WO2020004416A1 - 有機樹脂で被覆された金属素形材およびその製造方法 - Google Patents

有機樹脂で被覆された金属素形材およびその製造方法 Download PDF

Info

Publication number
WO2020004416A1
WO2020004416A1 PCT/JP2019/025231 JP2019025231W WO2020004416A1 WO 2020004416 A1 WO2020004416 A1 WO 2020004416A1 JP 2019025231 W JP2019025231 W JP 2019025231W WO 2020004416 A1 WO2020004416 A1 WO 2020004416A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic resin
film
organic
resin film
metal
Prior art date
Application number
PCT/JP2019/025231
Other languages
English (en)
French (fr)
Inventor
清水 真
雅典 松野
晋 上野
Original Assignee
日鉄日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄日新製鋼株式会社 filed Critical 日鉄日新製鋼株式会社
Publication of WO2020004416A1 publication Critical patent/WO2020004416A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies

Definitions

  • the present invention relates to a metal element coated with an organic resin and a method for producing the same.
  • An organic resin film may be formed on the surface of a metal shaped material, particularly a steel sheet, in order to impart a color tone or a pattern or to enhance strength, durability, lubricity during processing, and the like. .
  • Various types of resins are used as materials for the organic resin film. Above all, it is known that urethane-based resins have high thermal stability, and have flexibility and strength enough to follow deformation of a metal base material during processing.
  • Patent Document 1 describes a resin-coated steel sheet obtained by applying a urethane-based resin having an elongation of 250 to 450% or more to a steel sheet.
  • Patent Document 1 describes that the thickness of the organic resin film can be reduced to 2 ⁇ m or less. According to Patent Document 1, when a urethane-based resin is used for the organic resin film, workability can be further improved.
  • Patent Document 2 describes a surface-treated metal plate obtained by applying a urethane-based resin having a thickness of 0.5 ⁇ m to 5 ⁇ m and an elongation of 180 to 450% or more to a steel plate. According to Patent Literature 2, the elongation of the organic resin film is 180% or more, so that it is excellent in workability.
  • Patent Document 3 describes a steel sheet having a coating film formed by applying a water-dispersible polyurethane resin having an elongation of 200 to 800% when a 200 ⁇ m-thick film is formed on the steel sheet.
  • Patent Document 3 describes that the thickness of this coating film can be made 2 to 10 ⁇ m. According to Patent Literature 3, the coating film has good followability during processing.
  • Patent Documents 1 to 3 conventionally, in order to enhance the workability of a steel sheet coated with an organic resin, a urethane resin used for an organic resin film covering the steel sheet needs to have high elongation. Had been.
  • the organic resin film may be peeled off into a film, particularly when performing multi-step processing.
  • the peeled film-shaped organic resin film easily adheres to a processed product or a mold, and easily generates a press flaw on the processed product. Similar problems can occur with metal sections other than steel sheets.
  • the present invention is based on the above-mentioned problem, and particularly when an organic resin film is hardly peeled off in a film shape when performing multi-stage processing, a metal base material coated with an organic resin, and coated with the organic resin. It is an object of the present invention to provide a method for manufacturing a shaped metal member.
  • the present invention is a metal element, and an organic resin film containing a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, disposed on the surface of the metal element, and A metal element coated with an organic resin having the following formula:
  • the metal element coated with the organic resin was subjected to a contact bending test in accordance with JIS Z 2248 (2014), and then a scanning electron microscope was used to magnify the five selected parts from the bent part by a scanning electron microscope.
  • the average value of the crack occurrence area ratio calculated from the image taken as the magnification is 10% or more.
  • the present invention also relates to a metal element coated with an organic resin having a metal element and an organic resin film disposed on the surface of the metal element.
  • the organic resin film contains a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, has a tensile elongation at break of 10% or less when the film thickness is 100 ⁇ m, and The film has a thickness of 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • the present invention provides a step of preparing a metal base material, wherein the metal base material includes a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, and has a tensile elongation at break.
  • the metal base material includes a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, and has a tensile elongation at break.
  • a metal element coated with an organic resin and a metal element coated with the organic resin, in which an organic resin film is unlikely to be peeled off in a film shape particularly when multi-stage processing is performed, and the like Is provided.
  • the metal shape coated with the organic resin according to the present embodiment includes at least a metal shape and And an organic resin film containing a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound.
  • the organic resin film may be formed in contact with the surface of the metal base material, or another film or layer such as a chemical conversion coating may be provided between the metal base material and the organic resin film. (Hereinafter, also simply referred to as “intermediate layer”).
  • the coated metal shaped material was subjected to a scanning electron microscope (SEM) at a magnification of 300 times at five locations selected from the bent portions.
  • SEM scanning electron microscope
  • the average value of the crack occurrence area ratio calculated from the captured image is 10% or more.
  • the crack generation area ratio is defined as the area of the image taken by the SEM, in which the cracks are generated in the organic resin film and the base metal material (or the metal material side with respect to the organic resin film is disposed closer to the metal material side than the organic resin film).
  • Layer is the ratio of the area of the exposed portion.
  • the crack occurrence rate is preferably 16% or more, more preferably 20% or more.
  • the region to be imaged by the SEM is visually observed to have an average surface shape, avoiding a region where the surface shape can be visually confirmed to be extremely different from other portions. It is desirable to select an area that can be confirmed.
  • Metal Shaped Material is a metal that has been given a shape by applying heat, force, or the like to the metal.
  • the metal base material to be a coating substrate is a metal plate, a press-formed product thereof, or a metal member formed by casting, forging, cutting, powder metallurgy, or the like.
  • the type of the metal base material is not particularly limited. Examples of the metal base material include a metal plate, a pressed product of the metal plate, a metal member, and the like.
  • the metal sheet examples include a galvanized steel sheet, a Zn-Al alloy-coated steel sheet, a Zn-Al-Mg alloy-coated steel sheet, a Zn-Al-Mg-Si alloy-coated steel sheet, an aluminum-plated steel sheet, and a stainless steel sheet (austenitic, Site-based, ferritic, and ferrite-martensite two-phase systems), aluminum plates, aluminum alloy plates, and copper plates.
  • the metal plate may be a rolled steel plate such as a cold rolled steel plate.
  • the metal member include various metal members formed by casting, forging, cutting, powder metallurgy, and the like, including aluminum die casting and zinc die casting.
  • the metal preform may be subjected to a known coating pretreatment such as degreasing or pickling, if necessary.
  • Organic resin film is a film having the urethane-based resin as a base and optionally added additives.
  • the organic resin film has an effect of improving properties such as strength, durability, and lubricity during processing with respect to the metal base material, and abrasion of the metal base material during processing such as generation of seizure ( Galling) can be suppressed.
  • the organic resin film is peeled into a film during processing and adheres to a processed product or a mold, it may cause a press flaw on the processed product. Therefore, the organic resin film is preferably a film having a tensile elongation at break of 10% or less. Such an organic resin film is not easily formed into a film that is stretched following when the metal base material is deformed during processing, and is not a film form when peeled from the metal base material during processing. It is easy to peel off as finer flakes.
  • the organic resin film, the organic resin film peeled off in the form of the film adheres to a processed product or a mold, and in that state, the processed product is pressed by the mold, and a pressing flaw on the processed product is reduced.
  • Hard to generate the organic resin film is preferably a film having a tensile elongation at break of less than 5%, and more preferably a film having a tensile elongation at break of less than 1%.
  • the tensile elongation at break of an organic resin film refers to a tensile fracture measured on a test piece on which the above-mentioned organic resin film is formed so as to have a film thickness of 100 ⁇ m in the same manner as JIS @ K7161 (2014). Means elongation.
  • Tensile fracture elongation of the organic resin film the selection of the type and amount ratio of the urethane resin material containing the polyisocyanate compound and the polyol compound, the selection of the type and amount ratio of the resin other than the urethane resin, and the organic resin film
  • the above range can be adjusted by selecting the amount of the film-forming auxiliary used in the formation.
  • the organic resin film is a film having a thickness of 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • the film thickness is 0.2 ⁇ m or more, the lubricity of the coated metal base material can be sufficiently improved.
  • the film thickness is 5.0 ⁇ m or less, the manufacturing cost of the coated metal base material can be suppressed.
  • the organic resin film is preferably a film having a thickness of 0.2 ⁇ m or more and 3.0 ⁇ m or less, and more preferably a film having a thickness of 0.2 ⁇ m or more and 2.0 ⁇ m or less.
  • the organic resin film contains a urethane resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound.
  • the urethane-based resin may have a structural unit derived from another compound such as a chain extender.
  • Examples of the structural unit derived from the polyisocyanate compound include a structural unit derived from an aromatic diisocyanate, a structural unit derived from an aliphatic diisocyanate, and a structural unit derived from an alicyclic diisocyanate.
  • aromatic diisocyanate examples include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dichloro-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, and 1,5-tetrahydro And naphthalenediisocyanate.
  • aromatic diisocyanates may be used alone or in combination of two or more.
  • aliphatic diisocyanate examples include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate. These aliphatic diisocyanates may be used alone or in combination of two or more.
  • alicyclic diisocyanate examples include 1,3-cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and 4,4 ′ -Dicyclohexylmethane diisocyanate and the like. These alicyclic diisocyanates may be used alone or in combination of two or more.
