WO2019153760A1 - 一种氮化物发光材料及包含其的发光装置 - Google Patents

一种氮化物发光材料及包含其的发光装置 Download PDF

Info

Publication number
WO2019153760A1
WO2019153760A1 PCT/CN2018/108818 CN2018108818W WO2019153760A1 WO 2019153760 A1 WO2019153760 A1 WO 2019153760A1 CN 2018108818 W CN2018108818 W CN 2018108818W WO 2019153760 A1 WO2019153760 A1 WO 2019153760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
luminescent material
nitride
infrared
luminescent
Prior art date
Application number
PCT/CN2018/108818
Other languages
English (en)
French (fr)
Inventor
刘荣辉
刘元红
张霞
高慰
马小乐
徐会兵
Original Assignee
有研稀土新材料股份有限公司
国科稀土新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司, 国科稀土新材料有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to JP2019535323A priority Critical patent/JP6821813B6/ja
Priority to KR1020197013904A priority patent/KR102236624B1/ko
Priority to DE112018000135.0T priority patent/DE112018000135B4/de
Priority to US16/469,114 priority patent/US11485907B2/en
Publication of WO2019153760A1 publication Critical patent/WO2019153760A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/77067Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7708Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77217Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77747Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7776Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the invention belongs to the technical field of luminescent materials, and in particular to a nitride luminescent material and a illuminating device comprising the luminescent material.
  • NIR Near-infrared light
  • the light scattering effect is large in the near-infrared region, the penetration depth is large, the absorbed light intensity is small, and its wave
  • the length and length can be absorbed by glass or quartz medium, and can be widely used in the fields of harmless removal of biological tissues, astronomical measurement, optical fiber communication, etc. Therefore, research reports on the application of near-infrared technology are increasing.
  • Rare earth ion (4f) near-infrared luminescence has the characteristics of high intensity, narrow line width, long life and small background. It has special advantages in optical signal amplification, laser system, fluorescence immunoassay, etc. This series of advantages is other near-infrared luminescence. Unmatched materials. With the deepening of research in the field of near-infrared and the expansion of its application range, especially with the development of optical communication, public safety and biomedical industries, there is an urgent need for a near-infrared material with good luminescence properties. Near-infrared light near 1000nm can be used as a highly efficient solar spectrum conversion material, and has great potential in low-threshold NIR lasers, commodity anti-counterfeiting, and improved C-Si solar cell conversion.
  • the existing methods for obtaining near-infrared short-wave light mainly include an infrared chip, or a halogen lamp, or a photoluminescence transition metal or a rare earth metal oxide, or an electroluminescence organic complex (Chemistry Letters, 2004, 33). : 50-51; Advanced Functional Materials, 2002, 12: 745-751; Academic Conference of the Chinese Chemical Society, 2016).
  • the infrared chip used generally has low excitation efficiency and high cost, and the use of a halogen lamp requires filtering light, so that most of the light is split and the use efficiency is low, and at the same time, limited.
  • Halogen lamps produce large amounts of heat and cannot be used in small equipment.
  • the technical problem to be solved by the present invention is to provide a nitride luminescent material capable of emitting high-efficiency near-infrared light (900-1100 nm) under excitation of blue light, near-ultraviolet light, and red light;
  • a second technical problem to be solved by the present invention is to provide a light-emitting device for protecting the luminescent material, which solves the problems of poor stability and low luminous efficiency of the near-infrared luminescent material and the illuminating device in the prior art.
  • a nitride luminescent material comprising an inorganic compound of the formula R w Q x Si y N z ;
  • the R element is selected from one of a Yb element, an Nd element, or an Er element, and contains a Cr element, or a Cr and a Ce element;
  • the Q element is selected from one or both of a La element, a Gd element, a Lu element, a Y element, or a Sc element;
  • the R element is a Cr element and a Yb element.
  • the R element is a Cr element, a Ce element, and an Er element.
  • the inorganic compound has the same crystal structure as La 3 Si 6 N 11 .
  • the Q element is a La element.
  • the near-infrared luminescent material of the present invention has an emission peak at a peak intensity in the range of 900-1100 nm, and a peak intensity in the range of 700-750 nm, B, 0.95 ⁇ A / (A + B) ⁇ 0.99.
  • the method for preparing a near-infrared luminescent material according to the present invention comprises the following steps:
  • the mixture obtained in the step (1) is placed in a container and calcined at a high temperature in a nitrogen or other non-oxidizing atmosphere, the highest sintering temperature is 1500-2000 ° C, and the baking time is 5-40 h;
  • the calcined product in the step (2) is subjected to crushing, washing, sieving, and drying to obtain a near-infrared luminescent material.
  • the luminescent materials used in the present invention can be prepared using prior art methods or new methods found in the future.
  • the luminescent material obtained by the invention can manufacture a illuminating device, and the infrared illuminating device manufactured by using the luminescent material of the invention can be applied to the fields of near-infrared short-wave detection, medical treatment and the like.
  • the invention also discloses a light-emitting device comprising a phosphor and an excitation light source, the phosphor comprising the nitride light-emitting material.
  • the light-emitting device includes a semiconductor chip, a light conversion portion I, and a light conversion portion II; the light conversion portion I absorbs primary light emitted by the semiconductor chip and converts it into a secondary light of a higher wavelength.
  • the light conversion portion II absorbs the primary light of the semiconductor chip and the secondary light emitted by the light conversion portion I, and converts it into three times of light of a higher wavelength;
  • the light conversion unit 1 contains at least a nitride light-emitting material I, and the light conversion unit II contains at least the nitride light-emitting material.
  • the nitride luminescent material I is a luminescent material that emits light having a peak wavelength of 580-650 nm under excitation of the semiconductor chip.
  • the nitride luminescent material I is one of luminescent materials selected from the group consisting of the general formula M m Al a Si b N c :Eu d or M e Si f N g :Eu n Kind or two; among them,
  • the M element contains at least a Ca element and/or a Sr element
  • the parameters m, a, b, c, d, e, f, g, and n satisfy the following relationship: 0.8 ⁇ m ⁇ 1.2, 0.8 ⁇ a ⁇ 1.2, 0.8 ⁇ b ⁇ 1.2, 2 ⁇ c ⁇ 4, 0.0001 ⁇ d ⁇ 0.1, 1.8 ⁇ e ⁇ 2.2, 4 ⁇ f ⁇ 6, 7 ⁇ g ⁇ 9, 0.0001 ⁇ n ⁇ 0.1.
  • the nitride luminescent material I has a crystal structure such as CaAlSiN 3 or Sr 2 Si 5 N 8 .
  • the M element is a Ca and Sr element, wherein a molar percentage of the Sr element to the M element is z, and 80% ⁇ z ⁇ 100%.
  • the nitride luminescent material I used in the present invention can be prepared using a prior art method or a new method found in the future.
  • the semiconductor chip emits a peak wavelength in the range of 350-500 nm, preferably 440-460 nm.
  • the nitride luminescent material of the present invention comprises an inorganic compound of the formula R w Q x Si y N z , the excitation wavelength of the luminescent material is 300-650 nm, and the emission main peak of the near-infrared region is 900-1100 nm.
  • the luminescent material has a wide excitation wavelength and can absorb ultraviolet visible light, and has stronger near-infrared luminescence than the near-infrared organic luminescent material and other system phosphors.
  • the luminescent material of the invention is a La 3 Si 6 N 11 structure, the structure is very stable, the space group is P4bm, the metal cation and the silicon ion have two kinds of lattice positions, and the crystal structure is composed of a three-dimensional network formed by SiN 4 tetrahedron. , with a highly condensed network structure, which makes La 3 Si 6 N 11 exhibit good temperature characteristics, and provides important structural support for the fabrication of new infrared luminescent materials with excellent thermal stability and excellent thermal stability. Good heat resistance, water resistance and light stability, as well as simple preparation process and low cost, is an ideal application material for near-infrared devices.
  • near-infrared light can be obtained under different blue light, near-ultraviolet light and red light excitation, and can be applied not only to the near-infrared short-wavelength detection, medical treatment, etc., but also The disadvantages of other near-infrared light acquisition methods are avoided, and the light-emitting device of the invention has high luminous efficiency and low cost, and can be applied to various types of equipment.
  • Example 1 is an XRD chart of a near-infrared luminescent material prepared in Example 1 of the present invention
