 2,... And the negative electrode layers 3, 3,... In S13 is not particularly limited as long as it is used when preparing the electrolyte layer of the battery.
  • a known organic solid electrolyte can be used, and as the binder, for example, polyvinylidene fluoride (PVDF) can be used.
  • PVDF polyvinylidene fluoride
  • the thickness of the electrolyte layers 4 and 4 provided in the wound body 8 can be set to 20 ⁇ m, for example.
  • the pressing step (hereinafter referred to as “S14”) is a step of pressing the electrode bodies 5 and 6 on which the electrolyte layer 4 is disposed in S13.
  • S14 is a process performed on the positive electrode active material and the electrolyte, and the negative electrode active material and the electrolyte in order to manufacture a battery in which the energy density and the output density are increased by expanding the contact area between the electrolytes.
  • the electrode body 5 provided with the layer 4 and the electrode body 6 provided with the electrolyte layer 4 may be pressed.
  • the positive electrode layers 2, 2,... Provided in each of the electrode bodies 5, 6 provided with the electrolyte layer 4 pressed in S14.
  • the negative electrode layers 3, 3,... The positive electrode layers 2, 2,..., Which have protruded into the uncoated areas where the positive electrode composition or the negative electrode composition should not be applied by design. This is a step of removing a part of the negative electrode layers 3, 3.
  • the structure 10 shown in FIG. 10 and the structure 11 shown in FIG. 11 are manufactured by removing a part of the current collector portions 7 and 7 to which no electrode is applied by a shear-cut slitter. And a process of performing.
  • the terminal 7 is connected to the electron conducting portions provided in the structure 10 and the structure 11 in which the uncoated portions are defined in S15, and FIG.
  • the Ni lead terminal 7 is welded to the rightmost electron conducting portion 1x of the structure 10
  • the Ni lead terminal 7 is welded to the leftmost electron conducting portion 1y of the structure 11, and then Ni is used for short circuit protection.
  • Ni is used for short circuit protection.
  • the laminated body 8 is produced by laminating the structures 10 ′ and 11 ′ produced in S16, and then the laminated body 8 is wound. It is a process of producing the wound body 9 shown in FIG. S17 is, for example, a structure in which the positive electrode layers 2, 2,... Of the structure 10 ′ are opposed to the negative electrode layers 3, 3,. After the laminated body 8 is produced by laminating the structural bodies 10 ′, 11 ′ so that the negative electrode layers 3, 3,... Of the body 10 ′ and the positive electrode layers 2, 2,. It can be set as the process of producing the winding body 9 by winding the laminated body 8 cylindrically.
  • the insertion sealing step (hereinafter referred to as “S18”) is a step of manufacturing a battery including the winding body 9 by inserting and sealing the winding body 9 manufactured in S17.
  • S18 is, for example, welding the terminals 7 and 7 of the wound body 9 produced in S17 to a cylindrical case, and inserting the wound body 9 into the cylindrical case, It can be set as the process of producing the battery provided with the winding body 9 by crimping and sealing the accommodated case.
  • a battery including the wound body 9 can be manufactured.
  • the productivity and stability of the battery can be increased. Therefore, according to the present invention, a battery with improved productivity and stability can be obtained.
  • a battery manufacturing method that can be manufactured can be provided.
  • the electrode body 5 disposed so that the pair of positive electrode layers 2, 2 or the pair of negative electrode layers 3, 3 face each other across the current collector 1
  • the present invention is not limited to this form. Therefore, the battery of the present invention provided with an electrode body disposed so that the positive electrode layer 2 and the negative electrode layer 3 face each other with the current collector 1 interposed therebetween, and a method for manufacturing the battery will be described below.
  • FIG. 15 is a cross-sectional view of a laminate 16 having the current collector 12, the electrodes (positive electrode layer 13, negative electrode layer 14), and electrolyte layer 15 of the present invention, and FIG. It is sectional drawing which simplifies and shows the winding body 17 produced by winding.
  • the current collector 12 is a planar direction of the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,... (Left and right direction in FIG. 15.
  • the positive electrode layer 13, and the negative electrode layer 14 The same applies hereinafter)
  • the width of the current collector 1 is the same as that of the current collector 1.
  • the positive electrode layer 13 is different from the positive electrode layer 2 in the length in the back / front direction of FIG. 15 and FIG.
  • the constituent material is the same as that of the positive electrode layer 2.
  • the negative electrode layer 14 is different from the negative electrode layer 3 in length in the back / front direction in FIG. 15 and FIG. 16, and the constituent material is the same as that of the negative electrode layer 3.
  • the electrolyte layer 15 is different from the electrolyte layer 4 in the length in the back / front direction in FIG. 15 and FIG. 16 and in the horizontal direction in FIG. 15 and FIG. 16, and the constituent material is the electrolyte layer. 4 is the same. 15 and 16, the same components as those of the current collector 1 are denoted by the same reference numerals as those used in FIGS. 1 to 14, and description thereof will be omitted as appropriate.
  • the laminated body 16 includes a current collector 12, positive electrode layers 13, 13, ..., negative electrode layers 14, 14, ..., and electrolyte layers 15, 15, ....
  • the current collector 12 includes an insulating substrate 1a, electron conducting portions 12x, 12x,... Disposed on the one surface side of the insulating substrate 1a at intervals in the plane direction, and the other of the insulating substrate 1a. .., And electron conducting portions 12y, 12y,... Arranged at intervals in the plane direction.
  • the insulating substrate 1a has a plurality of holes 1b, 1b,... And the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,. Are connected via electronic conductors 1z, 1z,.
  • the negative electrode layers 14, 14,... are alternately arranged in the plane direction on the surfaces of the electron conductive portions 12x, 12x,... And the electron conductive portions 12y, 12y,. Are disposed on one surface side of the current collector 12, and the electrolyte layers 15, 15,... Are disposed on the surfaces of the positive electrode layers 13, 13,.
  • the positive electrode layer 13 disposed on the surface of the electron conducting portion 12x is opposed to the negative electrode layer 14 disposed on the surface of the electron conducting portion 12y with the current collector 12 interposed therebetween.
  • the negative electrode layer 14 disposed on the surface of the portion 12x faces the positive electrode layer 13 disposed on the surface of the electron conducting portion 12y with the current collector 12 interposed therebetween.
  • the wound body 17 is produced by winding the positive electrode layer 13 of the laminate 16 so as to face the negative electrode layer 14 with the electrolyte layer 15 interposed therebetween.
  • unit cells including a pair of the positive electrode layer 13, the electrolyte layer 15, and the negative electrode layer 14 are connected in series in the vertical direction on the paper surface of FIG. 16.
  • the wound body 17 provided in the battery of the present invention has the current collector 12 of the present invention.
  • the electron conducting portions 12x, 12x,... Formed on one surface side of the current collector 12 are in contact with the positive electrode layer 13 or the negative electrode layer 14, respectively.
  • the electron conducting portions 12y, 12y,... Formed on the surface side are also in contact with the positive electrode layer 13 or the negative electrode layer 14, respectively.
  • the insulating substrate 1a existing between the electrodes makes it possible to prevent a short circuit between the electrodes separated in the plane direction by the insulating substrate 1a. Therefore, even if it is a form with which the winding body 17 is provided, according to this invention, the battery which can improve productivity and stability can be provided.
  • the number of cells connected in series can be easily increased by increasing the length of the laminated body 16 to be wound in the winding direction (left and right direction in FIG. 15). Therefore, a battery with easy voltage design can be provided.
  • the electrode and the electrolyte 15 are not disposed on the left end portion and the right end portion (hereinafter referred to as “curved portion”) of the curved wound body 17.
  • FIG. 17 is a flowchart for explaining the battery manufacturing method of the present invention.
  • the battery manufacturing method of the present invention shown in FIG. 17 includes a current collector manufacturing step (S21), an electrode disposing step (S22), an electrolyte disposing step (S23), a slitting step (S24), a winding It has a process (S25), a terminal connection process (S26), and an insertion sealing process (S27).
  • 18 and 19 are diagrams for explaining the manufacturing process of the battery of the present invention.
  • 18 is a cross-sectional view showing the electrode body 18 produced by the electrode disposing step
  • FIG. 19 is a cross-sectional view showing the wound body 17 'to which the terminals 19 and 19 are connected in the terminal connecting step.
  • the current collector manufacturing step (hereinafter referred to as “S21”) is a step of manufacturing the current collector 12. More specifically, S21 is a step of manufacturing the current collector 12 by the above S1 to S5.
  • the positive electrode layer is in contact with the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,. .. And the negative electrode layers 14, 14,... Are prepared to produce the electrode body 18 shown in FIG. If the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,... Can be arranged so as to be in contact with the electron conductive portions 12 x, 12 x,. Is not particularly limited.
  • S22 for example, by first applying the composition for the positive electrode and the composition for the negative electrode at intervals with a gravure printing method on the surface of all the electron conductive portions 12x, 12x,.
  • the positive electrode composition and the negative electrode composition are applied to the surfaces of all the electron conductive portions 12y, 12y,...
  • the positive electrode layer 13 and the negative electrode layer 14 face each other with the current collector 12 interposed therebetween. Apply to the object alternately at intervals and dry.
  • the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,... Can be formed at one time on one surface side and the other surface side of the current collector 12, respectively.
  • the body 18 can be easily manufactured.
  • the size of the positive electrode layer 13 formed on the surfaces of the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,... In S22 can be set to, for example, 50 mm ⁇ 50 mm.
  • the thickness of the positive electrode layers 13, 13,... can be set to 30 ⁇ m, for example.
  • the size of the negative electrode layer 14 formed on the surface of the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y, ... in S22 can be set to 52 mm ⁇ 52 mm, for example.
  • the thickness of the negative electrode layers 14, 14,... Provided can be set to 35 ⁇ m, for example.
  • the electrolyte disposing step (hereinafter referred to as “S23”) is performed on the surfaces of the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,. Only the electrolyte layers 15, 15,... Are disposed. If the electrolyte layers 15, 15,... Can be disposed only on the surfaces of the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,. Is not particularly limited. S23 is, for example, applying the electrolyte composition to the surfaces of the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,. Can be used as the step of arranging the electrolyte layers 15, 15,... To produce the laminate 16 shown in FIG.
  • the slitting step (hereinafter referred to as “S24”) is a step of shortening the length in the depth direction of the laminated body 16 (the length in the back / front direction of FIG. 15).
  • the winding step (hereinafter referred to as “S25”) is performed by winding the insulating substrate 1a of the uncoated portion in the laminate 16 whose length in the depth direction is adjusted in S24, while folding the insulating substrate 1a.
  • 16 is a step of producing a wound body 17 shown in FIG.
  • the wound body 17 is produced by winding the insulating substrate 1a of the uncoated part while folding so that the positive electrode layer 13 and the negative electrode layer 14 face each other with the electrolyte layer 15 interposed therebetween.
  • Process In the wound body 17 manufactured through S25 as described above, the positions of the right end face and the left end face in FIG.
  • the wound body 17 having such a configuration can be manufactured by increasing the length of the uncoated portion located on the outer peripheral side of the wound body 17.
  • the terminal connection step (hereinafter referred to as “S26”) is a step of connecting the terminals 19 and 19 to the electron conducting portions 12y and 12y provided in the wound body 17 produced in S25.
  • S26 connects the terminal 19 to the electron conducting portion 12y that is in contact with the positive electrode layer 13 disposed on one end side of the unit cell in the stacking direction, and is disposed on the other end side of the unit cell in the stacking direction.
  • the form is not particularly limited as long as the terminal 19 can be connected to the electron conducting portion 12y that is in contact with the negative electrode layer 14.
  • terminals 19 and 19 made of stainless steel foil having a size of 53 mm ⁇ 80 mm and having irregularities on the surface are arranged on the upper and lower ends of the wound body 17, and the upper end of the wound body 17 is arranged.
  • the electron conducting portion 12y and the terminal 19 are connected by breaking through the positive electrode layer 13 disposed in the wire, and the electron conducting portion 12y and the terminal 19 are broken through the negative electrode layer 14 disposed at the lower end of the winding body 17.
  • the insertion sealing step (hereinafter referred to as “S27”) is a step of manufacturing a battery including the wound body 17 ′ by inserting and sealing the wound body 17 ′ manufactured in S26 into the case. It is.
  • S27 for example, the terminals 19 and 19 of the wound body 17 ′ produced in S26 are welded to the housing, and after the wound body 17 ′ is inserted into the housing, the wound body 17 ′ is accommodated. By laminating and enclosing the housing, a process for producing a battery including the wound body 17 ′ can be obtained.
  • a battery including the current collector 12 can be manufactured.
  • the productivity and stability of the battery can be increased. Therefore, according to the present invention, a battery with improved productivity and stability can be obtained.
  • a battery manufacturing method that can be manufactured can be provided.