  • Examples of the structural units derived from the above polyol compound include structural units derived from polyester polyol, polyether polyol, polycarbonate polyol, polyacetal polyol, polyacrylate polyol and polybutadiene polyol.
  • the structural unit derived from the polyol compound may include a structural unit derived from a polyol having an acidic group such as a carboxyl group.
  • the polyether polyol can be a compound obtained by condensing various alcohols under an acid catalyst.
  • Examples of the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and other polyalkylene ether glycols.
  • the polyether polyol may be one whose chain is extended by an isocyanate compound. These polyether polyols may be used alone or in combination of two or more.
  • the polyester polyol includes a dicarboxylic acid compound containing isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, etc., and ethylene glycol, diethylene glycol, propylene glycol, dipropylene.
  • polyester polyol may be one whose chain is extended by an isocyanate compound. These polyester polyols may be used alone or in combination of two or more.
  • the above polycarbonate polyols include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and carbonate compounds including propylene carbonate, and ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, methylpentanediol, dimethylbutanediol, and butylethyl.
  • a compound obtained by reacting a diol compound containing propanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,4-butanediol, 1,4-cyclohexanediol, 1,6-hexanediol, etc. can do.
  • the polycarbonate polyol may be one whose chain is extended by an isocyanate compound. These polycarbonate polyols may be used alone or in combination of two or more.
  • polyol having the acidic group examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, and bis- (2-hydroxyethyl) butane.
  • the polyol having an acidic group may be used alone or in combination of two or more.
  • the polyol having an acidic group may be, for example, a compound obtained by subjecting an alkanolamine and a dicarboxylic acid to an acid-base reaction or dehydration condensation in the presence of an initiator.
  • initiators include ammonia, primary or secondary monoamines, primary or secondary aliphatic polyamines, and primary or secondary aromatic mono or aromatic polyamines. And the like.
  • Examples of the primary or secondary monoamines include methylamine and ethylamine.
  • Examples of the primary or secondary aliphatic polyamines include ethylenediamine, hexamethylenediamine, N, N'-dimethylethylenediamine, and the like.
  • Examples of the primary or secondary aromatic mono- or aromatic polyamines include aniline, diphenylamine, toluenediamine, diphenylmethanediamine, N-methylaniline and the like.
  • Examples of the alkanolamines include monoethanolamine and diethanolamine.
  • Examples of the above dicarboxylic acids include adipic acid and phthalic acid.
  • the polyol having a tertiary amino group or a carboxyl group may be a compound whose chain is extended by an isocyanate compound.
  • the polyol having an acidic group may be used alone or in combination of two or more.
  • chain extenders examples include polyhydric alcohols such as ethylene glycol, 1,4-butanediol, hydroquinone dietrol ether, 2,3-butanediol, trimethylolpropane, and glycerin, and 4,4′- Examples include polyamines such as diaminodiphenylmethane, ethylenediamine, diethylenetriamine, triethanolamine, and 3,3′-dichloro-4,4′-diaminophenylmethane.
  • polyhydric alcohols such as ethylene glycol, 1,4-butanediol, hydroquinone dietrol ether, 2,3-butanediol, trimethylolpropane, and glycerin
  • 4,4′- Examples include polyamines such as diaminodiphenylmethane, ethylenediamine, diethylenetriamine, triethanolamine, and 3,3′-dichloro-4,4′-diaminophenylmethane.
  • the organic resin film may contain a resin other than the urethane resin from the viewpoint of further improving the adhesion of the organic resin film to the metal base material.
  • the resin other than the urethane-based resin is preferably a resin containing a polar group.
  • the resin other than the urethane-based resin include an epoxy-based resin, an acid-modified polyolefin-based resin, and a phenol-based resin. These resins may be used alone or in combination of two or more.
  • Examples of the epoxy resin include a bisphenol A epoxy resin, a bisphenol F epoxy resin, and a bisphenol AD epoxy resin.
  • Examples of the acid-modified olefin-based resin include an acid-modified polyethylene resin and an acid-modified polypropylene resin.
  • Examples of the phenolic resin include a novolak type resin and a resol type resin.
  • the proportion of the urethane-based resin in the organic resin film is preferably 50% or more, more preferably 70% or more, and preferably 80% or more based on the total mass of the organic resin film. More preferred.
  • the organic resin film may further contain other additives, as long as the extensibility is not increased and remarkable film-like peeling occurs during processing.
  • the additive include a metal oxide, a rust inhibitor, a phosphorus compound, a lubricant, an antifoaming agent, an etching agent, an inorganic compound, and a coloring material.
  • the rust inhibitor improves the corrosion resistance of the painted metal material, and as a result, improves the corrosion resistance of the composite.
  • the rust inhibitor may be one kind or more.
  • Examples of the rust preventive include metal compound-based rust preventives, non-metallic compound-based rust preventives, and organic compound-based rust preventives.
  • the content of the rust preventive in the organic resin film can be appropriately determined according to the type of the rust preventive from the range in which the rust preventive effect of the rust preventive and the effect of the present invention can be obtained.
  • Examples of the metal compound-based rust preventive include oxides, hydroxides or fluorides of metals (valve metals) selected from the group consisting of Ti, Zr, V, Mo and W. These metal compound-based rust preventives can further improve the corrosion resistance of the metal base material. In particular, the fluorides of these valve metals can also be expected to suppress corrosion at film defects due to a self-healing effect.
  • the content of the rust inhibitor in the organic resin film can be appropriately determined as long as the function of the metal oxide is exhibited.
  • the content of the rust inhibitor in the organic resin film is such that the content in terms of Si is 0.5% by mass or more, the content in terms of Ti is 0.005% by mass or more, and the content in terms of Zr. Is preferably 0.05% by mass or more, the Mo equivalent content 0.005% by mass or more, and the V equivalent content 0.02% by mass or more.
  • the content of the rust inhibitor in the organic resin film is such that the content in terms of Si is less than 23.5% by mass, the content in terms of Ti is less than 0.6% by mass, It is preferable that the content in terms of Zr is less than 12.0% by mass, the content in terms of Mo is less than 3.0% by mass, and the content in terms of V is less than 3.0% by mass.
  • nonmetallic compound-based rust preventive examples include a phosphate compound such as diammonium hydrogen phosphate and a thiol compound such as thiourea.
  • Examples of the organic compound-based rust preventive include an inhibitor and a chelating agent.
  • Examples of the inhibitor include carboxylic acids such as oleic acid, dimer acid and naphthenic acid, carboxylic acid metal soaps (lanolin Ca, naphthenic acid Zn, oxidized wax Ca, Ba salt, etc.), sulfonates (Na, Ca, Ba). Sulfonates), amine salts, and esters (glycerin esters of higher fatty acids, sorbitan monoisostearate, sorbitan monooleate, etc.).
  • chelating agent examples include EDTA (ethylandiaminetetraacetic acid), gluconic acid, NTA (nitrilotriacetic acid), HEDTA (hydroxyethyl, ethylenediaminetriacetic acid), DTPA (diethylenetriaminepentaacetic acid), and Na citrate. included.
  • the lubricant can suppress the occurrence of galling on the surface of the coated metal material.
  • the lubricant may be one kind or more, and the kind of the lubricant is not particularly limited.
  • the lubricant include organic waxes such as fluorine-based, polyethylene-based, styrene-based, and polypropylene-based lubricants, and inorganic lubricants such as molybdenum disulfide and talc.
  • the lubricating properties of the coated metal material are further improved, and the shape of the organic resin film that separates from the metal material at the time of processing by becoming the starting point of cracks generated when the film is pulled is improved.
  • an organic wax is preferred, and a polyethylene wax and a polypropylene wax are more preferred.
  • the content of the lubricant in the organic resin film is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the organic resin and the other resin in the organic resin film, and more preferably 5 parts by mass or more.
  • the content is more preferably 15 parts by mass or less, and further preferably 5 parts by mass or more and 10 parts by mass or less.
  • the content of the lubricant is 1 part by mass or more, the lubricating property of the coated metal base material can be sufficiently increased, and generation of galling can be sufficiently suppressed.
  • the content of the lubricant is 20 parts by mass or less, the lubricating property of the organic resin film is not too high, and the coated metal material is easy to handle.
  • the above-described antifoaming agent suppresses the generation of air bubbles during the preparation of an organic resin paint described later.
  • the antifoaming agent may be one kind or more.
  • the type of the antifoaming agent is not particularly limited.
  • As the defoaming agent an appropriate amount of a known defoaming agent such as a silicone-based defoaming agent may be added.
  • the etching agent activates the surface of the metal base material, thereby improving the adhesion of the organic resin film to the metal base material.
  • the etching agent include fluorides such as hydrofluoric acid, ammonium fluoride, zircon hydrogen fluoride, and titanium hydrogen fluoride.
  • the inorganic compound densifies the organic resin film and improves water resistance.
  • examples of the inorganic compound include inorganic oxide sols such as silica, alumina, and zirconia, and phosphates such as sodium phosphate, calcium phosphate, manganese phosphate, and magnesium phosphate.
  • the coloring material imparts a predetermined color tone to the organic resin film.
  • the coloring material include an inorganic pigment, an organic pigment, an organic dye, and the like.
  • the intermediate layer is a known surface for improving the adhesion between the metal base material and the organic resin layer and the corrosion resistance of the coated metal base material, such as a chromate film, a chromium-free film, and a phosphate film.
  • the layer may be formed by applying a treatment to the surface of the metal base material.
  • the phosphate film is a film having a compound having a phosphate anion and a plurality of phosphate crystals formed of a compound capable of forming a poorly water-soluble crystal disposed on the surface of the zinc-based plating layer.
  • phosphate crystals include magnesium phosphate, manganese phosphate, zinc phosphate, iron phosphate, zinc iron phosphate, zinc calcium phosphate, and the like.
  • the phosphate film may contain a metal element such as Ni, Mn, Mg, Ca, Co and Fe or an aliphatic amine as other components.
  • the metal element coated with an organic resin described above is a step of preparing a metal element, and the metal element is derived from a polyisocyanate compound.
  • a step of forming Before the step of forming the organic resin film, a step of forming an intermediate layer may be provided.
