WO2020015412A1 - 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 - Google Patents
氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 Download PDFInfo
- Publication number
- WO2020015412A1 WO2020015412A1 PCT/CN2019/083224 CN2019083224W WO2020015412A1 WO 2020015412 A1 WO2020015412 A1 WO 2020015412A1 CN 2019083224 W CN2019083224 W CN 2019083224W WO 2020015412 A1 WO2020015412 A1 WO 2020015412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitride
- infrared fluorescent
- beu
- aer
- fluorescent material
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 165
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 140
- 239000000126 substance Substances 0.000 claims abstract description 32
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 20
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 19
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 16
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 13
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 13
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 21
- 230000005284 excitation Effects 0.000 claims description 18
- 239000012298 atmosphere Substances 0.000 claims description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052691 Erbium Inorganic materials 0.000 description 9
- 238000012546 transfer Methods 0.000 description 8
- -1 rare earth ions Chemical class 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 7
- 229910052693 Europium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012190 activator Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000000295 emission spectrum Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000695 excitation spectrum Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000002165 resonance energy transfer Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7792—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Definitions
- the invention belongs to the technical field of inorganic light-emitting materials, and particularly relates to a nitride near-infrared fluorescent material and a preparation method thereof, and a light-emitting device containing the nitride near-infrared fluorescent material.
- Near-infrared light refers to light with a wavelength ranging from 760 to 1500 nm. This band of light has great application prospects in facial recognition, iris recognition, security monitoring, lidar, and fiber optic communication. Among them, the near-infrared LED has become a research hotspot at home and abroad due to its series of advantages such as good directivity, low power consumption, and small size. At present, near-infrared LEDs are mainly implemented with near-infrared semiconductor chips. This method is very costly and the emission wavelength is not easy to regulate and control the application and promotion of infrared LEDs to a certain extent.
- the object of the present invention is to provide a nitride near-infrared fluorescent material and a light-emitting device containing the nitride near-infrared fluorescent material. The problem.
- a nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu, cR), where A is selected from the elements La, Lu, and Y.
- M is selected from at least one of Ca, Sr, Ba element
- B is selected from one of Li, Na, K element
- R is selected from one of Yb, Pr element,
- a x M y B z Si 5 N 8 (aEr, bEu, cR), the value range of x, y, z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2; a The value ranges of, b, and c satisfy: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- a method for preparing a nitride near-infrared fluorescent material includes the following steps:
- a nitride of M 2 N 3 , Si 3 N 4 , B and a nitride of Eu and perform a mixing process to obtain a first mixed material, wherein the molar ratio of the M 2 N 3 to the Si 3 N 4 is 1.3 ⁇ 1.4: 1, wherein M is selected from at least one of Ca, Sr, and Ba elements, and B is selected from one of Li, Na, and K elements;
- the first mixture is held in a mixed atmosphere of 1200-1300 ° C under a N 2 / H 2 atmosphere for 2-5 hours to obtain a calcined product.
- the heating rate is 20 ° C / min ⁇ 50 °C / min;
- the calcined product and Si 3 N 4 , nitride, oxide or fluoride of Er, nitride of A, oxide or fluoride of R are mixed in a certain ratio to obtain a second mixed material, wherein
- the molar ratio of the calcined product and the Si 3 N 4 is from 2 to 2.2: 1; wherein A is selected from one or two of La, Lu, and Y elements, and R is selected from one of Yb and Pr elements;
- the sintered intermediate is crushed, washed, and classified to obtain a nitride near-infrared fluorescent material.
- the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu, cR ), A x M y B z Si 5 N 8 : (aEr, bEu, cR), the value range of x, y, z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2 ; The range of values of a, b, and c satisfies: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- a light-emitting device includes a fluorescent substance and an excitation light source, the fluorescent substance is a nitride near-infrared fluorescent material, and the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu, cR), wherein A is selected from one or two of La, Lu, and Y elements, M is selected from at least one of Ca, Sr, and Ba elements, and B is selected from Li, Na, and K One element, R is selected from Yb, Pr element,
- a x M y B z Si 5 N 8 (aEr, bEu, cR), the value range of x, y, z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2; a The value ranges of, b, and c satisfy: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- the present invention provides a near infrared fluorescent material is a nitride, the formula A x M y B z Si 5 N 8: (aEr, bEu, cR), visible light at an excitation radiation source capable of emitting near-infrared light.
- the A x M y B z Si 5 N 8 (aEr, bEu, cR) has high physical and chemical stability, and the nitride near-infrared fluorescent material has better crystallization, so it has a higher external quantum. effectiveness.
- the nitride near-infrared fluorescent material provided by the present invention selects different types of rare earth ions or a combination of rare earth ions, which can greatly improve the emission peak intensity.
- the nitride near-infrared fluorescent material provided by the present invention has the advantages of high luminous efficiency, good stability, and low cost, and can be widely used in the fields of optical fiber communication, signal amplification, and the like.
- the nitride near-infrared fluorescent material provided by the present invention is used in a light-emitting device, and the nitride near-infrared fluorescent material can fully utilize the advantages of the nitride near-infrared fluorescent material with good stability and high external quantum efficiency, thereby improving the light-emitting device's advantages. Luminous efficiency and stability.
- an MSiN 2 crystal structure is firstly constructed by a low-temperature reaction.
- Er, A, and R elements are introduced by high-temperature doping, thereby obtaining a stable crystal structure and high luminous efficiency.
- Nitride near-infrared fluorescent material This method is relatively simple and controllable, more importantly, it can effectively control the nitride near infrared fluorescent material A x M y 5 N 8 B z Si: (aEr, bEu, cR) crystal structure and doping content of each element, so that Has good chemical stability and luminous efficiency.
- the light-emitting device provided by the present invention contains the above-mentioned nitride near-infrared fluorescent material, so it can fully utilize the advantages of the nitride near-infrared fluorescent material with good stability and high external quantum efficiency, thereby improving the light-emitting efficiency and stability of the light-emitting device.
- Example 1 is an XRD pattern of a nitride near-infrared fluorescent material provided in Example 25 of the present invention
- Example 2 is a morphology diagram of a calcined product in a method for preparing a nitride near-infrared fluorescent material provided in Example 25 of the present invention
- Example 3 is an excitation spectrum (monitoring wavelength 1530 nm) diagram of a nitride near-infrared fluorescent material provided in Example 25 of the present invention
- FIG. 4 is a comparison chart of emission spectra of a nitride near-infrared fluorescent material provided in Examples 1 and 25 of the present invention under an excitation wavelength of 448 nm.
- first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
- An embodiment of the present invention provides a nitride near-infrared fluorescent material, and the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu, cR), where A is selected from One or two of La, Lu, and Y elements, M is selected from at least one of Ca, Sr, and Ba elements, B is selected from one of Li, Na, and K elements, and R is selected from one of Yb, Pr elements ,
- a x M y B z Si 5 N 8 (aEr, bEu, cR), the value range of x, y, z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2; a The value ranges of, b, and c satisfy: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- the nitride according to an embodiment of the present invention the near infrared fluorescent materials of the formula A x M y B z Si 5 N 8: (aEr, bEu, cR), visible light at an excitation radiation source capable of emitting near-infrared light.
- the A x M y B z Si 5 N 8 (aEr, bEu, cR) has high physical and chemical stability, and the nitride near-infrared fluorescent material has better crystallization, so it has a higher external quantum. effectiveness.
- the nitride near-infrared fluorescent material provided by the embodiment of the present invention selects different types of rare earth ions or a combination of rare earth ions, which can greatly improve the emission peak intensity.
- the nitride near-infrared fluorescent material provided by the embodiment of the present invention has the advantages of high luminous efficiency, good stability, and low cost, and can be widely used in the fields of optical fiber communication and signal amplification.
- the nitride near-infrared fluorescent material provided in the embodiment of the present invention is used in a light-emitting device.
- the nitride near-infrared fluorescent material can fully utilize the advantages of the nitride near-infrared fluorescent material with good stability and high external quantum efficiency, thereby improving light emission Luminous efficiency and stability of the device.
- the nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR) crystal structure contains three types of element sites, which are Si element sites, The N element site and the third element site have the same crystal structure as Sr 2 Si 5 N 8 .
- the third element site is respectively occupied by A, B, M, R, Er, and Eu elements (A is selected from one or two of La, Lu, and Y elements, and M is selected from at least Ca, Sr, and Ba elements.
- One, B is selected from one of Li, Na, and K elements, and R is selected from one of Yb, Pr elements).
- the nitride near-infrared fluorescent material according to the embodiment of the present invention selects a specific type of different rare earth ions or a combination of rare earth ions as the third element, thereby achieving the enhancement of the emission peak intensity and obtaining High luminous efficiency.
- the nitride near-infrared fluorescent material having the above-mentioned crystal structure and elemental composition characteristics has a low synthesis temperature during the preparation process, which can reduce the difficulty of preparation.
