WO2020004304A1 - セラミックス製造用顆粒の製造方法 - Google Patents

セラミックス製造用顆粒の製造方法 Download PDF

Info

Publication number
WO2020004304A1
WO2020004304A1 PCT/JP2019/024893 JP2019024893W WO2020004304A1 WO 2020004304 A1 WO2020004304 A1 WO 2020004304A1 JP 2019024893 W JP2019024893 W JP 2019024893W WO 2020004304 A1 WO2020004304 A1 WO 2020004304A1
Authority
WO
WIPO (PCT)
Prior art keywords
granules
slurry
powder
inorganic compound
cyclone
Prior art date
Application number
PCT/JP2019/024893
Other languages
English (en)
French (fr)
Inventor
宗寛 藤本
池田 剛
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201980043534.3A priority Critical patent/CN112368251A/zh
Priority to EP19827459.9A priority patent/EP3816138A4/en
Priority to US17/256,114 priority patent/US11884596B2/en
Priority to KR1020207037571A priority patent/KR20210022588A/ko
Publication of WO2020004304A1 publication Critical patent/WO2020004304A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a method for producing granules for producing ceramics, which contains an inorganic compound, for example, aluminum nitride as particles for sintering.
  • the inorganic material represented by aluminum nitride is a sintered body obtained by forming a slurry containing a solvent and, if necessary, a binder or the like into granules by spray drying, and baking and solidifying the granules, that is, ceramics.
  • the above ceramics are used for various applications.
  • ceramics made of aluminum nitride exhibit high thermal conductivity and high insulation properties, and are widely used as heat dissipation materials and electrical insulation materials in applications such as heat dissipation boards for electronic equipment and electronic circuit boards (Patent Documents 1 and 2). ).
  • the above-mentioned granular molded product is suitable for molding into a predetermined shape by press molding because the particle size is uniform, and by firing such a molded product, the desired shape is obtained. Ceramics can be obtained.
  • the granulated granules are collected from the lower part of the spray drying device, and the fine powder is discharged from the spray drying device together with the exhaust gas and collected by a cyclone and a bag filter.
  • the fine powder is generated by collision of granules in a drying process in a spray drying apparatus and generation of fine droplets generated when spraying a slurry.
  • the amount of the fine powder is relatively increased, and the yield of the obtained granules is reduced, and improvement is required.
  • an object of the present invention is to provide a method for producing granules for producing ceramics, which is excellent in productivity in the method for producing granules.
  • aluminum nitride is preferably used as the inorganic compound.
  • the production method of the present invention in the production method of the granules, the product excluded as fine powder is recovered and mixed with the obtained granules to produce a product, thereby greatly improving the yield for ceramics production. It is possible to provide a method for producing granules.
  • the most significant features of the production method of the present invention are a technique for collecting fine powder and mixing the collected fine powder with granules.
  • the present inventors paid attention to the contamination of the fine powder by the cyclone used for the recovery of the fine powder, and succeeded in recovering the fine powder with extremely low contamination by forming the inner surface of the cyclone with ceramics.
  • Such granules for producing ceramics can effectively avoid a decrease in sinterability and a deterioration in appearance due to the incorporation of metal impurities, and also contain a large amount of fine particles derived from fine powder, so that the bulk bulk density can be increased. ing.
  • the resulting press-molded product is dense with small particle gaps. Accordingly, when ceramics are produced by sintering such a press-formed body at a high temperature, the sintering variation due to the particle gap is effectively suppressed, and ceramics with stable physical properties can be obtained. .
  • FIG. 3 is a flowchart showing a process of the method for producing granules for producing ceramics of the present invention.
  • the production process of the granules for producing ceramics of the present invention is, roughly speaking, preparing a powder of an inorganic compound as a sintering material, a solvent and optionally used optional materials as raw materials, A slurry is prepared using these raw materials (slurry preparation step), and the obtained slurry is supplied to a spray drying apparatus to granulate (granulation step), and if necessary, the obtained granules are fluidized. (Fluidization step), and further, a step of collecting fine particles using a cyclone and mixing the same with the granules is provided.