  • Example 2 is an emission spectrum of a near-infrared luminescent material prepared in Example 1 and Example 2 of the present invention and a luminescent material in Comparative Example 1, with an excitation wavelength of 460 nm;
  • Example 3 is an emission spectrum of a near-infrared luminescent material prepared in Example 3 of the present invention and a luminescent material of Comparative Example 2, with an excitation wavelength of 460 nm;
  • Example 4 is an emission spectrum of a near-infrared luminescent material and a luminescent material of Comparative Example 3 prepared in Example 4 of the present invention, with an excitation wavelength of 460 nm;
  • Figure 5 is a view showing an emission spectrum of a near-infrared luminescent material prepared in Example 4 of the present invention.
  • FIG. 6 is a schematic structural view of a light emitting device according to the present invention.
  • 1-light conversion portion I 2-semiconductor chip, 3-pin, 4-heat sink, 5-base, 6-light conversion portion II, 7-plastic lens.
  • a nitride luminescent material which is a near-infrared luminescent material, the luminescent material comprising an inorganic compound having a chemical formula of R w Q x Si y N z and an element of R One selected from the group consisting of Yb element, Nd element or Er element, and containing Cr element, or Cr and Ce element, Q element is one or two of La, Gd, Lu, Y and Sc, and 0 ⁇ w ⁇ 0.5, 2.5 ⁇ x + w ⁇ 3.5, 5.5 ⁇ y ⁇ 6.5, 10 ⁇ z ⁇ 12.
  • La 3 Si 6 N 11 which must contain one of the sensitizers Cr 3+ and Ce 3+ and the activators Yb, Nd, Er, which makes the activator center in the trivalent rare earth ions and Si-
  • a luminescent material that is suitable for use in devices with high energy density excitation.
  • the crystal structure is constructed of MA polyhedron, and a light-emitting material having a different structure can be obtained by linking Q and Si-N tetrahedron at an angle-angle or edge-edge.
  • the Q element is selected to be a trivalent rare earth element La.
  • the strict growth of the crystal lattice of the luminescent material can be ensured, and a high-stability luminescent material can be obtained.
  • the introduction amount of the above elements should be appropriate when x+w ⁇ 2.5 In the roasting process, due to the difference in element ratio, the pure phase cannot be formed, resulting in poor performance of the luminescent material; when x+w>3.5, the excess material remaining also affects the formation of the pure phase of the luminescent material, and the luminescent material Temperature characteristics also deteriorate.
  • 2.5 ⁇ x + w ⁇ 3.5 which can control the impurity phase to be as small as possible or no impurity phase, so that the crystal structure of the nitride luminescent material is more pure, thereby giving the luminescent material better luminescence performance.
  • the internal valence bond imbalance is caused by the difference in elemental ratio, resulting in structural instability, and the probability of distortion of the crystal structure increases, which is not easy.
  • the luminescent material synthesized by the selected element can have the same crystal structure as La 3 Si 6 N 11 .
  • Yb, Nd, and Er are used as activator ions, and after many experiments, it is found that the concentration range of the activator is 0 ⁇ w ⁇ 0.5, which has an optimum effect.
  • the concentration range of the activator is 0 ⁇ w ⁇ 0.5, which has an optimum effect.
  • the w content is more than 0.5, on the one hand, after entering the crystal lattice, the structural instability is increased due to the ionic radius mismatch, and even the heterophase is formed.
  • too many R ions will cause the concentration quenching effect due to the ion spacing being too small.
  • R comprises at least the elements Cr or/and Ce, and it is ensured that the above-mentioned nitride luminescent material has the same crystal structure as La 3 Si 6 N 11 .
  • Cr or / and Ce ions act as sensitizers, which can transfer energy with activator ions. Cr or / and Ce ions can effectively absorb energy, and transfer energy to activator ions to sensitize, thereby causing activator to emit light. The intensity is higher.
  • the sensitizing effect of Cr or/and Ce ions is enhanced, and the infrared ray emission intensity of the activated ions is enhanced, and the obtained illuminating device also has higher light efficiency.
  • the nitride light-emitting material of the present invention differs in the peak position of the laser wavelength and the peak wavelength of the emission wavelength depending on the type of the specific element selected and the ratio of the amount of the selected element.
  • the method for preparing a nitride luminescent material of the present invention can be prepared by a method known in the art, such as a high temperature solid phase method.
  • a method known in the art such as a high temperature solid phase method.
  • the raw materials of the respective elements and the proportions thereof are uniformly mixed, and the raw materials of the respective elements are preferably simple substances or compounds of various metals and non-metal elements, wherein the compound is preferably a nitride; then calcination is carried out, and the calcination environment preferably has nitrogen, hydrogen or CO gas.
  • Protected high pressure or atmospheric pressure furnace to ensure low oxygen content of the environment; after calcination, heat at the highest temperature for 20min-24h.
  • the holding time is too short, the reaction is not enough, and the time is too long, causing the abnormal growth of the crystal grains, more preferably the holding time is 6-15h; finally, the temperature in the furnace is taken below 100 ° C, and the powder is subjected to grinding, Post-treatment steps such as pickling, sieving and drying.
  • the present invention also provides a light-emitting device comprising a phosphor and an excitation light source, wherein the phosphor comprises the near-infrared light-emitting material of the present invention.
  • the light-emitting device comprises a semiconductor chip, a light conversion portion I and a light conversion portion II.
  • the light conversion portion I contains at least a nitride light-emitting material I, and the nitride light-emitting material I can emit a peak wavelength of 580 under excitation of the semiconductor chip.
  • the light conversion portion II contains at least the near-infrared luminescent material of the present invention.
  • the semiconductor chip emits a peak wavelength in the range of 350-500 nm, and more preferably the emission peak wavelength ranges from 440-460 nm.
  • the nitride luminescent material of the present embodiment comprises a compound of the formula La 2.85 Si 6 N 11 :Cr 0.05 Er 0.1 .
  • the nitride luminescent material of the present embodiment has a composition of La 2.85 Si 6 N 11 :Cr 0.05 Er 0.1 according to its stoichiometric ratio, and accurately weighs LaN (99.9%) and Si 3 N 4 (99.9%). CrO 2 (99.99%), ErO 2 (99.99%) raw material.
  • the high temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating up.
  • the heating rate is 10 ° C / min, the nitrogen pressure is 3 MPa.
  • the temperature is raised to 1900 ° C, the temperature is maintained.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, crushed, ground, removed, washed, sieved, and dried to obtain a final sample.
  • the fluorescence spectrum of the luminescent material prepared in this example was measured, and its XRD pattern is shown in Fig. 1. It can be seen that the luminescent material has the same crystal structure as La 3 Si 6 N 11 .
  • the infrared emission spectrum of the luminescent material prepared in this example is shown in Fig. 2. It can be seen that the luminescent material is effectively excited by the 460 nm wavelength radiation, and can emit short-wave infrared light of 1500-1575 nm.
  • the nitride luminescent material of the present embodiment comprises a compound having the structural formula of La 2.8 Si 6 N 11 : Cr 0.05 Ce 0.05 Er 0.1 .
  • the nitride luminescent material of the present embodiment according to the composition of La 2.8 Si 6 N 11 :Cr 0.05 Ce 0.05 Er 0.1 , according to the stoichiometric ratio, LaN (99.9%) and Si 3 N 4 (99.9%) are accurately weighed. ), CrO 2 (99.99%), ErO 2 (99.99%) raw materials.
  • the mixed powder is charged into the crucible, light Lightly compacted, and then taken out from the glove box and placed in a high temperature atmosphere furnace.
  • the high temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating up.
  • the heating rate is 10 ° C / min, the nitrogen pressure is 3 MPa.
  • the temperature is raised to 1900 ° C, the temperature is maintained.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, crushed, ground, removed, washed, sieved, and dried to obtain a final sample.
  • the infrared emission spectrum of the luminescent material prepared in this example is shown in Fig. 2. It can be seen that the luminescent material is effectively excited by the 460 nm wavelength radiation, and can emit short-wave infrared light of 1500-1575 nm.
  • the composition of the near-infrared luminescent material of the present comparative composition is La 2.9 Si 6 N 11 :Er 0.1 , and according to its stoichiometric ratio, accurately weigh LaN (99.9%), Si 3 N 4 (99.9%), ErO 2 ( 99.99%) raw materials.
  • a total of 100 g of the above raw materials was placed in a mortar and mixed in a glove box (oxygen content ⁇ 1 ppm, water content ⁇ 1 ppm), and the mortar was made of agate material or alumina ceramic material.
  • the mixed powder is placed in a crucible, gently compacted, and then taken out from the glove box and placed in a high-temperature atmosphere furnace.