- the elements A, B, M, R, Er, and Eu are all at the third element site Among them, the Er element, as a light-emitting element characteristic of the near-infrared emission spectrum, determines the emission wavelength of the nitride near-infrared fluorescent material.
- the content of Er element in 0.01 ⁇ a ⁇ 0.1 can ensure good emission intensity.
- the doping content of the Er element is too small (relative to X n Si 5 N 8 , where X is all Three elements, including A, B, M, R, Er, Eu, n is the sum of x, y, z, a, b, c), is less than 0.01, then the emission intensity of Er is too low, affecting the luminous intensity; if If the doping content of the Er element is too much, the concentration quenching due to the high concentration will reduce the luminous intensity, and eventually affect the luminous intensity of the nitride near-infrared fluorescent material.
- the nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR) has a better luminous intensity.
- a 0.06 when the near infrared fluorescence nitride material A x M y B z Si 5 N 8: (aEr, bEu, cR) having the optimum light emission intensity.
- the Er element is a light-emitting element characteristic of the near-infrared emission spectrum of the nitride near-infrared fluorescent material, a characteristic near-infrared spectrum is emitted under the action of excitation light.
- the luminous efficiency of the nitride near-infrared fluorescent material is too low.
- Eu and R are used as activators to co-dope with the light-emitting element Er to improve the luminous efficiency of the nitride near-infrared fluorescent material.
- the nitride near-infrared fluorescent material described in the embodiment of the present invention has strong excitation at 620-650 nm, and is co-doped by doping Eu element and R element (selected from Yb and Pr elements), wherein Yb is used as a sensitive element.
- Embodiment of the present invention in the A x M y B z Si 5 N 8: (aEr, bEu, cR) , the doping element content of Eu satisfies 0.05 ⁇ b ⁇ 0.1. If the nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR), the concentration of the Eu element is too low, the characteristic Eu emission wavelength is too low to effectively perform energy transfer, thereby enhancing The effect of the emission intensity of Er is not obvious; if the concentration of the Eu element is too high, the characteristic Eu emission wavelength is too long, and the characteristic emission efficiency of Eu is too low, which is not conducive to increasing the emission intensity of Er.
- a x M y B z Si 5 N 8 (aEr, bEu, cR) the doping concentration of Eu element is 0.05 ⁇ b ⁇ 0.08, thereby obtaining a better light emission efficiency.
- the R element in A x M y B z Si 5 N 8 : (aEr, bEu, cR), the R element (selected from one of Yb and Pr elements) is used as another dopant together with Eu. Carry out energy transfer to effectively improve the luminous intensity of fluorescent materials.
- the energy transfer efficiency depends on the doping concentration of the R element, especially the Pr element.
- the doping content of the R element, especially the Pr element satisfies 0.005 ⁇ c ⁇ 0.03. With the increase of the doping content of the R element, especially the Pr element, the energy transfer efficiency increases first and then decreases.
- the concentration of the R element is too low or too high, the energy transfer efficiency is low, which is not conducive to improvement.
- Luminous intensity of fluorescent materials When Yb element is co-doped with Er element, the energy conversion is not obvious when the concentration is too low. When the concentration is too high, no radiation transition occurs between the activator ions and the emission intensity of the material will decrease.
- a x M y B z Si 5 N 8: (aEr, bEu, cR) the doping concentration of Eu element is 0.01 ⁇ b ⁇ 0.02, thereby obtaining a better light emission efficiency.
- the nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : doping of the M element in (aEr, bEu, cR) is used to ensure the emission wavelength of the Eu element, so that The emission wavelength is 620-650nm.
- M is selected from at least one of Ca, Sr, and Ba elements.
- Sr the stability of the obtained nitride near-infrared fluorescent material is the best
- M is Ba the stability of the obtained nitride near-infrared fluorescent material is next
- M is Ca the obtained nitride is Near-infrared fluorescent materials have the worst stability.
- M is Ca, Sr, Ba any two elements, and M contains Sr.
- the formed nitride near-infrared fluorescent material has excellent stability.
- M contains Sr, the visible light emission wavelength of the nitride near-infrared fluorescent material formed with a suitable concentration content (0.05 ⁇ b ⁇ 0.08) is longer, and the fluorescent material has better crystallinity.
- the co-doping of the Sr element and the Ca element, or the co-doping of the Sr element and the Ba element can further improve the luminous efficiency, and make the obtained fluorescent material further red-shift in the visible light emission band.
- the A x M y B z Si 5 N 8: (aEr, bEu, cR) , M is an element Sr and Ca elements.
- the use of Sr and Ba elements, or the use of Ba and Ca elements can cause the blue emission shift of Eu emission wavelength in nitride near-infrared fluorescent materials, and the emission wavelength is too short to promote the improvement of luminous efficiency.
- the ratio of the Sr element and the Ca element is not less than 4. If the content of Ca in the compound near-infrared fluorescent material is too high, the emission wavelength will be shortened, which is not conducive to the improvement of luminous efficiency.
- the doping content of the M element in A x M y B z Si 5 N 8 : (aEr, bEu, cR) is 1.6 ⁇ y ⁇ 1.915.
- the content of M element is too low, the structural stability of the formed matrix material will decrease, and the structure will change, and the luminous efficiency of the material will decrease.
- the content of M element is too high, it is suitable for A, B, Er, Eu, and R The space occupied by the space is less, which is not conducive to Er's infrared emission.
- a x M y B z Si 5 N 8: (aEr, bEu, cR) doping content of the M element is 1.7 ⁇ y ⁇ 1.9.
- a x M y B z Si 5 N 8: (aEr, bEu, cR) doping content of the M element is 1.7 ⁇ y ⁇ 1.8.
- R is Pr
- M contains Sr
- Er and Pr are both +3 valence
- Sr is +2 valence
- the valence state and radius are not matched. If it is directly doped, it will affect the luminous efficiency.
- an element A having a valence state of trivalent is introduced at the Sr position. Specifically, A is selected from one or two of La, Lu, and Y elements, and the radius is relatively close to Er and Pr. Tests prove that La has a more stable lattice structure after replacing Sr, and the nitride near-infrared fluorescent material has better luminous efficiency.
- the concentration of the A element replacing the M element is limited.
- the luminous center can occupy too few lattice sites, and the effect of improving the luminous efficiency is not obvious; if the content of the La element is too high, it will cause a heterogeneous phase in the crystal and reduce the fluorescent material.
- Luminous efficiency Preferably, A x M y B z Si 5 N 8: (aEr, bEu, cR) , the doping element content A is 0.01 ⁇ x ⁇ 0.1. Further preferably, A x M y B z Si 5 N 8: (aEr, bEu, cR) , the doping element content A is 0.01 ⁇ x ⁇ 0.06.
- B element is selected from one of Li, Na, and K elements
- R is selected from one of Yb, Pr elements.
- the B element can balance the valence state and reduce material defects; on the other hand, the Li element in the B element can cooperate with Pr to enhance the energy transfer efficiency of the fluorescent material and further improve the luminous efficiency.
- Embodiments of the present invention A x M y B z Si 5 N 8: (aEr, bEu, cR) , the doping element content of B is 0.01 ⁇ x ⁇ 0.1.
- the ionic radius of element B is significantly different from that of element M.
- the proper introduction of element B will play a role of charge compensation, which will help reduce defects, increase the crystallinity of the system, and then increase the luminous efficiency of the system.
- the content of element B is too high, It is not easy to dope into the lattice, which causes defects and reduces the luminous efficiency of the material; when the doping content of the B element is too low, the charge compensation effect and the crystallization promotion effect are not obvious, and the luminous efficiency of the material is not obvious.
- the doping content of the B element in A x M y B z Si 5 N 8 : (aEr, bEu, cR) is 0.05 ⁇ z ⁇ 0.1.
- a x M y B z Si 5 N 8: (aEr, bEu, cR) is 0.05 ⁇ z ⁇ 0.08.
- the value range of x, y, and z satisfies: 0.05 ⁇ z ⁇ 0.1, 0.01 ⁇ x ⁇ 0.1, 1.7 ⁇ y ⁇ 1.9.
- the nitride near-infrared fluorescent material thus obtained has proper doping content of the A, M, and B elements, which will not introduce material defects, and can greatly improve the crystal structure stability and luminous efficiency of the nitride near-infrared fluorescent material. .
- the value ranges of x, y, and z satisfy: 0.05 ⁇ z ⁇ 0.08, 0.01 ⁇ x ⁇ 0.06, 1.7 ⁇ y ⁇ 1.8.
- the value ranges of x, y, and z satisfy: 0.5 ⁇ x / z ⁇ 0.8, 1.85 ⁇ x + y + z ⁇ 1.90. Since element B has a certain volatility, the stoichiometric ratio of element B will be higher than that of element A. And x, y, z satisfy the range: 0.5 ⁇ x z ⁇ 0.8 time /, A x M y B z 5 N 8 Si: crystal effect (aEr, bEu, cR) material is preferably.
