WO2021182514A1 - 電池の製造方法および電池 - Google Patents

電池の製造方法および電池 Download PDF

Info

Publication number
WO2021182514A1
WO2021182514A1 PCT/JP2021/009539 JP2021009539W WO2021182514A1 WO 2021182514 A1 WO2021182514 A1 WO 2021182514A1 JP 2021009539 W JP2021009539 W JP 2021009539W WO 2021182514 A1 WO2021182514 A1 WO 2021182514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
laminated
adhesive
adhesive region
adhesive layer
Prior art date
Application number
PCT/JP2021/009539
Other languages
English (en)
French (fr)
Inventor
山下 浩司
和孝 西川
繁 近藤
紀明 山本
Original Assignee
パナソニック株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, トヨタ自動車株式会社 filed Critical パナソニック株式会社
Priority to US17/911,383 priority Critical patent/US20230095398A1/en
Priority to CN202180019689.0A priority patent/CN115280564A/zh
Publication of WO2021182514A1 publication Critical patent/WO2021182514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a battery manufacturing method and a battery.
  • the present disclosure has been made in view of such a situation, and one of the purposes thereof is to provide a technique for shortening the impregnation time of the electrolytic solution into the laminated electrode body.
  • One aspect of the present disclosure is a method of manufacturing a battery.
  • a separator having an adhesive layer and an electrode plate are laminated so that the electrode plate is in contact with the adhesive layer, and a part of the electrode plate is adhered to the adhesive layer.
  • This includes forming a laminated electrode body having a non-adhesive region, accommodating the laminated electrode body in a case, and injecting an electrolytic solution into the case.
  • This battery includes a laminated electrode body in which a separator having an adhesive layer and an electrode plate are laminated, an electrolytic solution impregnated in the laminated electrode body, and a case for accommodating the laminated electrode body and the electrolytic solution.
  • the electrode plate has an adhesive region and a non-adhesive region with the adhesive layer.
  • the impregnation time of the electrolytic solution into the laminated electrode body can be shortened.
  • FIG. 1 It is sectional drawing which shows typically the battery which concerns on embodiment. It is a top view which shows typically the electrode plate seen from the stacking direction of a separator and an electrode plate.
  • 3 (A) to 3 (B) are schematic views for explaining the method of manufacturing the battery according to the embodiment.
  • 4 (A) to 4 (B) are schematic views for explaining the method of manufacturing the battery according to the embodiment.
  • 5 (A) to 5 (B) are schematic views for explaining the method of manufacturing the battery according to the embodiment. It is a figure which shows the relationship between the elapsed time after injection of an electrolytic solution, and the unimpregnated area in various contact areas.
  • FIG. 1 is a cross-sectional view schematically showing the battery according to the embodiment.
  • FIG. 2 is a plan view schematically showing the electrode plate 4 as viewed from the stacking direction of the separator and the electrode plate.
  • the battery 36 includes a laminated electrode body 1, an electrolytic solution 34, and a case 32.
  • the laminated electrode body 1 has a structure in which the separator 2 and the electrode plate 4 are laminated.
  • the separator 2 has a base material 6 and an adhesive layer 8.
  • the base material 6 is a sheet made of a microporous membrane made of a polyolefin such as polyethylene or polypropylene.
  • the base material 6 may have a single-layer structure or a multi-layer structure. Further, the base material 6 preferably has an insulating property.
  • the adhesive layer 8 is provided on at least one main surface of the base material 6. In the present embodiment, the adhesive layers 8 are provided on both sides of the base material 6.
  • the adhesive layer 8 is obtained by applying a known adhesive to the surface of the base material 6 with a known coating device. Examples of the adhesive constituting the adhesive layer 8 include polyvinylidene fluoride (PVDF) and the like.
  • PVDF polyvinylidene fluoride
  • the electrode plate 4 includes a positive electrode plate 10 and a negative electrode plate 12.
  • the positive electrode plate 10 has a structure in which a positive electrode active material layer is laminated on one side or both sides of a positive electrode current collector.
  • the positive electrode current collector is composed of, for example, a metal foil such as an aluminum foil, an expanding material, a lath material, or the like.
  • the positive electrode active material layer can be formed by applying a positive electrode mixture to the surface of a positive electrode current collector with a known coating device, drying and rolling.
  • the positive electrode mixture is obtained by kneading materials such as a positive electrode active material, a binder, and a conductive material into a dispersion medium and uniformly dispersing them.
  • the positive electrode active material is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions when the laminated electrode body 1 is used in a lithium ion secondary battery.
  • a lithium-containing transition metal compound can be used as the positive electrode active material.
  • the lithium-containing transition metal compound include a composite oxide containing lithium and at least one element selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium.
  • the binder is not particularly limited as long as it can be kneaded and dispersed in a dispersion medium.
  • a fluororesin such as polyvinylidene fluoride or polytetrafluoroethylene, acrylic rubber, acrylic resin, vinyl resin or the like can be used.
  • a carbon material such as acetylene black, graphite, or carbon fiber can be used.
  • a solvent capable of dissolving the binder is used.
  • the positive electrode mixture may contain a dispersant, a surfactant, a stabilizer, a thickener and the like, if necessary.