  • the high-temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating, and the heating rate is 10 ° C / min.
  • the nitrogen pressure is 3 MPa.
  • the temperature is kept for 20 hours.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample.
  • the fluorescence spectrum of the sample is then measured, and its infrared emission spectrum is shown in Fig. 2.
  • the nitride luminescent material of the present embodiment has a composition of La 2.85 Si 6 N 11 :Cr 0.05 Nd 0.1 , and according to its stoichiometric ratio, LaN (99.9%) and Si 3 N 4 (99.9%) are accurately weighed. CrO 2 (99.99%), Nd 2 O 3 (99.99%) raw material.
  • a total of 100 g of the above raw materials was placed in a mortar and mixed in a glove box (oxygen content ⁇ 1 ppm, water content ⁇ 1 ppm), and the mortar was made of agate material or alumina ceramic material. The mixed powder is placed in a crucible, gently compacted, and then taken out from the glove box and placed in a high-temperature atmosphere furnace.
  • the high-temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating, and the heating rate is 10 ° C / min.
  • the nitrogen pressure is 3 MPa; after heating to 1900 ° C, the temperature is kept for 20 hours. After the heat is kept, the power is turned off and the furnace is cooled.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample. Then, the fluorescence spectrum of the sample was measured, and the infrared emission spectrum thereof is shown in FIG. 3. It can be seen that the luminescent material is effectively excited by the 460 nm wavelength radiation, and can emit short-wavelength infrared light of 1050-1150 nm.
  • the near-infrared luminescent material of the present comparative composition has a composition of La 2.9 Si 6 N 11 :Nd 0.1 , and accurately weighs LaN (99.9%), Si 3 N 4 (99.9%), Nd 2 according to its stoichiometric ratio. O 3 (99.99%) raw material.
  • a total of 100 g of the above raw materials was placed in a mortar and mixed in a glove box (oxygen content ⁇ 1 ppm, water content ⁇ 1 ppm), and the mortar was made of agate material or alumina ceramic material.
  • the mixed powder is placed in a crucible, gently compacted, and then taken out from the glove box and placed in a high-temperature atmosphere furnace.
  • the high-temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating, and the heating rate is 10 ° C / min.
  • the nitrogen pressure is 3 MPa.
  • the temperature is kept for 20 hours.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the fluorescence spectrum of the sample is measured, and the infrared emission spectrum thereof is shown in FIG.
  • Example 3 From the spectrum prepared in Example 3 and Comparative Example 2 of FIG. 3 and the comparison of the luminescence intensity, it can be seen that by comparing the technical effects of the above Example 3, the near-infrared light emission intensity of the luminescent material is enhanced with the addition of Cr element. Further, in the nitride luminescent material of the present invention, the emission intensity of the luminescent materials in all of the examples is increased to some extent with the addition of the Cr element.
  • the nitride luminescent material of the present embodiment has a composition of La 2.85 Si 6 N 11 :Cr 0.05 Yb 0.1 , and according to its stoichiometric ratio, LaN (99.9%) and Si 3 N 4 (99.9%) are accurately weighed. CrO 2 (99.99%), Yb 2 O 3 (99.99%) raw materials. A total of 100 g of the above raw materials was placed in a mortar and mixed in a glove box (oxygen content ⁇ 1 ppm, water content ⁇ 1 ppm), and the mortar was made of agate material or alumina ceramic material. The mixed powder is placed in a crucible, gently compacted, and then taken out from the glove box and placed in a high-temperature atmosphere furnace.
  • the high-temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating, and the heating rate is 10 ° C / min.
  • the nitrogen pressure is 3 MPa, and the temperature is raised to 1900 ° C and then kept for 20 hours.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the fluorescence spectrum of the sample is measured.
  • the infrared emission spectrum is shown in Fig. 4 and Fig. 5. It can be seen that the luminescent material is effectively excited by radiation having a wavelength of 460 nm and is capable of emitting short-wave infrared light of 950-1050 nm.
  • the highest peak intensity of the emission spectrum in the range of 900-1100 nm is A
  • the highest peak intensity of the emission spectrum in the range of 700-750 nm is B
  • A/(A+B) is about 0.97.
  • the near-infrared luminescent material of the present comparative composition has a composition of La 2.9 Si 6 N 11 :Yb 0.1 , and according to its stoichiometric ratio, accurately weigh LaN (99.9%), Si 3 N 4 (99.9%), Yb 2 O 3 (99.99%) raw material.
  • a total of 100 g of the above raw materials was placed in a mortar and mixed in a glove box (oxygen content ⁇ 1 ppm, water content ⁇ 1 ppm), and the mortar was made of agate material or alumina ceramic material.
  • the mixed powder is placed in a crucible, gently compacted, and then taken out from the glove box and placed in a high-temperature atmosphere furnace.
  • the high-temperature atmosphere furnace is vacuumed and filled with nitrogen gas to start heating, and the heating rate is 10 ° C / min.
  • the nitrogen pressure is 3 MPa.
  • the temperature is kept for 20 hours.
  • the power is turned off and the furnace is cooled.
  • the fired sample is taken out, pulverized, ground, decontaminated, washed, sieved, and dried to obtain a final sample, and then the fluorescence spectrum of the sample is measured, and the infrared emission spectrum thereof is shown in FIG.
  • the infrared emission spectrum of all the luminescent materials with Er as the illuminating center is shown in Fig. 2; the infrared spectroscopy of all luminescent materials with Nd as the illuminating center is shown in Fig. 3; The infrared emission spectrum of the luminescent material as the main illuminating center is shown in Fig. 4. It can be seen that the near-infrared light emission intensity of the luminescent material increases as the Cr element is added.
  • the preparation method of the near-infrared phosphor of the embodiment 5-39 is similar to that of the embodiment 1-3 except that an appropriate amount of the compound is selected, mixed, ground, and calcined according to the chemical formula of the target compound to obtain a desired luminescent material.
  • the chemical formula of the inorganic compound of the luminescent material prepared in Example 5-39 is shown in Table 1, and the relative luminescence intensity of the luminescent materials in Examples 1-39 and Comparative Examples 1-3 was measured as shown in Table 1.
  • the excitation wavelength of the near-infrared luminescent material of the present invention is 300-650 nm, and the main emission peak of the near-infrared light region is 900-1100 nm.
  • the excitation wavelength of the luminescent material is relatively broad, and the ultraviolet-visible light can be well absorbed.
  • it has stronger near-infrared luminescence, and La 3 Si 6 N 11 structure is very stable, with good heat resistance, water resistance and light stability.
  • the following embodiments 40-42 are light-emitting devices prepared by using the near-infrared phosphor of the present invention as a near-infrared luminescent material, that is, the structure of the light-emitting device known in the prior art is taken as an example, and the structure thereof is as shown in FIG.
  • the illuminating device comprises a pedestal 5 and is provided with a heat sink 4 and a lead 3.
  • the light source of the illuminating device is a semiconductor chip 2, and the optical material portion thereof comprises a light converting portion I1 and a light converting portion II6, and an outer layer thereof is provided Plastic lens 7.
  • the light conversion portion I absorbs the primary light emitted by the semiconductor chip 2 and converts it into a secondary light of a higher wavelength
  • the light conversion portion II6 absorbs the primary light of the semiconductor chip 2 and the light conversion portion I1
  • the secondary light is converted to a third wavelength of higher wavelength.
  • the light-emitting device described in the following Examples 40-42 selectively sets only the light conversion portion II6, or both the light conversion portion I1 and the light conversion portion II6.
  • the light conversion unit 1 includes at least a luminescent material having a peak wavelength of 580-660 nm emitted light, and the light converting portion II6 includes at least the near-infrared phosphor of the present invention.
  • the luminous efficiency of the light-emitting device of the following Examples 40-42 was the control device 1 using the light-emitting device containing the fluorescent material of Comparative Example 3 as the light-emitting material.
  • the control light-emitting device 1 uses a semiconductor chip having a peak wavelength of 460 nm as a light source and contains only the light conversion portion II.
  • the light conversion portion II contains the near-infrared phosphor of Comparative Example 1.
  • the blue light emission peak wavelength of the phosphor absorption light source is 950. -1050 nm near-infrared light, the luminous efficacy was set to 100, and the relative luminous efficacy of each of the above-mentioned light-emitting devices was measured as shown in Table 2 below.
  • Table 2 Structural information and relative luminous efficacy of the light-emitting device of the present invention
  • the light-emitting device prepared by using the near-infrared phosphor material of the present invention has higher luminous efficiency.