  • the metal shape shaped material may be the metal shape shaped material described above.
  • a plating layer such as a zinc-based plating layer may be formed on the metal element having no plating layer in this step.
  • the plating constituting the zinc-based plating layer may be any of Zn plating (pure zinc plating), Zn-Al-based alloy plating, Zn-Mg alloy plating, Zn-Ni alloy plating, and Zn-Al-Mg based alloy plating. May be.
  • the zinc-based plating layer may be a plating layer formed by any known method such as an electroplating method, a hot-dip plating method, and a vapor deposition plating method.
  • the organic resin film is formed by coating a treating solution containing a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound and optionally another resin onto the surface of a metal base material. (When the intermediate layer is formed, it can be formed by applying to the surface of the intermediate layer and drying).
  • the treatment liquid was applied on the surface of a polyester sheet so as to have a thickness of 100 ⁇ m, dried at room temperature for 24 hours, and baked at 120 ° C. for 1 hour to prepare a film-like sample.
  • a treatment liquid containing the above-mentioned organic resin film material that can form an organic resin film having a tensile elongation at break of 10% or less when the tensile elongation at break (%) is measured in the same manner as in 7161 (2014). It is.
  • the treatment liquid may contain other additives such as a film forming aid.
  • a film forming aid examples include alcohols including benzyl alcohol and 3-methoxy-3-methylbutanol, diethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl ether, diethylene glycol propyl ether, propylene glycol, dipropylene glycol methyl ether. , Butylene glycol, and hexylene glycol, and N-methylpyrrolidone.
  • the content of the film forming aid in the treatment liquid can be, for example, 2% by mass or more and 15% by mass or less based on the total mass of the treatment solution.
  • the amount is preferably smaller, for example, the film forming aid in the above-mentioned processing solution. Is, for example, preferably 10% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, based on the total mass of the treatment liquid. It is particularly preferred that the content be 01% by mass or less.
  • the minimum value of the content of the film forming aid can be 0% by mass.
  • the organic resin film contains a urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, which has been formed in advance, has a tensile elongation at break of 10% or less, and
  • a film having a thickness of 0.2 ⁇ m or more and 5.0 ⁇ m or less may be formed by attaching the film to a metal base material. At this time, the film and the metal element may be welded by heating or the like.
  • the intermediate layer can be formed by performing a known surface treatment such as a chromate treatment, a chromium-free treatment, and a phosphate treatment on the surface of the metal base material.
  • a chromate treatment such as a chromate treatment, a chromium-free treatment, and a phosphate treatment
  • the phosphating treatment can be formed by applying a phosphating solution to the surface of the metal casting and drying it.
  • a surface conditioner may be previously applied to the surface of the metal base material to adjust the amount of phosphate crystals attached.
  • the phosphating solution can be prepared by dissolving the above-described phosphate in an aqueous solvent or dissolving phosphoric acid and a metal salt capable of generating metal ions described below in an aqueous solvent.
  • the concentration of phosphate ions in the phosphating solution is preferably 0.03. It is preferable that the amount is not less than mol / L and not more than 0.5 mol / L.
  • the phosphating solution may contain a polyamine-based organic inhibitor having at least one functional group of —NH 2 or NHNH.
  • phosphate crystal particles can be precipitated at appropriate intervals, and the phosphate crystal particles can be made finer.
  • polyamine organic inhibitors examples include aliphatic polyamines including polyethylamine, polyethyleneimine, polyetheramine and polyaminoacrylate, and aromatic polyamines including polyaniline and the like. From the viewpoint of increasing the stability in the phosphating solution, the polyamine-based organic inhibitor is preferably an aliphatic polyamine.
  • the number average molecular weight of the polyamine-based organic inhibitor is preferably from 200 to 30,000. Further, from the viewpoint of appropriately adjusting the amount of the precipitated phosphate crystals, the concentration of the polyamine-based organic inhibitor in the phosphating solution is preferably 0.01% by mass or more and 5% by mass or less.
  • the phosphating solution may further contain nitrate ions. Nitrate ions promote phosphate precipitation.
  • the concentration of nitrate ions in the phosphating solution is preferably from 0.01 mol / L to 1.0 mol / L.
  • the phosphating solution may further contain a fluoride.
  • a fluoride when forming a phosphate film on the surface of the plating layer containing Al, Al eluted from the plating layer may hinder the precipitation of phosphate, but by adding fluoride to the phosphating solution, The adverse effect of this eluted Al can be suppressed.
  • the fluoride include sodium fluoride, potassium fluoride, sodium hydrogen fluoride and the like. From the viewpoint of appropriately adjusting the amount of precipitated phosphate crystals, the concentration of fluoride in the phosphating solution is preferably 0.001 mol / L or more and 0.5 mol / L or less.
  • the method for applying the phosphating solution is not particularly limited, and may be appropriately selected from known methods for applying the phosphating solution to the surface of the plating layer.
  • Examples of the application method include a spray method, a dipping and pulling method, and the like.
  • the temperature of the phosphating solution when applying the phosphating solution is preferably 40 ° C. or more and 80 ° C. or less.
  • a phosphating solution heated to 40 ° C. or more and 80 ° C. or less is used, a large number of fine phosphate crystals can be stably precipitated in a short time.
  • phosphate crystals are precipitated in about 2 to 6 seconds to form a phosphate film.
  • phosphate crystals are precipitated in about 3 to 9 seconds to form a phosphate film. If the treatment time is longer than the above-mentioned time, there is no particular problem because the precipitation of phosphate is saturated.
  • the surface of the zinc-based plating layer may be adjusted with a known surface conditioner before the application of the phosphating solution.
  • Examples of the surface conditioner include fine particles of titanium colloid and zinc phosphate.
  • Application amount of the surface modifier is 2 or more 80 mg / m 2 or less, more preferably 10 mg / m 2 or more 60 mg / m 2 or less, 20 mg / m 2 or more 50 mg / m More preferably, it is 2 or less.
  • Example 1 The following experiment was conducted to examine the effect of the elongation of the organic resin film on the peeled shape of the film.
  • a cold rolled steel sheet having a thickness of 1.1 mmt was used as the base steel sheet.
  • a polyisocyanate selected from the following compounds and a catalyst were added to the flask, reacted at 90 ° C. for 3 hours, and then cooled to 50 ° C. to produce a urethane prepolymer.
  • -Aliphatic diisocyanate Hexamethylene diisocyanate (Tokyo Chemical Industry Co., Ltd.)
  • -Alicyclic diisocyanate Isophorone diisocyanate (Tokyo Chemical Industry Co., Ltd.)
  • Aromatic diisocyanate Diphenylene diisocyanate (Tokyo Chemical Industry Co., Ltd.) Toluene diisocyanate (Tokyo Chemical Industry Co., Ltd.)
  • Processing solutions 1 to 6 were prepared by changing the amounts of the components as shown in Table 1.
  • the numerical values shown in Table 1 are the amounts (parts by mass) of the components.
  • the amount of the remaining water was such that the solid content concentration was 35% by mass.
  • Table 2 shows the materials (types of polyisocyanate compound and diol compound) of the urethane resin used in preparing the processing liquids 1 to 6, and the addition amount of the film forming aid (the addition amount based on the total mass of the processing liquid). %), And the measured tensile elongation at break (%).
  • the coating film peeled from the coated metal material 1 to the coated metal material 17 based on the following criteria: The size was evaluated. (Evaluation criteria) ⁇ : The size of the flakes is 1 mm square or less :: The size of the flakes exceeds 1 mm square and 3 mm or less ⁇ : The size of the flakes exceeds 3 mm square and 5 mm or less ⁇ : The size of the flakes Is over 5mm square
  • Evaluation results of the type of the treatment liquid, the film thickness of the organic resin film, the lubricity and the size of the peeled film, and the crack generation area ratio used in producing the coated metal material 1 to the coated metal material 17 are shown below. It is shown in Table 3.
  • the urethane-based resin having a structural unit derived from a polyisocyanate compound and a structural unit derived from a polyol compound, has a tensile elongation at break of 10% or less, and has a film thickness of 0.2 ⁇ m or more.
  • the coated metal base materials 1 to 7 and the coated metal base materials 9 to 11 having an organic resin film of 5.0 ⁇ m or less have high lubricity and have an organic property during processing.
  • the resin film was peeled off as fine flakes.
  • the coated metal base material 12 to the coated metal base material 16 formed with the organic resin film having a tensile elongation at break of more than 10% had the organic resin film peeled off at a larger size during processing.
  • the coated metal base material 8 having an organic resin film thickness of less than 0.2 ⁇ m had low lubricity.
  • Example 2 The following experiment was conducted in order to examine the effect of the organic resin film containing the organic wax on the lubricating property and galling resistance of the coated metal material.
  • treatment liquid 1-1 Preparation and evaluation of treatment liquid 1-1. Preparation of treatment liquid To treatment liquids 1 to 4 prepared in Example 1, predetermined amounts of the following organic waxes (polyethylene wax or polypropylene wax) were added. ⁇ Polyethylene wax: MYE-35G, manufactured by Maruyoshi Chemical Co., Ltd. ⁇ Polypropylene wax: manufactured by Toho Chemical Co., Ltd., P-5800
  • coated metal shape materials 21 to 28 were manufactured in the same manner as in Example 1, and lubricated according to the same standard as in Example 1. The properties and the size of the peeled film were evaluated.
  • Table 4 shows the evaluation results of the breaking elongation strength of the organic resin film, the film thickness of the organic resin film, the lubricity, the size of the peeled film, and the crack generation area ratio.
  • the organic resin film contains the organic wax in an amount of 1% by mass or more and 20% by mass or less with respect to the total mass of the organic resin film, the lubricating property of the coated metal material increases. At the time of processing, the organic resin film was peeled off as fine flakes.
  • the present invention there is provided a metal base material coated with an organic resin, in which an organic resin film is hardly peeled off in a film shape, particularly when multi-stage processing is performed. Therefore, the present invention can suppress the occurrence of press flaws on the processed product during the processing of the metal raw material, can reduce the frequency of cleaning the mold, and can reduce the processing frequency of the metal raw material. It is expected to contribute to further spread.