- a x M y B z Si 5 N 8 Crystallinity (aEr, bEu, cR) material is reduced and luminous efficiency deteriorates. Further, the value range of x, y, and z satisfies: 1.85 ⁇ x + y + z ⁇ 1.90.
- a x M y B z Si 5 N 8 is given : ( aEr, bEu, cR) materials have excellent luminous intensity.
- the A x M y B z Si 5 N 8 In (aEr, bEu, cR), A is La element, B is Li element, R is Pr element.
- the nitride near-infrared fluorescent material thus obtained has a stable crystal structure, which is more conducive to improving the light-emitting stability of the fluorescent material.
- the nitride near-infrared fluorescent material provided in the embodiment of the present invention can be prepared by the following method.
- an embodiment of the present invention provides a method for preparing a nitride near-infrared fluorescent material. Because there are many kinds of elements in the nitride near-infrared fluorescent material provided by the embodiment of the present invention, at least eight elements are included. If all the raw materials are added for calcination at one time, it is difficult to dope A, B, M, R, Er, Eu, etc.
- a x M y B z Si 5 N 8 (aEr, bEu, cR) structure
- a x M y prepared by a two step process B z Si 5 N 8: ( aEr, bEu, cR) to ensure the stability of the resulting crystal structure, and high emission efficiency.
- the preparation of A x M y B z Si 5 N 8 by a two-step method: (aEr, bEu, cR) includes the following steps:
- S01 Provide a nitride of M 2 N 3 , Si 3 N 4 , B and a nitride of Eu, and perform a mixing process to obtain a first mixed material, wherein the molar ratio of the M 2 N 3 and the Si 3 N 4 The ratio is 1.3 to 1.4: 1, wherein M is selected from at least one element of Ca, Sr, and Ba, and B is selected from one element of Li, Na, and K elements.
- step S01 according to a molar ratio of M 2 N 3 and the Si 3 N 4 is 1.3 to 1.4: 1, the M atom in M 2 N 3 and the B atom in B nitride and Eu nitride
- the molar ratio of Eu atoms is (0.01 ⁇ 0.2): (0.01 ⁇ 0.2): (0.05 ⁇ 0.1).
- the raw materials are mixed to make the materials evenly mixed, which is beneficial to generate the MSiN 2 crystal structure in the following steps during the heat treatment.
- the first mixture is held in a mixed atmosphere of 1200-1300 ° C and N 2 / H 2 for 2-5 hours to obtain a calcined product.
- the heating rate is 20 ° C / min ⁇ 50 °C / min.
- the first mixed material is kept at a temperature of 1200-1300 ° C under a mixed atmosphere of N 2 / H 2 for 2-5 hours.
- the M element, Eu element, and B element form MSiN during the reaction. 2 Crystal structure.
- the reaction conditions of this step the material for near infrared fluorescence in the nitride A x M y B z Si 5 N 8: (aEr, bEu, cR) introduced into the M element is critical.
- the interference of the Er, A, and R elements on the M element is avoided, thereby ensuring that M can enter the crystal lattice of the nitride near-infrared fluorescent material prepared in the embodiment of the present invention.
- the reaction temperature of 1200-1300 ° C is favorable for obtaining the crystal structure of MSiN 2 during the reaction. If the reaction temperature is too low, it is difficult to form the MSiN 2 crystal structure; if the reaction temperature is too high, the MSiN 2 crystal structure cannot be obtained, and during the subsequent sintering process, each element cannot be properly doped, and eventually A x M cannot be obtained y B z Si 5 N 8 : (aEr, bEu, cR).
- the N 2 / H 2 mixed atmosphere can ensure the normal progress of the reaction and reduction reaction, and provide a reducing atmosphere to avoid the oxidation reaction of each element, deviate from the reaction route, introduce impurities or directly obtain the expected MSiN 2 crystal structure.
- the volume ratio of H 2 is 5% -10%, so as to ensure a good inert environment and avoid the occurrence of heterogeneous side reactions under the condition that a suitable reducing gas is provided.
- the heating rate is 20 ° C / min ⁇ 50 ° C / min. Controlling the heating rate within this range can reduce the volatility of element B, promote the effective entry of element B into the lattice position, and improve the luminous efficiency of the material.
- the calcined product is mixed with Si 3 N 4 , nitride, oxide, or fluoride of Er, nitride of A, oxide or fluoride of R in a certain ratio to obtain a second mixed material, wherein
- the molar ratio of the calcined product to the Si 3 N 4 is 2 to 2.2: 1; wherein A is selected from one or two of La, Lu, and Y elements, and R is selected from one of Yb and Pr elements. Species.
- a nitride, oxide or fluoride of Er, a nitride of A, an oxide or fluoride of R, and the calcined product and Si 3 N 4 are provided .
- the addition amount of each substance satisfies the elemental composition content of the finally obtained nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR), such as the calcined product and the Si 3
- the molar ratio of N 4 is 2 to 2.2: 1.
- it can be adjusted on this basis, in order to more efficiently produced near infrared fluorescent nitride material A x M y B z Si 5 N 8: (aEr, bEu, cR).
- the second mixture is maintained at a temperature of 1500-1650 ° C. under a mixed atmosphere of N 2 / H 2 for 6-10 hours to obtain a sintered intermediate.
- step S04 under the reaction conditions, Er, A, and R are further grown and doped based on the crystal structure of the calcined product MSiN 2 to finally obtain a nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR).
- the reaction temperature of 1500-1650 is favorable for the doping of Er, A, and R in the MSiN 2 crystal structure during the reaction. If the reaction temperature is too low, it is difficult to prepare a nitride near-infrared fluorescent material A x M y B z Si 5 N 8 : (aEr, bEu, cR); if the reaction temperature is too high, the sintered product will agglomerate and agglomerate, thereby reducing the nitride near infrared fluorescent material a x M y B z 5 N 8 Si: (aEr, bEu, cR) luminous efficiency.
- the volume ratio of H 2 is 5% -10%, so as to ensure a good inert environment and avoid the occurrence of heterogeneous side reactions under the condition that a suitable reducing gas is provided.
- the sintered intermediate is crushed, washed, and classified to obtain a nitride near-infrared fluorescent material.
- the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu , cR), A x M y B z Si 5 N 8 : (aEr, bEu, cR), the range of values of x, y, and z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2; The range of values of a, b, and c satisfies: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 :
- the selection of each element in (aEr, bEu, cR) and its preferred combination manner, and preferred content are as described above, In order to save space, I will not repeat them here.
- an MSiN 2 crystal structure is firstly formed by a low-temperature reaction, and on the basis, Er, A, and R elements are introduced by high-temperature doping to obtain stable crystal structure and luminous efficiency.
- This method is relatively simple and controllable, more importantly, it can effectively control the nitride near infrared fluorescent material A x M y 5 N 8 B z Si: (aEr, bEu, cR) crystal structure and doping content of each element, so that Has good chemical stability and luminous efficiency.
- an embodiment of the present invention provides a light emitting device, the light emitting device includes a fluorescent substance and an excitation light source, the fluorescent substance is a nitride near-infrared fluorescent material, and the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 : (aEr, bEu, cR), where A is selected from one or two of La, Lu, and Y elements, M is selected from at least one of Ca, Sr, and Ba elements, and B is selected From one of Li, Na, and K elements, and R is selected from one of Yb and Pr elements,
- a x M y B z Si 5 N 8 (aEr, bEu, cR), the value range of x, y, z satisfies: 0.01 ⁇ x ⁇ 0.2, 1.6 ⁇ y ⁇ 1.915, 0.01 ⁇ z ⁇ 0.2; a The value ranges of, b, and c satisfy: 0.01 ⁇ a ⁇ 0.1, 0.05 ⁇ b ⁇ 0.1, 0.005 ⁇ c ⁇ 0.03.
- the light-emitting device provided by the embodiment of the present invention contains the above-mentioned nitride near-infrared fluorescent material, so the advantages of the nitride near-infrared fluorescent material are good, and the external quantum efficiency is high, thereby improving the light-emitting efficiency and stability of the light-emitting device.
- the chemical formula of the nitride near-infrared fluorescent material is A x M y B z Si 5 N 8 :
- the selection of each element in (aEr, bEu, cR), its preferred combination mode, and preferred content are as described above. In order to save space, I will not repeat them here.
- the excitation light source is a semiconductor chip having an emission wavelength range of 360 to 480 nm.
- the excitation light source has an emission wavelength range of 405-450 nm violet semiconductor chip or blue semiconductor chip.