Abstract

本发明属于发光材料技术领域,具体而言,涉及一种氮化物发光材料及包含该发光材料的发光装置。本发明所述氮化物发光材料,包含结构式为R wQ xSi yN z的无机化合物,所述发光材料的激发波长在300-650nm,近红外光区的发射主峰为900-1100nm的宽带发射,该发光材料的激发波长比较宽泛,能很好的吸收紫外可见光,相对于近红外有机发光材料和其他体系无机发光材料有更强的近红外发光,是一种理想的近红外装置应用材料。

Description

一种氮化物发光材料及包含其的发光装置 技术领域
本发明属于发光材料技术领域,具体而言,涉及一种氮化物发光材料及包含该发光材料的发光装置。
背景技术
近红外光(NIR)是波长范围从700-2500nm的电磁波,是人们最早发现的非可见光区域,近红外区内光散射效应大,穿透深度大,被吸收的光强很小,而且其波长短,能够不被玻璃或石英介质所吸收,可广泛用于无伤害的去除生物组织、天文测量、光纤通讯等领域,因此,对近红外技术应用的研究报道越来越多。
稀土离子(4f)近红外发光具有强度高、线宽窄、寿命长、背景小的特点,在光信号放大、激光系统、荧光免疫分析等方面有特殊的优点,这一系列优势是其他近红外发光材料所无法比拟的。随着近红外领域研究的深入和其应用范围的扩大,特别是随着光通讯、公共安全和生物医疗等行业的发展,迫切需要一种具有良好发光性能的近红外材料。而1000nm附近的近红外光光,能够作为高效太阳光谱转换材料,在低阈值NIR激光器、商品防伪以及提高C-Si太阳能电池转换等方面具有较大潜力。
现有的近红外短波光的获取方式主要有红外芯片,或卤素灯经过分光,或光致发光的过渡金属或稀土金属的氧化物,或电致发光的有机配合物(Chemistry Letters,2004,33:50-51;Advanced Functional Materials,2002,12:745-751;中国化学会学术年会,2016)。然而,现有近红外发光装置中普遍存在所使用的红外芯片激发效率低、成本高等问题;而使用卤素灯则需要经过滤光,导致大部分光被分光导致 使用效率偏低,同时,受限于卤素灯产热量大,无法应用于小型设备。而现有的电致发光材料装置和技术尚不成熟,且在红外光谱部分发光效率低、稳定性差,仍是限制其应用的一个最大瓶颈。因此,继续寻找合适的体系并研究它们的结构与其近红外发光性能的关系仍是将来工作重点之一。
发明内容
为此,本发明所要解决的技术问题在于提供一种氮化物发光材料,该发光材料在蓝光、近紫外光及红光激发下,可以实现高效近红外光(900-1100nm)的发射;
本发明所要解决的第二个技术问题在于提供一种保护该发光材料的发光装置,以解决现有技术中近红外发光材料和发光装置稳定性差、发光效率低的问题。
为解决上述技术问题,本发明所述的一种氮化物发光材料,所述发光材料包含化学式为R wQ xSi yN z的无机化合物;其中,
所述R元素选自Yb元素、Nd元素或Er元素中的一种,且含有Cr元素,或Cr和Ce元素;
所述Q元素选自La元素、Gd元素、Lu元素、Y元素或Sc元素中的一种或两种;
且所述参数w、x、y和z满足如下关系:0<w≤0.5,2.5≤x+w≤3.5,5.5≤y≤6.5,10≤z≤12。
优选的,所述的氮化物发光材料中,所述参数w、x、y和z满足如下关系:0.01≤w≤0.3,(x+w):y:z=3:6:11。
更优的,所述R元素为Cr元素和Yb元素。
更优的,所述R元素为Cr元素、Ce元素和Er元素
更优的,所述无机化合物与La 3Si 6N 11具有相同的晶体结构。
更优的,所述Q元素为La元素。
本发明所述近红外发光材料的发射光谱在900-1100nm范围的最高峰值强度为A,发射光谱在700-750nm范围内的最高峰值强度为B,0.95≤A/(A+B)≤0.99。
本发明所述近红外发光材料的制备方法,包括以下步骤:
(1)按照化学式R wQ xSi yN z进行配料,选取R元素、Q元素的单质、氮化物、氧化物或它们的合金以及Si 3N 4,按照上述化学式表达要求的摩尔配比称取相应原料并均匀混合;
(2)将步骤(1)得到的混合体放入容器并在氮气或其他非氧化气氛下高温焙烧,最高烧结温度为1500-2000℃,焙烧时间为5-40h;
(3)将步骤(2)中的焙烧产物经破碎、洗涤、过筛和烘干后处理得到近红外发光材料。
本发明中所用的发光材料可使用现有技术的方法或将来发现的新方法进行制备。
本发明所得的发光材料可以制造发光装置,采用本发明的发光材料所制造的红外发光装置可以应用于近红外短波段探测、医疗等领域。
本发明还公开了一种发光装置,包括荧光体和激发光源,所述荧光体包括所述的氮化物发光材料。
作为优选的结构,所述发光装置包含半导体芯片、光转化部Ⅰ和光转化部Ⅱ;所述光转化部Ⅰ吸收所述半导体芯片发出的一次光,并转换为更高波长的二次光,所述光转化部Ⅱ吸收所述半导体芯片的一次光和所述光转化部Ⅰ发出的二次光,并转换为更高波长的三次光;
所述光转化部Ⅰ至少含有氮化物发光材料Ⅰ,所述光转化部Ⅱ至少含有所述的氮化物发光材料。
优选的,所述氮化物发光材料Ⅰ为在所述半导体芯片激发下,可 以发射出峰值波长为580-650nm的发射光的发光材料。
优选的,所述的发光装置中,所述氮化物发光材料Ⅰ为选自通式M mAl aSi bN c:Eu d或M eSi fN g:Eu n中的发光材料中的一种或两种;其中,
所述M元素至少含有Ca元素和/或Sr元素;
所述参数m、a、b、c、d、e、f、g和n满足如下关系:0.8≤m≤1.2,0.8≤a≤1.2,0.8≤b≤1.2,2≤c≤4,0.0001≤d≤0.1,1.8≤e≤2.2,4≤f≤6,7≤g≤9,0.0001≤n≤0.1。
优选的,所述氮化物发光材料Ⅰ具有如CaAlSiN 3或Sr 2Si 5N 8的晶型结构。
优选的,所述氮化物发光材料Ⅰ中,所述M元素为Ca和Sr元素,其中Sr元素占所述M元素的摩尔百分比为z,且80%≤z<100%。
本发明中所用的氮化物发光材料Ⅰ可使用现有技术的方法或将来发现的新方法进行制备。
优选的,所述半导体芯片发射峰值波长范围为350-500nm,优选440-460nm。
本发明所述氮化物发光材料,包含结构式为R wQ xSi yN z的无机化合物,所述发光材料的激发波长在300-650nm,近红外光区的发射主峰为900-1100nm的宽带发射,该发光材料的激发波长比较宽泛,能很好的吸收紫外可见光,相对于近红外有机发光材料和其他体系无机发光材料有更强的近红外发光。本发明所述的发光材料是La 3Si 6N 11结构,其结构非常稳定,空间群为P4bm,金属阳离子和硅离子均有两种格位,晶体结构由SiN 4四面体形成的三维网络组成,具有高度凝聚网状结构,这使得La 3Si 6N 11表现出良好的温度特性,为制作性能优异热稳定性好的新型红外发光材料提供了重要的结构支撑,使得制得发光材料具有很好的耐热性、耐水性以及光稳定性,同时制备工艺简单、成本较低,是一种理想的近红外装置应用材料。
应用本发明所述发光材料,通过组成如上所述的发光装置,能够在不同蓝光、近紫外光及红光激发下获得近红外光,不仅能够应用于近红外短波段探测、医疗等领域,而且避免了其他近红外光获取方式的弊端,本发明的发光装置发光效率高、成本低,可应用于各种类型设备。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明实施例1制得近红外发光材料的XRD图;
图2为本发明实施例1和实施例2制得近红外发光材料和对比例1中发光材料的发射光谱图,激发波长为460nm;
图3为本发明实施例3制得近红外发光材料和对比例2发光材料的发射光谱图,激发波长460nm;
图4为本发明实施例4制得近红外发光材料和对比例3发光材料的发射光谱图,激发波长460nm;
图5示出了本发明实施例4制得近红外发光材料的发射光谱图;
图6为本发明所述发光装置的结构示意图;