  • the negative electrode plate 12 has a structure in which a negative electrode active material layer is laminated on one side or both sides of a negative electrode current collector.
  • the negative electrode current collector is composed of, for example, a metal foil made of copper, a copper alloy, or the like, an expanding material, a lath material, or the like.
  • the negative electrode active material layer can be formed by applying a negative electrode mixture to the surface of a negative electrode current collector with a known coating device, drying and rolling.
  • the negative electrode mixture is obtained by kneading materials such as a negative electrode active material, a binder, and a conductive material into a dispersion medium and uniformly dispersing them.
  • the negative electrode plate 12 can also be manufactured by a dry method such as a vapor deposition method or a sputtering method instead of the above-mentioned wet method.
  • the negative electrode active material is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions when the laminated electrode body 1 is used in a lithium ion secondary battery.
  • a graphite-containing carbon material having a graphite-type crystal structure can be used as the negative electrode active material.
  • the carbon material include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon, easily graphitizable carbon and the like.
  • lithium titanate, silicon, tin and the like can also be used as the negative electrode active material.
  • the binder and the conductive material are the same as those used for the positive electrode active material.
  • the negative electrode mixture may contain a dispersant, a surfactant, a stabilizer, a thickener and the like, if necessary.
  • the electrode plate 4 is laminated on the separator 2 so as to be in contact with the adhesive layer 8, and a part of the electrode plate 4 is adhered to the adhesive layer 8. Therefore, the electrode plate 4 has an adhesive region 42 and a non-adhesive region 44 with the adhesive layer 8.
  • the adhesive strength between the separator 2 and the electrode plate 4 in the region is less than 30%, more preferably less than 20%, and further preferably less than 10% of the adhesive strength in the adhesive region 42.
  • the adhesive strength is, for example, 180 degree peel strength (N / 25 mm) measured by a method specified in Japanese Industrial Standards JIS C2107 (1999).
  • the adhesive layer 8 overlaps the entire electrode plate 4 when viewed from the stacking direction A of the separator 2 and the electrode plate 4. Therefore, when viewed from the stacking direction A, the adhesive layer 8 extends to the region overlapping the non-adhesive region 44.
  • the electrode plate 4 has a plurality of non-adhesive regions 44 independent of each other. That is, the electrode plate 4 has two or more non-adhesive regions 44 separated by the adhesive region 42 and become discontinuous. Then, at least a part of the non-adhesive region 44 extends to the outer edge of the electrode plate 4. That is, at least a part of the non-adhesive region 44 has an open end 44a communicating with the internal space of the case 32.
  • the electrode plate 4 has a rectangular shape when viewed from the stacking direction A.
  • the electrode plate 4 has an adhesive region 42a at the corner C.
  • the electrode plate 4 has a non-adhesive region 44b surrounded by an adhesive region 42.
  • the non-adhesive region 44b does not have an open end 44a because the adhesive region 42 extends all around.
  • the adhesive region 42 and the non-adhesive region 44 are laid in a striped pattern.
  • the individual adhesive region 42 and the non-adhesive region 44 are linear shapes inclined at an angle of 5 to 85 ° with respect to the long side of the electrode plate 4. Then, the adhesive region 42 and the non-adhesive region 44 are arranged alternately. Both ends of each non-adhesive region 44 extend to the outer edge of the electrode plate 4 to form an open end 44a.
  • a plurality of non-adhesive regions 44b are arranged at predetermined intervals in the extending direction of the adhesive region 42.
  • the laminated electrode body 1 of the present embodiment has a structure in which a plurality of unit laminated bodies 14 are laminated.
  • the number of laminated unit laminated bodies 14 in the laminated electrode body 1 is, for example, 30 to 40.
  • the unit laminate 14 has a structure in which the positive electrode plate 10, the separator 2, the negative electrode plate 12, and the separator 2 are laminated in this order.
  • the laminated electrode body 1 of the present embodiment is a laminated type in which a plurality of single plates of the separator 2 and a single plate of the electrode plate 4 are laminated, but the structure is not particularly limited.
  • the laminated electrode body 1 need only have a laminated structure of the separator 2 and the electrode plate 4 bonded to each other in at least a part thereof, and is a wound type in which the strip-shaped separator 2 and the strip-shaped electrode plate 4 are wound. It may be a zigzag type in which a single electrode plate 4 is arranged in each valley groove of the zigzag strip-shaped separator 2.
  • the electrolytic solution 34 is impregnated into the laminated electrode body 1.
  • the electrolytic solution 34 contains, for example, a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • a non-aqueous solvent known solvents such as ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, and 1,2-dichloroethane can be used.
  • the electrolyte a lithium salt having a strong electron-withdrawing property, specifically, a known electrolyte such as LiPF 6 or LiBF 4 can be used.
  • the case 32 houses the laminated electrode body 1 and the electrolytic solution 34.
  • the case 32 is made of a metal such as aluminum, iron, or stainless steel.