- the method for preparing a nitride near-infrared fluorescent material includes the following steps:
- a certain amount of metal Sr nitride, Si 3 N 4 , metal Li nitride, and metal hafnium nitride are first weighed and mixed uniformly in a N 2 / H 2 mixed atmosphere at a temperature of 1300 ° C. (The volume ratio is 95% / 5%) sintering for 4 h to obtain a calcined product.
- the calcined product obtained is crushed and post-processed as a precursor, and then the precursor is mixed with a nitride of metal La, a fluoride of metal Er, Metal Pr fluoride and Si 3 N 4 are mixed at a certain ratio, and sintered for 8 h under a N 2 / H 2 mixed atmosphere (volume ratio of 95% / 5%) at a temperature of 1600 ° C to obtain a sintered intermediate, which will be sintered. After the intermediate is crushed, washed, and classified, a near-infrared fluorescent material is obtained. The fluorescence emission characteristics of the obtained product are shown in Table 1.
- a nitride near infrared fluorescent material chemical formula A x M y BzSi 5 N 8 : (aEr, bEu, cR) , A is selected from one or both of La, Lu, Y element, M being Ca, Sr, At least one type of Ba element, B is one type of Li, Na, and K elements, R is one type of Yb, Pr elements, and x, y, z, a, b, and c are amounts of substances composed of the elements.
- the chemical formula of the nitride near-infrared fluorescent material described in Example 2-25 is shown in Table 2 Example 2-25. The method for preparing the nitride near-infrared fluorescent material is the same as that in Example 1.
- the XRD pattern of the nitride near-infrared fluorescent material provided in Example 25 is shown in FIG. 1.
- the diffraction peak position of the material is the same as that of Sr 2 Si 5 N 8 , indicating that the crystal structure of the material is still after the introduction of elements such as A and B.
- the structure is Sr 2 Si 5 N 8 ;
- the morphology of the calcined product obtained in the method for preparing a nitride near-infrared fluorescent material provided in Example 25 is shown in FIG. 2.
- the morphology of the material is rod-shaped and the crystallinity is very good.
- the excitation spectrum (monitoring wavelength 1530nm) of the nitride near-infrared fluorescent material provided in Example 25 is shown in Figure 3, which shows that the material can be effectively excited in the visible light region, especially in Near 650nm, there is an obvious excitation peak with weak intensity.
- the comparison of the emission spectra of the nitride near-infrared fluorescent materials provided in Examples 1 and 25 under the excitation wavelength of 448nm is shown in Figure 4, which can be seen By introducing appropriate amounts of A, B, R and other elements, the luminous intensity of the material in the infrared region (about 1530 nm) can be greatly improved.
- a nitride near-infrared fluorescent material whose chemical formulas are shown in Table 1 and Comparative Examples 1-5, respectively.
- a method for preparing the nitride near-infrared fluorescent material refer to Example 1 (omitting the addition step of elements not included in the comparative example).
- Luminous intensity at 25 °C Luminous intensity at 100 °C (%) 1 La0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 100 90 2 Lu0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 118 97 3 Y0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 105 99 4 Lu0.02La0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 108 96 5 Y0.02La0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 96 97 6 Y0.02Lu0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 97 90 7 La0.05Er0.01Pr0.03Ca1.77Eu0.08Li0.06Si5N8 92 91 8
- Example not having the nitride embodiment of the present invention the near infrared fluorescent material A x M y B z Si 5 N 8: fluorescence intensity of Comparative Example 1-5 (aEr, bEu, cR) structure is significantly reduced.
- the nitride near-infrared fluorescent material provided in Example 25 of the present invention was excited under visible light conditions of 380 nm, 448 nm, and 480 nm, respectively, and the emission intensity of the material was highest under 448 nm excitation.
- the ratio of the N 2 / H 2 mixed atmosphere has a large effect on the emission intensity of the material.
- a proper proportion of the mixture can effectively reduce the activator ions and promote effective entry into the lattice position, thereby improving the emission intensity of the material.
- the N 2 / H 2 mixing ratio is controlled at 90% / 10%, the emission intensity of the material is the highest.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
Abstract
一种氮化物近红外荧光材料,化学式为A xM yB zSi 5N 8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,A xM yB zSi 5N 8 :(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
Description
本发明属于无机发光材料技术领域,尤其涉及一种氮化物近红外荧光材料及其制备方法,以及一种含有氮化物近红外荧光材料的发光装置。
近红外光是指波长范围从760~1500 nm的光,该波段光在面部识别、虹膜识别、安防监控、激光雷达、光纤通讯等领域应用前景非常巨大。其中,近红外LED因其具有指向性好、功耗低以及体积小等一系列优点,已然成为国内外研究的热点。目前近红外LED主要采用近红外半导体芯片实现,该方式成本非常高且发射波长不易调控,在一定程度上制约了红外LED的应用和推广。
采用可见光芯片激发近红外发光材料的实现近红外LED发光具有成本低、发光效率高、发射波长可控可调等优点,目前受到业界广泛的关注。采用这种方式实现LED近红外发光,开发适合可见光高效激发的近红外发光材料非常重要。现有近红外发光材料基质主要采用具有石榴石结构的稀土金属的氧化物,如CN101063228A、CN105733580A等公开的,或电致发光的有机配合物(Chem.-Eur.
J., 2012, 18, 1961–1968; Adv.
Mater., 2009, 21, 111–116; Chem.
Commun., 2011, 14, 1833–1837; Adv.
Funct. Mater., 2009, 19, 2639–2647)。但是由于这些发光材料具有稳定性差、发光效率低等缺点,限制了该类器件在以上应用领域的应用。因此,有必要研究开发新型高效稳定的近红外发光材料。