图中附图标记表示为:1-光转化部Ⅰ,2-半导体芯片,3-引脚,4-热沉,5-基座,6-光转化部Ⅱ,7-塑料透镜。
具体实施方式
为便于理解本发明,本发明列举实施例如下,本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,下面将结合实施例来详细说明本发明。
如背景中介绍所述,现有近红外发光装置中存在所使用的红外芯片激发效率低、成本高等问题。使用卤素灯则需要经过滤光,大部分光被分光导致使用效率偏低,同时卤素灯产热量大,无法应用于小型设备。而现有的电致发光材料装置和技术尚不成熟,且在红外光谱部分发光效率低、稳定性差,仍是限制其应用的一个最大瓶颈。
在本发明一种典型的实施方式中,提供了一种氮化物发光材料一种近红外发光材料,该发光材料包含无机化合物,无机化合物的化学式为R wQ xSi yN z,R元素为选自Yb元素、Nd元素或Er元素中的一种,且含有Cr元素,或Cr和Ce元素,Q元素为La、Gd、Lu、Y和Sc中的一种或两种,且0<w≤0.5,2.5≤x+w≤3.5,5.5≤y≤6.5,10≤z≤12。
现有技术中以Yb、Nd、Er单掺的传统近红外发光材料量子效率较低,从而限制其应用。克服这一缺点的有效途径是在上述近红外发光材料中共掺Cr 3+或/和Ce 3+等宽带发射稀土元素,通过敏化剂Cr 3+或/和Ce 3+与激活剂Yb、Nd、Er间的共振能量传递,可提高量子效率和发射强度,应用本发明的技术方案,通过调整La:Si:N以及敏化剂、激活剂离子的比例,能够形成以必含敏化剂Cr 3+或必含敏化剂Cr 3+和Ce 3+和激活剂Yb、Nd、Er中的一种的La 3Si 6N 11晶体结构,这使得激活剂中心在三价稀土离子以及Si-N四面体场的作用下获得更高的跃迁能量,从而改善目前氮化物发光材料光效低的问题,获得高光效发射,而且以La 3Si 6N 11晶体结构作为基质,从而制备出高热稳定性的发光材料,因而适合用于高能量密度激发的装置。
本发明的上述氮化物发光材料中,其晶体结构是由M-A多面体构建的,而通过将Q与Si-N四面体以角-角或者边-边链接能够得到不同结构的发光材料。为了使本发明的氮化物发光材料具有与La 3Si 6N 11一样的晶体结构,而又不至引入其他杂相,在本发明的氮化物发光材料中,选择Q元素为三价稀土元素La、Gd、Lu、Y和Sc中的一种或 两种时,能够保证发光材料晶格的严格生长,获得高稳定性发光材料,然而上述元素的引入量应当合适,当x+w<2.5时,在焙烧过程中由于元素配比的差异而导致不能生成纯相从而导致发光材料性能变差;当x+w>3.5时,过量的原料剩余同样影响发光材料纯相的生成,且发光材料的温度特性也会变差。优选的2.5≤x+w≤3.5,能够控制杂相尽量小或者无杂相,使氮化物发光材料的晶体结构更纯,从而赋予发光材料更好的发光性能。
当z<10或者z>12,y<5.5或者y>6.5之后,由于元素配比差异引起晶体内部价键不平衡,导致结构的不稳定性,晶体结构发生畸变的概率增大,从而不容易获得理想的发光材料,当10≤z≤12,5.5≤y≤6.5时,能够使所选元素所合成的发光材料与La 3Si 6N 11有相同的晶体结构。
本发明的上述氮化物发光材料中,Yb、Nd、Er作为激活剂离子,经过多次实验后发现激活剂浓度的限定范围为0<w≤0.5时具有最优效果。当w含量大于0.5时,一方面进入晶格后由于离子半径不匹配导致结构不稳定性增大甚至生成杂相,另一方面,太多的R离子会因离子间距太小产生浓度猝灭效应,发光亮度反而随着w的增加而下降,更优选0.01<w≤0.3,同时为了结构的稳定性考虑,优选(x+w):y:z=3:6:11。
选择上述种类及其用量的元素已经能够使得所形成的氮化物发光材料具有发光强度高、稳定性好的有益效果。为了获得更高的发光强度,在本发明一种优选的实施例中,R至少包括元素Cr或/和Ce,并且保证上述氮化物发光材料具有和La 3Si 6N 11相同的晶体结构。Cr或/和Ce离子作为敏化剂,可以与激活剂离子发生能量传递,Cr或/和Ce离子能有效地吸收能量,将能量传递给激活剂离子起到敏化作用,从而使得激活剂发光强度更高,本发明的上述氮化物发光材料中因为Cr或/和Ce离子的敏化作用,激活离子红外发射强度增强,同 时制得的发光装置也有更高的光效。
本发明的上述氮化物发光材料,根据所选择的具体元素种类及用量配比的不同,其激光波长的峰值位置和发射波长的峰值波长也存在差异。
本发明的氮化物发光材料的制备方法可采用本领域已知的方法进行制备,如高温固相法,在本发明一种优选的实施例中,按照上述合成氮化物发光材料的通式中所需的各元素的原料及其比例混合均匀,各元素的原料优选各种金属及非金属元素的单质或化合物,其中化合物优选为氮化物;然后进行煅烧,煅烧环境优选具有氮气、氢气或CO气体保护的高压或常压炉体内进行,保证环境的低含氧量;煅烧之后,在最高温下保温20min-24h。若保温时间太短,反应不够充分,而时间太长,造成晶粒异常长大,更优选保温时间为6-15h;最后将炉内温度将至100℃以下取出,将粉体进行包括研磨、酸洗、过筛及烘干等后处理步骤。
在本发明还提供了一种发光装置,该发光装置包括荧光体和激发光源,其中荧光体包括本发明所述的近红外发光材料。该发光装置包含半导体芯片、光转化部Ⅰ和光转化部Ⅱ,所述光转化部Ⅰ至少含有氮化物发光材料Ⅰ,氮化物发光材料Ⅰ,在半导体芯片激发下,可以发射出峰值波长为580-650nm的发射光,光转化部Ⅱ至少含有本发明所述的近红外发光材料。其中其半导体芯片发射峰值波长范围为350-500nm,更优选发射峰值波长范围为440-460nm。
下面将结合具体的实施例进一步说明本发明的有益效果。
实施例1
本实施例所述氮化物发光材料,其包含的化合物结构式为La 2.85Si 6N 11:Cr 0.05Er 0.1
本实施例所述氮化物发光材料,按照成分为La 2.85Si 6N 11:Cr 0.05Er 0.1, 按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),CrO 2(99.99%),ErO 2(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm=混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa。升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品。
对本实施例制得发光材料测定荧光光谱,其XRD图谱见图1,可见该发光材料与La 3Si 6N 11具有相同的晶体结构。
对本实施例制得发光材料测定红外发射光谱见图2所示,可见,该发光材料被波长为460nm的辐射光有效激发,能够发射1500-1575nm的短波红外光。
实施例2
本实施例所述氮化物发光材料,其包含的化合物结构式为La 2.8Si 6N 11:Cr 0.05Ce 0.05Er 0.1
本实施例所述氮化物发光材料,按照成分为La 2.8Si 6N 11:Cr 0.05Ce 0.05Er 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),CrO 2(99.99%),ErO 2(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm=混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa。升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品。
对本实施例制得发光材料测定红外发射光谱见图2所示,可见, 该发光材料被波长为460nm的辐射光有效激发,能够发射1500-1575nm的短波红外光。
对比例1