  • the case 32 has a flat rectangular shape, but is not limited to this and may have a cylindrical shape or the like.
  • the case 32 has an opening, through which the laminated electrode body 1 and the electrolytic solution 34 are housed. This opening is closed by a sealing plate 18, which will be described later. Therefore, the sealing plate 18 constitutes a part of the case 32.
  • 3 (A) to 3 (B), 4 (A) to 4 (B), and 5 (A) to 5 (B) describe a method of manufacturing the battery 36 according to the embodiment. It is a schematic diagram for.
  • One of the heat-bonding rollers 16 has a plurality of convex portions 40 on the surface.
  • By pressurizing the electrode plate 4 and the separator 2 with such a heat-bonding roller 16 only a part of the electrode plate 4 can be pressed against the separator 2 and only the pressed portion can be adhered to the adhesive layer 8.
  • an adhesive region 42 and a non-adhesive region 44 can be provided on the electrode plate 4.
  • the sealing plate 18 is prepared.
  • the sealing plate 18 is made of a metal such as aluminum, iron, or stainless steel.
  • the sealing plate 18 has a positive electrode terminal 20, a negative electrode terminal 22, a liquid injection hole 24, and a safety valve 26.
  • the liquid injection hole 24 is used when the electrolytic solution is injected into the case.
  • the safety valve 26 opens when the internal pressure of the case rises above a predetermined value to release the gas inside the case.
  • the positive electrode current collector of the laminated electrode body 1 is electrically connected to the positive electrode terminal 20 via the positive electrode current collecting tab 28 for power extraction. Further, the negative electrode current collector of the laminated electrode body 1 is electrically connected to the negative electrode terminal 22 via the negative electrode current collecting tab 30 for power extraction.
  • the positive electrode current collector and the positive electrode current collector tab 28 may be an integrally molded body, or may be separate bodies and may be joined by welding or the like.
  • the negative electrode current collector and the negative electrode current collector tab 30 may be an integrally molded body, or may be separate bodies and may be joined by welding or the like.
  • the positive electrode current collecting tab 28 and the positive electrode terminal 20, and the negative electrode current collecting tab 30 and the negative electrode terminal 22 are joined by welding or the like, respectively.
  • the laminated electrode body 1 welded to the sealing plate 18 is housed in the case 32.
  • the laminated electrode body 1 is inserted into the case 32 through the opening of the case 32. Since the plurality of separators 2 and the plurality of electrode plates 4 are connected to each other via the adhesive layer 8, the laminated electrode body 1 can be easily inserted into the case 32.
  • the adhesive region 42 is arranged at the corner C of the electrode plate 4, that is, the four corners of the electrode plate 4 are fixed to the separator 2, the laminated electrode body 1 can be easily inserted by the case 32. Can be done.
  • the opening of the case 32 is closed with the sealing plate 18, and the case 32 and the sealing plate 18 are joined by welding or the like.
  • the electrolytic solution 34 is injected into the case 32 through the liquid injection hole 24.
  • a liquid injection plug (not shown) is joined to the liquid injection hole 24 by welding or the like. As a result, the battery 36 is assembled.
  • the electrolytic solution 34 When the electrolytic solution 34 is injected into the case 32, as shown in FIG. 5B, the electrolytic solution 34 is said to widen the gap between the non-adhesive region 44 of the electrode plate 4 and the adhesive layer 8 due to the flow pressure thereof. Enter the gap. As the electrolytic solution 34 enters the gap, the air existing in the gap is expelled to the outside, and the electrolytic solution 34 and the air are smoothly replaced. As a result, the electrolytic solution 34 can be rapidly infiltrated into the electrode plate 4.
  • the non-adhesive region 44 of the electrode plate 4 functions as a flow path for the electrolytic solution 34 and the residual air.
  • the non-adhesive region 44 has an open end 44a that extends to the outer edge of the electrode plate 4 and communicates with the internal space of the case 32. Therefore, the electrolytic solution 34 can easily enter the gap between the non-adhesive region 44 and the adhesive layer 8 from the open end 44a. Further, the residual air can be easily discharged from the open end 44a.
  • the area of the adhesive region 42 is preferably 15% or more and less than 40% of the total area of the electrode plate 4.
  • FIG. 6 is a diagram showing the relationship between the elapsed time after injection of the electrolytic solution and the unimpregnated area in various contact areas.
  • the “contact area” in FIG. 6 means the area of the adhesive region 42. Therefore, in “whole surface adhesion”, “contact area 15%”, “contact area 30%”, and “contact area 40%”, the area of the adhesion region 42 is 100% and 15% with respect to the entire area of the electrode plate 4, respectively. , 30%, 40%.
  • the “non-impregnated area” means the area of the region of the electrode plate 4 that is not impregnated with the electrolytic solution 34.
  • FIG. 6 illustrates a plot of the unimpregnated area at a predetermined elapsed time and a straight line obtained by linearly approximating this plot for the experimental group of each contact area.
  • the unimpregnated area was 18% after 3 hours from the completion of injection of the electrolytic solution 34, 5% after 6 hours, and 0% after 9 hours.
  • the contact area was 40%, it was 17% after 3 hours, 7% after 6 hours, and 0% after 9 hours.
  • the contact area was 30%, it was 12% after 3 hours and 0% after 6.5 hours.
  • the contact area was 15%, it was 7% after 3 hours, 3% after 4 hours, and 0% after 4.9 hours.