本发明的目的在于提供一种氮化物近红外荧光材料,以及一种含有氮化物近红外荧光材料的发光装置,旨在解决现有的适合可见光高效激发的近红外发光材料稳定性差、发光效率低的问题。
为实现上述发明目的,本发明采用的技术方案如下:
一种氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,
A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
相应的,一种氮化物近红外荧光材料的制备方法,包括以下步骤:
提供M
2N
3、Si
3N
4、B的氮化物和Eu的氮化物,进行混合处理,得到第一混合物料,其中,所述M
2N
3与所述Si
3N
4的摩尔比为1.3~1.4:1,其中,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种;
将所述第一混合物料在1200-1300℃、N
2/H
2混合气氛下保温2-5小时,得到预烧产物,其中,当温度高于700℃时,升温速率为20℃/min~50℃/min;
将所述预烧产物和Si
3N
4,Er的氮化物、氧化物或氟化物,A的氮化物,R的氧化物或氟化物按照一定的比例混合,得到第二混合物料,其中,所述预烧产物和所述Si
3N
4的摩尔比为2~2.2:1;其中,A选自La、Lu、Y元素的一种或两种,R选自Yb、Pr元素的一种;
将所述第二混合物料在1500-1650℃、N
2/H
2混合气氛下保温6-10小时,得到烧结物中间体;
将所述烧结中间体进行破碎、洗涤、分级处理,得到氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
以及,一种发光装置,所述发光装置包括荧光物质和激发光源,所述荧光物质为氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,
A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
本发明提供的氮化物近红外荧光材料,分子式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),在可见光辐射源的激发下,能够发出近红外光线。所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)具有很高的物理稳定性和化学稳定性,同时该氮化物近红外荧光材料结晶较好,因此具有较高外量子效率。此外,本发明提供的氮化物近红外荧光材料选用特定类型的不同稀土离子或稀土离子组合,可以大幅度实现发射峰强度的提升。综上,本发明提供的氮化物近红外荧光材料具有发光效率较高、稳定性好、成本低廉的优点,可广泛应用于光纤通讯、信号放大等领域。将本发明提供的氮化物近红外荧光材料用于发光装置中,所述氮化物近红外荧光材料能够充分发挥氮化物近红外荧光材料稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
本发明提供的氮化物近红外荧光材料的制备方法,先通过低温反应构建MSiN
2晶体结构,在此基础上,高温掺杂引入Er、A、R元素,从而得到晶体结构稳定、发光效率高的氮化物近红外荧光材料。该方法相对简单可控,更重要的是,能够有效控制氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)的晶体结构和各元素掺杂含量,从而具有较好的化学稳定性和发光效率。
本发明提供的发光装置,含有上述氮化物近红外荧光材料,因此能够充分发挥氮化物近红外荧光材料稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
图1是本发明实施例25提供的氮化物近红外荧光材料的XRD图;
图2是本发明实施例25提供的氮化物近红外荧光材料制备方法中预烧产物的形貌图;
图3是本发明实施例25提供的氮化物近红外荧光材料的激发光谱(监测波长1530nm)图;
图4是本发明实施例1和实施例25提供的氮化物近红外荧光材料在激发波长为448nm条件下的发射光谱对比图。
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例提供了一种氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,
A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
本发明实施例提供的氮化物近红外荧光材料,分子式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),在可见光辐射源的激发下,能够发出近红外光线。所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)具有很高的物理稳定性和化学稳定性,同时该氮化物近红外荧光材料结晶较好,因此具有较高外量子效率。此外,本发明实施例提供的氮化物近红外荧光材料选用特定类型的不同稀土离子或稀土离子组合,可以大幅度实现发射峰强度的提升。综上,本发明实施例提供的氮化物近红外荧光材料具有发光效率较高、稳定性好、成本低廉的优点,可广泛应用于光纤通讯、信号放大等领域。将本发明实施例提供的氮化物近红外荧光材料用于发光装置中,所述氮化物近红外荧光材料能够充分发挥氮化物近红外荧光材料稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
本发明实施例中,所述氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)晶体结构中,含有三类元素位点,分别为Si元素位点、N元素位点和第三元素位点,具有与Sr
2Si
5N
8相同的晶体结构。其中,第三元素位点由A、B、M、R、Er、Eu元素分别占据(A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种)。具有该晶体结构特性的A
xM
yB
zSi
5N
8:(aEr,bEu,cR),具有较好的结晶稳定性,从而作为发光材料使用时,具有很高的物理稳定性和化学稳定性。进一步的,在具有优异的晶体结构的前提下,本发明实施例所述氮化物近红外荧光材料选择特定类型的不同稀土离子或稀土离子组合作为第三元素,从而实现发射峰强度的提升,获得高发光效率。此外,具有上述晶体结构和元素组成特征的氮化物近红外荧光材料,制备过程中合成温度较低,可以降低制备难度。
具体的,所述氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,元素A、B、M、R、Er、Eu均处于第三元素位点,其中,Er元素作为近红外发光光谱特征的发光元素,决定了所述氮化物近红外荧光材料的发射波长。在A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,Er元素的含量在0.01≤a≤0.1,可以保证较好的发射强度。若氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,Er元素的掺杂含量太少(相对于X
nSi
5N
8,其中X为所有第三元素,包括A、B、M、R、Er、Eu,n为x、y、z、a、b、c之和),低于0.01,那么Er的发射强度太低,影响发光强度;若Er元素的掺杂含量太多,则由于高浓度产生浓度猝灭,会降低发光强度,最终同样影响氮化物近红外荧光材料的发光强度。优选的,a的取值范围满足0.03≤a≤0.07时,所述氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)具有较优的发光强度。具体优选的,a=0.06时,所述氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)具有最佳的发光强度。
尽管Er元素作为所述氮化物近红外荧光材料近红外发光光谱特征的发光元素,在激发光作用下发射出特征的近红外光谱。但单独掺杂Er时,氮化物近红外荧光材料的发光效率太低。有鉴于此,本发明实施例采用Eu和R(选自Yb、Pr元素的一种)作为激活剂,与发光元素Er进行共掺杂,提高氮化物近红外荧光材料的发光效率。本发明实施例所述氮化物近红外荧光材料在620-650nm有较强的激发,通过掺杂Eu元素和R元素(选自Yb、Pr元素的一种)共同掺杂,其中,Yb作为敏化剂,将能量传递给Er离子,有助于提升Er的发射强度;当Er和Pr共同掺杂时,由于发生共振能量传递,Pr发射能量传递给Er,也有助于提升Er发射强度;Eu元素的引入会使得荧光粉在可见光发射波段集中在630-660nm之间,这种发射波段的光会被Er再吸收,进而增强Er的发射强度,提高所述氮化物近红外荧光材料的发光效率。
本发明实施例中,在A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,Eu元素的掺杂含量满足0.05≤b≤0.1。若氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,Eu元素的浓度太低,则特征Eu发射波长太低,不能有效进行能量传递,从而增强Er的发射强度的效果不明显;若Eu元素的浓度过高,则特征Eu发射波长太长,且Eu特征发射效率太低,也不利于提高Er的发射强度。优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中Eu元素的掺杂浓度为0.05≤b≤0.08,从而获得较好的发光效率。作为最佳实施例,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中Eu元素的掺杂浓度为0.06(即b=0.06),该掺杂浓度可以获得最高的发光效率,即处于猝灭浓度临界值。
本发明实施例中,在A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,R元素(选自Yb、Pr元素的一种)作为另一掺杂剂,与Eu一起进行能量传递,有效提升荧光材料的发光强度。能量传递效率取决于R元素特别是Pr元素的掺杂浓度,在A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,R元素特别是Pr元素的掺杂含量满足0.005≤c≤0.03。随着R元素特别是Pr元素的掺杂含量的增加,能量传递效率随着先增强后降低。若氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,R元素的浓度太低或过高,则能量传递效率效率较低,均不利于提高提升荧光材料的发光强度。而Yb元素作为敏化剂在和Er元素进行共同掺杂时,浓度过低时,能量转换不明显,浓度过高时,激活剂离子之间会产生无辐射跃迁,材料的发射强度会降低。优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中Eu元素的掺杂浓度为0.01≤b≤0.02,从而获得较好的发光效率。
作为一个优选实施例,为了得到荧光强度和发光效率较好的氮化物近红外荧光材料,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,a、b、c的取值范围满足:0.03≤a≤0.07,0.05≤b≤0.08,0.01≤c≤0.02。
本发明实施例中,所述氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中M元素的掺杂,用于保证Eu元素的发射波长,使其发射波长处于620-650nm。具体的,M选自Ca、Sr、Ba元素的至少一种。当M为Sr时,得到的氮化物近红外荧光材料的稳定性最好;当M为Ba时,得到的氮化物近红外荧光材料的稳定性次之;当M为Ca时,得到的氮化物近红外荧光材料的稳定性最差。优选的,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,M为Ca、Sr、Ba元素的任意两种,且M中含Sr。此时,形成的氮化物近红外荧光材料具有优异的稳定性。而且,M含Sr时,与合适浓度含量(0.05≤b≤0.08)形成的氮化物近红外荧光材的可见光发射波长较长,且荧光材料结晶性较好。本发明实施例通过Sr元素和Ca元素共同掺杂、或者Sr元素和Ba元素共同掺杂,可以进一步提升发光效率,且使得得到的荧光材料在可见光的发射波段进一步红移。在一些优选实施例中,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,M为Sr元素和Ca元素。通过掺杂少量的Ca,氮化物近红外荧光材料中Eu特征发射波长会红移,有利于提高发光效率。相较于掺杂Sr元素和Ca元素,采用Sr元素和Ba元素、或采用Ba元素和Ca元素会导致氮化物近红外荧光材料中Eu发射波长蓝移,发射波长太短不利于发光效率提升。优选的,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,M为Sr元素和Ca元素时,Sr元素和Ca元素的比例不低于4。如果所述化物近红外荧光材料中Ca元素含量过高,发射波长会变短,不利于发光效率的提升。