本对比例所述近红外发光材料其成分为La 2.9Si 6N 11:Er 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),ErO 2(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm)混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa。升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品。然后测样品的荧光光谱,其红外发射光谱见图2所示。
由图2中实施例1、实施例2和对比例1制得的谱图及进行发光强度对比可知,随着Cr元素的加入以及随着Cr和Ce元素的加入,该发光材料的近红外光发射强度增加。
实施例3
本实施例所述氮化物发光材料,其成分为La 2.85Si 6N 11:Cr 0.05Nd 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),CrO 2(99.99%),Nd 2O 3(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm)混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa;升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品, 经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品。然后测定该样品的荧光光谱,其红外发射光谱见图3所示,可见,该发光材料被波长为460nm的辐射光有效激发,能够发射1050-1150nm的短波红外光。
对比例2
本对比例所述近红外发光材料,其成分为La 2.9Si 6N 11:Nd 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),Nd 2O 3(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm)混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa。升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品,然后测样品的荧光光谱,其红外发射光谱见图3。
由图3中实施例3和对比例2制得的谱图及进行发光强度对比可知,通过对比上述实施例3中技术效果可见,随着Cr元素的加入,该发光材料的近红外光发射强度增加;并且,本发明所述氮化物发光材料中,随着Cr元素的加入,所有实施例中的发光材料的发射强度均有不同程度的增加。
实施例4
本实施例所述氮化物发光材料,其成分为La 2.85Si 6N 11:Cr 0.05Yb 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),CrO 2(99.99%),Yb 2O 3(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm)混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后 从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa,升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品,然后测样品的荧光光谱。红外发射光谱见图4和图5,可见,该发光材料被波长为460nm的辐射光有效激发,能够发射950-1050nm的短波红外光。而由图5谱图可知,其发射光谱在900-1100nm范围的最高峰值强度为A,发射光谱在700-750nm范围内的最高峰值强度为B,A/(A+B)约为0.97。
对比例3
本对比例所述近红外发光材料,其成分为La 2.9Si 6N 11:Yb 0.1,按其化学计量配比,准确称取LaN(99.9%),Si 3N 4(99.9%),Yb 2O 3(99.99%)原料。将上述原料共100g置于研钵中在手套箱(氧含量<1ppm,水含量<1ppm)混合均匀,研钵是玛瑙材质或氧化铝陶瓷材质。将混合完毕的粉料装入坩埚中,轻轻压实,然后从手套箱中取出放置于高温气氛炉中,高温气氛炉经抽真空、充入氮气后开始升温,升温速率为10℃/min,氮气压力为3MPa。升温至1900℃后保温20小时,保温结束后关闭电源,随炉冷却。取出烧成的样品,经粉碎、研磨、除杂后、洗涤、过筛、烘干得到最终样品,然后测样品的荧光光谱,其红外发射光谱见图4。
由图4中实施例4和对比例3制得的谱图及进行发光强度对比对比可知,通过对比上述实施例4实现了如下技术效果:随着Cr元素的加入,该发光材料的近红外光发射强度上升。
本发明所述材料中,所有以Er为主发光中心的发光材料红外发射光谱图如图2所示;所有以Nd为主发光中心的发光材料红外发射光谱图如图3所示;所有以Yb为主发光中心的发光材料红外发射光谱图如图4所示。可见,随着Cr元素的加入,该发光材料的近红外 光发射强度上升。
实施例5-21
实施例5-39所述近红外荧光粉的制备方法与实施例1-3相似,其区别仅在于,根据目标化合物化学式,选择适当计量的化合物进行混合、研磨、焙烧,得到所需的发光材料,实施例5-39制得发光材料的无机化合物的化学式如表1所示,并测定实施例1-39和对比例1-3中发光材料的相对发光强度如表1所示。
表1 实施例1-39中发光材料的相对发光强度
Figure PCTCN2018108818-appb-000001
Figure PCTCN2018108818-appb-000002
Figure PCTCN2018108818-appb-000003
可见,本发明所述近红外发光材料的激发波长在300-650nm,近红外光区的发射主峰为900-1100nm的宽带发射,该发光材料的激发波长比较宽泛,能很好的吸收紫外可见光,相对于近红外有机发光材料和其他体系无机发光材料有更强的近红外发光,且La 3Si 6N 11结构非常稳定,具有很好的耐热性、耐水性以及光稳定性,
实施例40-42
下述实施例40-42为以本发明的近红外荧光粉为近红外发光材料制得的发光装置,即以现有技术中已知的发光装置结构为例,其结构如图6所示,所述发光装置包括基座5,并设有热沉4和引脚3, 所述发光装置的光源为半导体芯片2,其光学材料部分包括光转化部Ⅰ1和光转化部Ⅱ6,其外层设有塑料透镜7。所述光转化部Ⅰ吸收所述半导体芯片2发出的一次光并转换为更高波长的二次光,所述光转化部Ⅱ6吸收所述半导体芯片2的一次光和所述光转化部Ⅰ1发出的二次光,并将之转换为更高波长的三次光。
下述实施例40-42中所述发光装置选择性的仅设置所述光转化部Ⅱ6,或者同时设有所述光转化部Ⅰ1和光转化部Ⅱ6。其中,所述光转化部Ⅰ至少包含峰值波长为580-660nm发射光的发光材料,所述光转化部Ⅱ6则至少包含本发明所述的近红外荧光粉。
下述实施例40-42中发光装置的发光效率以含有上述对比例3中荧光材料作为发光材料的发光装置为对照装置1。所述对照发光装置1以峰值波长为460nm的半导体芯片为光源,只含有光转化部Ⅱ,光转化部Ⅱ含有对比例1的近红外荧光粉,该荧光粉吸收光源的蓝光发射峰值波长为950-1050nm近红外光,设定其发光光效为100,测定上述各发光装置的相对发光光效见下表2所示。
表2 本发明发光装置的结构信息和相对发光光效
Figure PCTCN2018108818-appb-000004
Figure PCTCN2018108818-appb-000005
根据上表数据可知,采用本发明所述近红外荧光粉材料制得的发光装置,其发光效率更高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (13)