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本発明は、加工時に有機樹脂皮膜がフィルム状に剥離しにくい、有機樹脂で被覆された金属素形材を提供することを目的とする。上記目的を達成するための有機樹脂で被覆された金属素形材は、金属素形材と、前記金属素形材の表面に配置された有機樹脂皮膜と、を有し、前記有機樹脂皮膜は、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、膜厚100μmとしたときの引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である。

Description

有機樹脂で被覆された金属素形材およびその製造方法
 本発明は、有機樹脂で被覆された金属素形材およびその製造方法に関する。
 金属板もしくはそのプレス成形品、または鋳造、鍛造、切削、粉末冶金などにより成形された金属製の部材である、いわゆる「金属素形材」は、様々な工業製品に使用されている。金属素形材、特には鋼板には、色調や模様を付したり、強度、耐久性および加工時の潤滑性などを高めたりするために、有機樹脂皮膜がその表面に形成されることがある。有機樹脂皮膜の材料として、様々な種類の樹脂が使用されている。中でも、ウレタン系樹脂は、熱安定性が高く、かつ、加工時における金属素形材の変形に追従できる程度の柔軟性および強度を有することが知られている。
 たとえば、特許文献1には、伸びが250~450%以上のウレタン系樹脂を鋼板に塗布してなる樹脂被覆鋼板が記載されている。特許文献1には、この有機樹脂皮膜の膜厚は2μm以下にすることができると記載されている。特許文献1によれば、上記有機樹脂皮膜にウレタン系樹脂を使用すると、より加工性を向上できるとされている。
 また、特許文献2には、厚みが0.5μmから5μmであり、伸びが180~450%以上のウレタン系樹脂を鋼板に塗布してなる表面処理金属板が記載されている。特許文献2によれば、上記有機樹脂皮膜は、伸びが180%以上であるので、加工性に優れるとされている。
 たとえば、特許文献3には、厚み200μmのフィルムとしたときの伸び率が200~800%である水分散性ポリウレタン樹脂を鋼板に塗布してなる塗膜を有する鋼板が記載されている。特許文献3には、この塗膜の膜厚は2~10μmにすることができると記載されている。特許文献3によれば、上記塗膜は加工時の追従性が良好であるとされている。
国際公開第00/04208号 特開2000-052485号公報 特開2011-140561号公報
 特許文献1~特許文献3に記載のように、従来、有機樹脂で被覆された鋼板の加工性を高めるために、鋼板を被覆する有機樹脂皮膜に用いられるウレタン樹脂には、高い伸び性が求められていた。
 ところで、絞りやしごきなどの加工条件を厳しくして有機樹脂で被覆された鋼板を加工すると、特に多段の加工を行ったときなどに、有機樹脂皮膜がフィルム状に剥離してしまうことがある。この、剥離したフィルム状の有機樹脂皮膜は、加工品や金型に付着しやすく、加工品への押し疵を発生させやすい。同様の問題は、鋼板以外の金属素形材にも生じ得る。
 本発明は、上記問題に基づくものであり、特に多段の加工を行ったときなどに有機樹脂皮膜がフィルム状に剥離しにくい、有機樹脂で被覆された金属素形材、および当該有機樹脂で被覆された金属素形材の製造方法を提供することを、その目的とする。
 本発明は、金属素形材と、前記金属素形材の表面に配置された、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含む有機樹脂皮膜と、を有する有機樹脂で被覆された金属素形材に関する。前記有機樹脂で被覆された金属素形材は、JIS Z 2248(2014年)に準じて密着曲げ試験を行った後に、曲げ加工部から選択された5か所を走査型電子顕微鏡で倍率を300倍として撮像した画像から算出される、クラック発生面積率の平均値が、10%以上である。
 また、本発明は、金属素形材と、前記金属素形材の表面に配置された有機樹脂皮膜と、を有する有機樹脂で被覆された金属素形材に関する。前記有機樹脂皮膜は、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、膜厚100μmとしたときの引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である。
 また、本発明は、金属素形材を用意する工程と、前記金属素形材に、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である、有機樹脂皮膜を形成する工程と、を有する、有機樹脂で被覆された金属素形材の製造方法に関する。
 本発明によれば、特に多段の加工を行ったときなどに有機樹脂皮膜がフィルム状に剥離しにくい、有機樹脂で被覆された金属素形材、および当該有機樹脂で被覆された金属素形材の製造方法が提供される。
 1.有機樹脂で被覆された金属素形材
 本実施形態に係る有機樹脂で被覆された金属素形材(以下、単に「被覆金属素形材」ともいう。)は、少なくとも、金属素形材、および、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含む有機樹脂皮膜を有する。なお、有機樹脂皮膜は、上記金属素形材の表面に接して形成されてもよいし、上記金属素形材と上記有機樹脂皮膜との間には、化成処理皮膜などの他の皮膜または層(以下、単に「中間層」ともいう。)が形成されていてもよい。
 上記被覆金属素形材は、JIS Z 2248(2014年)に準じて密着曲げ試験を行った後に、曲げ加工部から選択された5か所を走査型電子顕微鏡(SEM)で倍率を300倍として撮像した画像から算出される、クラック発生面積率の平均値が、10%以上である。なお、クラック発生面積率とは、SEMで撮像した画像の面積のうち、有機樹脂皮膜にクラックが発生することにより下地の金属素形材(あるいは有機樹脂皮膜よりも金属素形材側に配置された層)が露出している部分の面積の割合を意味する。本実施形態では、曲げ加工などの加工により被覆金属素形材に対して応力を付加したときに、有機樹脂皮膜にクラックを発生しやすくすることにより、加工時に有機樹脂皮膜をより微細な剥片状として剥離しやすくする。これにより、上記被覆金属素形材は、有機樹脂皮膜がフィルム状に剥離して加工品や金型に付着することによる、加工品への押し疵の発生を抑制することができる。上記クラック発生率は、16%以上であることが好ましく、20%以上であることがより好ましい。曲げ加工部のうち、上記SEMで撮像する領域は、表面形状が極端に他の部位から異なっていることが目視で確認できるような領域を避けて、平均的な表面形状を有することが目視で確認できる領域を選択することが望ましい。
 1-1.金属素形材
 金属素形材とは、金属に熱や力などが加えられ、形を与えられたものをいう。塗装基材となる金属素形材は、金属板、そのプレス成形品、あるいは、鋳造、鍛造、切削、粉末冶金などにより成形された金属製の部材である。金属素形材の種類は、特に限定されない。金属素形材の例には、金属板、金属板のプレス加工品および金属部材などが含まれる。上記金属板の例には、亜鉛めっき鋼板、Zn-Al合金めっき鋼板、Zn-Al-Mg合金めっき鋼板、Zn-Al-Mg-Si合金めっき鋼板、アルミニウムめっき鋼板、ステンレス鋼板(オーステナイト系、マルテンサイト系、フェライト系、およびフェライト・マルテンサイト二相系を含む)、アルミニウム板、アルミニウム合金板、および銅板などが含まれる。金属板は、冷延鋼板などの圧延された鋼板でもよい。上記金属部材の例には、アルミダイカストおよび亜鉛ダイカストを含む鋳造、鍛造、切削加工、および粉末冶金などにより成形された各種金属部材などが含まれる。金属素形材は、必要に応じて、脱脂、酸洗などの公知の塗装前処理が施されていてもよい。
 1-2.有機樹脂皮膜
 上記有機樹脂皮膜は、ベースとなる上記ウレタン系樹脂と、任意に添加される添加剤と、を有する皮膜である。
 上記有機樹脂皮膜は、金属素形材に対して、強度、耐久性および加工時の潤滑性などの特性を高める効果を有し、焼け付きの発生などの加工時の金属素形材の摩耗(かじり)を抑制することが可能である。
 ただし、有機樹脂皮膜は、加工時にフィルム状に剥離して加工品や金型に付着することにより、加工品への押し疵の原因になることがある。そのため、上記有機樹脂皮膜は、引張破壊伸びが10%以下の皮膜であることが好ましい。このような有機樹脂皮膜は、加工時に金属素形材が変形したときに、追従して延ばされたフィルム状とはなりにくく、加工時に金属素形材から剥離するときも、フィルム状ではなくより微細な剥片状として剥離しやすい。そのため、上記有機樹脂皮膜は、上記フィルム状となって剥離した有機樹脂皮膜が加工品や金型に付着し、その状態で加工品が金型により押圧されることによる加工品への押し疵を、発生させにくい。上記観点からは、上記有機樹脂皮膜は、引張破壊伸びが5%未満の皮膜であることが好ましく、引張破壊伸びが1%未満の皮膜であることがより好ましい。
 なお、本明細書において、有機樹脂皮膜の引張破壊伸びとは、膜厚100μmとなるように上記有機樹脂皮膜を形成した試験片について、JIS K 7161(2014年)と同様に測定された引張破壊伸びを意味する。
 有機樹脂皮膜の引張破壊伸びは、上記ポリイソシアネート化合物およびポリオール化合物を含むウレタン系樹脂の材料の種類および量比の選択、ウレタン系樹脂以外の樹脂の種類および量比の選択、ならびに有機樹脂皮膜を形成するときに用いる成膜助剤の量の選択などによって、上記範囲に調整することができる。
 上記有機樹脂皮膜は、膜厚が0.2μm以上5.0μm以下の皮膜である。上記膜厚が0.2μm以上であると、被覆金属素形材の潤滑性を十分に高めることができる。一方で、上記膜厚が5.0μm以下であると、被覆金属素形材の製造コストを抑制することができる。上記観点から、上記有機樹脂皮膜は、膜厚が0.2μm以上3.0μm以下の皮膜であることが好ましく、膜厚が0.2μm以上2.0μm以下の皮膜であることがより好ましい。
 1-2-1.樹脂
 上記有機樹脂皮膜は、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含む。上記ウレタン系樹脂は、鎖延長剤などの他の化合物に由来する構成単位を有してもよい。
 上記ポリイソシアネート化合物に由来する構成単位の例には、芳香族ジイソシアネートに由来する構成単位、脂肪族ジイソシアネートに由来する構成単位、および、脂環族ジイソシアネートに由来する構成単位が含まれる。
 上記芳香族ジイソシアネートの例には、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジクロロ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、および1,5-テトラヒドロナフタレンジイソシアネートなどが含まれる。これらの芳香族ジイソシアネートは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記脂肪族ジイソシアネートの例には、テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、およびリジンジイソシアネートなどが含まれる。これらの脂肪族ジイソシアネートは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記脂環族ジイソシアネートの例には、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素添加キシリレンジイソシアネート、イソホロンジイソシアネート、および4,4’-ジシクロヘキシルメタンジイソシアネートなどが含まれる。これらの脂環族ジイソシアネートは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記ポリオール化合物に由来する構成単位の例には、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリアクリレートポリオールおよびポリブタジエンポリオールに由来する構成単位が含まれる。上記ポリオール化合物に由来する構成単位は、カルボキシル基などの酸性基を有するポリオールに由来する構成単位を含んでもよい。