  • the terminals 19 and 19 formed of stainless steel foil having irregularities on the surface are arranged on the upper end and the lower end of the winding body 17,
  • corrugation of the terminals 19 and 19 was demonstrated, the wound collector 12
  • the terminal connection process in the manufacturing method of the battery of this invention provided with this is not limited to the said form.
  • the positive electrode layer 13 disposed at the upper end of the wound body 17 and the negative electrode layer 14 disposed at the lower end are removed, and then the electron conducting portion that has been in contact with the removed positive electrode layer 13 is removed.
  • a known lead terminal may be connected to each of 12y and the electron conducting portion 12y that has been in contact with the removed negative electrode layer.
  • an exterior material that also functions as a terminal is in direct contact with each of the electron conducting portion 12y that has been in contact with the removed positive electrode layer 13 and the electron conducting portion 12y that has been in contact with the removed negative electrode layer 14 It is also possible.
  • the positive electrode layers 13, 13,... And the negative electrode layers 14, 14 disposed on one surface side of the current collector 12. ... Is mentioned only on the surface of the electrolyte layers 15,..., but the present invention is not limited to this form, and is disposed on one surface side of the current collector 12. .. May be disposed between the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,.
  • FIG. 20 is a cross-sectional view of the laminate 20 having the current collector 12, the electrodes (the positive electrode layer 13 and the negative electrode layer 14), and the electrolyte layer 15.
  • FIG. 21 shows the laminate 20 around the axis 22. It is sectional drawing which simplifies and shows the winding body 21 produced by winding. 20 and FIG. 21, components similar to those in FIGS. 15 to 19 are denoted by the same reference numerals as those used in these drawings, and the description thereof is omitted as appropriate.
  • the laminate 20 includes a current collector 12, positive electrode layers 13, 13,..., Negative electrode layers 14, 14, and so on, and electrolyte layers 15, 15, and so on. Are disposed on the surface of the electron conducting portions 12x, 12x,... Of the current collector 12, and the negative electrode layers 14, 14,... Are disposed on the surfaces of the electron conducting portions 12y, 12y,. Is arranged. Electrolyte layers 15, 15,... Are disposed on the surfaces of the positive electrode layers 13, 13,..., And the positive electrode layer 13 disposed on the surface of the electron conducting portion 12x sandwiches the current collector 12, It faces the negative electrode layer 14 disposed on the surface of the electron conducting portion 12y. In the laminate 20, the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,... Are not in contact with the insulating substrate 1a.
  • the wound body 21 is configured by winding the laminated body 20 around an axis 22 having a rectangular cross section.
  • the plurality of single cells arranged on the upper side of the axis 22 are connected in series, and the plurality of single cells arranged on the lower side of the axis 22 are connected in series.
  • the unit cell group and the shaft center 22 constituted by a plurality of unit cells connected in series on the upper side of the shaft center 22.
  • a single cell group including a plurality of single cells connected in series on the lower side is connected in parallel.
  • the wound body 21 also has a current collector 12. Therefore, even if it is a form with which the wound body 21 is provided, according to this invention, the battery which can improve productivity and stability can be provided. Further, as described above, according to the wound body 21, the cells can be connected in series and connected in parallel. Therefore, by adopting a configuration in which the wound body 21 is provided, it is possible to provide a battery with an increased degree of freedom in module design.
  • the wound body 21 is formed by increasing the length of the wound laminated body 20 in the winding direction (left and right direction in FIG. 20). Since the number can be easily increased, a battery with an easy voltage design can be provided. Further, similarly to the wound body 17, the wound body 21 is also provided with a positive electrode layer 13, 13,..., A negative electrode layer 14, 14,. Layers 15, 15,... Are not provided. By adopting such a configuration, it becomes possible to prevent a situation in which an electrode or an electrolyte slides from the bending portion when a battery including the wound body 21 is manufactured or used, and the volume of the bending portion that does not contribute to power generation is reduced. Since it can reduce, it also becomes possible to raise the energy density and output density of a battery provided with the wound body 21. In addition, since the winding body 21 has a simple winding mechanism, the manufacturing speed can be increased.
  • FIG. 22 is a flowchart for explaining the battery manufacturing method of the present invention.
  • the battery manufacturing method of the present invention shown in FIG. 22 includes a current collector manufacturing step (S31), an electrode disposing step (S32), an electrolyte disposing step (S33), a slitting step (S34), a winding It has a process (S35), a terminal connection process (S36), and an insertion sealing process (S37).
  • 23 to 25 are diagrams for explaining the manufacturing process of the battery of the present invention.
  • 23 is a cross-sectional view showing the electrode body 23 produced by the electrode disposing step
  • FIG. 24 is a cross-sectional view showing the wound body 21 ′ to which the terminals 19 and 19 are connected in the terminal connecting step
  • FIG. 25 It is sectional drawing which shows winding body 21 'at the time of seeing from the paper surface right side.
  • the illustration of the insulating substrate 1 a is partially omitted in FIG. 25.
  • an example of the battery manufacturing method of the present invention will be described with reference to FIGS.
  • the current collector manufacturing step (hereinafter referred to as “S31”) is a step of manufacturing the current collector 12. More specifically, S31 is a step of producing the current collector 12 by S1 to S5.
  • the positive electrode layers 13, 13,... are disposed so as to be in contact with the electron conducting portions 12x, 12x,.
  • the negative electrode layers 14, 14,... are arranged so as to be in contact with the electron conductive portions 12y, 12y,.
  • the positive electrode layers 13, 13,... are disposed so as to be in contact with the electron conductive portions 12x, 12x,..., And the negative electrode layers 14, 14,.
  • the form is not particularly limited.
  • the positive electrode layer is first formed on one surface side of the current collector 12 by applying the positive electrode composition to the surfaces of all the electron conducting portions 12x, 12x,.
  • the negative electrode composition is applied to the surfaces of all the electron conductive portions 12y, 12y,.
  • the negative electrode layers 14, 14,... Can be formed at a time on the surface side.
  • the positive electrode layers 13, 13,... Can be formed on one surface side of the current collector 12, and the negative electrode layers 14, 14,.
  • the electrode body 23 can be easily manufactured.
  • the electrolyte disposing step (hereinafter referred to as “S33”) is a step of disposing the electrolyte layers 15, 15,... Only on the surface of the electrode disposed on one side of the electrode body 23 produced in S32. is there.
  • the form of S33 is not particularly limited as long as the electrolyte layers 15, 15,... Can be disposed only on the surface of the electrode disposed on one side of the electrode body 23.
  • S33 is a gravure printing method, for example, by applying the electrolyte composition onto the surface of the positive electrode layers 13, 13,... Disposed on one side of the electrode body 23 and drying the laminate 20 shown in FIG. A manufacturing step.
  • the slitting step (hereinafter referred to as “S34”) is a step of shortening the length in the depth direction of the laminate 20 (the length in the depth direction / front side of FIG. 20).
  • the uncoated portion of the insulating substrate 1a in the laminate 20 whose length in the depth direction is adjusted in S34 is folded, and the width 53 mm ⁇ depth 65 mm ⁇ 21 is a step of producing a wound body 21 shown in FIG. 21 by winding the laminate 20 around an axis 22 made of stainless steel having irregularities on the front and back surfaces each having a thickness of 1 mm.
  • S35 is, for example, winding the laminate 20 around the shaft center 22 while folding the uncoated part of the insulating substrate 1a so that the negative electrode layers 14 and 14 are in contact with the upper surface and the back surface of the shaft center 22, respectively.
  • the shaft center 22 also functions as a terminal, and irregularities present on the front and back surfaces of the shaft center 22 break through the negative electrode layers 14 and 14 and contact the electron conducting portions 12y and 12y.
  • the wound body 21 manufactured through S35 as described above the positions of the right end face and the left end face in FIG. 21 of the positive electrode layer 13 and the negative electrode layer 14 facing each other with the electrolyte layer 15 in between are all aligned. preferable.
  • the wound body 21 having such a configuration can be manufactured by increasing the length of the uncoated portion located on the outer peripheral side of the wound body 21.
  • the terminal connection step (hereinafter referred to as “S36”) is a step of connecting the terminals 19 and 19 to the electron conducting portions 12x and 12x provided in the wound body 21 manufactured in S35.
  • the form of S36 is particularly limited as long as the terminals 19 and 19 can be connected to the electron conducting portions 12x and 12x that are in contact with the positive electrode layers 13 and 13 respectively disposed on both ends of the unit cell in the stacking direction. Is not to be done.
  • the terminals 19 and 19 formed of stainless steel foil having irregularities on the surface are disposed on the upper and lower ends of the wound body 21, and the positive electrode layer 13 is broken through the irregularities of the terminals 19 and 19.
  • the insertion sealing step (hereinafter referred to as “S37”) is a step of manufacturing a battery including the wound body 21 ′ by inserting and sealing the wound body 21 ′ prepared in S36 into a case. It is.
  • S37 for example, the terminals 19 and 19 of the wound body 21 ′ produced in S36 are welded to the housing, and after the wound body 21 ′ is inserted into the housing, the wound body 21 ′ is accommodated. By laminating and enclosing the housing, a process for producing a battery including the wound body 21 ′ can be obtained.
  • a battery including the current collector 12 can be manufactured.
  • the productivity and stability of the battery can be increased. Therefore, according to the present invention, a battery with improved productivity and stability can be obtained.
  • a battery manufacturing method that can be manufactured can be provided.
  • the terminals 19 and 19 made of stainless steel foil having irregularities on the surface are arranged on the upper end and the lower end of the winding body 21,
  • corrugation of the terminals 19 and 19 was demonstrated, in the manufacturing method of the battery of this invention using an axial center.
  • a terminal connection process is not limited to the said form.
  • the positive electrode layers 13 and 13 respectively disposed at the upper end and the lower end of the wound body 21 are removed by a known method, and then the positive electrode 13 and 13 are removed to expose the electron conduction.
  • terminals 19 and 19 are connected to the surfaces of the portions 12x and 12x.
  • an exterior material that also functions as a terminal is in direct contact with the electron conducting portions 12x, 12x that have been in contact with the removed positive electrode 13 or a form in which a known lead terminal is connected.
  • the wound body is inserted into the donut-shaped case, and the inner peripheral surface and the outer peripheral surface of the wound body contacting the case that also functions as a terminal are brought into contact with each other.
  • the form in which the shaft center 22 having a rectangular cross section is used is described.
  • the shaft center used in the present invention is the form. It is not limited to.
  • the sectional shape of the axial center can be a circular shape, an elliptical shape, or a polygonal shape such as a triangle, pentagon, or hexagon.
  • the electrolyte layer is formed only on the surface of the positive electrode layers 13, 13,.
  • the electrolyte layers 15, 15, ... may be disposed not only on the surface of the positive electrode layers 13, 13, ..., but also between the positive electrode layers 13, 13, ....
  • the electrolyte layers 15, 15,... May be disposed only on the surfaces of the negative electrode layers 14, 14,... Disposed on the other surface side of the current collector 12. .. May be disposed not only on the surfaces of the negative electrode layers 14, 14,... Disposed on the surface side, but also between the negative electrode layers 14, 14,.
  • the positive electrode layers 13, 13,... Disposed on one surface side of the current collector 12, or the other surface It is preferable that the electrolyte layers 15, 15,... Be disposed only on the surfaces of the negative electrode layers 14, 14,.
  • the positive electrode layers 13, 13, ... are arrange
  • the embodiment in which the negative electrode layers 14, 14,... Are arranged on the surface side is referred to, the present invention is not limited to the embodiment.
  • the positive electrode layer 13 and the negative electrode layer 14 are alternately disposed on one surface side and the other surface side of the current collector, respectively, like the laminate 16. It is also possible to adopt a form.
  • FIG. 26 is a cross-sectional view of a laminate 24 having a current collector 12, electrodes (positive electrode layer 13 and negative electrode layer 14), and an electrolyte layer 15.
  • FIG. 27 is produced by folding the laminate 24 in a zigzag manner. It is sectional drawing which simplifies and shows the structure 25 which is. 26 and 27, components similar to those in FIGS. 15 to 19 are denoted by the same reference numerals as those used in these drawings, and description thereof will be omitted as appropriate.
  • the stacked body 24 includes a current collector 12, positive electrode layers 13, 13,..., Negative electrode layers 14, 14,..., And electrolyte layers 15, 15,. .. And positive electrode layers 13, 13,... And negative electrode layers 14, 14,... Are alternately arranged in the plane direction on the surfaces of the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,.
  • electrolyte layers 15, 15,... are disposed on the surfaces of the positive electrode layers 13, 13,... Disposed on one surface side and the other surface side of the current collector 12.
  • the positive electrode layer 13 disposed on the surface of the electron conducting portion 12x faces the negative electrode layer 14 disposed on the surface of the electron conducting portion 12y with the current collector 12 interposed therebetween.
  • the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,... Are not in contact with the insulating substrate 1a.
  • the structure 25 is produced by bending the laminated body 24 in a zigzag manner so that the positive electrode layer 13 faces the negative electrode layer 14 with the electrolyte layer 15 interposed therebetween while bending the insulating substrate 1a of the laminated body 24.