  1. 一种氮化物发光材料,其特征在于,所述发光材料包含化学式为R wQ xSi yN z的无机化合物;其中,
    所述R元素选自Yb元素、Nd元素或Er元素中的一种,且含有Cr元素,或Cr和Ce元素;
    所述Q元素选自La元素、Gd元素、Lu元素、Y元素或Sc元素中的一种或两种;
    且所述参数w、x、y和z满足如下关系:0<w≤0.5,2.5≤x+w≤3.5,5.5≤y≤6.5,10≤z≤12。
  2. 根据权利要求1所述的氮化物发光材料,其特征在于,所述参数w、x、y和z满足如下关系:0.01≤w≤0.3,(x+w):y:z=3:6:11。
  3. 根据权利要求1或2所述的氮化物发光材料,其特征在于,所述R元素为Cr元素和Yb元素。
  4. 根据权利要求1或2所述的氮化物发光材料,其特征在于,所述R元素为Cr元素、Ce元素和Er元素。
  5. 根据权利要求1-4任一所述的氮化物发光材料,其特征在于,所述无机化合物与La 3Si 6N 11具有相同的晶体结构。
  6. 根据权利要求1-5任一所述的氮化物发光材料,其特征在于,所述Q元素为La元素。
  7. 一种发光装置,包括荧光体和激发光源,其特征在于,所述荧光体包括权利要求1-6中任一项所述的氮化物发光材料。
  8. 根据权利要求7所述的发光装置,其特征在于,所述发光装置包含半导体芯片(2)、光转化部Ⅰ(1)和光转化部Ⅱ(6);所述光转化部Ⅰ(1)吸收所述半导体芯片(2)发出的一次光,并转换为 更高波长的二次光,所述光转化部Ⅱ(6)吸收所述半导体芯片(2)的一次光和所述光转化部Ⅰ(1)发出的二次光,并转换为更高波长的三次光;
    所述光转化部Ⅰ(1)至少含有氮化物发光材料Ⅰ,所述光转化部Ⅱ(6)至少含有权利要求1-5任一项所述的氮化物发光材料。
  9. 根据权利要求8所述的发光装置,其特征在于,所述氮化物发光材料Ⅰ为在所述半导体芯片(2)激发下,可以发射出峰值波长为580-650nm的发射光的发光材料。
  10. 根据权利要求8或9所述的发光装置,其特征在于,所述氮化物发光材料Ⅰ为选自通式M mAl aSi bN c:Eu d或M eSi fN g:Eu n中的发光材料中的一种或两种;其中,
    所述M元素至少含有Ca元素和/或Sr元素;
    所述参数m、a、b、c、d、e、f、g和n满足如下关系:0.8≤m≤1.2,0.8≤a≤1.2,0.8≤b≤1.2,2≤c≤4,0.0001≤d≤0.1,1.8≤e≤2.2,4≤f≤6,7≤g≤9,0.0001≤n≤0.1。
  11. 根据权利要求8-10任一所述的发光装置,其特征在于,所述氮化物发光材料Ⅰ具有如CaAlSiN 3或Sr 2Si 5N 8的晶型结构。
  12. 根据权利要求8-11任一所述的发光装置,其特征在于,所述氮化物发光材料Ⅰ中,所述M元素为Ca和Sr元素,其中Sr元素占所述M元素的摩尔百分比为z,且80%≤z<100%。
  13. 根据权利要求8-12任一所述的发光装置,其特征在于,所述半导体芯片(2)发射峰值波长范围为350-500nm,优选440-460nm。
PCT/CN2018/108818 2018-02-12 2018-09-29 一种氮化物发光材料及包含其的发光装置 WO2019153760A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019535323A JP6821813B6 (ja) 2018-02-12 2018-09-29 窒化物発光材料およびそれを含む発光装置
KR1020197013904A KR102236624B1 (ko) 2018-02-12 2018-09-29 질화물발광재료 및 그것을 포함하는 발광장치
DE112018000135.0T DE112018000135B4 (de) 2018-02-12 2018-09-29 Nitrid-Lumineszenzmaterial und lumineszierende Vorrichtung mit diesem Nitrid-Lumineszenzmaterial
US16/469,114 US11485907B2 (en) 2018-02-12 2018-09-29 Nitride luminescent material and light emitting device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810147245.5 2018-02-12
CN201810147245 2018-02-12