  • the impregnation time of the electrolytic solution 34 in the laminated electrode body 1 can be shortened more reliably by setting the area of the adhesive region 42 to less than 40% of the total area of the electrode plate 4. Further, it was confirmed that by setting the area of the adhesive region 42 to 30% or less, the impregnation time can be shortened to about 2/3 as compared with the case where the adhesive region 42 is not provided. Further, it was confirmed that the impregnation time can be shortened to about 1/2 by setting the area of the adhesive region 42 to 15%. Further, by setting the area of the adhesive region 42 to 15% or more, it is possible to more reliably maintain the state in which the electrode plate 4 and the separator 2 are connected. Therefore, the handleability of the laminated electrode body 1 can be maintained.
  • the separator 2 having the adhesive layer 8 and the electrode plate 4 are laminated so that the electrode plate 4 is in contact with the adhesive layer 8 and is formed on the adhesive layer 8.
  • a part of the electrode plate 4 is adhered to form a laminated electrode body 1 in which the electrode plate 4 has an adhesive region 42 and a non-adhesive region 44 with the adhesive layer 8, and the laminated electrode body 1 is housed in the case 32 to form a case.
  • the non-adhesive region 44 on the electrode plate 4 it is possible to facilitate the entry of the electrolytic solution 34 between the electrode plate 4 and the separator 2. As a result, the impregnation time of the electrolytic solution 34 in the laminated electrode body 1 can be shortened.
  • the production lead time of the battery 36 can be shortened. Further, it is possible to avoid the expansion of the production equipment for maintaining the throughput of the battery 36, and therefore the expansion of the production space can be avoided. Further, the capacity of the battery 36 can be increased while suppressing the extension of the production lead time.
  • the battery 36 includes a laminated electrode body 1 in which a separator 2 having an adhesive layer 8 and an electrode plate 4 are laminated, an electrolytic solution 34 impregnated in the laminated electrode body 1, and a laminated electrode body 1. And a case 32 for accommodating the electrolytic solution 34, and the electrode plate 4 has an adhesive region 42 and a non-adhesive region 44 with the adhesive layer 8.
  • the electrolytic solution 34 can be discharged from the laminated electrode body 1 due to the expansion of the active material during charging.
  • the electrolytic solution 34 returns to the laminated electrode body 1 due to the contraction of the active material during discharge.
  • the electrolytic solution 34 does not completely return to the laminated electrode body 1, a region that does not infiltrate the electrolytic solution 34, that is, a region that does not contribute to discharge may occur in a part of the electrode plate 4.
  • the electrode plate 4 has the non-adhesive region 44, the electrolytic solution 34 discharged from the laminated electrode body 1 during charging can smoothly return to the laminated electrode body 1 during discharging. Therefore, according to the battery 36 of the present embodiment, it is possible to improve the charge / discharge characteristics of the battery 36, and eventually to improve the cycle life.
  • the adhesive layer 8 overlaps the entire electrode plate 4 when viewed from the stacking direction A of the separator 2 and the electrode plate 4. Therefore, in the adhesive layer 8, the portion where the electrode plate 4 adheres, that is, the portion which overlaps with the adhesive region 42 is connected by the portion which overlaps with the non-adhesive region 44. Therefore, when the electrode plate 4 is pressure-bonded to the adhesive layer 8, it is possible to prevent the portion of the adhesive layer 8 that overlaps with the adhesive region 42 from being pushed by the electrode plate 4 and being buried in the base material 6. As a result, the flow path of the electrolytic solution 34 and the air can be formed more reliably, and the impregnation time of the electrolytic solution 34 can be shortened more reliably. Further, it is possible to prevent the distance between the positive electrode plate 10 and the negative electrode plate 12 from becoming non-uniform, and it is possible to make the electrode reaction uniform in the entire laminated electrode body 1.
  • the area of the adhesive region 42 is preferably 15% or more and less than 40% of the total area of the electrode plate 4.
  • the electrode plate 4 has a plurality of non-adhesive regions 44 independent of each other, and at least a part of the non-adhesive regions 44 extends to the outer edge of the electrode plate 4.
  • the electrolytic solution 34 can be easily entered into the gap between the non-adhesive region 44 and the adhesive layer 8, and the residual air can be easily discharged. Therefore, the impregnation time of the electrolytic solution 34 in the laminated electrode body 1 can be further shortened.
  • the electrode plate 4 has a non-adhesive region 44b surrounded by an adhesive region 42. That is, the non-adhesive region 44b is arranged inside the adhesive region 42. Thereby, the area of the adhesive region 42 can be adjusted more finely. Therefore, it is possible to easily adjust the balance between the shortening of the impregnation time of the electrolytic solution 34 and the maintenance of the handleability of the laminated electrode body 1.
  • the electrode plate 4 has a rectangular shape when viewed from the stacking direction A, and the electrode plate 4 has an adhesive region 42 at a corner portion C. Thereby, the deterioration of the handleability of the laminated electrode body 1 due to the provision of the non-adhesive region 44 on the electrode plate 4 can be further suppressed.
  • This disclosure can be used for battery manufacturing methods and batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