  • unit cells including a pair of the positive electrode layer 13, the electrolyte layer 15, and the negative electrode layer 14 are connected in series in the vertical direction on the paper surface of FIG. 27.
  • the structure 25 provided in the battery of the present invention has the current collector 12 of the present invention. Therefore, even if the structure 25 is provided, according to the present invention, a battery capable of improving productivity and stability can be provided. Further, according to the structure 25, the number of cells connected in series can be easily increased by increasing the length of the folded stacked body 24 (the length in the horizontal direction in FIG. 26). Therefore, a battery with easy voltage design can be provided. Further, in the structure 25, the electrode and the electrolyte layer 15 are not disposed on the left end portion and the right end portion (curved portion) of the curved structure body 25.
  • FIG. 28 is a flowchart for explaining the battery manufacturing method of the present invention.
  • the battery manufacturing method of the present invention shown in FIG. 28 includes a current collector manufacturing step (S41), an electrode disposing step (S42), an electrolyte disposing step (S43), a slitting step (S44), and a folding step. (S45), a terminal connection step (S46), and an insertion sealing step (S47).
  • FIG. 29 is a figure explaining the manufacturing process of the battery of this invention, and is sectional drawing which shows the structure 26 to which the terminals 7 and 7 were connected by the terminal connection process.
  • the current collector manufacturing step (hereinafter referred to as “S41”) is a step of manufacturing the current collector 12. More specifically, S41 is a step of manufacturing the current collector 12 by S1 to S5.
  • the positive electrode layer is in contact with the electron conducting portions 12x, 12x,... And the electron conducting portions 12y, 12y,. .. And the negative electrode layers 14, 14,... Are prepared to produce the electrode body 18 shown in FIG. If the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,... Can be disposed so as to be in contact with the electron conductive portions 12 x, 12 x,. Is not particularly limited.
  • S42 can have the same form as S22.
  • S43 the surfaces of the positive electrode layers 13, 13,... Disposed on one surface side and the other surface side of the electrode body 18 produced in S42, respectively.
  • the form of S43 is not particularly limited as long as the electrolyte layers 15, 15,... Can be disposed only on the surfaces of the positive electrode layers 13, 13,.
  • S43 can be in the same form as S23.
  • the positive electrode layers 13, 13,..., The negative electrode layers 14, 14,... Provided in the electrode body 18 in which the electrolyte layers 15, 15,. , And of the electrolyte layers 15, 15,..., And the positive electrode that protrudes into an uncoated portion that is considered not to be coated with the positive electrode composition, the negative electrode composition, or the electrolyte composition by design. .., Negative electrode layers 14, 14,..., And electrolyte layers 15, 15,.
  • S44 can be a step of producing the laminate 24 shown in FIG. 26 by the same process as S15.
  • the folding step (hereinafter referred to as “S45”) is shown in FIG. 27 by folding the uncoated portion of the insulating substrate 1a in the laminate 24 in which the uncoated portion is defined in S44, in a zigzag manner.
  • the structure 25 is manufactured.
  • S45 is a step of fabricating the structure 25 by folding the uncoated portion of the insulating substrate 1a in a zigzag so that the positive electrode layer 13 and the negative electrode layer 14 face each other with the electrolyte layer 15 interposed therebetween. Can do.
  • the positions of the right end face and the left end face in FIG. 26 of the positive electrode layer 13 and the negative electrode layer 14 facing each other with the electrolyte layer 15 therebetween are all aligned.
  • the structure 25 having such a form can be manufactured by keeping the length of the uncoated portion of the laminate 24 constant.
  • the terminal connecting step (hereinafter referred to as “S46”) is a step of connecting the terminals 7 and 7 to the electron conducting portions 12x and 12y provided in the structure 25 manufactured in S45.
  • the terminal 7 is connected to the electron conducting portion 12x that is in contact with the positive electrode layer 13 disposed on one end side of the unit cell in the stacking direction, and is disposed on the other end side of the unit cell in the stacking direction.
  • the shape is not particularly limited as long as the terminal 7 can be connected to the electron conducting portion 12y that is in contact with the negative electrode layer 14 that is present.
  • S46 can be, for example, a step of manufacturing the structure 26 shown in FIG. 29 by connecting the terminals 7 and 7 in the same process as S16.
  • the insertion sealing step (hereinafter referred to as “S47”) is a step of manufacturing a battery including the structure 26 by inserting and sealing the structure 26 manufactured in S46 into a case.
  • S47 for example, the terminals 7 and 7 of the structure 26 produced in S46 are welded to the casing, the structure 26 is inserted into the casing, and the casing containing the structure 26 is then laminated. By this, it can be set as the process of producing a battery provided with the structure 26.
  • a battery including the current collector 12 can be manufactured.
  • the productivity and stability of the battery can be increased. Therefore, according to the present invention, a battery with improved productivity and stability can be obtained.
  • a battery manufacturing method that can be manufactured can be provided.
  • the electrolyte is provided only on the surfaces of the positive electrode layers 13, 13,... Disposed on one surface side and the other surface side of the current collector 12.
  • the battery of the present invention having a structure manufactured through a process of folding the current collector 12 in a zigzag manner has negative electrode layers 14, 14 disposed on one surface side and the other surface side of the current collector 12.
  • the electrolyte layers 15, 15,... May be disposed only on the surfaces of.
  • electrolytes 15, 15,... May be disposed on the surfaces of all the positive electrode layers 13, 13,... And the negative electrode layers 14, 14,. , 14,...
  • electrolytes 15, 15, May also be provided with electrolytes 15, 15,.
  • terminals formed of stainless steel foil having irregularities on the surface are arranged at the upper and lower ends of the structure 25, and the positive electrode layer 13, the electrolyte layer 15 and the negative electrode layer 14 are broken by the irregularities of the terminals, thereby allowing electrons It is also possible to connect the conductive portions 12x and 12y and the terminals.
  • an exterior material that also functions as a terminal is brought into direct contact with the electron conducting portion 12x that has been in contact with the removed positive electrode layer 13 and the electron conducting portion 12y that has been in contact with the removed negative electrode layer 14. It is also possible.