 上記ポリエーテルポリオールは、各種アルコールを酸触媒下にて縮合させることで得られる化合物とすることができる。上記ポリエーテルポリオールの例には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびその他のポリアルキレンエーテルグリコールなどが含まれる。上記ポリエーテルポリオールは、イソシアネート化合物によって鎖延長されたものでもよい。これらのポリエーテルポリオールは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記ポリエステルポリオールは、イソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、アジピン酸などを含むジカルボン酸化合物と、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジオール、および1,6-ヘキサンジオールなどを含むジオール化合物と、を反応させることで得られる化合物とすることができる。上記ポリエステルポリオールは、イソシアネート化合物によって鎖延長されたものでもよい。これらのポリエステルポリオールは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記ポリカーボネートポリオールは、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、およびプロピレンカーボネートなどを含むカーボネート化合物と、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジオール、および1,6-ヘキサンジオールなどを含むジオール化合物と、を反応させることで得られる化合物とすることができる。上記ポリカーボネートポリオールは、イソシアネート化合物によって鎖延長されたものでもよい。これらのポリカーボネートポリオールは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記酸性基を有するポリオールの例には、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、ビス-(2-ヒドロキシエチル)プロピオン酸、およびビス-(2-ヒドロキシエチル)ブタン酸などを含むジメチロールアルカン酸、N,N-ビスヒドロキシエチルグリシン、およびN,N-ビスヒドロキシエチルアラニンなどを含むアラニン化合物、ならびに、3,4-ジヒドロキシブタンスルホン酸、および3,6-ジヒドロキシ-2-トルエンスルホン酸などを含むジメチロールスルホン酸などが含まれる。上記酸性基を有するポリオールは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記酸性基を有するポリオールは、たとえば、開始剤の存在下でアルカノールアミン類とジカルボン酸とを酸塩基反応または脱水縮合させることによって得られる化合物であってもよい。上記開始剤の例には、アンモニア、第1級または第2級のモノアミン類、第1級または第2級の脂肪族ポリアミン類、および第1級または第2級の芳香族モノまたは芳香族ポリアミン類などが含まれる。上記第1級または第2級のモノアミン類の例には、メチルアミン、およびエチルアミンなどが含まれる。上記第1級または第2級の脂肪族ポリアミン類の例には、エチレンジアミン、ヘキサメチレンジアミン、N,N’-ジメチルエチレンジアミンなどが含まれる。上記第1級または第2級の芳香族モノまたは芳香族ポリアミン類の例には、アニリン、ジフェニルアミン、トルエンジアミン、ジフェニルメタンジアミン、およびN-メチルアニリンなどが含まれる。上記アルカノールアミン類の例には、モノエタノールアミンおよびジエタノールアミンなどが含まれる。上記ジカルボン酸の例には、アジピン酸およびフタル酸などが含まれる。上記三級アミノ基またはカルボキシル基を有するポリオールは、イソシアネート化合物によって鎖延長された化合物であってもよい。上記酸性基を有するポリオールは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記鎖延長剤の例には、エチレングリコール、1,4-ブタンジオール、ハイドロキノンジエトロールエーテル、2,3-ブタンジオール、トリメチロールプロパン、およびグリセリンなどの多価アルコール、ならびに、4,4’-ジアミノジフェニルメタン、エチレンジアミン、ジエチレントリアミン、トリエタノールアミン、および3,3’-ジクロロ-4,4’-ジアミノフェニルメタンなどの多価アミンなどが含まれる。
 上記有機樹脂皮膜は、金属素形材に対する有機樹脂皮膜の密着性をさらに向上させる観点から、ウレタン系樹脂以外の樹脂を含んでいてもよい。金属素形材に対する有機樹脂皮膜の密着性を向上させる観点からは、上記ウレタン系樹脂以外の樹脂は、極性基を含む樹脂であることが好ましい。上記ウレタン系樹脂以外の樹脂の例には、エポキシ系樹脂、酸変性ポリオレフィン系樹脂、およびフェノール系樹脂などが含まれる。これらの樹脂は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記エポキシ系樹脂の例には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、およびビスフェノールAD型エポキシ樹脂などが含まれる。上記酸変性オレフィン系樹脂の例には、酸変性ポリエチレン樹脂および酸変性ポリプロピレン樹脂などが含まれる。上記フェノール系樹脂の例には、ノボラック型樹脂およびレゾール型樹脂などが含まれる。
 上記有機樹脂皮膜中の上記ウレタン系樹脂の割合は、上記有機樹脂皮膜の全質量に対して50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。
 1-2-2.添加剤
 上記有機樹脂皮膜は、伸び性を高めて加工時にフィルム状の剥離を顕著に生じさせない限りにおいて、他の添加剤をさらに含有していてもよい。当該添加剤の例には、金属酸化物、防錆剤、リン化合物、潤滑剤、消泡剤、エッチング剤、無機化合物、ならびに色材などが含まれる。
 上記防錆剤は、塗装金属素形材の耐食性を向上させ、その結果、複合体の耐食性を向上させる。防錆剤は、一種でもそれ以上でもよい。防錆剤の例には、金属化合物系防錆剤、非金属化合物系防錆剤、および有機化合物系防錆剤が含まれる。有機樹脂皮膜における防錆剤の含有量は、防錆剤の種類に応じて、防錆剤による防錆効果と本発明の効果とが得られる範囲から適宜に決めることができる。
 上記金属化合物系防錆剤の例には、Ti、Zr、V、MoおよびWからなる群から選択される金属(バルブメタル)の酸化物、水酸化物またはフッ化物が含まれる。これらの金属化合物系防錆剤は、金属素形材の耐食性をより向上させることができる。特に、これらのバルブメタルのフッ化物は、自己修復作用により、皮膜欠陥部における腐食を抑制することも期待できる。
 有機樹脂皮膜における上記防錆剤の含有量は、当該金属酸化物の機能が発現される範囲において、適宜に決めることができる。たとえば、有機樹脂皮膜における当該防錆剤の含有量は、上記耐食性の観点からは、Si換算含有量が0.5質量%以上、Ti換算含有量が0.005質量%以上、Zr換算含有量が0.05質量%以上、Mo換算含有量が0.005質量%以上、V換算含有量が0.02質量%以上であることが好ましい。また、有機樹脂皮膜における防錆剤の含有量は、上記有機樹脂塗料の保管安定性の観点から、Si換算含有量が23.5質量%未満、Ti換算含有量が0.6質量%未満、Zr換算含有量が12.0質量%未満、Mo換算含有量が3.0質量%未満、V換算含有量が3.0質量%未満であることが好ましい。
 上記非金属化合物系防錆剤の例には、リン酸水素二アンモニウムなどのリン酸化合物、および、チオ尿素などのチオール化合物、が含まれる。
 上記有機化合物系防錆剤の例には、インヒビターおよびキレート化剤が含まれる。当該インヒビターの例には、オレイン酸、ダイマー酸、ナフテン酸などのカルボン酸、カルボン酸金属石鹸(ラノリンCa、ナフテン酸Zn、酸化ワックスCa、Ba塩など)、スルフォン酸塩(Na、Ca、Baスルフォネート)、アミン塩、および、エステル(高級脂肪酸のグリセリンエステル,ソルビタンモノイソステアレート,ソルビタンモノオレートなど)が含まれる。上記キレート化剤の例には、EDTA(エチランジアミンテトラ酢酸)、グルコン酸,NTA(ニトリロトリ酢酸)、HEDTA(ヒドロキシエチル、エチレンジアミン三酢酸)、DTPA(ジエチレントリアミン五酢酸)、および、クエン酸Naが含まれる。
 上記潤滑剤は、塗装金属素形材の表面におけるカジリの発生を抑制することができる。潤滑剤は、一種でもそれ以上でもよく、潤滑剤の種類は、特に限定されない。潤滑剤の例には、フッ素系やポリエチレン系、スチレン系、ポリプロピレン系などの有機系ワックス、および、二硫化モリブデンやタルクなどの無機潤滑剤、が含まれる。これらのうち、被覆金属素形材の潤滑性をより高め、かつ、皮膜が引っ張られたときに発生するクラックの起点となることによって加工時に金属素形材から剥離する有機樹脂皮膜の形状をより微細な剥片状としやすくする観点からは、有機系ワックスが好ましく、ポリエチレン系ワックスおよびポリプロピレン系ワックスがより好ましい。有機樹脂皮膜中の潤滑剤の含有量は、有機樹脂皮膜における上記有機樹脂および上記他の樹脂の総量100質量部に対して1質量部以上20質量部以下であることが好ましく、5質量部以上15質量部以下であることがより好ましく、5質量部以上10質量部以下であることがさらに好ましい。潤滑剤の上記含有量が1質量部以上であると、被覆金属素形材の潤滑性を十分に高めて、カジリの発生を十分に抑制することができる。潤滑剤の上記含有量が20質量部以下であると、有機樹脂皮膜の潤滑性が高すぎず、被覆金属素形材の取り扱いが容易である。
 上記消泡剤は、後述する有機樹脂塗料の調製時における気泡の発生を抑制する。消泡剤は、一種でもそれ以上でもよい。消泡剤の種類は、特に限定されない。消泡剤は、シリコーン系消泡剤などの既知の消泡剤を適量添加すればよい。
 上記エッチング剤は、金属素形材の表面を活性化することで、金属素形材に対する有機樹脂皮膜の密着性を向上させる。エッチング剤の例には、フッ化水素酸、フッ化アンモニウム、ジルコンフッ化水素、チタンフッ化水素などのフッ化物が含まれる。
 上記無機化合物は、有機樹脂皮膜を緻密化して耐水性を向上させる。無機化合物の例には、シリカ、アルミナ、ジルコニアなどの無機系酸化物ゾル、リン酸ナトリウム、リン酸カルシウム、リン酸マンガン、リン酸マグネシウムなどのリン酸塩などが含まれる。
 上記色材は、有機樹脂皮膜に所定の色調を付与する。色材の例には、無機顔料、有機顔料および有機染料などが含まれる。
 1-3.中間層