電池36の製造方法は、接着層8を有するセパレータ2と電極板4とを電極板4が接着層8と接するように積層し、接着層8に電極板4の一部を接着して、電極板4が接着層8との接着領域42および非接着領域44を有する積層電極体1を形成し、積層電極体1をケース32に収容し、ケース32に電解液34を注入することを含む。

Description

電池の製造方法および電池
 本開示は、電池の製造方法および電池に関する。
 近年、電気自動車(EV)、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)等の普及にともない、車載用の二次電池の出荷が増えている。特にリチウムイオン二次電池の出荷が増えている。また、車載用に限らず、例えばノート型パソコン等の携帯端末用の電源としても二次電池の普及が進んでいる。このような二次電池について、例えば特許文献1には、接着層を有するセパレータと電極とを積層し熱圧着して積層電極体を製造し、積層電極体をケースに収容した後にケースに電解液を注入して、二次電池を製造することが開示されている。
国際公開第2014/081035号
 二次電池では、電極板に電解液が接触した状態で電極反応が起こる。このため、二次電池を製造する際に、積層電極体に電解液を含浸させる必要がある。一方で、二次電池のエネルギー密度を高めるために、ケース内で積層電極体が占める体積が大きくなる傾向にある。このため、積層電極体への電解液の含浸に要する時間が長くなってきている。含浸時間が長くなると、二次電池の生産リードタイムが長くなり得る。また、二次電池生産のスループットの低下を防ぐために生産設備の増強が強いられ得る。
 本開示はこうした状況に鑑みてなされたものであり、その目的の1つは、積層電極体への電解液の含浸時間を短縮する技術を提供することにある。
 本開示のある態様は、電池の製造方法である。この製造方法は、接着層を有するセパレータと電極板とを電極板が接着層と接するように積層し、接着層に電極板の一部を接着して、電極板が接着層との接着領域および非接着領域を有する積層電極体を形成し、積層電極体をケースに収容し、ケースに電解液を注入することを含む。
 本開示の他の態様は、電池である。この電池は、接着層を有するセパレータおよび電極板が積層された積層電極体と、積層電極体に含浸される電解液と、積層電極体および電解液を収容するケースと、を備える。電極板は、接着層との接着領域および非接着領域を有する。
 以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、積層電極体への電解液の含浸時間を短縮することができる。
実施の形態に係る電池を模式的に示す断面図である。 セパレータおよび電極板の積層方向から見た電極板を模式的に示す平面図である。 図3(A)~図3(B)は、実施の形態に係る電池の製造方法を説明するための模式図である。 図4(A)~図4(B)は、実施の形態に係る電池の製造方法を説明するための模式図である。 図5(A)~図5(B)は、実施の形態に係る電池の製造方法を説明するための模式図である。 種々の接触面積における電解液注入後の経過時間と未含浸面積との関係を示す図である。
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも本開示の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 図1は、実施の形態に係る電池を模式的に示す断面図である。図2は、セパレータおよび電極板の積層方向から見た電極板4を模式的に示す平面図である。電池36は、積層電極体1と、電解液34と、ケース32と、を備える。積層電極体1は、セパレータ2と電極板4とが積層された構造を有する。
 セパレータ2は、基材6と、接着層8と、を有する。基材6は、例えばポリエチレン、ポリプロピレン等のポリオレフィンからなる微多孔膜で構成されるシートである。基材6は、単層構造であっても多層構造であってもよい。また、基材6は、好ましくは絶縁性を有する。接着層8は、基材6の少なくとも一方の主表面に設けられる。本実施の形態では、基材6の両面に接着層8が設けられている。接着層8は、公知の塗布装置で公知の接着剤を基材6の表面に塗布することで得られる。接着層8を構成する接着剤としては、ポリフッ化ビニリデン(PVDF)等が例示される。
 電極板4は、正極板10と、負極板12と、を含む。正極板10は、正極集電体の片面または両面に正極活物質層が積層された構造を有する。正極集電体は、例えばアルミニウム箔等の金属箔、エキスパンド材、ラス材等で構成される。正極活物質層は、正極集電体の表面に公知の塗布装置で正極合材を塗布し、乾燥および圧延することによって形成することができる。正極合材は、正極活物質、結着材、導電材等の材料を分散媒に混練し、均一に分散させることによって得られる。
 正極活物質は、積層電極体1がリチウムイオン二次電池に用いられる場合、リチウムイオンを可逆的に吸蔵および放出できる材料であれば特に限定されない。典型的には、リチウム含有遷移金属化合物を正極活物質として使用可能である。リチウム含有遷移金属化合物としては、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群から選ばれる少なくとも1つの元素と、リチウムと、を含む複合酸化物が挙げられる。
 結着材は、分散媒に混練および分散できるものであれば特に限定されない。例えば、結着材としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂、アクリルゴム、アクリル樹脂、ビニル樹脂等を使用可能である。導電材としては、アセチレンブラック、グラファイト、炭素繊維等の炭素材料を使用可能である。分散媒としては、結着材を溶かすことができる溶媒が使用される。正極合材には、必要に応じて分散剤、界面活性剤、安定剤、増粘剤等が含まれてもよい。
 負極板12は、負極集電体の片面または両面に負極活物質層が積層された構造を有する。負極集電体は、例えば銅、銅合金等からなる金属箔、エキスパンド材、ラス材等で構成される。負極活物質層は、負極集電体の表面に公知の塗布装置で負極合材を塗布し、乾燥および圧延することによって形成することができる。負極合材は、負極活物質、結着材、導電材等の材料を分散媒に混練し、均一に分散させることによって得られる。なお、負極板12は、上述の湿式法に代えて、蒸着法やスパッタ法等の乾式法によって作製することもできる。
 負極活物質は、積層電極体1がリチウムイオン二次電池に用いられる場合、リチウムイオンを可逆的に吸蔵および放出できる材料であれば特に限定されない。典型的には、黒鉛型結晶構造を有するグラファイトを含有する炭素材料を負極活物質として使用可能である。炭素材料としては、天然黒鉛、球状または繊維状の人造黒鉛、難黒鉛化性炭素、易黒鉛化性炭素等が挙げられる。また、負極活物質としてチタン酸リチウム、シリコン、錫等も使用することもできる。結着材および導電材は、正極活物質に用いられるものと同様である。負極合材には、必要に応じて分散剤、界面活性剤、安定剤、増粘剤等が含まれてもよい。