优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中M元素的掺杂含量为1.6≤y≤1.915。当M元素含量过低时,形成的基质材料的结构稳定性会降低,且结构会发生变化,材料的发光效率会降低;当M元素含量过高时,适合A、B、Er、Eu和R占位的空间位置较少,不利于Er的红外发射。进一步优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中M元素的掺杂含量为1.7≤y≤1.9。更进一步优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中M元素的掺杂含量为1.7≤y≤1.8。
本发明实施例中,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,特别是优选R为Pr,M含Sr的实施例中,Er、Pr均为+3价,而Sr是+2价,价态和半径都不匹配,如果直接掺杂会影响发光效率。有鉴于此,本发明实施例在Sr位置上引入价态为三价的A元素。具体的,A选自La、Lu、Y元素的一种或两种,半径和Er、Pr较为接近。试验证明La取代Sr后具有更稳定的晶格结构,所述氮化物近红外荧光材料的发光效率更好。
本发明实施例中,A元素替代M元素的浓度是有限制的。A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,A元素的掺杂含量为0.01≤x≤0.1。若A元素的掺杂含量过高,会造成荧光粉结构发生变化,稳定性和发光效率会降低;若A元素的掺杂含量过低,会造成Er元素和一些共激活发光中心占位空间和浓度偏低,材料发光效率提升不明显。具体的,若La元素的掺杂含量太低,提供发光中心可占据格位太少,提升发光效率的效果不明显;若La元素的含量太高,会导致晶体出现杂相,降低荧光材料的发光效率。优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,A元素的掺杂含量为0.01≤x≤0.1。进一步优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,A元素的掺杂含量为0.01≤x≤0.06。
尽管A元素的引入有利于提高所述氮化物近红外荧光材料的发光效率,但La替代Sr也会导致价态不平衡。鉴于此,在氮化物近红外荧光材料中掺杂适量的B元素。具体的,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种。一方面,B元素能够平衡价态,减少材料缺陷;另一方面,B元素中的Li元素能够协同Pr增强荧光材料的能量传递效率,进一步提高发光效率。
本发明实施例中,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,B元素的掺杂含量为0.01≤x≤0.1。B元素离子半径和M元素差异较大,适量的引入B元素会起到电荷补偿作用,有助于减少缺陷,提升体系的结晶度,进而提升体系的发光效率;B元素掺杂含量过高时,不容易掺杂进入晶格,进而造成缺陷,降低材料的发光效率;B元素掺杂含量过低时,电荷补偿作用和促进结晶效果不明显,进而导致材料发光效率不明显。特别的,若Li元素的掺杂含量过高,掺杂难度增加,甚至无法掺杂进去,影响发光效率;若Li元素的掺杂含量太低,则能量传递和电荷补偿协同作用不明显。优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,B元素的掺杂含量为0.05≤z≤0.1。进一步优选的,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,B元素的掺杂含量为0.05≤z≤0.08。
在上述实施例的基础上,优选的,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.05≤z≤0.1,0.01≤x≤0.1,1.7≤y≤1.9。由此得到的氮化物近红外荧光材料,A、M、B元素的掺杂含量合适,既不会引入材料缺陷,又能大幅度地提高氮化物近红外荧光材料的晶体结构稳定性和发光效率。进一步优选的,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.05≤z≤0.08,0.01≤x≤0.06,1.7≤y≤1.8。
更优选的,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.5≤x/z≤0.8,1.85≤x+y+z≤1.90。由于B元素具有一定的挥发性,因此,B元素的化学计量比会高于A元素。且x、y、z的取值范围满足:0.5≤x/z≤0.8时,A
xM
yB
zSi
5N
8:(aEr,bEu,cR)材料的结晶效果最好。x/z比例过高或过低,均会造成A
xM
yB
zSi
5N
8:(aEr,bEu,cR)材料的结晶性能降低和发光效率变差。进一步的,x、y、z的取值范围满足:1.85≤x+y+z≤1.90,通过控制Er、Eu和R激活剂的浓度范围,赋予A
xM
yB
zSi
5N
8:(aEr,bEu,cR)材料优异的发光强度。若x+y+z过高,会造成激活剂离子之间的距离变短,会产生浓度猝灭,发生无辐射跃迁;若x+y+z过低,发光中心数量降低,材料的发射强度提升不明显。
作为一个具体优选实施例,所述A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,A为La元素,B为Li元素,R为Pr元素。由此得到的氮化物近红外荧光材料具有稳定的晶体结构,从而更有利于提高荧光材料的发光稳定性。
本发明实施例提供的氮化物近红外荧光材料,可以通过下述方法制备获得。
相应的,本发明实施例提供了一种氮化物近红外荧光材料的制备方法。由于本发明实施例提供的氮化物近红外荧光材料中元素种类众多,至少包括8种元素。若一次性添加所有原料进行煅烧处理时,难以将A、B、M、R、Er、Eu等同时掺杂并形成A
xM
yB
zSi
5N
8:(aEr,bEu,cR)结构,因此,本发明实施例通过两步法制备A
xM
yB
zSi
5N
8:(aEr,bEu,cR),以保证得到的晶体结构稳定,且发光效率高。具体的,通过两步法制备A
xM
yB
zSi
5N
8:(aEr,bEu,cR)包括以下步骤:
S01.提供M
2N
3、Si
3N
4、B的氮化物和Eu的氮化物,进行混合处理,得到第一混合物料,其中,所述M
2N
3与所述Si
3N
4的摩尔比为1.3~1.4:1,其中,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种。
上述步骤S01中,按照M
2N
3与所述Si
3N
4的摩尔比为1.3~1.4:1,M
2N
3中的M原子与B的氮化物中的B原子、Eu的氮化物中的Eu原子的摩尔比为(0.01~0.2):(0.01~0.2):(0.05~0.1)提供各原料。将原料进行混料处理,使各物料混合均匀,有利于在下述步骤加热处理过程中生成MSiN
2晶体结构。
S02.将所述第一混合物料在1200-1300℃、N
2/H
2混合气氛下保温2-5小时,得到预烧产物,其中,当温度高于700℃时,升温速率为20℃/min~50℃/min。
上述步骤S02中,所述第一混合物料在1200-1300℃、N
2/H
2混合气氛下保温2-5小时,在此条件下,反应过程中,M元素与Eu元素、B元素形成MSiN
2晶体结构。值得注意的是,该步骤的反应条件,对于在氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中M元素的引入非常关键。此时,通过控制元素种类,避免Er、A、R元素对M元素的干扰,从而保证M能够进入本发明实施例预期制备的氮化物近红外荧光材料的晶体格位。
其中,反应过程中,1200-1300℃的反应温度有利于获得MSiN
2晶体结构。若反应温度过低,则难以形成MSiN
2晶体结构;若反应温度过高,则无法得到MSiN
2晶体结构,则在后续烧结处理过程中,各元素无法正常掺杂,最终得不到A
xM
yB
zSi
5N
8:(aEr,bEu,cR)。N
2/H
2混合气氛可以保证反应还原反应的正常进行,并提供还原气氛,避免各元素发生氧化反应,偏离反应路线,引入杂质或者直接得不到预期的MSiN
2晶体结构。优选的,所述N
2/H
2混合气氛中,H
2体积比为5%-10%,从而在提供合适的还原气体的条件下,保证良好的惰性环境,避免杂副反应的发生。
值得注意的是,该步骤中,当温度高于700℃时,升温速率为20℃/min~50℃/min。控制升温速率在该范围内,可以减少B元素的挥发,促进B元素有效进入晶格位置,提升材料的发光效率。
S03.将所述预烧产物和Si
3N
4,Er的氮化物、氧化物或氟化物,A的氮化物,R的氧化物或氟化物按照一定的比例混合,得到第二混合物料,其中,所述预烧产物和所述Si
3N
4的摩尔比为2~2.2:1;其中,A选自La、Lu、Y元素的一种或两种,R选自Yb、Pr元素的一种。
上述步骤S03中,提供Er的氮化物、氧化物或氟化物,A的氮化物,R的氧化物或氟化物,以及所述预烧产物和Si
3N
4。且各物质的添加量满足最终得到的氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)的元素组成含量,如所述预烧产物和所述Si
3N
4的摩尔比为2~2.2:1。当然,可以在此基础上进行调整,以期更高效地制备氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)。
S04.将所述第二混合物料在1500-1650℃、N
2/H
2混合气氛下保温6-10小时,得到烧结物中间体。
上述步骤S04中,在该反应条件下,Er、A、R在预烧产物MSiN
2晶体结构的的基础上进行进一步生长、掺杂,最终得到氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)。
其中,反应过程中,1500-1650的反应温度有利于Er、A、R在MSiN
2晶体结构中的掺杂。若反应温度过低,则难以制备得到氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR);若反应温度过高,造成烧结产物团聚结块,进而降低氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)的发光效率。
优选的,所述N
2/H
2混合气氛中,H
2体积比为5%-10%,从而在提供合适的还原气体的条件下,保证良好的惰性环境,避免杂副反应的发生。
S05.将所述烧结中间体进行破碎、洗涤、分级处理,得到氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
上述步骤S05中,氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中各元素的选择及其优选组合方式、优选含量如上所所述,为了节约篇幅,此处不再赘述。
本发明实施例提供的氮化物近红外荧光材料的制备方法,先通过低温反应构建MSiN
2晶体结构,在此基础上,高温掺杂引入Er、A、R元素,从而得到晶体结构稳定、发光效率高的氮化物近红外荧光材料。该方法相对简单可控,更重要的是,能够有效控制氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)的晶体结构和各元素掺杂含量,从而具有较好的化学稳定性和发光效率。
以及,本发明实施例提供了一种发光装置,所述发光装置包括荧光物质和激发光源,所述荧光物质为氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,
A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
本发明实施例提供的发光装置,含有上述氮化物近红外荧光材料,因此能够充分发挥氮化物近红外荧光材料稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