 中間層は、クロメート皮膜、クロムフリー皮膜およびリン酸塩皮膜などの、金属素形材と有機樹脂層との間の密着性および被覆金属素形材の耐食性などを高めるための公知の表面処理が金属素形材の表面に施されて形成された層とすることができる。これらの中間層のうち、被覆金属素形材の潤滑性をより高め、かつ、金属素形材と有機樹脂皮膜の間の密着性をより高めて加工時に金属素形材から剥離する有機樹脂皮膜の形状をより微細な剥片状としやすくする観点からは、リン酸塩皮膜が好ましい。
 リン酸塩皮膜は、リン酸アニオンを有する化合物であって、難水溶性の結晶を形成できる化合物からなる複数のリン酸塩結晶が、上記亜鉛系めっき層の表面に配置されてなる皮膜である。リン酸塩結晶の例には、リン酸マグネシウム、リン酸マンガン、リン酸亜鉛、リン酸鉄、リン酸亜鉛鉄、リン酸亜鉛カルシウムなどが含まれる。リン酸塩皮膜は、その他の成分としてNi、Mn、Mg、Ca、CoおよびFeなどの金属元素または脂肪族アミンなどを含んでいてもよい。
 2.有機樹脂で被覆された金属素形材の製造方法
 上述した有機樹脂で被覆された金属素形材は、金属素形材を用意する工程と、上記金属素形材に、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である、有機樹脂皮膜を形成する工程と、を含む方法によって製造することができる。有機樹脂皮膜を形成する工程の前に、中間層を形成する工程を有してもよい。
 2-1.金属素形材の用意
 上記金属素形材は、前述した金属素形材であればよい。金属素形材がめっき層を有するとき、本工程において、めっき層を有さない金属素形材に対して亜鉛系めっき層などのめっき層を形成してもよい。
 上記亜鉛系めっき層を構成するめっきは、Znめっき(純亜鉛めっき)、Zn-Al系合金めっき、Zn-Mg合金めっき、Zn-Ni合金めっき、およびZn-Al-Mg系合金めっきなどのいずれでもよい。
 また、上記亜鉛系めっき層は、電気めっき法、溶融めっき法および蒸着めっき法などの公知のいずれの方法で形成されためっき層であってもよい。
 2-2.有機樹脂皮膜の形成
 上記有機樹脂皮膜は、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂および任意に他の樹脂を含む処理液を、金属素形材の表面(中間層が形成されているときは、中間層の表面)に塗布し、乾燥させて形成することができる。
 上記処理液は、ポリエステルシートの表面に膜厚100μmとなるように塗布し、室温で24時間乾燥させた後に120℃で1時間焼き付けてフィルム状のサンプルを作製し、それぞれのサンプルについて、JIS K 7161(2014年)と同様にして引張破壊伸び(%)を測定したときに、引張破壊伸びが10%以下である有機樹脂皮膜を形成できるような、上述した有機樹脂皮膜の材料を含む処理液である。
 上記処理液は、成膜助剤などの他の添加物を含んでいてもよい。上記成膜助剤の例には、ベンジルアルコール、および3-メトキシ3-メチルブタノールなどを含むアルコール類、ジエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールプロピルエーテル、プロピレングリコール、ジプロピレングリコールメチルエーテル、ブチレングリコール、およびヘキシレングリコールなどを含むグリコール類、ならびにN-メチルピロリドンなどが含まれる。
 上記処理液中の上記成膜助剤の含有量は、たとえば、上記処理液の全質量に対して2質量%以上15質量%以下とすることができる。ただし、有機樹脂皮膜の引張破壊伸びをより小さくして、加工時に有機樹脂皮膜をフィルム状に剥離しにくくする観点からは、より少ないことが好ましく、たとえば、上記処理液中の上記成膜助剤の含有量は、たとえば、上記処理液の全質量に対して10質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0.01質量%以下であることが特に好ましい。上記成膜助剤の含有量の最低値は、0質量%とすることができる。
 あるいは、上記有機樹脂皮膜は、予め形成しておいた、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下のフィルムを、金属素形材に張り付けて形成してもよい。このとき、加熱などして上記フィルムと金属素形材とを溶着させてもよい。
 2-3.中間層の形成
 中間層は、クロメート処理、クロムフリー処理およびリン酸塩処理などの公知の表面処理を、金属素形材の表面に施して形成することができる。たとえば、リン酸塩処理は、リン酸塩処理液を金属素形材の表面に塗布して乾燥させて、形成することができる。
 このとき、表面調整剤を金属素形材の表面に予め付与して、リン酸塩結晶の付着量を調整してもよい。
 リン酸塩処理液は、前述のリン酸塩を水溶媒に溶解させるか、リン酸および後述する金属イオンを生成可能な金属塩を水溶媒に溶解させることで調製されうる。十分な数のリン酸塩の結晶を析出させ、かつ、リン酸塩が凝集することによるスラッジの発生を抑制する観点からは、リン酸塩処理液中のリン酸イオンの濃度は、0.03モル/L以上0.5モル/L以下であることが好ましい。
 リン酸塩処理液は、-NHまたは=NHの少なくとも一方の官能基を有するポリアミン系有機インヒビターを含んでいてもよい。ポリアミン系有機インヒビターは、-NHまたは=NHの作用によりめっき層表面に吸着するとともに、外界側(処理液側)に配向した炭化水素基などの非極性基が分子間力により単分子膜を形成し、リン酸塩処理液に含まれるエッチング成分とめっき層表面との接触を阻害する。その結果、適度な間隔を空けてリン酸塩の結晶粒子を析出させることができるとともに、リン酸塩の結晶粒子を微細化することもできる。
 ポリアミン系有機インヒビターの例には、ポリエチルアミン、ポリエチレンイミン、ポリエーテルアミンおよびポリアミノアクリレートなどを含む脂肪族ポリアミン、ならびにポリアニリンなどを含む芳香族ポリアミンなどが含まれる。リン酸塩処理液中の安定性を高める観点からは、ポリアミン系有機インヒビターは、脂肪族ポリアミンであることが好ましい。
 析出するリン酸塩結晶の量を適度に調整する観点からは、ポリアミン系有機インヒビターの数平均分子量は、200以上30000以下であることが好ましい。また、析出するリン酸塩結晶の量を適度に調整する観点からは、リン酸塩処理液中のポリアミン系有機インヒビターの濃度は、0.01質量%以上5質量%以下であることが好ましい。
 リン酸塩処理液は、さらに、硝酸イオンを含んでいてもよい。硝酸イオンは、リン酸塩の析出を促進させる。
 析出するリン酸塩結晶の量を適度に調整する観点からは、リン酸塩処理液中の硝酸イオンの濃度は、0.01モル/L以上1.0モル/L以下であることが好ましい。
 リン酸塩処理液は、さらに、フッ化物を含んでいてもよい。特にAlを含むめっき層の表面にリン酸塩皮膜を形成するとき、めっき層から溶出したAlがリン酸塩の析出を妨げることがあるが、リン酸塩処理液にフッ化物を添加することでこの溶出Alの悪影響を抑制することができる。上記フッ化物の例には、フッ化ナトリウム、フッ化カリウム、フッ化水素ナトリウムなどが含まれる。析出するリン酸塩結晶の量を適度に調整する観点からは、リン酸塩処理液中のフッ化物の濃度は、0.001モル/L以上0.5モル/L以下であることが好ましい。
 リン酸塩処理液の塗布方法は、特に限定されず、めっき層の表面にリン酸塩処理液を塗布する公知の方法から適宜選択すればよい。上記塗布方法の例には、スプレー法、浸漬引き上げ法などが含まれる。
 リン酸塩処理液を塗布する際のリン酸塩処理液の温度は、40℃以上80℃以下であることが好ましい。40℃以上80℃以下に加温したリン酸塩処理液を使用すると、短時間で微細なリン酸塩結晶を安定して多数析出させることができる。
 たとえば、40℃以上80℃以下に加温したリン酸塩処理液をスプレー法で塗布した場合は、2~6秒程度でリン酸塩結晶が析出してリン酸塩皮膜が形成される。また、40℃以上80℃以下に加温したリン酸塩処理液を浸漬引き上げ法で塗布した場合は、3~9秒程度でリン酸塩結晶が析出してリン酸塩皮膜が形成される。処理時間を上記時間より長くしても、リン酸塩の析出が飽和するため、特に問題は無い。
 リン酸塩の析出を促進するため、リン酸塩処理液を塗布する前に、亜鉛系めっき層を公知の表面調整剤で表面調整してもよい。
 上記表面調整剤の例には、チタンコロイドおよびリン酸亜鉛の微粒子などが含まれる。
 上記表面調整剤の付与量は、5mg/m以上80mg/m以下であることが好ましく、10mg/m以上60mg/m以下であることがより好ましく、20mg/m以上50mg/m以下であることがさらに好ましい。
 [実施例1]
 有機樹脂皮膜の伸び性が皮膜の剥離形状に及ぼす影響を検討するため、以下の実験を行った。
 基材鋼板として、板厚1.1mmtの冷延鋼板を用いた。
 1.処理液の調製および評価
 1-1.処理液の調製方法
 ガス導入菅、冷却菅、温度計および攪拌装置を備えたフラスコに、以下の化合物から選択されたポリオールを加え、90℃で10分間加熱した後に75℃の温度で保持した。
 ・ポリエステルポリオール(DIC株式会社、ポリライト OD-X-2251)
 ・ポリエーテルポリオール(第一工業製薬株式会社、ハイフレックス)
 ・2,2-ジメチロールプロピオン酸(東京化成工業株式会社)
 ・2,2-ジメチロール酪酸(東京化成工業株式会社)
 その後、以下の化合物から選択されたポリイソシアネートと触媒とを上記フラスコに加え、90℃で3時間反応させた後に50℃まで冷却することでウレタンプレポリマーを製造した。
 ・脂肪族ジイソシアネート:
   ヘキサメチレンジイソシアネート(東京化成工業株式会社)
 ・脂環族ジイソシアネート:
   イソホロンジイソシアネート(東京化成工業株式会社)
 ・芳香族ジイソシアネート:
   ジフェニレンジイソシアネート(東京化成工業株式会社)
   トルエンジイソシアネート(東京化成工業株式会社)
 得られたウレタンプレポリマーにアセトンを滴下することで希釈し、60℃でさらに1時間反応させた後に、トリエチルアミンを添加してウレタンプレポリマーのカルボキシル基の中和反応を30分間行った。
 中和されたウレタンプレポリマー溶液に水を滴下して乳化させた。この乳化したウレタンプレポリマー溶液に以下の化合物から選択された鎖延長剤を滴下し、鎖延長反応を行った。
 ・エチレンジアミン
 ・ジエチレントリアミン
 鎖延長反応後、ロータリーエバポレーターによる減圧蒸留にてアセトンおよび水を除去した。固形分調整のため適量の水と、以下の成膜助剤とを添加し、エマルジョン状のポリウレタン系樹脂を含有する処理液1を得た。
 ・成膜助剤: N-メチルピロリドン
 各成分の配合量を表1に記載のように変更して、処理液1~処理液6を調製した。なお、表1に記載の数値は各成分の配合量(質量部)である。残部の水の量は、固形分濃度が35質量%となるような量とした。
Figure JPOXMLDOC01-appb-T000001
 1-2.物性の評価
 上記処理液1~処理液6のそれぞれをポリエステルシートの表面に膜厚100μmとなるように塗布し、室温で24時間乾燥させた後に120℃で1時間焼き付けてフィルム状のサンプルを作製し、それぞれのサンプルについて、JIS K 7161(2014年)と同様にして引張破壊伸び(%)を測定した。
 表2に、処理液1~処理液6を調製する際に用いたウレタン系樹脂の材料(ポリイソシアネート化合物およびジオール化合物の種類)、成膜助剤の添加量(処理液の全質量に対する添加量の質量%)、および測定された引張破壊伸び(%)を示す。
Figure JPOXMLDOC01-appb-T000002
 