 電極板4は、接着層8と接するようにセパレータ2に積層され、接着層8に電極板4の一部が接着される。したがって、電極板4は、接着層8との接着領域42および非接着領域44を有する。非接着領域44は、当該領域におけるセパレータ2と電極板4との接着強度が、接着領域42における接着強度の30%を下回る領域、より好ましくは20%を下回る領域、さらに好ましくは10%を下回る領域である。接着強度は、例えば日本工業規格JIS C2107(1999)に規定された方法で測定される、180度剥離強度(N/25mm)である。
 また、セパレータ2と電極板4との積層方向Aから見て、接着層8は電極板4の全体と重なる。したがって、積層方向Aから見て、接着層8は非接着領域44と重なる領域にも延在している。また、電極板4は、互いに独立した複数の非接着領域44を有する。つまり、電極板4は、接着領域42によって区切られて不連続となった、2以上の非接着領域44を有する。そして、少なくとも一部の非接着領域44は、電極板4の外縁まで延びている。つまり、少なくとも一部の非接着領域44は、ケース32の内部空間に連通する開放端44aを有する。また、積層方向Aから見て、電極板4は矩形状である。そして、電極板4は、角部Cに接着領域42aを有する。また、電極板4は、接着領域42で囲まれた非接着領域44bを有する。この非接着領域44bは、全周に接着領域42が延在するため、開放端44aを有しない。
 一例として、接着領域42および非接着領域44はストライプ状に敷設される。具体的には、個々の接着領域42および非接着領域44は電極板4の長辺に対して5~85°の角度で傾斜した直線状である。そして、接着領域42および非接着領域44が交互に配列される。各非接着領域44は、両端が電極板4の外縁まで延びて開放端44aとなっている。また、各接着領域42の内部には、接着領域42の延びる方向に所定の間隔をあけて複数の非接着領域44bが配列されている。
 電極板4が接着層8に接着されることで、セパレータ2と電極板4とが互いに連結した積層電極体1が得られる。本実施の形態の積層電極体1は、複数の単位積層体14が積層された構造を有する。積層電極体1における単位積層体14の積層数は、例えば30~40個である。単位積層体14は、正極板10、セパレータ2、負極板12、セパレータ2がこの順に積層された構造を有する。
 本実施の形態の積層電極体1は、セパレータ2の単板と電極板4の単板とが複数積層された積層型であるが、特にこの構造に限定されない。積層電極体1は、互いに接着されたセパレータ2と電極板4との積層構造を少なくとも一部に有すればよく、帯状のセパレータ2と帯状の電極板4とが巻き回された巻回型であってもよいし、つづら折りされた帯状のセパレータ2の各谷溝に単板の電極板4を配置したつづら折り型等であってもよい。
 電解液34は、積層電極体1に含浸される。電解液34は、例えば非水溶媒と、非水溶媒に溶解した電解質と、を含む。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、1,2-ジメトキシエタン、1,2-ジクロロエタン等の公知の溶媒を使用可能である。電解質としては、電子吸引性の強いリチウム塩、具体的にはLiPF、LiBF等の公知の電解質を使用可能である。
 ケース32は、積層電極体1および電解液34を収容する。ケース32は、アルミニウム、鉄、ステンレス等の金属で構成される。ケース32は、扁平な矩形状であるが、これに限らず円筒状等であってもよい。ケース32は開口を有し、開口を介して積層電極体1および電解液34が収容される。この開口は、後述する封口板18で塞がれる。したがって、封口板18はケース32の一部を構成する。
 続いて、本実施の形態に係る電池36の製造方法について説明する。図3(A)~図3(B)、図4(A)~図4(B)および図5(A)~図5(B)は、実施の形態に係る電池36の製造方法を説明するための模式図である。
<積層電極体1の作製>
 図3(A)および図3(B)に示すように、一対の熱圧着ローラ16の間に正極板10、セパレータ2、負極板12およびセパレータ2を通す。セパレータ2と各電極板4とは、電極板4が接着層8と接するように積層される。これにより、正極板10、セパレータ2、負極板12およびセパレータ2が熱圧着されて単位積層体14が得られる。続いて図4(A)に示すように、複数の単位積層体14を一対の熱圧着ローラ16で熱圧着する。これにより、積層電極体1が得られる。
 一方の熱圧着ローラ16は、表面に複数の凸部40を有する。このような熱圧着ローラ16で電極板4とセパレータ2とを加圧することで、電極板4の一部のみをセパレータ2に押し付けて、押し付けた部分のみを接着層8に接着させることができる。セパレータ2に対して電極板4を部分的に接着させることで、電極板4に接着領域42と非接着領域44とを設けることができる。
<電池36の組み立て>
 図4(B)に示すように、封口板18を用意する。封口板18は、アルミニウム、鉄、ステンレス等の金属で構成される。封口板18は、正極端子20と、負極端子22と、注液孔24と、安全弁26と、を有する。注液孔24は、電解液をケース内に注入する際に用いられる。安全弁26は、ケースの内圧が所定値以上に上昇した際に開弁して、ケース内部のガスを放出する。
 積層電極体1の正極集電体を、電力取り出し用の正極集電タブ28を介して正極端子20に電気的に接続する。また、積層電極体1の負極集電体を、電力取り出し用の負極集電タブ30を介して負極端子22に電気的に接続する。正極集電体と正極集電タブ28とは、一体成形体であってもよいし、別体であって溶接等により接合されてもよい。同様に、負極集電体と負極集電タブ30とは、一体成形体であってもよいし、別体であって溶接等により接合されてもよい。正極集電タブ28と正極端子20、負極集電タブ30と負極端子22とは、それぞれ溶接等により接合される。
 続いて、図5(A)に示すように、封口板18に溶接された積層電極体1をケース32に収容する。積層電極体1は、ケース32の開口を介してケース32の内部に挿入される。複数のセパレータ2と複数の電極板4とは接着層8を介して互いに連結されているため、積層電極体1をケース32に簡単に挿入することができる。特に、電極板4の角部Cに接着領域42が配置されているため、つまり、電極板4の四隅がセパレータ2に固定されているため、積層電極体1をケース32により簡単に挿入することができる。積層電極体1をケース32に挿入した後、ケース32の開口を封口板18で塞ぎ、ケース32と封口板18とを溶接等により接合する。
 続いて、注液孔24を介してケース32内に電解液34を注入する。電解液34をケース32に注入した後、注液孔24に注液栓(図示せず)を溶接等により接合する。これにより、電池36が組み立てられる。
 ケース32内に電解液34が注入されると、図5(B)に示すように、電解液34はその流動圧によって電極板4の非接着領域44と接着層8との隙間を広げながら当該隙間に進入していく。隙間への電解液34の進入にともなって、隙間に存在する空気が外に追い出されて、電解液34と空気とがスムーズに置換される。これにより、電極板4に電解液34を迅速に浸潤させることができる。