  • the manufacturing method is not limited to this form.
  • the method for producing a battery of the present invention it is possible to form a positive electrode layer or a negative electrode layer on the surface of a known substrate or electrolyte layer.
  • the battery of the present invention can be manufactured through the process of disposing the electric body. Even in such a form, it becomes possible to bring the electron conducting portion disposed on the current collector and the plurality of electrodes into contact with each other at the same time, so that productivity can be improved.
  • the current collector and battery of the present invention can be used for electric vehicles and hybrid vehicles, and the current collector manufacturing method and battery manufacturing method of the present invention are used for electric vehicles and hybrid vehicles. This can be used when manufacturing a battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明は、エネルギー密度や出力密度を高めることが可能であり且つ安定性を向上させることが可能な集電体及び該集電体を備えた電池、並びに、生産性を向上させることが可能な集電体の製造方法及び電池の製造方法を提供する。本発明の一形態は、絶縁性基板と、該絶縁性基板の一方の面上及び他方の面上にそれぞれ配設された電子伝導部とを有する集電体であって、一方の面上に、少なくとも2以上の電子伝導部が平面方向に間隔を開けて配設され、他方の面上に配設されている電子伝導部は、絶縁性基板を挟んで、一方の面上に配設されている少なくとも1つの電子伝導部と対向するように配設され、絶縁性基板を挟んで対向するように配設されている、一方の面上に配設された電子伝導部及び他方の面上に配設されている電子伝導部が、絶縁性基板を貫通する孔に配設された電子伝導体を介して接続されている、集電体とする。

Description

集電体及びその製造方法並びに電池及びその製造方法
 本発明は、集電体及びその製造方法並びに電池及びその製造方法に関する。
 リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、非水系の液体又は固体によって構成される。電解質に非水系の液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層の内部へと浸透する。そのため、正極層の正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体の電解質を含有する層(以下において、「固体電解質層」ということがある。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。
 リチウムイオン二次電池に関する技術として、例えば特許文献1には、複数の平面状の蓄電体を整列させて配置し、各蓄電体を電気的に接続してなる蓄電体の平面整列構造において、複数の蓄電体の整列構造に対応して、複数の蓄電体間に曲げ自由度を有して懸架される補強部材を設けたことを特徴とする蓄電体の平面整列構造が開示されている。また、特許文献2には、活物質又はリチウムイオンを吸蔵放出可能なホスト物質を含む合剤層を備え、集電体は、絶縁性の基体と、基体の両面を連通する連通孔と、基体の両面に設けられた電子伝導性の導体とを有しており、基体両面に位置するそれぞれの導体が連通孔を介して電気的に接続されたことを特徴とする電池用集電体が開示されている。また、特許文献3には、発電要素を容器本体に縦横に配列、収納し、隣り合う発電要素同士をリード端子により電気的に接続しつつ全体を直列接続して、その一端より延びる正極端子及び他端より延びる負極端子を容器本体周縁部から突出させている電池モジュールが開示されている。また、特許文献4には、一方の面が正極用集電体層であり他方の面が負極用集電体層である複合集電体の正極用集電体層の上に正極活物質層を有し、負極用集電体層の上に負極活物質層を有するバイポーラ電極ユニットと、固体電解質とを有するシート電池が開示されており、バイポーラ電極ユニットと固体電解質とが交互に積層された形態が開示されている。
特開2005-268138号公報 特開平10-241699号公報 特開2007-95597号公報 特開2000-100471号公報
 特許文献1に開示されている技術によれば、複数の蓄電体間に曲げ自由度を有して補強部材が懸架されているので、曲げ自由度を確保することが可能になると考えられる。しかしながら、特許文献1に開示されている技術では、補強部材を別途取り付ける工程が必要とされるため、生産性が低下しやすいという問題があった。また、特許文献2に開示されている技術のように、絶縁性基体の表面全体に導体を設けると、絶縁性基体が曲がり難くなるため、生産性が低下しやすいという問題があった。また、特許文献3に開示されている技術は、充電や放電に寄与しないデッドスペースを低減し難いほか、発電要素の周囲部分とこれに対向する蓋材の下面とを熱接着しているので接触抵抗の安定性に欠けるという問題があった。また、特許文献4に開示されている技術は、シート電極と固体電解質を積層するため、捲回等に比べ生産性が低下しやすいという問題があった。
 そこで本発明は、生産性や安定性を高めることが可能な、集電体及び該集電体を備えた電池、並びに、集電体の製造方法及び電池の製造方法を提供することを課題とする。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、絶縁性基板と、該絶縁性基板の一方の面上及び他方の面上にそれぞれ配設された電子伝導部とを有する集電体であって、上記一方の面上に、少なくとも2以上の電子伝導部が平面方向に間隔を開けて配設され、上記他方の面上に配設されている電子伝導部は、絶縁性基板を挟んで、一方の面上に配設されている少なくとも1つの電子伝導部と対向するように配設され、絶縁性基板を挟んで対向するように配設されている、一方の面上に配設された電子伝導部及び他方の面上に配設されている電子伝導部が、絶縁性基板を貫通する孔に配設された電子伝導体を介して接続されていることを特徴とする、集電体である。
 本発明の第2の態様は、上記本発明の第1の態様にかかる集電体、該集電体の電子伝導部と接触するように配設された正極層及び負極層、並びに、正極層及び負極層と接触するように配設された電解質層を備え、絶縁性基板の一方の面上に配設された隣接する電子伝導部の間が折り曲げられて積層された、又は、捲回された、集電体、正極層、負極層、及び、電解質層を備えることを特徴とする、電池である。
 本発明の第3の態様は、貫通孔を有する絶縁性基板の貫通孔に電子伝導体を配設する工程と、貫通孔に配設された電子伝導体と接触するように、絶縁性基板の一方の面の一部へ少なくとも2以上の電子伝導部を平面方向に間隔を開けて配設する工程と、貫通孔に配設された電子伝導体と接触するように、絶縁性基板の他方の面の一部へ電子伝導部を配設する工程と、を有することを特徴とする、集電体の製造方法である。
 本発明の第4の態様は、絶縁性基板と該絶縁性基板の一方の面上及び他方の面上にそれぞれ配設された電子伝導部とを有する集電体、該集電体と接触するように配設された正極層及び負極層、並びに、正極層及び負極層と接触するように配設された電解質層を備える電池を製造する方法であって、上記本発明の第3の態様にかかる集電体の製造方法によって集電体を製造する工程と、絶縁性基板の面上に配設された電子伝導部と接触するように正極層及び負極層を配設する工程と、正極層及び/又は負極層と接触するように電解質層を配設する工程と、絶縁性基板の一方の面上に配設された隣接する電子伝導部の間を折り曲げる過程又は捲き取る過程を経て、集電体、正極層、負極層、及び、電解質層を積層又は捲回する工程と、を有することを特徴とする、電池の製造方法である。
 本発明の第1の態様にかかる集電体は、平面方向に間隔を開けて配設された2以上の電子伝導部を有している。このような形態とすることにより、集電体を備える電池の作製時に、複数の電極と集電体の複数の電子伝導部とを一度に接触させることが可能になるので、電池の生産性を高めることが可能になる。また、本発明の集電体は、2以上の電子伝導部が間隔を開けて配設されているので、電子伝導部の間に存在する絶縁性基板によって、本発明の集電体を備える電池の電極間の短絡を防止することが可能になる。したがって、本発明の第1の態様によれば、電池の生産性や安定性を高めることが可能な、集電体を提供することができる。
 本発明の第2の態様にかかる電池は、電池の生産性や安定性を高めることが可能な、本発明の第1の態様にかかる集電体を備えている。したがって、本発明の第2の態様によれば、生産性や安定性を高めることが可能な、電池を提供することができる。
 本発明の第3の態様にかかる集電体の製造方法によれば、本発明の第1の態様にかかる集電体を製造することができる。したがって、本発明の第3の態様によれば、電池の生産性や安定性を高め得る集電体を製造することが可能な、集電体の製造方法を提供することができる。
 本発明の第4の態様にかかる電池の製造方法によれば、本発明の第2の態様にかかる電池を製造することができる。したがって、本発明の第4の態様によれば、生産性や安定性を高め得る電池を製造することが可能な、電池の製造方法を提供することができる。
集電体1の断面図である。 集電体1の正面図である。 集電体の製造方法を説明するフローチャートである。 積層体8の断面図である。 積層体8の正面図である。 捲回体9の正面図である。 電池の製造方法を説明するフローチャートである。 電極体5の断面図である。 電極体6の断面図である。 構造体10の断面図である。 構造体11の断面図である。 構造体10’の断面図である。 構造体11’の断面図である。 捲回体9の正面図である。 積層体16の断面図である。 捲回体17の断面図である。 電池の製造方法を説明するフローチャートである。 電極体18の断面図である。 捲回体17’の断面図である。 積層体20の断面図である。 捲回体21の断面図である。 電池の製造方法を説明するフローチャートである。 電極体23の断面図である。 捲回体21’の断面図である。 捲回体21’の断面図である。 積層体24の断面図である。 構造体25の断面図である。 電池の製造方法を説明するフローチャートである。 構造体26の断面図である。
 1、12…集電体
 1a…絶縁性基板
 1b…孔
 1x、12x…電子伝導部
 1y、12y…電子伝導部
 1z…電子伝導体
 2、13…正極層
 3、14…負極層
 4、15…電解質層
 5、6、18…電極体
 7、19…端子
 8、16、20…積層体
 9、17、21…捲回体
 10、11…構造体
 22…軸心
 23…電極体
 24…積層体
 25、26…構造体
 エネルギー密度や出力密度を高めるため、集電体、電極(正極層、負極層)、及び、電解質層等を積層して構成した積層体を捲回又は折り畳むことによって作製した構造体を有する電池が開発されてきている。しかしながら、これまでに提案されている形態の電池では、積層体を構成する層(シート)の数が増大しやすい。シート数が増大すると、捲回速度又は折り畳む速度が低減しやすいため、電池の生産性が低下しやすい。また、上記の構造体を有する電池は、捲回又は折り畳んで構造体を作製する際等に、電極等の滑落が生じやすく、短絡が懸念されるため、電池の安定性が低下しやすい。それゆえ、生産性及び安定性を高めた電池を得るためには、シート数の増大及び電極等の滑落を低減する必要がある。
 本発明者は、鋭意研究の結果、絶縁性基板の表裏面それぞれの一部に、間隔を開けて電子伝導部を形成し、表面側の電子伝導部と裏面側の電子伝導部とを、絶縁性基板を貫通する孔に配置した導電性物質で接続した構造の集電体を用いることにより、電池の生産性及び安定性を高めることが可能になることを知見した。
 本発明は、かかる知見に基づいてなされたものである。本発明は、生産性や安定性を高めることが可能な、集電体及び該集電体を備えた電池、並びに、集電体の製造方法及び電池の製造方法を提供することを、主な要旨とする。
 以下、図面を参照しつつ、本発明について説明する。図面では、一部符号の記載を省略することがある。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。本発明における絶縁性基板の形態には、シート状形態やフィルム状形態が含まれる。
 図1は、本発明の集電体1の断面図であり、図2は、集電体1の正面図である。図1及び図2に示すように、集電体1は、絶縁性基板1aと、該絶縁性基板1aの一方の面上へ間隔を開けて形成された電子伝導部1x、1x、…と、絶縁性基板1aの他方の面上へ間隔を開けて形成された電子伝導部1y、1y、…と、を有し、電子伝導部1x、1x、…及び電子伝導部1y、1y、…は、絶縁性基板1aを挟んで対向するように形成されている。絶縁性基板1aは、該絶縁性基板1aを貫通する複数の孔1b、1b、…を有し、それぞれの孔1b、1b、…には電子伝導体1z、1z、…が配設されている。そして、絶縁性基板1aを介して対向する電子伝導部1x、1x、…及び電子伝導部1y、1y、…は、電子伝導体1z、1z、…を介して接続されている。
 集電体1は、平面方向(図1及び図2の紙面左右方向。集電体1の説明において以下同じ。)に間隔を開けて配設された電子伝導部1x、1x、…及び電子伝導部1y、1y、…を有している。そのため、集電体1を備える電池の作製時に、複数の電極と、集電体1の複数の電子伝導部1x、1x、…又は電子伝導部1y、1y、…とを一度に接触させることができる。したがって、集電体1を用いることにより、電池の生産性を高めることが可能になる。また、集電体1は、電子伝導部1x、1x、…及び電子伝導部1y、1y、…が平面方向に間隔を開けて配設されているので、隣接する電子伝導部間に存在する絶縁性基板1aによって、集電体1を有する電池の電極間の短絡を防止することが可能になる。したがって、集電体1によれば、電池の生産性や安定性を高めることが可能になる。
 図3は、本発明の集電体の製造方法を説明するフローチャートである。図3に示すように、本発明の集電体の製造方法は、被覆工程(S1)と、孔形成工程(S2)と、電子伝導体配設工程(S3)と、電子伝導部配設工程(S4)と、除去工程(S5)と、を有している。以下、図1~図3を参照しつつ、集電体1の製造方法の一例を説明する。
 被覆工程(以下において、「S1」ということがある。)は、絶縁性基板1aの表面のうち、電子伝導部を配設したくない箇所にめっきレジスト層を形成する工程である。S1で絶縁性基板1aの表面の一部に形成されるめっきレジスト層は、電子伝導部の形成が終了するまで絶縁性基板1aの表面を被覆し続けることが可能な材料によって構成されていれば、その形態は特に限定されるものではない。また、S1は、電子伝導部を配設したくない絶縁性基板1aの一部にめっきレジスト層を形成可能であれば、その形態は特に限定されるものではない。S1は、例えば、公知の方法で、厚さ10μmのポリプロピレンシートによって構成される絶縁性基板1aの一方の面及び他方の面の全面へめっきレジスト層の構成材料を塗布し、電子伝導部を配設したい箇所にのみ光を照射して溶解性を変化させた後、現像することによって、複数のめっきレジスト層を間隔を開けて形成する工程、とすることができる。