Publications (1)

Publication Number Publication Date
WO2019153760A1 true WO2019153760A1 (zh) 2019-08-15

Family

ID=64813880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108818 WO2019153760A1 (zh) 2018-02-12 2018-09-29 一种氮化物发光材料及包含其的发光装置

Country Status (6)

Country Link
US (1) US11485907B2 (zh)
JP (1) JP6821813B6 (zh)
KR (1) KR102236624B1 (zh)
CN (1) CN109135747B (zh)
DE (1) DE112018000135B4 (zh)
WO (1) WO2019153760A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157417B (zh) * 2018-02-12 2022-05-10 有研稀土新材料股份有限公司 一种近红外光发光材料及包含其的发光装置
EP3950884B1 (en) * 2019-04-03 2022-08-24 National Institute for Materials Science Phosphor, method for producing same and light emitting element
CN110676363B (zh) * 2019-08-22 2022-08-19 有研稀土新材料股份有限公司 一种光学装置
CN112151660A (zh) * 2020-10-27 2020-12-29 佛山市国星光电股份有限公司 发光器件
CN112151659A (zh) * 2020-10-27 2020-12-29 佛山市国星光电股份有限公司 红外发光器件及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400515A (zh) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 一种发光材料及发光材料的制备方法
CN107573937A (zh) * 2017-08-01 2018-01-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352101A (ja) * 2000-06-06 2001-12-21 Nichia Chem Ind Ltd 発光装置
JP3837588B2 (ja) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP6341097B2 (ja) * 2013-02-07 2018-06-13 三菱ケミカル株式会社 窒化物蛍光体とその製造方法
EP3045511A4 (en) * 2013-09-09 2017-05-24 National Institute of Advanced Industrial Science and Technology Near-infrared mechanoluminescent material, near-infrared mechanoluminescent object, and process for producing near-infrared mechanoluminescent material
WO2018001368A1 (zh) * 2016-06-30 2018-01-04 有研稀土新材料股份有限公司 氮化物荧光体及包含其的发光装置
US11066600B2 (en) * 2016-06-30 2021-07-20 Grirem Advanced Materials Co., Ltd. Lutetium nitride-based phosphor and light emitting device comprising same
CN109370587B (zh) * 2018-09-06 2019-10-29 旭宇光电(深圳)股份有限公司 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400515A (zh) * 2015-12-02 2016-03-16 钇铕(上海)新材料有限公司 一种发光材料及发光材料的制备方法
CN107573937A (zh) * 2017-08-01 2018-01-12 东南大学 一种用于近红外led的荧光粉材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEI, LEFU: "Broadband Absorption and Near-Infrared Quantum Cutting in Ce3+-Tb3+-Yb3+ Co-Doped Y4Si207N2 Phosphor via Energy Transfer", SCIENCE OF ADVANCED MATERIALS, 31 December 2014 (2014-12-31), ISSN: 1947-2935 *
YI, XIONG: "Multifunctionalities of Near-Infrared Upconversion Luminescence, Optical Temperature Sensing and Long Persistent Luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+ and Their Potential Coupling", RSC ADVANCES, vol. 5, no. 61, 28 May 2015 (2015-05-28), pages 49680 - 49687, XP055629134, ISSN: 2046-2069 *

Also Published As

Publication number Publication date
JP6821813B6 (ja) 2022-06-07
CN109135747B (zh) 2021-09-17
KR20190098126A (ko) 2019-08-21
US20210403808A1 (en) 2021-12-30
JP6821813B2 (ja) 2021-01-27
CN109135747A (zh) 2019-01-04
KR102236624B1 (ko) 2021-04-05
DE112018000135T5 (de) 2019-10-02
DE112018000135B4 (de) 2022-10-06
JP2020510706A (ja) 2020-04-09
US11485907B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2019153760A1 (zh) 一种氮化物发光材料及包含其的发光装置
JP7062693B2 (ja) 近赤外発光材料および当該材料で作製された発光装置
RU2459855C2 (ru) Люминесцентные материалы красного свечения
Liu et al. Crystal structure and photoluminescence properties of red‐emitting Ca9La1− x (VO4) 7: xEu3+ phosphors for white light‐emitting diodes
Praveena et al. Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12: Ce3+ nano-garnet
CN110857389A (zh) 一种近红外荧光粉以及含该荧光粉的发光装置
Yan et al. Facile synthesis of Ce3+, Eu3+ co-doped YAG nanophosphor for white light-emitting diodes
Zhang et al. Energy transfer and luminescence properties of Dy3+/Eu3+ doped silicoaluminate phosphors
WO2018001370A1 (zh) 镥氮基荧光粉及具有其的发光器件
CN113861980A (zh) 铬掺杂的镓或铟锑酸盐近红外发光材料及制备方法和应用
Kadyan et al. Synthesis and optoelectronic characteristics of MGdAl3O7: Eu3+ nanophosphors for current display devices
CN112342021A (zh) 一种近红外宽带发射的发光材料、其制备方法及包含该材料的发光装置
CN110157417B (zh) 一种近红外光发光材料及包含其的发光装置
CN109370588B (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
CN115340869B (zh) 橙色发光材料及其制备方法、白光led
CN115058247B (zh) 一种短波红外发光材料及其制备方法和应用
CN111925791B (zh) 一种氮化物橙红色荧光材料和发光装置及其制备方法和应用
Hirata et al. Development of luminescent materials with strong UV–blue absorption
Li et al. A strategy for developing deep-UV phosphor: Sr 3 AlO 4 F: Tb 3+/Sm 3+
Shao et al. Rapid synthesis and characterization of SrS: Eu, Sm infrared up-conversion materials
CN114806559B (zh) 一种Eu2+激活的超宽带可见-近红外发光材料、制备方法及应用
CN107987833B (zh) 一种氮化物发光材料及包含其的发光装置
Yadav et al. One step combustion synthesis of YAG: Ce phosphor for solid state lighting
Nair et al. Conversion phosphors: an overview
CN109722245B (zh) 含镥碳氮化物荧光粉、其制备方法及含该荧光粉的器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197013904

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019535323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904985

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18904985

Country of ref document: EP

Kind code of ref document: A1