  • the inorganic compound used as a raw material is a sintered material, a component that forms a skeleton of a finally manufactured ceramic, and an inorganic compound according to the type of the target ceramic is used. .
  • an inorganic compound a high-purity inorganic compound in which the content of iron, which is one of the metal compounds having a risk of deteriorating the characteristics and appearance of the sintered body, is suppressed to 20 ppm or less is used.
  • various inorganic compounds can be used as long as they have such high purity, it is most preferable to use aluminum nitride used for electronic circuit boards of electronic equipment and the like. Among them, aluminum nitride produced by a reduction nitridation method is preferably used as an inorganic compound having few metal impurities.
  • the powder of the inorganic compound used for preparing the slurry to be subjected to spray drying generally has an average particle diameter of 5 ⁇ m or less, particularly about 0.5 to 3 ⁇ m, in order to obtain granules having a uniform particle size distribution. Is preferred.
  • the average particle size is measured by, for example, a particle size distribution measuring device using a laser diffraction method.
  • the solvent used together with the above-mentioned inorganic compound powder is an essential component for slurry preparation and granulation by spray drying, and water or a volatile organic solvent is used depending on the type of the inorganic compound.
  • organic solvent include, but are not limited to, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; alcohols such as ethanol, propanol and butanol; and aromatics such as benzene, toluene and xylene.
  • a solvent is preferably used, for example, in such an amount that the viscosity of the obtained slurry at 20 ° C. is in the range of 0.02 to 2000 mPa ⁇ s.
  • 100 parts by mass of the aforementioned inorganic compound powder Used in an amount of from 20 to 200 parts by weight.
  • compounding agents used for molding ceramics for example, a binder, a surfactant, a sintering aid and the like.
  • Binder is used for molding ceramics using granules, prior to sintering, particles are used to form a molded body of a predetermined shape without falling apart, It is a conventionally known compounding agent.
  • binders include, but are not limited to, polyvinyl acetal, such as polyvinyl butyral; polymethyl methacrylate, polyethyl methacrylate, poly 2-ethylhexyl methacrylate, polybutyl methacrylate, polyacrylate, Acrylic resins such as cellulose acetate butyrate; oxygen-containing organic polymers such as nitrocellulose, methylcellulose, hydroxymethylcellulose, polyvinyl alcohol, polyoxyethylene oxide and polypropylene oxide; hydrocarbon-based resins such as petroleum resin, polyethylene, polypropylene and polystyrene Organic polymers such as synthetic resins; polyvinyl chloride; waxes and their emulsions can be used, and these can be used as a mixture of two or more.
  • polyvinyl acetal and an acrylic resin are preferable, and specifically, S-LEC B manufactured by Sekisui Chemical Co., Ltd., Mobital manufactured by Kuraray Co., Ltd., Aron series manufactured by Toagosei Co., Ltd., Kyoeisha Chemical Oricox KC series manufactured by Nissin Kasei Co., Ltd .; NSK series manufactured by Nissin Kasei Co., Ltd .; and KWE series manufactured by Taisei Fine Chemical Co., Ltd.
  • S-LEC B manufactured by Sekisui Chemical Co., Ltd., Mobital manufactured by Kuraray Co., Ltd., Aron series manufactured by Toagosei Co., Ltd., Kyoeisha Chemical Oricox KC series manufactured by Nissin Kasei Co., Ltd .; NSK series manufactured by Nissin Kasei Co., Ltd .; and KWE series manufactured by Taisei Fine Chemical Co., Ltd.
  • the surfactant is used to uniformly disperse the inorganic compound powder in the slurry, and a surfactant known per se can be used.
  • the surfactant has an HLB of 4.5 to 18, particularly preferably 6 to 6.