 孔形成工程(以下において、「S2」ということがある。)は、上記S1でめっきレジスト層が形成されなかった絶縁性基板1aの部位に、絶縁性基板1aを貫通する孔1b、1b、…を形成する工程である。S2は、電子伝導部を配設したい箇所に孔1b、1b、…を形成可能であれば、その形態は特に限定されるものではない。S2は、例えば、絶縁性基板1aの、電子伝導部を配設したい箇所へ、パンチングプレスにより孔1b、1b、…を形成する工程、とすることができる。S2で形成される孔1b、1b、…の直径は、孔1b、1b、…に電子伝導体1zを配設可能であれば特に限定されるものではなく、例えば10μmとすることができる。また、隣接する孔1b、1bの間隔も特に限定されるものではなく、例えば100μm以上500μm以下とすることができる。なお、ここでは、S1の後にS2が行われる形態を示したが、本発明は、被覆工程の後に孔形成工程が行われる形態に限定されるものではなく、孔形成工程の後に被覆工程が行われても良い。
 電子伝導体配設工程(以下において、「S3」という。)は、上記S2で形成された孔1b、1b、…に電子伝導体1z、1z、…を配設する工程である。S3は、孔1b、1b、…に電子伝導体1z、1z、…を配設可能であれば、その形態は特に限定されるものではない。S3は、例えば、無電解めっきにより、孔1b、1b、…へ金属Niを配設する工程、とすることができる。S3が、無電解めっきにより孔1b、1b、…へ金属Niを配設する工程である場合、無電解めっきの形態は特に限定されるものではなく、公知の無電解めっき法を適宜用いることができる。
 電子伝導部配設工程(以下において、「S4」という。)は、上記S3で孔1b、1b、…に配設された電子伝導体1z、1z、…と接触するように、上記S1でめっきレジスト層が形成されなかった絶縁性基板1aの一方の面へ電子伝導部1x、1x、…を配設し、さらに、電子伝導体1z、1z、…と接触するように、上記S1でめっきレジスト層が形成されなかった絶縁性基板1aの他方の面へ電子伝導部1y、1y、…を配設する工程である。S4は、電子伝導体1z、1z、…と接触するように電子伝導部1x、1x、…、及び、電子伝導部1y、1y、…を形成可能であれば、その形態は特に限定されるものではない。S4は、孔1b、1b、…に配設された金属Niと接触するように、例えば、蒸着法、スパッタ法、又は、ガスデポジション法等の公知の方法でステンレス鋼(以下において、「SUS」ということがある。)層を形成することにより、電子伝導部を配設したい箇所へ電子伝導部1x、1x、…及び電子伝導部1y、1y、…を形成する工程、とすることができる。S4で形成される電子伝導部1x、1x、…及び電子伝導部1y、1y、…の厚さは特に限定されるものではないが、例えば、1μmとすることができる。本発明において、S4は、例えばめっきで、表面ともう一方の面に同時に電子伝導部を形成する形態とすることも可能である。
 除去工程(以下において、「S5」という。)は、上記S4の終了後に、上記S1で形成しためっきレジスト層を除去する工程である。S5は、上記S4で形成した電子伝導部1x、1x、…及び電子伝導部1y、1y、…を除去せずに、上記S11で形成しためっきレジスト層を除去可能であれば、その形態は特に限定されるものではない。S5は、例えば、公知のアルカリ性処理液を用いてめっきレジスト層を除去する工程、とすることができる。
 このように、本発明の集電体の製造方法によれば、集電体1を製造することができる。上述のように、集電体1によれば、電池の生産性や安定性を高めることが可能になるので、本発明によれば、電池の生産性や安定性を高め得る集電体1を製造することが可能な、集電体の製造方法を提供することができる。
 本発明の集電体の製造方法に関する上記説明では、S5を有する形態について言及したが、本発明の集電体の製造方法は当該形態に限定されるものではない。本発明の集電体の製造方法は、S5を有しない形態とすることも可能である。
 本発明の集電体及びその製造方法に関する上記説明では、孔1b、1b、…に配設された電子伝導体1z、1z、…と、絶縁性基板1aの表裏面にそれぞれ配設された電子伝導部1x、1x、…及び電子伝導部1y、1y、…とが、異なる材料によって構成される形態について言及したが、本発明は当該形態に限定されるものではない。本発明では、絶縁性基板を貫通する孔に配設された電子伝導体と、絶縁性基板の表裏面に配設された電子伝導部とが、同一の材料によって構成されていてもよい。孔に配設した電子伝導体と絶縁性基板の表裏面に配設した電子伝導部とを同一材料によって構成する場合、その同一材料は、例えば、SUSとすることができる。この場合、孔や絶縁性基板の表裏面にSUSを配設する方法は特に限定されるものではない。本発明では、例えば、蒸着法やスパッタ法によりSUSを孔に充填するとともに絶縁性基板の表裏面に間隔を開けて電子伝導部を形成する形態や、ガスデポジション法により平均粒径数μm(例えば、3μm程度)のSUS粉末を孔に充填するとともに絶縁性基板の表裏面に間隔を開けて電子伝導部を形成する形態等、公知の方法を適宜用いることができる。
 図4は、積層された本発明の集電体1、電極(正極層2、負極層3)、及び、電解質層4を有する積層体8の断面図であり、図5は、図4に示す積層体8の正面図である。また、図6は、本発明の電池に備えられる捲回体9の正面図である。捲回体9は、積層体8を捲回する過程を経て作製されており、図6では、最外周に配設されている電解質層4の記載を省略している。
 積層体8は、図4の紙面上下方向(図5の紙面手前/奥方向)へ交互に配設された電解質層4、電極体6、電解質層4、及び、電極体5を有している。電極体5、6は、集電体1、正極層2、2、…、及び、負極層3、3、…を有しており、積層体8の2つの電極体5、6のうち、電極体5は、右端の電子伝導部1xに端子7が接続されており、電極体6は、左端の電子伝導部1yに端子7が接続されている。積層体8は、すべての電子伝導部1x、1x、…及び電子伝導部1y、1y、…に、正極層2及び/又は負極層3が接触している。そして、正極層2、2、…及び負極層3、3、…は、集電体1を挟んで一対の正極層2、2同士又は一対の負極層3、3同士が対向するように配設され、2つの電極体5、6の間に配設された電解質層4を挟んで一対の正極層2及び負極層3が対向するように配設されている。積層体8において、正極層2、2、…及び負極層3、3、…は、電子伝導部1x、電子伝導部1y、電解質層4と接触する一方、絶縁性基板1aとは接触していない。
 捲回体9は、例えば、図5の紙面奥側が凸となるように積層体8を捲回する過程を経て作製される。この捲回体9では、1組の正極層2、電解質層4、及び、負極層3によって構成される単電池が、図4の紙面上下方向に並列に接続され、且つ、図4の紙面左右方向に直列に接続されている。
 本発明の電池に備えられる捲回体9は集電体1、1を有している。そして、集電体1、1の一方の面側に形成されている電子伝導部1x、1x、…は、図4の右端に配設されている電子伝導部1xを除いて、複数の電極(正極層2及び負極層3。集電体1の説明において以下同じ。)と接触しており、集電体1、1の他方の面側に形成されている電子伝導部1y、1y、…も、図4の左端に配設されている電子伝導部1yを除いて、複数の電極と接触している。かかる形態とすることにより、捲回体9を備える電池の作製時には、複数の電極と電子伝導部1x、1x、…又は電子伝導部1y、1y、…とを一度に接触させることが可能になるので、捲回体9を備える電池の生産性を高めることができる。また、電子伝導部1x、1x、…及び電子伝導部1y、1y、…は平面方向に間隔を開けて形成されているので、電子伝導部1x、1x、…や電子伝導部1y、1y、…の間に存在する絶縁性基板1aにより、当該絶縁性基板1aによって平面方向に隔てられた電極間の短絡を防止することが可能になる。したがって、捲回体9が備えられる形態とすることにより、本発明によれば、生産性や安定性を高めることが可能な、電池を提供することができる。
 図7は、本発明の電池の製造方法を説明するフローチャートである。図7に示すように、本発明の電池の製造方法は、集電体作製工程(S11)と、電極配設工程(S12)と、電解質配設工程(S13)と、プレス工程(S14)と、スリット工程(S15)と、端子接続工程(S16)と、捲回工程(S17)と、挿入封止工程(S18)と、を有している。また、図8~図14は、捲回体8を備える本発明の電池の製造工程を説明する図である。図8は電極配設工程によって作製された電極体5の断面図、図9は電極配設工程によって作製された電極体6の断面図、図10は電解質層4及び電極体5を有する構造体10の断面図、図11は電解質層4及び電極体6を有する構造体11の断面図である。また、図12は端子接続工程で端子7が接続された構造体10’の断面図、図13は端子接続工程で端子7が接続された構造体11’の断面図、図14は捲回工程で作製された捲回体9を示す正面図である。以下、図4~図14を参照しつつ、本発明の電池の製造方法の一例を説明する。
 集電体作製工程(以下において、「S11」という。)は、集電体1を作製する工程である。より具体的に、S11は、上記S1~S5により、集電体1を作製する工程である。
 電極配設工程(以下において、「S12」という。)は、上記S11で作製した集電体1の電子伝導部1x、1x、…や電子伝導部1y、1y、…と接触するように正極層2、2、…及び負極層3、3、…を配設して、図8に示す電極体5及び図9に示す電極体6を作製する工程である。S12は、電子伝導部1x、1x、…や電子伝導部1y、1y、…と接触するように正極層2、2、…及び負極層3、3、…を配設可能であれば、その形態は特に限定されるものではない。S12では、例えば、まず、ダイコート法で、すべての電子伝導部1x、1x、…の表面へ、正極用組成物と負極用組成物とを間隔を開けて交互に塗工し乾燥することにより、集電体1の一方の面側に正極層2、2、…を一度に形成し、負極層3、3、…を一度に形成することができる。その後、集電体1を挟んで一対の正極層2、2又は一対の負極層3、3が対向するように、ダイコート法で、すべての電子伝導部1y、1y、…の表面へ、正極用組成物と負極用組成物とを間隔を開けて交互に塗工し乾燥する。かかる過程を経ることにより、集電体1の一方の面側及び他方の面側に、正極層2、2、…及び負極層3、3、…をそれぞれ一度に形成することができるので、電極体5、6を容易に作製することができる。
 S12で電子伝導部1x、1x、…や電子伝導部1y、1y、…の表面に塗工される正極用組成物は、電池の正極作製時に用いられるものであれば特に限定されるものではない。S12では、例えば、質量比で、正極活物質:電解質:導電助剤:結着材=45:45:9:1となるように配合した混合物を溶媒に入れて混ぜ合わせることにより作製した組成物を正極用組成物とすることができる。S12において、正極活物質としては、例えば、コバルト酸リチウムを用いることができ、電解質としては、例えば、質量比で、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物固体電解質のほか、公知の有機固体電解質を用いることができる。また、S12において、導電助剤としては、例えば、アセチレンブラックを用いることができ、結着材としては、例えば、ポリフッ化ビニリデン(PVDF)を用いることができる。S12で電子伝導部1x、1x、…や電子伝導部1y、1y、…の表面に形成される正極2の幅は、例えば50mmとすることができ、捲回体8に備えられる正極層2、2、…の厚さは、例えば30μmとすることができる。
 また、S12で電子伝導部1x、1x、…や電子伝導部1y、1y、…の表面に塗工される負極用組成物は、電池の負極作製時に用いられるものであれば特に限定されるものではない。S12では、例えば、質量比で、負極活物質:電解質:導電助剤:結着材=47:47:5:1となるように配合した混合物を溶媒に入れて混ぜ合わせることにより作製した組成物を負極用組成物とすることができる。S12において、負極活物質としては、例えば、グラファイトカーボンを用いることができ、電解質としては、例えば、質量比で、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物固体電解質のほか、公知の有機固体電解質を用いることができる。また、導電助剤としては、例えば、アセチレンブラックを用いることができ、結着材としては、例えば、ポリフッ化ビニリデン(PVDF)を用いることができる。S12で電子伝導部1x、1x、…や電子伝導部1y、1y、…の表面に形成される負極3の幅は、例えば52mmとすることができ、捲回体8に備えられる負極層3、3、…の厚さは、例えば35μmとすることができる。
 電解質配設工程(以下において、「S13」という。)は、上記S12で作製した電極体5の片側に配設されている正極層2、2、…及び負極層3、3、…を覆うように電解質層4を配設し、上記S12で作製した電極体6の片側に配設されている正極層2、2、…及び負極層3、3、…を覆うように電解質層4を配設する工程である。S13は、電極体5及び電極体6の片側に配設されている正極層2、2、…及び負極層3、3、…のすべてと電解質層4とが接触するように電解質層4、4を配設可能であれば、その形態は特に限定されるものではない。S13は、例えば、グラビア印刷法により、電極体5及び電極体6の片側に配設されている正極層2、2、…及び負極層3、3、…を覆うように電解質用組成物を塗工し乾燥させることにより、電解質層4、4をそれぞれ配設する工程、とすることができる。
 S13で正極層2、2、…や負極層3、3、…の表面に塗工される電解質用組成物は、電池の電解質層作製時に用いられるものであれば特に限定されるものではない。S13では、例えば、質量比で、電解質:結着材=99:1となるように配合した混合物を溶媒に入れて混ぜ合わせることにより作製した組成物を電解質用組成物とすることができる。S13において、電解質としては、例えば、質量比で、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物固体電解質のほか、公知の有機固体電解質を用いることができ、結着材としては、例えば、ポリフッ化ビニリデン(PVDF)を用いることができる。捲回体8に備えられる電解質層4、4の厚さは、例えば20μmとすることができる。
 プレス工程(以下において、「S14」という。)は、上記S13で電解質層4が配設された電極体5、6をプレスする工程である。S14は、電解質同士の接触面積を拡大してエネルギー密度や出力密度を高めた電池を製造するため正極活物質と電解質、負極活物質と電解質に行われる工程であり、例えば、ロールプレスにより、電解質層4が配設された電極体5及び電解質層4が配設された電極体6をプレスする工程、とすることができる。
 スリット工程(以下において、「S15」という。)は、上記S14でプレスされた、電解質層4が配設されている電極体5、6のそれぞれに備えられている正極層2、2、…や負極層3、3、…のうち、設計上、正極用組成物や負極用組成物を塗工すべきではないと考えられる未塗工部へとはみ出してしまった正極層2、2、…及び/又は負極層3、3、…の一部を除去する工程である。S15は、例えば、シャーカット方式スリッターによって電極を塗工していない集電体部7、7の一部を除去することにより、図10に示す構造体10及び図11に示す構造体11を作製する工程、とすることができる。
 端子接続工程(以下において、「S16」という。)は、上記S15で未塗工部が画定された構造体10及び構造体11に備えられる電子伝導部に、端子7を接続して、図12に示す構造体10’及び図13に示す構造体11’を作製する工程である。S16は、例えば、構造体10の右端の電子伝導部1xにNiリード端子7を溶接し、構造体11の左端の電子伝導部1yにNiリード端子7を溶接した後、短絡保護のためにNiリード端子7、7の表面に絶縁テープ(不図示)を貼ることにより、構造体10’及び構造体11’を作製する工程、とすることができる。
 捲回工程(以下において、「S17」という。)は、上記S16で作製した構造体10’、11’を積層することにより積層体8を作製した後、積層体8を捲回することにより、図14に示される捲回体9を作製する工程である。S17は、例えば、電解質層4を挟んで構造体10’の正極層2、2、…と構造体11’の負極層3、3、…とが対向し、且つ、電解質層4を挟んで構造体10’の負極層3、3、…と構造体11’の正極層2、2、…とが対向するように構造体10’、11’を積層することにより積層体8を作製した後、積層体8を円筒状に捲回することにより、捲回体9を作製する工程、とすることができる。
 挿入封止工程(以下において、「S18」という。)は、上記S17で作製した捲回体9をケースに挿入して封止することにより、捲回体9を備える電池を作製する工程である。S18は、例えば、上記S17で作製した捲回体9の端子7、7を、円筒型のケースに溶接し、捲回体9を当該円筒型のケースへと挿入した後、捲回体9を収容したケースをかしめて封止することにより、捲回体9を備える電池を作製する工程、とすることができる。