 2.被覆金属素形材の作製
 基材鋼板の表面に、上記処理液1~処理液6のいずれかをバーコーターで塗布し、乾燥板温140℃として焼き付け、処理液の種類または有機樹脂皮膜の膜厚が異なる、ウレタン系樹脂を含む有機樹脂皮膜を有する被覆金属素形材1~被覆金属素形材16を作製した。有機樹脂皮膜を形成しない基材鋼板を、被覆金属素形材17とした。
 3.評価
 3-1.潤滑性
 プレス加工時の潤滑鋼板平面の潤滑性を評価するため、平板摺動試験を用いて、被覆金属素形材1~被覆金属素形材17の動摩擦係数を測定した。それぞれの被覆金属素形材から採取した長さ300mmおよび幅30mmの試験片について、その表面に1.5g/mとなる量の防錆油(大同化学工業株式会社 ダイラストRX-900V)を塗布した後、以下に示す条件にて平面摺動試験を行い、動摩擦係数(引き抜き力/押し付け荷重)を測定した。
 (試験条件)
 ダイ形状:   30mmL×50mmWの長平面(SKD11製金型)
 押し付け荷重: 900N/mm
 引抜速度:   100mm/分
 摺動長さ:   100mm
 試験温度:   室温
 判定基準:   平板摺動試験による動摩擦係数
 得られた動摩擦係数から、以下の基準で被覆金属素形材1~被覆金属素形材17の潤滑性を評価した。
 (評価基準)
 ◎: 動摩擦係数は0.15以下である
 ○: 動摩擦係数は0.15超え、0.25以下である
 △: 動摩擦係数は0.25超え、0.35以下である
 ×: 動摩擦係数は0.35超えである
 3-2.剥離した皮膜の大きさ
 絞り加工時に剥離した有機樹脂皮膜の形状を評価するため、下記の条件で2段の円筒の絞り、しごき加工を実施した。
 (加工条件)
 1段目:絞り加工
  パンチ径: 40mm
  パンチ肩:  5mmR
  ダイス径: 44mm
  ダイス肩:  5mmR
  絞り比:   2.10
  皺押え圧力: 5kN
 2段目:しごき加工
  パンチ径: 40mm
  パンチ肩:  5mmR
  ダイス径: 41.25mm
  ダイス肩:  3mmR
 2段目のしごき加工後に剥離した剥片のうち任意に選択した10個の剥片の大きさの平均値から、以下の基準で被覆金属素形材1~被覆金属素形材17から剥離した皮膜の大きさを評価した。
 (評価基準)
 ◎: 剥片の大きさは1mm角以下である
 ○: 剥片の大きさは1mm角超え、3mm角以下である
 △: 剥片の大きさは3mm角超え、5mm角以下である
 ×: 剥片の大きさは5mm角超えである
 3-3.クラック発生面積率
 被覆金属素形材1~被覆金属素形材17に対して、JIS Z 2248(2014年)に準じて密着曲げ試験を行い、その後、曲げ加工部のうち任意に選択された5か所をSEMで倍率を300倍として撮像した。撮像された画像のうち、有機樹脂皮膜にクラックが発生することにより下地の鋼板が露出している部分の面積の割合を算出し、5か所の割合の平均値を、それぞれの被覆金属素形材のクラック発生面積率とした。
 被覆金属素形材1~被覆金属素形材17の作製時に用いた処理液の種類、有機樹脂皮膜の膜厚、潤滑性および剥離した皮膜の大きさ、ならびにクラック発生面積率の評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の有機樹脂皮膜を形成した被覆金属素形材1~被覆金属素形材7および被覆金属素形材9~被覆金属素形材11は、潤滑性が高く、かつ、加工時に有機樹脂皮膜が微細な剥片状として剥離していた。
 一方で、引張破壊伸びが10%より大きい有機樹脂皮膜を形成した被覆金属素形材12~被覆金属素形材16は、加工時に有機樹脂皮膜がより大きいサイズで剥離していた。
 また、有機樹脂皮膜の膜厚が0.2μm未満である被覆金属素形材8は、潤滑性が低かった。
 [実施例2]
 有機樹脂皮膜が有機系ワックスを含有することの、被覆金属素形材の潤滑性および耐かじり性への影響を検討するため、以下の実験を行った。
 1.処理液の調製および評価
 1-1.処理液の調製
 実施例1で調製した処理液1~処理液4に、所定量の以下の有機系ワックス(ポリエチレンワックスまたはポリプロピレンワックス)を添加した。
 ・ポリエチレンワックス: 丸芳化学株式会社製、MYE-35G
 ・ポリプロピレンワックス: 東邦化学株式会社製、P-5800
 1-2.処理液の調製
 上記有機系ワックスを添加した処理液1~処理液4の引張破壊伸び(%)を、実施例1と同様に測定した。
 2.被覆金属素形材の作製および評価
 上記各処理液を用いて、実施例1と同様にして被覆金属素形材21~被覆金属素形材28を作製し、実施例1と同様の基準で潤滑性および剥離した皮膜の大きさを評価した。
 被覆金属素形材21~被覆金属素形材28の作製時に用いた処理液の種類、添加した有機系ワックスの種類および添加量(添加後の処理液の全質量に対する、有機系ワックスの添加量の質量%)、有機樹脂皮膜の破断伸び強度、有機樹脂皮膜の膜厚、潤滑性および剥離した皮膜の大きさ、ならびにクラック発生面積率の評価結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、有機樹脂皮膜が、有機樹脂皮膜の全質量に対して1質量%以上20質量%以下の量の有機系ワックスを含有すると、被覆金属素形材の潤滑性が高くなり、かつ、加工時に有機樹脂皮膜が微細な剥片状として剥離していた。
 本出願は、2018年6月29日出願の日本国出願番号2018-124458号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲および明細書に記載された内容は本出願に援用される。
 本発明によれば、特に多段の加工を行ったときなどに有機樹脂皮膜がフィルム状に剥離しにくい、有機樹脂で被覆された金属素形材が提供される。そのため、本発明は、金属素形材の加工時の加工品への押し疵の発生を抑制したり、金型の洗浄頻度をより少なくしたりすることができ、金属素形材の加工品のより一層の普及に貢献することが期待される。
 