 つまり、電極板4の非接着領域44は、電解液34および残存空気の流路として機能する。特に、少なくとも一部の非接着領域44は電極板4の外縁まで延び、ケース32の内部空間に連通する開放端44aを有する。したがって、電解液34は、開放端44aから非接着領域44と接着層8との隙間に容易に進入していくことができる。また、残存空気を開放端44aから容易に排出することができる。
 接着領域42の面積は、好ましくは電極板4の面積全体の15%以上40%未満である。図6は、種々の接触面積における電解液注入後の経過時間と未含浸面積との関係を示す図である。図6における「接触面積」は、接着領域42の面積を意味する。したがって、「全面接着」、「接触面積15%」、「接触面積30%」、「接触面積40%」はそれぞれ、接着領域42の面積が電極板4の面積全体に対して100%、15%、30%、40%であることを意味する。また、「未含浸面積」は、電極板4において電解液34が含浸していない領域の面積を意味する。電解液34が含浸しているか否かは、目視で確認することができる。また、未含浸面積は、画像解析等によって算出することができる。また、図6には、各接触面積の実験区について、所定経過時間における未含浸面積のプロットと、このプロットを線形近似して得られる直線と、を図示している。
 図6に示すように、全面接着では、電解液34の注入完了から3時間経過で未含浸面積は18%であり、6時間経過で5%であり、9時間経過で0%であった。接触面積40%では、3時間経過で17%、6時間経過で7%、9時間経過で0%であった。接触面積30%では、3時間経過で12%、6.5時間経過で0%であった。接触面積15%では、3時間経過で7%、4時間経過で3%、4.9時間経過で0%であった。
 以上の結果から、接着領域42の面積を電極板4の面積全体の40%未満とすることで、積層電極体1への電解液34の含浸時間をより確実に短縮できることが確認された。また、接着領域42の面積を30%以下とすることで、接着領域42を設けない場合に対して含浸時間を2/3程度まで短縮できることが確認された。さらに、接着領域42の面積を15%とすることで、含浸時間を1/2程度まで短縮できることが確認された。また、接着領域42の面積を15%以上とすることで、電極板4とセパレータ2とが連結された状態をより確実に維持することができる。したがって、積層電極体1のハンドリング性を維持することができる。
 以上説明したように、本実施の形態に係る電池36の製造方法は、接着層8を有するセパレータ2と電極板4とを電極板4が接着層8と接するように積層し、接着層8に電極板4の一部を接着して、電極板4が接着層8との接着領域42および非接着領域44を有する積層電極体1を形成し、積層電極体1をケース32に収容し、ケース32に電解液34を注入することを含む。電極板4に非接着領域44を設けることで、電極板4とセパレータ2との間に電解液34を進入させやすくすることができる。これにより、積層電極体1への電解液34の含浸時間を短縮することができる。
 含浸時間の短縮により、電池36の生産リードタイムを短縮することができる。また、電池36のスループットを維持するための生産設備の増強も避けることができ、したがって生産スペースの拡大も回避することができる。また、生産リードタイムが延びることを抑制しながら、電池36の高容量化を図ることができる。
 また、本実施の形態に係る電池36は、接着層8を有するセパレータ2および電極板4が積層された積層電極体1と、積層電極体1に含浸される電解液34と、積層電極体1および電解液34を収容するケース32と、を備え、電極板4は、接着層8との接着領域42および非接着領域44を有する。電池36においては、充電時に活物質が膨張することによって積層電極体1から電解液34が排出され得る。電解液34は、放電時に活物質が収縮することによって積層電極体1に戻る。仮に、電解液34が積層電極体1に戻りきらない場合、電極板4の一部に電解液34に浸潤していない領域、すなわち放電に寄与しない領域が発生し得る。これに対し、電極板4が非接着領域44を有すると、充電時に積層電極体1から排出された電解液34が放電時にスムーズに積層電極体1に戻ることができる。よって、本実施の形態の電池36によれば、電池36の充放電特性の改善、ひいてはサイクル寿命の改善を図ることができる。
 また、セパレータ2と電極板4との積層方向Aから見て、接着層8は電極板4の全体と重なっている。したがって、接着層8において電極板4が接着する部分、つまり接着領域42と重なる部分は、非接着領域44と重なる部分でつながっている。このため、電極板4を接着層8に圧着した際に、接着層8における接着領域42と重なる部分が電極板4で押されて基材6に埋没してしまうことを抑制することができる。これにより、電解液34および空気の流路をより確実に形成することができ、電解液34の含浸時間をより確実に短縮することができる。また、正極板10と負極板12との間の距離が不均一になることを抑制でき、積層電極体1全体で電極反応の均一化を図ることができる。
 また、接着領域42の面積は、好ましくは電極板4の面積全体の15%以上40%未満である。これにより、積層電極体1への電解液34の含浸時間をより確実に短縮できるとともに、積層電極体1のハンドリング性を維持することができる。
 また、電極板4は、互いに独立した複数の非接着領域44を有し、少なくとも一部の非接着領域44は、電極板4の外縁まで延びている。これにより、非接着領域44と接着層8との隙間に電解液34を進入させやすくすることができ、また残存空気を排出しやすくすることができる。よって、積層電極体1への電解液34の含浸時間をより短縮することができる。
 また、電極板4は、接着領域42で囲まれた非接着領域44bを有する。つまり、接着領域42の内部に非接着領域44bが配置される。これにより、接着領域42の面積をより細かく調整することができる。よって、電解液34の含浸時間の短縮と、積層電極体1のハンドリング性の維持とのバランスを調整しやすくすることができる。
 また、積層方向Aから見て電極板4は矩形状であり、電極板4は、角部Cに接着領域42を有する。これにより、電極板4に非接着領域44を設けることによる積層電極体1のハンドリング性の低下をより抑制することができる。
 以上、本開示の実施の形態について詳細に説明した。前述した実施の形態は、本開示を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本開示の技術的範囲を限定するものではなく、請求の範囲に規定された本開示の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本開示の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
 本開示は、電池の製造方法および電池に利用することができる。
 1 積層電極体、 2 セパレータ、 4 電極板、 6 基材、 8 接着層、 32 ケース、 34 電解液、 36 電池、 42 接着領域、 44 非接着領域。