 このように、本発明の電池の製造方法によれば、捲回体9を備える電池を製造することができる。上述のように、捲回体9が備えられる形態とすることにより、電池の生産性や安定性を高めることが可能になるので、本発明によれば、生産性や安定性を高めた電池を製造することが可能な、電池の製造方法を提供することができる。
 本発明の電池及びその製造方法に関する上記説明では、集電体1を挟んで一対の正極層2、2同士又は一対の負極層3、3同士が対向するように配設された電極体5、6が備えられる形態を例示したが、本発明は当該形態に限定されるものではない。そこで、集電体1を挟んで正極層2及び負極層3が対向するように配設されている電極体が備えられる本発明の電池、及び、当該電池の製造方法について、以下に説明する。
 図15は、積層された本発明の集電体12、電極(正極層13、負極層14)、及び、電解質層15を有する積層体16の断面図であり、図16は、積層体16を捲回することによって作製される捲回体17を簡略化して示す断面図である。集電体12は、電子伝導部12x、12x、…及び電子伝導部12y、12y、…の平面方向(図15の紙面左右方向。集電体12並びに正極層13及び負極層14の説明において、以下同じ。)の幅が集電体1と異なっており、構成材料や製造方法は集電体1と同一である。また、正極層13は、図15及び図16の紙面奥/手前方向の長さが正極層2と異なっており、構成材料は正極層2と同一である。また、負極層14は、図15及び図16の紙面奥/手前方向の長さが負極層3と異なっており、構成材料は負極層3と同一である。また、電解質層15は、図15及び図16の紙面奥/手前方向の長さ、並びに、図15及び図16の紙面左右方向の長さが電解質層4と異なっており、構成材料は電解質層4と同一である。図15及び図16において、集電体1と同様に構成されるものには、図1~図14にて使用した符号と同一の符号を付し、その説明を適宜省略する。
 積層体16は、集電体12と、正極層13、13、…と、負極層14、14、…と、電解質層15、15、…と、を有している。集電体12は、絶縁性基板1aと、該絶縁性基板1aの一方の面側へ平面方向に間隔を開けて配設された電子伝導部12x、12x、…と、絶縁性基板1aの他方の面側へ平面方向に間隔を開けて配設された電子伝導部12y、12y、…とを有している。絶縁性基板1aは、複数の孔1b、1b、…を有し、集電体12を挟んで対向している電子伝導部12x、12x、…及び電子伝導部12y、12y、…は、孔1b、1b、…に配設されている電子伝導体1z、1z、…を介して接続されている。それぞれの電子伝導部12x、12x、…及び電子伝導部12y、12y、…の表面には、正極層13、13、…又は負極層14、14、…が平面方向に交互に配設されており、集電体12の一方の面側に配設されている正極層13、13、…及び負極層14、14、…の表面には、電解質層15、15、…が配設されている。そして、電子伝導部12xの表面に配設されている正極層13は、集電体12を挟んで、電子伝導部12yの表面に配設されている負極層14と対向しており、電子伝導部12xの表面に配設されている負極層14は、集電体12を挟んで、電子伝導部12yの表面に配設されている正極層13と対向している。積層体16において、正極層12、12、…及び負極層13、13、…は、電子伝導部12x及び電解質層15、又は、電子伝導部12yと接触する一方、絶縁性基板1aとは接触していない。
 捲回体17は、積層体16の正極層13が電解質層15を挟んで負極層14と対向するように捲回されることによって作製される。この捲回体17では、1組の正極層13、電解質層15、及び、負極層14によって構成される単電池が、図16の紙面上下方向に直列に接続されている。
 図16に示すように、本発明の電池に備えられる捲回体17は、本発明の集電体12を有している。そして、集電体12の一方の面側に形成されている電子伝導部12x、12x、…は、それぞれ、正極層13又は負極層14と接触しており、集電体12、12の他方の面側に形成されている電子伝導部12y、12y、…も、それぞれ、正極層13又は負極層14と接触している。かかる形態とすることにより、捲回体17の作製時には、複数の電極と電子伝導部12x、12x、…又は電子伝導部12y、12y、…とを一度に接触させることが可能になるので、捲回体17を備える電池の生産性を高めることができる。また、電子伝導部12x、12x、…及び電子伝導部12y、12y、…は平面方向に間隔を開けて形成されているので、電子伝導部12x、12x、…や電子伝導部12y、12y、…の間に存在する絶縁性基板1aにより、当該絶縁性基体1aによって平面方向に隔てられていた電極間の短絡を防止することが可能になる。したがって、捲回体17が備えられる形態であっても、本発明によれば、生産性や安定性を高めることが可能な、電池を提供することができる。
 また、捲回体17によれば、捲回される積層体16の捲回方向(図15の紙面左右方向)の長さを長くすることによって、直列接続される単電池の数を容易に増大することができるため、電圧設計が容易な電池を提供することもできる。さらに、捲回体17は、湾曲している捲回体17の左端部及び右端部(以下において、「湾曲部」という。)に、電極及び電解質15が配設されていない。かかる形態とすることにより、捲回体17を備える電池の作製時や使用時に、湾曲部から電極や電解質が滑落する事態を防止することが可能になるほか、発電に寄与しない湾曲部の体積を低減することができるので、捲回体17を備える電池のエネルギー密度や出力密度を高めることも可能になる。加えて、捲回体17は捲回の機構が単純であるため、製造速度を高めることが可能になる。
 図17は、本発明の電池の製造方法を説明するフローチャートである。図17に示す本発明の電池の製造方法は、集電体作製工程(S21)と、電極配設工程(S22)と、電解質配設工程(S23)と、スリット工程(S24)と、捲回工程(S25)と、端子接続工程(S26)と、挿入封止工程(S27)と、を有している。また、図18及び図19は、本発明の電池の製造工程を説明する図である。図18は電極配設工程によって作製された電極体18を示す断面図、図19は端子接続工程で端子19、19が接続された捲回体17’を示す断面図である。以下、図15~図19を参照しつつ、本発明の電池の製造方法の一例を説明する。
 集電体作製工程(以下において、「S21」という。)は、集電体12を作製する工程である。より具体的に、S21は、上記S1~S5により、集電体12を作製する工程である。
 電極配設工程(以下において、「S22」という。)は、上記S21で作製した集電体12の電子伝導部12x、12x、…や電子伝導部12y、12y、…と接触するように正極層13、13、…及び負極層14、14、…を配設して、図18に示す電極体18を作製する工程である。S22は、電子伝導部12x、12x、…や電子伝導部12y、12y、…と接触するように正極層13、13、…及び負極層14、14、…を配設可能であれば、その形態は特に限定されるものではない。S22では、例えば、まず、すべての電子伝導部12x、12x、…の表面へ、グラビア印刷法で正極用組成物と負極用組成物とを間隔を開けて交互に塗工し乾燥することにより、集電体12の一方の面側に正極層13、13、…を一度に形成し、負極層14、14、…を一度に形成することができる。その後、集電体12を挟んで正極層13と負極層14とが対向するように、グラビア印刷法で、すべての電子伝導部12y、12y、…の表面へ、正極用組成物と負極用組成物とを間隔を開けて交互に塗工し乾燥する。かかる過程を経ることにより、集電体12の一方の面側及び他方の面側に、正極層13、13、…及び負極層14、14、…をそれぞれ一度に形成することができるので、電極体18を容易に作製することができる。
 S22で電子伝導部12x、12x、…や電子伝導部12y、12y、…の表面に形成される正極層13の大きさは、例えば50mm×50mmとすることができ、捲回体17に備えられる正極層13、13、…の厚さは、例えば30μmとすることができる。また、S22で電子伝導部12x、12x、…や電子伝導部12y、12y、…の表面に形成される負極層14の大きさは、例えば52mm×52mmとすることができ、捲回体17に備えられる負極層14、14、…の厚さは、例えば35μmとすることができる。
 電解質配設工程(以下において、「S23」という。)は、上記S22で作製した電極体18の片側に配設されている正極層13、13、…及び負極層14、14、…の表面にのみ電解質層15、15、…を配設する工程である。S23は、電極体18の片側に配設されている正極層13、13、…及び負極層14、14、…の表面にのみ電解質層15、15、…を配設可能であれば、その形態は特に限定されるものではない。S23は、例えば、グラビア印刷法により、電極体18の片側に配設されている正極層13、13、…及び負極層14、14、…の表面に電解質用組成物を塗工し乾燥させることにより、電解質層15、15、…を配設して図15に示す積層体16を作製する工程、とすることができる。
 スリット工程(以下において、「S24」という。)は、積層体16の奥行き方向長さ(図15の紙面奥/手前方向の長さ)を短くする工程である。
 捲回工程(以下において、「S25」という。)は、上記S24で奥行き方向長さが整えられた積層体16における、未塗工部の絶縁性基板1aを折り畳みながら捲回することにより、図16に示される捲回体17を作製する工程である。S25は、例えば、電解質層15を挟んで正極層13と負極層14とが対向するように、未塗工部の絶縁性基板1aを折り畳みながら捲回することにより、捲回体17を作製する工程、とすることができる。このようなS25を経て作製される捲回体17は、電解質層15を挟んで対向する正極層13及び負極層14の、図16における右側端面及び左側端面の位置が、すべて揃っていることが好ましい。かかる形態の捲回体17は、捲回体17の外周側に位置する未塗工部ほど長さを長くしておくことにより、作製することが可能になる。
 端子接続工程(以下において、「S26」という。)は、上記S25で作製された捲回体17に備えられる電子伝導部12y、12yに、端子19、19を接続する工程である。S26は、単電池の積層方向一端側に配設されている正極層13と接触している電子伝導部12yに端子19を接続し、かつ、単電池の積層方向他端側に配設されている負極層14と接触している電子伝導部12yに端子19を接続可能であれば、その形態は特に限定されるものではない。S26は、例えば、捲回体17の上端及び下端へ、大きさが53mm×80mmであり表面に凹凸を有するステンレス鋼箔によって構成される端子19、19を配設し、捲回体17の上端に配設されている正極層13を突き破って電子伝導部12yと端子19とを接続し、捲回体17の下端に配設されている負極層14を突き破って電子伝導部12yと端子19とを接続することにより、図19に示される捲回体17’を作製する工程、とすることができる。
 挿入封止工程(以下において、「S27」という。)は、上記S26で作製した捲回体17’をケースに挿入して封止することにより、捲回体17’を備える電池を作製する工程である。S27は、例えば、上記S26で作製した捲回体17’の端子19、19を筐体に溶接し、捲回体17’を当該筐体へと挿入した後、捲回体17’を収容した筐体をラミネート封入することにより、捲回体17’を備える電池を作製する工程、とすることができる。
 このように、本発明の電池の製造方法によれば、集電体12を備える電池を製造することができる。上述のように、集電体12が備えられる形態とすることにより、電池の生産性や安定性を高めることが可能になるので、本発明によれば、生産性や安定性を高めた電池を製造することが可能な、電池の製造方法を提供することができる。
 捲回体17’を備える本発明の電池の製造方法に関する上記説明では、表面に凹凸を有するステンレス鋼箔によって構成される端子19、19を捲回体17の上端及び下端へと配設し、端子19、19の凹凸で正極層13や負極層14を突き破ることにより、電子伝導部12y、12yと端子19、19とを接続する形態のS26について説明したが、捲回された集電体12を備える本発明の電池の製造方法における端子接続工程は当該形態に限定されるものではない。端子接続工程は、捲回体17の上端に配設されている正極層13及び下端に配設されている負極層14を除去した後、除去された正極層13と接触していた電子伝導部12y及び除去された負極層14と接触していた電子伝導部12yのそれぞれに、公知のリード端子を接続する形態とすることも可能である。このほか、除去された正極層13と接触していた電子伝導部12y及び除去された負極層14と接触していた電子伝導部12yのそれぞれに、端子としても機能する外装材を直接接触させる形態とすることも可能である。
 また、捲回体17’を備える本発明の電池及びその製造方法に関する上記説明では、集電体12の一方の面側に配設されている正極層13、13、…及び負極層14、14、…の表面にのみ電解質層15、15、…が配設されている形態について言及したが、本発明は当該形態に限定されるものではなく、集電体12の一方の面側に配設されている正極層13、13、…と負極層14、14、…との間にも電解質層15、15、…が配設されていても良い。ただし、エネルギー密度や出力密度を高めやすい電池を提供可能にする等の観点からは、集電体12の一方の面側に配設されている正極層13、13、…及び負極層14、14、…の表面にのみ電解質層15、15、…が配設された形態とすることが好ましい。
 図20は、集電体12、電極(正極層13、負極層14)、及び、電解質層15を有する積層体20の断面図であり、図21は、積層体20を軸心22の周囲に捲回することによって作製される捲回体21を簡略化して示す断面図である。図20及び図21において、図15~図19と同様に構成されるものには、これらの図で使用した符号と同一の符号を付し、その説明を適宜省略する。
 積層体20は、集電体12と、正極層13、13、…と、負極層14、14、…と、電解質層15、15、…と、を有している。集電体12の電子伝導部12x、12x、…の表面には正極層13、13、…が配設されており、電子伝導部12y、12y、…の表面には負極層14、14、…が配設されている。正極層13、13、…の表面には電解質層15、15、…が配設されており、電子伝導部12xの表面に配設されている正極層13は、集電体12を挟んで、電子伝導部12yの表面に配設されている負極層14と対向している。積層体20において、正極層13、13、…及び負極層14、14、…は、絶縁性基板1aとは接触していない。
 捲回体21は、断面が長方形である軸心22の周囲に積層体20を捲回することによって構成されている。捲回体21において、軸心22の上側に配置されている複数の単電池は直列に接続され、軸心22の下側に配置されている複数の単電池は直列に接続されている。これに対し、軸心22の上面及び下面は、負極層14、14と接触しているので、軸心22の上側で直列接続された複数の単電池によって構成される単電池群と軸心22の下側で直列接続された複数の単電池によって構成される単電池群とは、並列に接続されている。
 図21に示すように、捲回体21も集電体12を有している。そのため、捲回体21が備えられる形態であっても、本発明によれば、生産性や安定性を高めることが可能な、電池を提供することができる。また、上述のように、捲回体21によれば、単電池同士を直列に接続すること及び並列に接続することができる。したがって、捲回体21が備えられる形態とすることにより、モジュール設計の自由度を高めた電池を提供することができる。
 また、捲回体21も捲回体17と同様に、捲回される積層体20の捲回方向(図20の紙面左右方向)の長さを長くすることによって、直列接続される単電池の数を容易に増大することができるため、電圧設計が容易な電池を提供することもできる。さらに、捲回体21も捲回体17と同様に、捲回体21の湾曲している部位(湾曲部)に、正極層13、13、…、負極層14、14、…、及び、電解質層15、15、…が配設されていない。かかる形態とすることにより、捲回体21を備える電池の作製時や使用時に、湾曲部から電極や電解質が滑落する事態を防止することが可能になるほか、発電に寄与しない湾曲部の体積を低減することができるので、捲回体21を備える電池のエネルギー密度や出力密度を高めることも可能になる。加えて、捲回体21も捲回の機構が単純であるため、製造速度を高めることが可能になる。