  • Nonionic surfactants in the range of 0.0 to 10.0 are preferably used. Examples of such nonionic surfactants include carboxylated trioxyethylene tridecyl ether, digserin monooleate, diglycerin monostearate, carboxylated heptaoxyethylene tridecyl ether, tetraglycerin monooleate, and hexaglycerin monooleate.
  • polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, etc. can be used as a mixture of two or more.
  • the amount of the surfactant to be used is preferably 0.01 to 10 parts by mass, particularly preferably 0.02 to 3.0 parts by mass, per 100 parts by mass of the inorganic compound powder.
  • the sintering aid is used for accelerating sintering in the production of ceramics, and any known sintering aid can be used depending on the type of inorganic compound powder.
  • alkaline earth metal oxides such as calcium oxide and strontium oxide; rare earth oxides such as yttrium oxide and lanthanum oxide; composite oxides such as calcium aluminate; It is suitable as an auxiliary agent, and is used in the range of 0.1 to 10% by mass in the total amount with the aluminum nitride powder.
  • Slurry preparation The various raw materials described above can be mixed using a known mixing device, and a rotary mill represented by a ball mill is generally used as such a mixing device. Thereby, a slurry in which the inorganic compound powder is uniformly distributed is obtained. The obtained slurry is filtered, if necessary, to remove coarse particles in the slurry, and then temporarily stored in a slurry tank.
  • the above-mentioned filtration is generally performed by passing the slurry through a filter medium having an opening of 10 to 100 ⁇ m. In this way, a slurry having a viscosity at 20 ° C. preferably in the range of 0.02 to 2000 mPa ⁇ s is obtained.
  • the slurry obtained as described above is introduced into a spray drying apparatus and granulated.
  • the slurry is supplied to the spray drying apparatus through a magnet filter.
  • the aluminum nitride powder is very hard, so that the conveying pipe of the material containing the aluminum nitride powder may be worn, and the worn powder may be mixed as impurities.
  • a stainless steel pipe is used as the transfer pipe.
  • abrasion powder containing Fe, Ni, Cr and the like may be mixed in the slurry.
  • the removal of the wear powder by the magnet filter can be performed after granulation, but after the granulation, the removal efficiency is low. Therefore, the wear powder is removed through the magnet filter immediately before the slurry is supplied to the spray drying device. Is preferred. That is, passing the slurry through the magnet filter can bring the magnet filter into close contact with the magnet filter rather than passing the granules (granules) obtained by granulation through the magnet filter.
  • the prepared slurry is sprayed from above into a suitably heated dry air stream (for example, air or nitrogen gas), whereby the solvent is removed, and the particulate matter containing the inorganic compound is removed. can get.
  • a suitably heated dry air stream for example, air or nitrogen gas
  • the disk method is preferable for the ceramic granules having a relatively small particle diameter according to the present invention.
  • the granules obtained by granulation are collected from the lower part of the spray-drying device, and the fine powder is discharged from the spray-drying device together with the exhaust gas and collected by a cyclone and a bag filter.
  • a method of directly recovering the entire amount of the product by a bag filter without using a cyclone is also conceivable, but according to the confirmation of the present inventors, the granules are out of shape or the fine powder is firmly adhered to the surface and the weight is heavy.
  • the fine powder collected in the cyclone has a smaller particle size than the granules collected under a spray dryer, and the particle size is preferably 40 ⁇ m or less. Smaller particles not repaired by the cyclone are collected by a bag filter.
  • This fine powder is mixed with the granules obtained by spray drying.
  • the fine powder is centrifuged, collides with the wall surface, then falls by gravity and accumulates below, so that the inner surface of the cyclone is easily worn. Therefore, a cyclone whose inner surface is coated with a ceramic is used.
  • a cyclone whose inner surface is coated with a ceramic is used.
  • it is possible to reliably prevent metal impurities from being mixed into the fine powder collected by the cyclone, and to effectively avoid mixing metal impurities when the fine powder is mixed with the granular material obtained by granulation. it can.
  • aluminum nitride is used as the inorganic compound, it is preferable to coat with aluminum nitride ceramics or alumina ceramics.