本发明实施例中,氮化物近红外荧光材料的化学式为A
xM
yB
zSi
5N
8:(aEr,bEu,cR)中各元素的选择及其优选组合方式、优选含量如上所所述,为了节约篇幅,此处不再赘述。
优选的,所述激发光源为发射波长范围为360~480 nm的半导体芯片。具体优选的,所述激发光源为发射波长范围为405-450
nm的紫光半导体芯片或蓝光半导体芯片。
下面结合具体实施例进行说明。
实施例1
一种氮化物近红外荧光材料,化学式为La
0.05Er
0.01Pr
0.03Sr
1.77Eu
0.08Li
0.06Si
5N
8。所述氮化物近红外荧光材料的制备方法,包括以下步骤:
按照化学计量比先称取一定量的金属Sr的氮化物、Si
3N
4、金属Li的氮化物和金属铕的氮化物混合均匀后,在温度为1300℃的N
2/H
2混合气氛下(体积比为95%/5%)烧结4h得到预烧产物,将得到的预烧产物进行破碎和后处理,作为前驱体,再将前驱体混合金属La的氮化物、金属Er的氟化物、金属Pr的氟化物及Si
3N
4按照一定的比例混合,在温度为1600℃的N
2/H
2混合气氛(体积比为95%/5%)条件下烧结8h得到烧结中间体,将烧结中间体经过破碎、洗涤、分级处理等处理后得到氮化物近红外荧光材料。所得到产品的荧光发光特性见表1。
实施例2~25
一种氮化物近红外荧光材料,化学式A
xM
yBzSi
5N
8:(aEr,bEu,cR)中,A选自La、Lu、Y元素的一种或两种,M为Ca、Sr、Ba元素的至少一种,B为Li、Na、K元素的一种,R为Yb、Pr元素的一种,x、y、z、a、b、c为各元素组成的物质的量。具体的,实施例2-25所述氮化物近红外荧光材料的化学式分别如表1实施例2-25所示。所述氮化物近红外荧光材料的制备方法与实施例1相同。
其中实施例25提供的氮化物近红外荧光材料的XRD图如图1所示,材料的衍射峰位置和Sr
2Si
5N
8相同,说明通过引入A、B等元素后,材料的晶体结构仍为Sr
2Si
5N
8结构;实施例25提供的氮化物近红外荧光材料制备方法中得到的预烧产物的形貌图如图2所示,材料的形貌呈棒状,结晶性非常好,说明适量元素的有效引入进晶格中;实施例25提供的氮化物近红外荧光材料的激发光谱(监测波长1530nm)图如图3所示,说明材料在可见光区域均能被有效激发,尤其在650nm附近,有个明显的激发峰,强度较弱;实施例1和实施例25提供的氮化物近红外荧光材料在激发波长为448nm条件下的发射光谱对比图如图4所示,可以看出,通过适量的引入A、B、R等元素能够大幅度提升材料在红外区域(1530nm左右)的发光强度。
对比例1~5
一种氮化物近红外荧光材料,化学式分别如表1对比例1-5所示。所述氮化物近红外荧光材料的制备方法,参考实施例1(省去对比例中不含有的元素的添加步骤)。
将实施例1-25、对比例1-5提供的氮化物近红外荧光材料进行发光性能测试:
实施例1-25、对比例1-5提供的氮化物近红外荧光材料在448nm蓝光激发下的发光特性见表1;
实施例25提供的氮化物荧光粉在不同波段和不同气氛下荧光粉的发光性能如表2所示。
表1
实施例 | 化学式 | 25℃发光强度(%) | 100℃发光强度(%) |
1 | La0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 100 | 90 |
2 | Lu0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 118 | 97 |
3 | Y0.05Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 105 | 99 |
4 | Lu0.02La0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 108 | 96 |
5 | Y0.02La0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 96 | 97 |
6 | Y0.02Lu0.03Er0.01Pr0.03Sr1.77Eu0.08Li0.06Si5N8 | 97 | 90 |
7 | La0.05Er0.01Pr0.03Ca1.77Eu0.08Li0.06Si5N8 | 92 | 91 |
8 | La0.05Er0.01Pr0.03Ba1.77Eu0.08Li0.06Si5N8 | 95 | 95 |
9 | La0.05Er0.01Pr0.03Sr1.5Ba0.27Eu0.08Li0.06Si5N8 | 99 | 92 |
10 | La0.05Er0.01Pr0.03Sr1.5Ca0.27Eu0.08Li0.06Si5N8 | 120 | 99 |
11 | La0.05Er0.01Pr0.03Ba1.5Ca0.27Eu0.08Li0.06Si5N8 | 108 | 96 |
12 | La0.05Er0.01Pr0.03Sr1.4Ca0.37Eu0.08Li0.06Si5N8 | 115 | 97 |
13 | La0.04Er0.01Pr0.03Sr1.79Eu0.08Li0.05Si5N8 | 98 | 96 |
14 | La0.06Er0.03Pr0.03Sr1.75Eu0.08Li0.05Si5N8 | 105 | 94 |
15 | La0.08Er0.05Pr0.03Sr1.71Eu0.08Li0.05Si5N8 | 113 | 97 |
16 | La0.1Er0.07Pr0.03Sr1.67Eu0.08Li0.05Si5N8 | 109 | 93 |
17 | La0.14Er0.1Pr0.03Sr1.6Eu0.08Li0.05Si5N8 | 97 | 91 |
18 | La0.09Er0.06Pr0.03Sr1.69Eu0.08Li0.05Si5N8 | 121 | 109 |
19 | La0.01Er0.01Pr0.005Sr1.915Eu0.05Li0.01Si5N8 | 105 | 92 |
20 | La0.05Er0.06Pr0.01Sr1.6Ca0.1Eu0.08Li0.1Si5N8 | 125 | 109 |
21 | La0.05Er0.06Pr0.01Sr1.6Ca0.2Eu0.08Li0.1Si5N8 | 128 | 111 |
22 | La0.064Er0.06Pr0.01Sr1.506Ca0.2Eu0.08Li0.08Si5N8 | 132 | 119 |
23 | La0.03Er0.06Pr0.01Sr1.6Ca0.2Eu0.05Li0.05Si5N8 | 131 | 118 |
24 | La0.03Er0.06Pr0.01Sr1.55Ca0.2Eu0.1Li0.05Si5N8 | 125 | 107 |
25 | La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 136 | 124 |
对比例1 | La0.03Er0.06Sr1.6Ca0.2Eu0.06Li0.05Si5N8 | 80 | 72 |
对比例2 | Er0.06Pr0.01Sr1.62Ca0.2Eu0.06Li0.05Si5N8 | 72 | 63 |
对比例3 | La0.03Er0.06Pr0.01Sr1.64Ca0.2Eu0.06Si5N8 | 73 | 60 |
对比例4 | Er0.06Sr1.68Ca0.2Eu0.06 Si5N8 | 60 | 57 |
对比例5 | Er0.06Sr1.74Ca0.2Si5N8 | 50 | 51 |
表2
化学式 | 激发波长(nm) | N2/H2混合 | 发光强度 (%) |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 380 | 95%/5% | 130 |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 448 | 95%/5% | 136 |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 480 | 95%/5% | 125 |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 448 | 97%/3% | 131 |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 448 | 90%/10% | 138 |
La0.03Er0.06Pr0.01Sr1.59Ca0.2Eu0.06Li0.05Si5N8 | 448 | 92%/8% | 132 |
由表1可见,完全满足本发明实施例1-25化学式结构的氮化物近红外荧光材料,具有优异的发光强度。而不具有本发明实施例氮化物近红外荧光材料A
xM
yB
zSi
5N
8:(aEr,bEu,cR)结构的对比例1-5的荧光强度明显降低。
由表2可见,将本发明实施例25提供的氮化物近红外荧光材料,分别在380nm、448nm和480nm可见光条件下进行激发,其中,448nm激发下,材料的发射强度最高。此外,N
2/H
2混合气氛的比例对材料的发射强度影响较大,适量比例的混合能够有效还原激活剂离子并能促进有效进入晶格位置,提升材料的发射强度。其中,当N
2/H
2混合比例控制在90%/10%时,材料的发射强度最高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种氮化物近红外荧光材料,其特征在于,所述氮化物近红外荧光材料的化学式为A xM yB zSi 5N 8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
- 如权利要求1所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,a、b、c的取值范围满足:0.03≤a≤0.07,0.05≤b≤0.08,0.01≤c≤0.02。
- 如权利要求1所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.05≤z≤0.1,0.01≤x≤0.1,1.7≤y≤1.9。
- 如权利要求3所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.05≤z≤0.08,0.01≤x≤0.06,1.7≤y≤1.8。
- 如权利要求4所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.5≤x/z≤0.8,1.85≤x+y+z≤1.90。
- 如权利要求1-5任一项所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,M为Ca、Sr、Ba元素的任意两种,且M中含Sr;和/或所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,M为Sr元素和Ca元素;和/或所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,A为La元素,B为Li元素,R为Pr元素。
- 如权利要求1-5任一项所述的氮化物近红外荧光材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,M为Sr元素和Ca元素,且Sr元素和Ca元素的比例大于等于4。
- 一种氮化物近红外荧光材料的制备方法,其特征在于,包括以下步骤:提供M 2N 3、Si 3N 4、B的氮化物和Eu的氮化物,进行混合处理,得到第一混合物料,其中,所述M 2N 3与所述Si 3N 4的摩尔比为1.3~1.4:1,其中,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种;将所述第一混合物料在1200-1300℃、N 2/H 2混合气氛下保温2-5小时,得到预烧产物,其中,当温度高于700℃时,升温速率为20℃/min~50℃/min;将所述预烧产物和Si 3N 4,Er的氮化物、氧化物或氟化物,A的氮化物,R的氧化物或氟化物按照一定的比例混合,得到第二混合物料,其中,所述预烧产物和所述Si 3N 4的摩尔比为2~2.2:1;其中,A选自La、Lu、Y元素的一种或两种,R选自Yb、Pr元素的一种;将所述第二混合物料在1500-1650℃、N 2/H 2混合气氛下保温6-10小时,得到烧结物中间体;将所述烧结中间体进行破碎、洗涤、分级处理,得到氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A xM yB zSi 5N 8:(aEr,bEu,cR),A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