Claims (7)

  1.  接着層を有するセパレータと電極板とを前記電極板が前記接着層と接するように積層し、
     前記接着層に前記電極板の一部を接着して、前記電極板が前記接着層との接着領域および非接着領域を有する積層電極体を形成し、
     前記積層電極体をケースに収容し、
     前記ケースに電解液を注入することを含む、
    電池の製造方法。
  2.  前記セパレータと前記電極板との積層方向から見て、前記接着層は前記電極板の全体と重なる、
    請求項1に記載の製造方法。
  3.  前記接着領域の面積は、前記電極板の面積全体の15%以上40%未満である、
    請求項1または2に記載の製造方法。
  4.  前記電極板は、互いに独立した複数の前記非接着領域を有し、
     少なくとも一部の前記非接着領域は、前記電極板の外縁まで延びている、
    請求項1乃至3のいずれか1項に記載の製造方法。
  5.  前記電極板は、前記接着領域で囲まれた前記非接着領域を有する、
    請求項1乃至4のいずれか1項に記載の製造方法。
  6.  前記セパレータと前記電極板との積層方向から見て、前記電極板は矩形状であり、
     前記電極板は、角部に前記接着領域を有する、
    請求項1乃至4のいずれか1項に記載の製造方法。
  7.  接着層を有するセパレータおよび電極板が積層された積層電極体と、
     前記積層電極体に含浸される電解液と、
     前記積層電極体および前記電解液を収容するケースと、を備え、
     前記電極板は、前記接着層との接着領域および非接着領域を有する、
    電池。
PCT/JP2021/009539 2020-03-13 2021-03-10 電池の製造方法および電池 WO2021182514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/911,383 US20230095398A1 (en) 2020-03-13 2021-03-10 Method for producing battery, and battery
CN202180019689.0A CN115280564A (zh) 2020-03-13 2021-03-10 电池的制造方法及电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043760A JP7209660B2 (ja) 2020-03-13 2020-03-13 電池の製造方法および電池
JP2020-043760 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182514A1 true WO2021182514A1 (ja) 2021-09-16

Family

ID=77672070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009539 WO2021182514A1 (ja) 2020-03-13 2021-03-10 電池の製造方法および電池

Country Status (4)

Country Link
US (1) US20230095398A1 (ja)
JP (1) JP7209660B2 (ja)
CN (1) CN115280564A (ja)
WO (1) WO2021182514A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117916069A (zh) 2021-09-06 2024-04-19 住友化学株式会社 热塑性树脂粒料及热塑性树脂粒料的制造方法
CN116417758B (zh) * 2023-06-09 2023-09-08 宁德新能源科技有限公司 隔膜及电化学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2000306569A (ja) * 1999-04-23 2000-11-02 Nec Corp 電極セパレータ積層体、その製造方法およびそれを用いた電池
KR20180115053A (ko) * 2017-04-12 2018-10-22 주식회사 엘지화학 전극 합제층의 접착력이 불균일한 전극조립체 및 이의 제조 장치
US20180309108A1 (en) * 2016-04-01 2018-10-25 Lg Chem, Ltd. A separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
JP2019053862A (ja) * 2017-09-13 2019-04-04 株式会社Gsユアサ 積層電極体及び蓄電素子
JP2019125441A (ja) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 電極積層体の製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2000306569A (ja) * 1999-04-23 2000-11-02 Nec Corp 電極セパレータ積層体、その製造方法およびそれを用いた電池
US20180309108A1 (en) * 2016-04-01 2018-10-25 Lg Chem, Ltd. A separator comprising an adhesion layer for an electrochemical device and an electrode assembly comprising the same
KR20180115053A (ko) * 2017-04-12 2018-10-22 주식회사 엘지화학 전극 합제층의 접착력이 불균일한 전극조립체 및 이의 제조 장치
JP2019053862A (ja) * 2017-09-13 2019-04-04 株式会社Gsユアサ 積層電極体及び蓄電素子
JP2019125441A (ja) * 2018-01-12 2019-07-25 トヨタ自動車株式会社 電極積層体の製造装置

Also Published As

Publication number Publication date
JP7209660B2 (ja) 2023-01-20
JP2021144889A (ja) 2021-09-24
CN115280564A (zh) 2022-11-01
US20230095398A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP5494338B2 (ja) 電極体の製造方法及び電極体
US9601745B2 (en) Non-aqueous electrolyte secondary battery
US7833656B2 (en) Electrochemical device and method for producing the same
US20160043373A1 (en) Lithium-ion secondary cell and method for manufacturing same
WO2021182513A1 (ja) 電池の製造方法および電池
WO2021182514A1 (ja) 電池の製造方法および電池
JP7046185B2 (ja) 固体電池用正極、固体電池用正極の製造方法、および固体電池
KR101838350B1 (ko) 젖음성이 개선된 전기화학소자용 전극 조립체 및 이의 제조 방법
KR20140009037A (ko) 전극조립체 및 이를 포함하는 전기화학소자
KR101387137B1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
KR20140012601A (ko) 이차전지 및 이를 포함하는 전기화학소자
TWI398031B (zh) 鋰離子電池組
KR101084079B1 (ko) 이차전지 및 이에 적용된 전극군
JP4513148B2 (ja) 電池およびその製造方法
KR20130010208A (ko) 셀 어셈블리와 파우치형 케이스의 밀착성을 향상시킨 이차전지 및 그 제조방법
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
JP2011124058A (ja) リチウムイオン二次電池、車両及び電池搭載機器
US20180123162A1 (en) Second Battery, and Method of Manufacturing Secondary Battery
JP7459758B2 (ja) 蓄電セル
JP5119615B2 (ja) 二次電池及び組電池
US11837689B2 (en) Current collector including opening formation portion and battery using same
JP4720129B2 (ja) 二次電池
CN114944471B (zh) 二次电池的制造方法
JP7245212B2 (ja) 非水電解液二次電池
JP2009158342A (ja) 正電極板、リチウムイオン二次電池、組電池、車両、電池搭載機器および正電極板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768789

Country of ref document: EP

Kind code of ref document: A1