Claims (6)

  1.  金属素形材と、前記金属素形材の表面に配置された、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含む有機樹脂皮膜と、を有し、
     JIS Z 2248(2014年)に準じて密着曲げ試験を行った後に、曲げ加工部のから選択された5か所を走査型電子顕微鏡で倍率を300倍として撮像した画像から算出される、クラック発生面積率の平均値が、10%以上である、
     有機樹脂で被覆された金属素形材。
  2.  金属素形材と、前記金属素形材の表面に配置された有機樹脂皮膜と、を有し、
     前記有機樹脂皮膜は、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、膜厚100μmとしたときの引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である、
     有機樹脂で被覆された金属素形材。
  3.  前記有機樹脂皮膜は、前記引張破壊伸びが5%未満の皮膜である、請求項2に記載の有機樹脂で被覆された金属素形材。
  4.  前記有機樹脂皮膜は、前記引張破壊伸びが1%未満の皮膜である、請求項2または3に記載の有機樹脂で被覆された金属素形材。
  5.  前記有機樹脂皮膜は、前記有機樹脂皮膜の全質量に対して1質量%以上20質量%以下の量の有機系ワックスを含有する、請求項1~4のいずれか1項に記載の有機樹脂で被覆された金属素形材。
  6.  金属素形材を用意する工程と、
     前記金属素形材に、ポリイソシアネート化合物に由来する構成単位およびポリオール化合物に由来する構成単位を有するウレタン系樹脂を含み、引張破壊伸びが10%以下であり、かつ、膜厚が0.2μm以上5.0μm以下の皮膜である、有機樹脂皮膜を形成する工程と、
     を有する、有機樹脂で被覆された金属素形材の製造方法。
     
     
     
PCT/JP2019/025231 2018-06-29 2019-06-25 有機樹脂で被覆された金属素形材およびその製造方法 WO2020004416A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124458A JP2020001325A (ja) 2018-06-29 2018-06-29 有機樹脂で被覆された金属素形材およびその製造方法
JP2018-124458 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004416A1 true WO2020004416A1 (ja) 2020-01-02

Family

ID=68986595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025231 WO2020004416A1 (ja) 2018-06-29 2019-06-25 有機樹脂で被覆された金属素形材およびその製造方法

Country Status (3)

Country Link
JP (1) JP2020001325A (ja)
TW (1) TW202017745A (ja)
WO (1) WO2020004416A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038652A (ja) * 2005-06-30 2007-02-15 Nippon Steel Corp 表面処理金属材
JP2012126131A (ja) * 2010-11-22 2012-07-05 Nippon Steel Corp クロメートフリー塗装めっき鋼板
JP2016176118A (ja) * 2015-03-20 2016-10-06 Jfe鋼板株式会社 塗装亜鉛系めっき鋼板
WO2016208284A1 (ja) * 2015-06-26 2016-12-29 Dic株式会社 鋼板表面処理剤、及びその塗膜を有する鋼板
WO2017081731A1 (ja) * 2015-11-09 2017-05-18 日本パーカライジング株式会社 金属表面処理組成物、金属材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038652A (ja) * 2005-06-30 2007-02-15 Nippon Steel Corp 表面処理金属材
JP2012126131A (ja) * 2010-11-22 2012-07-05 Nippon Steel Corp クロメートフリー塗装めっき鋼板
JP2016176118A (ja) * 2015-03-20 2016-10-06 Jfe鋼板株式会社 塗装亜鉛系めっき鋼板
WO2016208284A1 (ja) * 2015-06-26 2016-12-29 Dic株式会社 鋼板表面処理剤、及びその塗膜を有する鋼板
WO2017081731A1 (ja) * 2015-11-09 2017-05-18 日本パーカライジング株式会社 金属表面処理組成物、金属材料の製造方法

Also Published As

Publication number Publication date
TW202017745A (zh) 2020-05-16
JP2020001325A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
KR101070966B1 (ko) 표면 처리 금속재 및 금속 표면 처리제
US7947333B2 (en) Method for coating of metallic coil or sheets for producing hollow articles
TWI408255B (zh) Coated steel plate
KR100455221B1 (ko) 성형 가공에 적합한 알칼리 가용성 윤활 피막의 형성가능한 코팅 조성물 및 이들의 용도
KR20020013441A (ko) 연료 탱크용으로 우수한 성형성을 갖는 용해성 윤활 표면처리 스테인레스 스틸 박판 및 연료 탱크 제조 방법
KR100686387B1 (ko) 성형성 및 피막 건조 온도에 의존하지 않고 장기 안정탈막성이 우수한 알칼리 가용형 윤활 표면 처리 금속제품
WO2013145712A1 (ja) 塗装金属素形材、塗装金属素形材と熱可塑性樹脂組成物の成形体とが接合された複合体、およびその製造方法
WO2017038786A1 (ja) 燃料タンク用表面処理鋼板
KR100521284B1 (ko) 성형성이 우수한 알칼리 가용형 윤활 표면 처리 금속 제품
JP5960815B2 (ja) 溶融亜鉛めっき鋼板及びその製造方法
JP4157491B2 (ja) 加工性に優れた非脱膜型潤滑めっき鋼板
JP4132729B2 (ja) 成形性に優れた燃料タンク用可溶型潤滑表面処理ステンレス鋼板および燃料タンクの製造方法
WO2020004416A1 (ja) 有機樹脂で被覆された金属素形材およびその製造方法
JP3872969B2 (ja) 成形性および耐エマルジョン型作動油性に優れたハイドロフォーム用可溶型潤滑表面処理金属製品およびその成形加工方法
JP2019171613A (ja) 塗装金属素形材、複合体および複合体の製造方法
JP2003027256A (ja) 成形性および皮膜乾燥温度に依存せず長期安定脱膜性に優れたアルカリ可溶型潤滑表面処理金属製品
JPH10109376A (ja) 非アルカリ脱膜型潤滑樹脂処理鋼板およびその製造方法
JPH08323914A (ja) 耐クロム溶出性および加工後耐食性に優れた有機複合被覆鋼板
JP2005139477A (ja) 加工性,耐コイル変形性,耐食性に優れた表面処理鋼板
JP4392967B2 (ja) 成形性に優れたアルカリ可溶型潤滑表面処理金属製品
JP3207747B2 (ja) 冷延鋼板を基板とした塗膜密着性、耐パンチング性および耐プレッシャーマーク性に優れたガードフィルムフリー型プレコート鋼板
JP2005305539A (ja) 高強度自動車用部材の製造方法
JP2850183B2 (ja) プレス油省略可能非脱膜型潤滑めっき鋼板の製造方法
CN107206752B (zh) 接合了涂装金属原料型材与包含化学纤维的织物的复合体及其制造方法
JP2003003278A (ja) 連続成形性に優れたアルカリ可溶型潤滑表面処理金属製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825859

Country of ref document: EP

Kind code of ref document: A1