  • coarse particles for example, particles having a particle diameter of 300 ⁇ m or more
  • a sieve for example, a vibration sieve
  • the granules obtained as described above are mixed with the fine powder recovered by the cyclone described above, so that the ratio of the fine particles having a particle size of 40 ⁇ m or less is in the range of 10 to 25% by mass. , It is preferable to mix fine powder. Although there is no limitation on the mixing method, it is preferable to perform the mixing method together with the fluidization treatment described later.
  • the granules in which the fine powder is mixed as described above are supplied to a step (fluidizing step) of retaining the granules (mixture of the granules and the fine powder) in a turbulent gas, thereby improving the fluidity and the strength of the granules. It is preferable to further homogenize the granules and the fine powder collected by the cyclone.
  • the ceramic manufacturing granules aluminum nitride granules are used, and the gas used for the fluidization is preferably a gas that does not substantially react with additives such as aluminum nitride powder and a binder. Oxygen, nitrogen and the like can be mentioned.
  • the wind speed of the supplied gas may be any wind speed required for fluidizing the granules.
  • the wind speed required for fluidization of the granules is, for example, the value of the value calculated by the formula of the fluidization start speed described on page 176 and the formula of the terminal speed described on page 1056 of “Chemical Engineering Handbook Revised 4th Edition” edited by the Society of Chemical Engineers, Japan. Arbitrarily selected from the range.
  • the residence time of the granules is preferably selected from the range of 1 minute to 36 hours.
  • the temperature of the supplied gas may be any temperature, but is preferably selected from the range of 0 to 250 ° C. in order to obtain aluminum nitride granules having an appropriate breaking strength.
  • the fluidization step uses a device equipped with a fluidized bed, and is generally performed in a batch.However, in the granulation process by spray drying that supplies granules to the fluidization process, It is preferable to operate continuously. In such a case, a hopper or a tank serving as a buffer is provided between the granulation step and the fluidization step to prevent the operation in the granulation step from being performed in batch in accordance with the fluidization step. It is also possible to perform the fluidization step in batches while performing the steps continuously, which is a preferred embodiment.
  • the granules obtained through the fluidization step are appropriately sieved, whereby coarse particles are further removed and collected as the granules for ceramics production of the present invention having a predetermined average particle diameter and fine particle content.
  • the granules for ceramics produced by the method of the present invention have an extremely high purity of 0.1% by mass or less of metal impurities per inorganic compound.
  • the content of iron, which is one of the metal impurities can be suppressed to 20 ppm or less in terms of element, it is possible to effectively prevent deterioration of the characteristics and appearance of the sintered body due to such metal impurities. It becomes.
  • the fine powder contained together with the granules functions as granules having a small particle size and fills the gaps between the large particles, and thus is extremely suitable for sintering through press molding. That is, when the granules are filled in a predetermined mold and press-molded, the obtained press-molded body has a void during sintering by high-temperature heating performed subsequently because the particles are tightly bonded to each other. Sinterability can be effectively prevented from being reduced due to the presence of slag.
  • the average particle size of the particles such as granules and the content of the fine particle components are measured by a laser diffraction scattering method.
  • the granules for producing ceramics of the present invention are formed into a desired shape by, for example, press molding after filling in a predetermined mold, and then sintered by heating according to the type of the inorganic compound used (for example, nitriding).
  • the type of the inorganic compound used for example, nitriding.
  • aluminum the deterioration of various characteristics due to poor sintering is effectively prevented, and a ceramic having stable characteristics can be obtained. Therefore, when aluminum nitride powder is used as the raw material inorganic compound powder, the final product, ceramics, has extremely high quality, and is widely used as a circuit board or heat sink of various electronic devices.
  • Average particle size of aluminum nitride powder The average particle size of aluminum oxide powder, aluminum nitride powder, and a mixed powder of aluminum nitride and unreacted raw aluminum oxide is determined by dispersing a sample in a sodium pyrophosphate aqueous solution using a homogenizer, It was measured by a laser diffraction method using MICROTRAC HRA manufactured by Co., Ltd.