 図22は、本発明の電池の製造方法を説明するフローチャートである。図22に示す本発明の電池の製造方法は、集電体作製工程(S31)と、電極配設工程(S32)と、電解質配設工程(S33)と、スリット工程(S34)と、捲回工程(S35)と、端子接続工程(S36)と、挿入封止工程(S37)と、を有している。また、図23~図25は、本発明の電池の製造工程を説明する図である。図23は電極配設工程によって作製された電極体23を示す断面図、図24は端子接続工程で端子19、19が接続された捲回体21’を示す断面図、図25は図24の紙面右側から見た場合の捲回体21’を示す断面図である。捲回体21’の理解を容易にするため、図25では絶縁性基板1aの記載を一部省略している。以下、図20~図25を参照しつつ、本発明の電池の製造方法の一例を説明する。
 集電体作製工程(以下において、「S31」という。)は、集電体12を作製する工程である。より具体的に、S31は、上記S1~S5により、集電体12を作製する工程である。
 電極配設工程(以下において、「S32」という。)は、上記S31で作製した集電体12の電子伝導部12x、12x、…と接触するように正極層13、13、…を配設し、電子伝導部12y、12y、…と接触するように負極層14、14、…を配設することにより、図23に示す電極体23を作製する工程である。S32は、電子伝導部12x、12x、…と接触するように正極層13、13、…を配設し、且つ、電子伝導部12y、12y、…と接触するように負極層14、14、…を配設可能であれば、その形態は特に限定されるものではない。S32では、例えば、まず、すべての電子伝導部12x、12x、…の表面へ、グラビア印刷法で正極用組成物を塗工し乾燥することにより、集電体12の一方の面側に正極層13、13、…を一度に形成し、その後、すべての電子伝導部12y、12y、…の表面へ、グラビア印刷法で負極用組成物を塗工し乾燥することにより、集電体12の他方の面側に負極層14、14、…を一度に形成することができる。かかる過程を経ることにより、集電体12の一方の面側に正極層13、13、…を、他方の面側に負極層14、14、…を、それぞれ一度に形成することができるので、電極体23を容易に作製することができる。
 電解質配設工程(以下において、「S33」という。)は、上記S32で作製した電極体23の片側に配設されている電極の表面にのみ電解質層15、15、…を配設する工程である。S33は、電極体23の片側に配設されている電極の表面にのみ電解質層15、15、…を配設可能であれば、その形態は特に限定されるものではない。S33は、例えば、グラビア印刷法により、電極体23の片側に配設されている正極層13、13、…の表面に電解質用組成物を塗工し乾燥させて図20に示す積層体20を作製する工程、とすることができる。
 スリット工程(以下において、「S34」という。)は、積層体20の奥行き方向長さ(図20の紙面奥/手前方向の長さ)を短くする工程である。
 捲回工程(以下において、「S35」という。)は、上記S34で奥行き方向長さが整えられた積層体20における、未塗工部の絶縁性基板1aを折り畳みながら、幅53mm×奥行き65mm×厚さ1mmである表裏面に凹凸を有するステンレス鋼によって構成される軸心22の周囲に積層体20を捲回することにより、図21に示される捲回体21を作製する工程である。S35は、例えば、軸心22の上面及び裏面に負極層14、14が接触するように、未塗工部の絶縁性基板1aを折り畳みながら軸心22の周囲に積層体20を捲回することにより、捲回体21を作製する工程、とすることができる。本実施形態において、軸心22は、端子としても機能し、軸心22の表裏面に存在する凹凸が負極層14、14を突き破って電子伝導部12y、12yに接触する。このようなS35を経て作製される捲回体21は、電解質層15を挟んで対向する正極層13及び負極層14の、図21における右側端面及び左側端面の位置が、すべて揃っていることが好ましい。かかる形態の捲回体21は、捲回体21の外周側に位置する未塗工部ほど長さを長くしておくことにより、作製することが可能になる。
 端子接続工程(以下において、「S36」という。)は、上記S35で作製された捲回体21に備えられる電子伝導部12x、12xに、端子19、19を接続する工程である。S36は、単電池の積層方向両端側にそれぞれ配設されている正極層13、13と接触している電子伝導部12x、12xに端子19、19を接続可能であれば、その形態は特に限定されるものではない。S36は、例えば、表面に凹凸を有するステンレス鋼箔によって構成される端子19、19を捲回体21の上端及び下端へと配設し、端子19、19の凹凸で正極層13を突き破ることにより、電子伝導部12x、12xと端子19、19とを接続することにより、図24及び図25に示される捲回体21’を作製する工程、とすることができる。
 挿入封止工程(以下において、「S37」という。)は、上記S36で作製した捲回体21’をケースに挿入して封止することにより、捲回体21’を備える電池を作製する工程である。S37は、例えば、上記S36で作製した捲回体21’の端子19、19を筐体に溶接し、捲回体21’を当該筐体へと挿入した後、捲回体21’を収容した筐体をラミネート封入することにより、捲回体21’を備える電池を作製する工程、とすることができる。
 このように、かかる形態であっても、集電体12を備える電池を製造することができる。上述のように、集電体12が備えられる形態とすることにより、電池の生産性や安定性を高めることが可能になるので、本発明によれば、生産性や安定性を高めた電池を製造することが可能な、電池の製造方法を提供することができる。
 捲回体21’を備える本発明の電池の製造方法に関する上記説明では、表面に凹凸を有するステンレス鋼箔によって構成される端子19、19を捲回体21の上端及び下端へと配設し、端子19、19の凹凸で正極層13を突き破ることにより、電子伝導部12x、12xと端子19、19とを接続する形態のS36について説明したが、軸心を用いる本発明の電池の製造方法における端子接続工程は、当該形態に限定されるものではない。端子接続工程は、捲回体21の上端及び下端にそれぞれ配設されている正極層13、13を公知の方法で除去した後、正極13、13が除去されることによって剥き出しになった電子伝導部12x、12xの表面へ端子19、19を接続する形態とすることも可能である。また、除去された正極13と接触していた電子伝導部12x、12xに、端子としても機能する外装材を直接接触させる形態や公知のリード端子を接続する形態とすることも可能である。このほか、ドーナツ型ケースに捲回体を挿入し、端子としても機能するケースに接触する捲回体の内周面及び外周面をそれぞれ接触させる形態、とすることも可能である。
 また、捲回体21’を備える本発明の電池及びその製造方法に関する上記説明では、断面が長方形である軸心22が用いられる形態について言及したが、本発明で用いられる軸心は、当該形態に限定されるものではない。本発明で軸心が用いられる場合、その軸心の断面形状は、円形や楕円形のほか、三角形、五角形、六角形等の多角形形状とすることができる。
 また、捲回体21’を備える本発明の電池及びその製造方法に関する上記説明では、集電体12の一方の面側に配設されている正極層13、13、…の表面にのみ電解質層15、15、…が配設されている形態について言及したが、本発明は当該形態に限定されるものではない。正極層13、13、…の表面のみならず、正極層13、13、…の間にも電解質層15、15、…が配設されていても良い。また、集電体12の他方の面側に配設されている負極層14、14、…の表面にのみ電解質層15、15、…が配設されていても良く、集電体12の他方の面側に配設されている負極層14、14、…の表面のみならず、負極層14、14、…の間にも電解質層15、15、…が配設されていても良い。ただし、エネルギー密度や出力密度を高めやすい電池を提供可能にする等の観点からは、集電体12の一方の面側に配設されている正極層13、13、…、又は、他方の面側に配設されている負極層14、14、…の表面にのみ電解質層15、15、…が配設された形態とすることが好ましい。
 また、捲回体21’を備える本発明の電池及びその製造方法に関する上記説明では、集電体12の一方の面側に正極層13、13、…が配設され、集電体12の他方の面側に負極層14、14、…が配設される形態について言及したが、本発明は当該形態に限定されるものではない。本発明において、軸心が用いられる場合、集電体の一方の面側並びに他方の面側には、それぞれ、積層体16のように、正極層13及び負極層14が交互に配設される形態とすることも可能である。
 図26は、集電体12、電極(正極層13、負極層14)、及び、電解質層15を有する積層体24の断面図であり、図27は積層体24をジグザグに折り畳むことによって作製される構造体25を簡略化して示す断面図である。図26及び図27において、図15~図19と同様に構成されるものには、これらの図で使用した符号と同一の符号を付し、その説明を適宜省略する。
 積層体24は、集電体12と、正極層13、13、…と、負極層14、14、…と、電解質層15、15、…と、を有している。集電体12の電子伝導部12x、12x、…及び電子伝導部12y、12y、…の表面には、正極層13、13、…及び負極層14、14、…が平面方向に交互に配設されており、集電体12の一方の面側及び他方の面側に配設されている正極層13、13、…の表面には電解質層15、15、…が配設されている。電子伝導部12xの表面に配設されている正極層13は、集電体12を挟んで、電子伝導部12yの表面に配設されている負極層14と対向している。積層体24において、正極層13、13、…及び負極層14、14、…は、絶縁性基板1aとは接触していない。
 構造体25は、積層体24の絶縁性基板1aを曲げながら、正極層13が電解質層15を挟んで負極層14と対向するように積層体24をジグザグに折り畳むことによって作製されている。この構造体25では、1組の正極層13、電解質層15、及び、負極層14によって構成される単電池が、図27の紙面上下方向に直列に接続されている。
 図27に示すように、本発明の電池に備えられる構造体25は、本発明の集電体12を有している。したがって、構造体25が備えられる形態であっても、本発明によれば、生産性や安定性を高めることが可能な、電池を提供することができる。また、構造体25によれば、折り畳まれる積層体24の長さ(図26の紙面左右方向の長さ)を長くすることによって、直列接続される単電池の数を容易に増大することができるため、電圧設計が容易な電池を提供することもできる。さらに、構造体25は、湾曲している構造体25の左端部及び右端部(湾曲部)に、電極及び電解質層15が配設されていない。かかる形態とすることにより、構造体25を備える電池の作製時や使用時に、湾曲部から電極や電解質が滑落する事態を防止することが可能になるほか、発電に寄与しない湾曲部の体積を低減することができるので、構造体25を備える電池のエネルギー密度や出力密度を高めることも可能になる。加えて、構造体25は捲回の機構が単純であるため、製造速度を高めることが可能になる。
 図28は、本発明の電池の製造方法を説明するフローチャートである。図28に示す本発明の電池の製造方法は、集電体作製工程(S41)と、電極配設工程(S42)と、電解質配設工程(S43)と、スリット工程(S44)と、折り畳み工程(S45)と、端子接続工程(S46)と、挿入封止工程(S47)と、を有している。また、図29は、本発明の電池の製造工程を説明する図であり、端子接続工程で端子7、7が接続された構造体26を示す断面図である。以下、図18、及び、図26~図29を参照しつつ、本発明の電池の製造方法の一例を説明する。
 集電体作製工程(以下において、「S41」という。)は、集電体12を作製する工程である。より具体的に、S41は、上記S1~S5により、集電体12を作製する工程である。
 電極配設工程(以下において、「S42」という。)は、上記S41で作製した集電体12の電子伝導部12x、12x、…や電子伝導部12y、12y、…と接触するように正極層13、13、…及び負極層14、14、…を配設して、図18に示す電極体18を作製する工程である。S42は、電子伝導部12x、12x、…や電子伝導部12y、12y、…と接触するように正極層13、13、…及び負極層14、14、…を配設可能であれば、その形態は特に限定されるものではない。S42は、上記S22と同様の形態とすることができる。
 電解質配設工程(以下において、「S43」という。)は、上記S42で作製した電極体18の一方の面側並びに他方の面側にそれぞれ配設されている正極層13、13、…の表面にのみ電解質層15、15、…を配設する工程である。S43は、正極層13、13、…の表面にのみ電解質層15、15、…を配設可能であれば、その形態は特に限定されるものではない。S43は、上記S23と同様の形態とすることができる。
 スリット工程(以下において、「S44」という。)は、上記S43で電解質層15、15、…が配設された電極体18に備えられる正極層13、13、…、負極層14、14、…、及び、電解質層15、15、…のうち、設計上、正極用組成物や負極用組成物や電解質組成物を塗工すべきではないと考えられる未塗工部へとはみ出してしまった正極層13、13、…、負極層14、14、…、電解質層15、15、…の一部を除去する工程である。S44は、上記S15と同様の過程によって、図26に示す積層体24を作製する工程、とすることができる。
 折り畳み工程(以下において、「S45」という。)は、上記S44で未塗工部が画定された積層体24における、未塗工部の絶縁性基板1aをジグザグに折り畳むことにより、図27に示される構造体25を作製する工程である。S45は、電解質層15を挟んで正極層13と負極層14とが対向するように、未塗工部の絶縁性基板1aをジグザグに折り畳むことにより、構造体25を作製する工程、とすることができる。このようなS45を経て作製される構造体25は、電解質層15を挟んで対向する正極層13及び負極層14の、図26における右側端面及び左側端面の位置が、すべて揃っていることが好ましい。かかる形態の構造体25は、積層体24の未塗工部の長さを一定にしておくことにより、作製することが可能になる。
 端子接続工程(以下において、「S46」という。)は、上記S45で作製された構造体25に備えられる電子伝導部12x、12yに、端子7、7を接続する工程である。S46は、単電池の積層方向一端側に配設されている正極層13と接触している電子伝導部12xに端子7を接続し、かつ、単電池の積層方向他端側に配設されている負極層14と接触している電子伝導部12yに端子7を接続可能であれば、その形態は特に限定されるものではない。S46は、例えば、上記S16と同様の過程で端子7、7を接続することにより、図29に示す構造体26を作製する工程、とすることができる。
 挿入封止工程(以下において、「S47」という。)は、上記S46で作製した構造体26をケースに挿入して封止することにより、構造体26を備える電池を作製する工程である。S47は、例えば、上記S46で作製した構造体26の端子7、7を筐体に溶接し、構造体26を当該筐体へと挿入した後、構造体26を収容した筐体をラミネート封入することにより、構造体26を備える電池を作製する工程、とすることができる。
 このように、かかる形態であっても、集電体12を備える電池を製造することができる。上述のように、集電体12が備えられる形態とすることにより、電池の生産性や安定性を高めることが可能になるので、本発明によれば、生産性や安定性を高めた電池を製造することが可能な、電池の製造方法を提供することができる。
 構造体25を備える本発明の電池及びその製造方法に関する上記説明では、集電体12の一方の面側及び他方の面側に配設されている正極層13、13、…の表面にのみ電解質層15、15、…が配設されている形態について言及したが、本発明は当該形態に限定されるものではない。集電体12をジグザグに折り畳む過程を経て作製される構造体を有する本発明の電池は、集電体12の一方の面側及び他方の面側に配設されている負極層14、14、…の表面にのみ電解質層15、15、…が配設されていても良い。また、すべての正極層13、13、…及び負極層14、14、…の表面に電解質15、15、…が配設されていても良く、さらに、正極層13、13、…と負極層14、14、…との間にも電解質15、15、…が配設されていても良い。ただし、エネルギー密度や出力密度を高めやすい電池を提供可能にする等の観点からは、集電体12の一方の面側並びに他方の面側に配設されている正極層13、13、…及び/又は負極層14、14、…の表面にのみ電解質層15、15、…が配設された形態とすることが好ましい。