- 一种发光装置,所述发光装置包括荧光物质和激发光源,其特征在于,所述荧光物质为氮化物近红外荧光材料,所述氮化物近红外荧光材料的化学式为A xM yB zSi 5N 8:(aEr,bEu,cR),其中,A选自La、Lu、Y元素的一种或两种,M选自Ca、Sr、Ba元素的至少一种,B选自Li、Na、K元素的一种,R选自Yb、Pr元素的一种,A xM yB zSi 5N 8:(aEr,bEu,cR)中,x、y、z的取值范围满足:0.01≤x≤0.2,1.6≤y≤1.915,0.01≤z≤0.2;a、b、c的取值范围满足:0.01≤a≤0.1,0.05≤b≤0.1,0.005≤c≤0.03。
- 如权利要求9所述的发光装置,其特征在于,所述激发光源为发射波长范围为360~480 nm的半导体芯片;或所述激发光源为发射波长范围为405-450 nm的紫光半导体芯片或蓝光半导体芯片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811037195.1 | 2018-09-06 | ||
CN201811037195.1A CN109370587B (zh) | 2018-09-06 | 2018-09-06 | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020015412A1 true WO2020015412A1 (zh) | 2020-01-23 |
Family
ID=65405203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083224 WO2020015412A1 (zh) | 2018-09-06 | 2019-04-18 | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109370587B (zh) |
WO (1) | WO2020015412A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210403808A1 (en) * | 2018-02-12 | 2021-12-30 | Grirem Advanced Materials Co., Ltd. | Nitride Luminescent Material and Light Emitting Device Comprising Same |
WO2022186069A1 (ja) * | 2021-03-02 | 2022-09-09 | デンカ株式会社 | 蛍光体粉末、波長変換体および発光装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109370587B (zh) * | 2018-09-06 | 2019-10-29 | 旭宇光电(深圳)股份有限公司 | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 |
WO2020203234A1 (ja) * | 2019-04-03 | 2020-10-08 | 国立研究開発法人物質・材料研究機構 | 蛍光体、その製造方法および発光素子 |
CN115125002A (zh) * | 2021-03-25 | 2022-09-30 | 中国科学院宁波材料技术与工程研究所 | 一种硅基石榴石近红外荧光材料及其制备方法和应用 |
CN114735662B (zh) * | 2022-03-12 | 2023-08-15 | 陕西师范大学 | La4Ba3Li3Si9N19晶体及荧光粉和制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102159665A (zh) * | 2008-09-15 | 2011-08-17 | 马普科技促进协会 | 氮化物基荧光体的制备 |
CN102260500A (zh) * | 2011-06-08 | 2011-11-30 | 中国科学院宁波材料技术与工程研究所 | 一种白光led用氮化物/氧氮化物荧光粉的制备方法 |
CN102766454A (zh) * | 2012-06-30 | 2012-11-07 | 江苏博睿光电有限公司 | 一种氮化物红色长余辉荧光粉及其制备方法 |
CN102899038A (zh) * | 2012-10-30 | 2013-01-30 | 江苏博睿光电有限公司 | 一种氮化物红色荧光粉及其制备方法 |
CN103703101A (zh) * | 2012-07-18 | 2014-04-02 | 英特曼帝克司公司 | 基于氮化物的经钙稳定的发红光磷光体 |
CN109370587A (zh) * | 2018-09-06 | 2019-02-22 | 旭宇光电(深圳)股份有限公司 | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009010705A1 (de) * | 2009-02-27 | 2010-09-02 | Merck Patent Gmbh | Co-dotierte 2-5-8 Nitride |
CN101760194B (zh) * | 2009-12-30 | 2014-03-19 | 李�瑞 | 一种白光led用红色荧光粉及其制备方法 |
-
2018
- 2018-09-06 CN CN201811037195.1A patent/CN109370587B/zh active Active
-
2019
- 2019-04-18 WO PCT/CN2019/083224 patent/WO2020015412A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102159665A (zh) * | 2008-09-15 | 2011-08-17 | 马普科技促进协会 | 氮化物基荧光体的制备 |
CN102260500A (zh) * | 2011-06-08 | 2011-11-30 | 中国科学院宁波材料技术与工程研究所 | 一种白光led用氮化物/氧氮化物荧光粉的制备方法 |
CN102766454A (zh) * | 2012-06-30 | 2012-11-07 | 江苏博睿光电有限公司 | 一种氮化物红色长余辉荧光粉及其制备方法 |
CN103703101A (zh) * | 2012-07-18 | 2014-04-02 | 英特曼帝克司公司 | 基于氮化物的经钙稳定的发红光磷光体 |
CN102899038A (zh) * | 2012-10-30 | 2013-01-30 | 江苏博睿光电有限公司 | 一种氮化物红色荧光粉及其制备方法 |
CN109370587A (zh) * | 2018-09-06 | 2019-02-22 | 旭宇光电(深圳)股份有限公司 | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210403808A1 (en) * | 2018-02-12 | 2021-12-30 | Grirem Advanced Materials Co., Ltd. | Nitride Luminescent Material and Light Emitting Device Comprising Same |
US11485907B2 (en) * | 2018-02-12 | 2022-11-01 | Grirem Advanced Materials Co., Ltd. | Nitride luminescent material and light emitting device comprising same |
WO2022186069A1 (ja) * | 2021-03-02 | 2022-09-09 | デンカ株式会社 | 蛍光体粉末、波長変換体および発光装置 |
JP7510567B2 (ja) | 2021-03-02 | 2024-07-03 | デンカ株式会社 | 蛍光体粉末、波長変換体および発光装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109370587A (zh) | 2019-02-22 |
CN109370587B (zh) | 2019-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020015412A1 (zh) | 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置 | |
US9153754B2 (en) | Light emitting diode (LED) red fluorescent material and lighting device having the same | |
WO2019153760A1 (zh) | 一种氮化物发光材料及包含其的发光装置 | |
CN101838535B (zh) | 一种稀土荧光粉及其制造方法 | |
CN109370588B (zh) | 半导体发光用的氮化物荧光粉及其制备方法和发光装置 | |
KR100891554B1 (ko) | 백색 led 소자용 산화질화물계 형광체, 그의 제조방법및 이를 이용한 백색 led 소자 | |
CN112625683A (zh) | 一种锗酸盐型红色荧光粉及制备方法 | |
CN110387236B (zh) | 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置 | |
CN109504371B (zh) | 荧光体及其制备方法 | |
Ma et al. | Synthesis and photoluminescence of highly enhanced green-emitting LaNbTiO6: xEr3+, yBi3+ micro/nanophosphors | |
CN114671608A (zh) | CsPbBr3量子点镶嵌氟磷酸盐玻璃及制备方法和应用 | |
Zhang et al. | Tunable full color emission from single-phase LiSr3. 99− xDy0. 01 (BO3) 3: xEu3+ phosphors | |
JP5484397B2 (ja) | シリケート蛍光体およびその製造方法 | |
CN115926792B (zh) | 一种三价铕离子掺杂单一基质的荧光粉及其制备方法和应用 | |
CN104277827B (zh) | 一种硅氮基蓝绿荧光粉的制备方法 | |
CN115418226B (zh) | 铕掺杂KNa4B2P3O13材料的橙红色荧光粉及其制备方法 | |
CN114806559B (zh) | 一种Eu2+激活的超宽带可见-近红外发光材料、制备方法及应用 | |
CN107987833B (zh) | 一种氮化物发光材料及包含其的发光装置 | |
CN109321248B (zh) | 一种Eu掺杂钙磷酸盐发光材料及其制备方法与应用 | |
CN109536170B (zh) | 氮化物荧光粉及其制备方法、含氮化物荧光粉的发光装置 | |
CN110028957B (zh) | 一种绿色锰掺杂硅酸盐荧光材料的制备方法和应用 | |
KR100562365B1 (ko) | 백색 발광다이오드용 황색 형광체 및 그 제조방법 | |
CN118666502A (zh) | 一种铕镝共掺杂铅基钙钛矿量子点玻璃复合材料及其制备方法和应用 | |
CN112646573A (zh) | 一种高色纯度蓝色荧光粉及其制备方法 | |
林莹 et al. | SrMoO4: Dy^ 3+ 荧光粉的制备及发光性能 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19837807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19837807 Country of ref document: EP Kind code of ref document: A1 |