 また、本発明の電池の製造方法に関する上記説明では、S16と同様の過程で端子7、7が接続される形態のS46について言及したが、ジグザグに折り畳まれた集電体12を備える本発明の電池の製造方法における端子接続工程は、当該形態に限定されるものではない。端子接続工程は、例えば、構造体25の上端に配設されている電解質層15及び正極層13を除去し、構造体25の下端に配設されている負極層14を除去してから、剥き出しになった電子伝導部12x、12yに端子7、7を接続する形態とすることも可能である。また、表面に凹凸を有するステンレス鋼箔によって構成される端子を構造体25の上端及び下端へと配設し、端子の凹凸で正極層13及び電解質層15や負極層14を突き破ることにより、電子伝導部12x、12yと端子とを接続する形態とすることも可能である。このほか、除去された正極層13と接触していた電子伝導部12xや除去された負極層14と接触していた電子伝導部12yに、端子としても機能する外装材を直接接触させる形態とすることも可能である。
 また、本発明の電池の製造方法に関する上記説明では、集電体に配設されている電子伝導部の表面に正極層及び/又は負極層が形成される形態について言及したが、本発明の電池の製造方法は当該形態に限定されるものではない。本発明の電池の製造方法では、公知の基板又は電解質層の表面に正極層や負極層を形成することも可能であり、形成されている正極層及び/又は負極層の表面に本発明の集電体を配設する過程を経て、本発明の電池を製造する形態とすることも可能である。かかる形態であっても、集電体に配設されている電子伝導部と複数の電極とを一度に接触させることが可能になるので、生産性を向上させることが可能になる。
 本発明の集電体及び電池は、電気自動車やハイブリッド自動車用等に利用することができ、本発明の集電体の製造方法及び電池の製造方法は、電気自動車やハイブリッド自動車用等に利用される電池を製造する際に利用することができる。

Claims (4)

  1. 絶縁性基板と、該絶縁性基板の一方の面上及び他方の面上にそれぞれ配設された電子伝導部とを有する集電体であって、
     前記一方の面上に、少なくとも2以上の前記電子伝導部が平面方向に間隔を開けて配設され、
     前記他方の面上に配設されている前記電子伝導部は、前記絶縁性基板を挟んで、前記一方の面上に配設されている少なくとも1つの前記電子伝導部と対向するように配設され、
     前記絶縁性基板を挟んで対向するように配設されている、前記一方の面上に配設された前記電子伝導部及び前記他方の面上に配設されている前記電子伝導部が、前記絶縁性基板を貫通する孔に配設された電子伝導体を介して接続されていることを特徴とする、集電体。
  2. 請求の範囲第1項に記載の集電体、該集電体の電子伝導部と接触するように配設された正極層及び負極層、並びに、前記正極層及び前記負極層と接触するように配設された電解質層を備え、
     前記絶縁性基板の一方の面上に配設された隣接する前記電子伝導部の間が折り曲げられて積層された、又は、捲回された、前記集電体、前記正極層、前記負極層、及び、前記電解質層を備えることを特徴とする、電池。
  3. 貫通孔を有する絶縁性基板の前記貫通孔に電子伝導体を配設する工程と、
     前記貫通孔に配設された前記電子伝導体と接触するように、前記絶縁性基板の一方の面の一部へ少なくとも2以上の電子伝導部を平面方向に間隔を開けて配設する工程と、
     前記貫通孔に配設された前記電子伝導体と接触するように、前記絶縁性基板の他方の面の一部へ電子伝導部を配設する工程と、
    を有することを特徴とする、集電体の製造方法。
  4. 絶縁性基板と該絶縁性基板の一方の面上及び他方の面上にそれぞれ配設された電子伝導部とを有する集電体、該集電体と接触するように配設された正極層及び負極層、並びに、前記正極層及び前記負極層と接触するように配設された電解質層を備える電池を製造する方法であって、
     請求の範囲第3項に記載の集電体の製造方法によって、前記集電体を製造する工程と、
     前記絶縁性基板の面上に配設された前記電子伝導部と接触するように、前記正極層及び前記負極層を配設する工程と、
     前記正極層及び/又は前記負極層と接触するように、前記電解質層を配設する工程と、
     前記絶縁性基板の一方の面上に配設された隣接する前記電子伝導部の間を折り曲げる過程又は捲き取る過程を経て、前記集電体、前記正極層、前記負極層、及び、前記電解質層を積層又は捲回する工程と、
    を有することを特徴とする、電池の製造方法。
PCT/JP2010/054087 2010-03-11 2010-03-11 集電体及びその製造方法並びに電池及びその製造方法 WO2011111200A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/054087 WO2011111200A1 (ja) 2010-03-11 2010-03-11 集電体及びその製造方法並びに電池及びその製造方法
CN201080003221.4A CN103003992B (zh) 2010-03-11 2010-03-11 集电体及其制造方法以及电池及其制造方法
US13/062,812 US8512888B2 (en) 2010-03-11 2010-03-11 Current collector and method for producing the same, battery and method for producing the same
JP2010545299A JP5348144B2 (ja) 2010-03-11 2010-03-11 集電体及びその製造方法並びに電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054087 WO2011111200A1 (ja) 2010-03-11 2010-03-11 集電体及びその製造方法並びに電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011111200A1 true WO2011111200A1 (ja) 2011-09-15

Family

ID=44563042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054087 WO2011111200A1 (ja) 2010-03-11 2010-03-11 集電体及びその製造方法並びに電池及びその製造方法

Country Status (4)

Country Link
US (1) US8512888B2 (ja)
JP (1) JP5348144B2 (ja)
CN (1) CN103003992B (ja)
WO (1) WO2011111200A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003934A (ja) * 2017-06-15 2019-01-10 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
US10305146B2 (en) 2015-01-14 2019-05-28 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748582B2 (en) * 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
TWI608648B (zh) * 2016-04-28 2017-12-11 國立交通大學 複合電極材料及其製造方法
ES2876157T3 (es) * 2016-08-12 2021-11-12 Boston Electrometallurgical Corp Método de fabricación de un conjunto de colector de corriente libre de fugas para recipientes metalúrgicos
DE102018200993A1 (de) * 2018-01-23 2019-07-25 Robert Bosch Gmbh Elektrodeneinheit für eine Batteriezelle und Batteriezelle
WO2019153271A1 (zh) * 2018-02-09 2019-08-15 深圳前海优容科技有限公司 电池、电池电芯、集流体及其制备方法
WO2019153280A1 (zh) * 2018-02-09 2019-08-15 深圳前海优容科技有限公司 集流体的制备方法、电池、电池电芯及集流体
CN109994740B (zh) 2019-03-29 2021-08-13 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置
CN116093337A (zh) * 2019-03-29 2023-05-09 宁德新能源科技有限公司 电池
CN109980234A (zh) * 2019-03-29 2019-07-05 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187998A (ja) * 1992-12-18 1994-07-08 Canon Inc 角型電池及びその製造方法
JP2002042855A (ja) * 2000-07-24 2002-02-08 Mitsubishi Chemicals Corp 平板状積層型電池
JP2003282064A (ja) * 2002-03-20 2003-10-03 Toyo Kohan Co Ltd 複合集電体
JP2007335206A (ja) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd 双極型電池
JP2010073500A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826926A (en) * 1972-11-29 1974-07-30 Westinghouse Electric Corp Charge coupled device area imaging array
JPH10241699A (ja) 1997-02-20 1998-09-11 Japan Storage Battery Co Ltd 電 池
JP3419311B2 (ja) 1998-07-15 2003-06-23 トヨタ自動車株式会社 バイポーラ型リチウムイオン2次電池
JP2000100471A (ja) 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
JP2001332290A (ja) 2000-05-19 2001-11-30 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP4720083B2 (ja) 2003-12-18 2011-07-13 日産自動車株式会社 組電池
JP5357373B2 (ja) 2004-03-19 2013-12-04 富士重工業株式会社 蓄電体の平面整列構造
FR2880197B1 (fr) * 2004-12-23 2007-02-02 Commissariat Energie Atomique Electrolyte structure pour microbatterie
JP4863662B2 (ja) 2005-07-06 2012-01-25 シャープ株式会社 色素増感型太陽電池モジュールおよびその製造方法
JP2007095597A (ja) 2005-09-30 2007-04-12 Dainippon Printing Co Ltd 電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187998A (ja) * 1992-12-18 1994-07-08 Canon Inc 角型電池及びその製造方法
JP2002042855A (ja) * 2000-07-24 2002-02-08 Mitsubishi Chemicals Corp 平板状積層型電池
JP2003282064A (ja) * 2002-03-20 2003-10-03 Toyo Kohan Co Ltd 複合集電体
JP2007335206A (ja) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd 双極型電池
JP2010073500A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305146B2 (en) 2015-01-14 2019-05-28 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
JP2019003934A (ja) * 2017-06-15 2019-01-10 パナソニックIpマネジメント株式会社 電池、および、電池製造方法
JP7065403B2 (ja) 2017-06-15 2022-05-12 パナソニックIpマネジメント株式会社 電池、および、電池製造方法

Also Published As

Publication number Publication date
JP5348144B2 (ja) 2013-11-20
US8512888B2 (en) 2013-08-20
CN103003992A (zh) 2013-03-27
JPWO2011111200A1 (ja) 2013-06-27
CN103003992B (zh) 2015-05-20
US20120328921A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5348144B2 (ja) 集電体及びその製造方法並びに電池及びその製造方法
JP6608862B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
JP4163368B2 (ja) リチウムポリマー電池とその製造方法
JP6567491B2 (ja) 折り重ねた電極とセパレーターを有する電気化学電池、この電池を含むバッテリー、およびこれらを形成する方法
JP5852061B2 (ja) 新規な積層構造の二次電池のための電解質アセンブリ
KR100925857B1 (ko) 향상된 안전성의 다중 중첩식 전기화학 셀
JP5923594B2 (ja) 増大された容量を有するバイポーラ型電気化学的Liイオン電池
US20120196167A1 (en) Electrode assembly for a battery and method for manufacturing same
KR20130135017A (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
JP2017069207A (ja) リチウムイオン二次電池及びその製造方法
WO2020017467A1 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
JP2005243455A (ja) 電気化学デバイス
KR101154883B1 (ko) 향상된 전해액 함침성의 전극조립체를 제조하는 방법
JP5125438B2 (ja) リチウムイオン二次電池およびそれを用いた組電池
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
JP7299076B2 (ja) 電気化学セルおよびその製造方法
WO2020022111A1 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
JP2016115470A (ja) 扁平型電池
JP2012039068A (ja) 電気化学キャパシタ及びその製造方法
JP5500244B2 (ja) 電池及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010545299

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13062812

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847430

Country of ref document: EP

Kind code of ref document: A1