  • Specific surface area The specific surface area of the aluminum nitride powder was measured by a BET method using a flow type surface area automatic measurement apparatus Flowsorb 2300 manufactured by Shimadzu Corporation.
  • Oxygen Content The total oxygen content in the aluminum nitride powder was measured using a ceramic oxygen nitrogen analyzer EMGA-620W manufactured by Horiba, Ltd. (4) Carbon Content The carbon content in the aluminum nitride powder was determined by burning the powder in an oxygen stream using a carbon-in-metal analyzer “EMIA-110” manufactured by Horiba, Ltd. It was determined from the amount of CO 2 gas.
  • Content of metal element in aluminum nitride powder The content of metal element other than aluminum in aluminum nitride powder was determined by adding 2 mL of nitric acid and 10 mL of phosphoric acid to 0.8 g of a sample, thermally decomposing at 380 ° C for 20 minutes, and It was measured by ICP emission spectroscopy using ICPS-1000-II manufactured by Shimadzu Corporation.
  • Average particle size of granules The average particle size was measured by a laser diffraction method using MICROTRAC MT3300EX manufactured by Nikkiso Co., Ltd.
  • Amount of Metal Impurities in Aluminum Nitride Granules The content of metal elements in aluminum nitride granules was determined by heating and degreased the granules at 600 ° C. for 5 hours. To 0.8 g of the sample, 2 mL of nitric acid and 10 mL of phosphoric acid were added, and the mixture was thermally decomposed at 380 ° C. for 20 minutes, and measured by ICP emission spectrometry using ICPS-1000-II manufactured by Shimadzu Corporation. (8) Bulk bulk density The bulk bulk density was measured using "A / B / D powder property measuring device" manufactured by Tsutsui Physical and Chemical Machinery Co., Ltd.
  • Example 1 A nylon ball containing an iron core is put into a rotary ball mill having an inner volume of 500 L, and then 120 kg of aluminum nitride powder (H grade No. 1 manufactured by Tokuyama Corporation) manufactured by the reduction nitriding method shown in Table 1, 6 kg of yttrium oxide, hexaglycerin 0.1 kg of monooleate, 4 kg of polybutyl methacrylate, and 120 kg of a toluene solvent were charged and thoroughly mixed in a ball mill to obtain a white slurry. The slurry thus obtained was granulated by a spray drier at an atomizer rotation speed of 5000 rpm.
  • Example 2 Granulation was performed in the same manner as in Example 1 except that the atomizer rotation speed was changed to 8000 rpm. After completion of granulation, 88 kg of granules (granules) collected under a spray dryer and 35 kg of granules (fine powder) collected in a cyclone during granulation are introduced into a fluidized dryer, and fluidized at room temperature for 2 hours. Was performed to produce aluminum nitride granules.
  • Granulation was performed in the same manner as in Example 1 except that the inside of the cyclone was made of stainless steel and the inside of the cyclone was not coated with alumina ceramics. After completion of granulation, 101 kg of granules (granules) collected under a spray dryer and 24 kg of granules (fine powder) collected in a cyclone during granulation are introduced into a fluidized drier, and subjected to fluid treatment at room temperature for 2 hours. Then, aluminum nitride granules were produced.
  • Example 1 After granulation in the same manner as in Example 1, 100 kg of the collected granules (granules) was introduced into a fluidized drier under a spray dryer, and fluidized at room temperature for 2 hours to produce aluminum nitride granules.
  • the particle size and metal impurities (Fe, Cr, Ni) of the granules and fine powder obtained in the above Examples, Comparative Examples and Reference Examples were measured.
  • the granules obtained by mixing them were measured for particle size, metal impurities (Fe, Cr, Ni), and bulk density.
  • Table 2 shows the results. Further, 30 g of the granules obtained by mixing the granules and the fine powder were introduced into a mold having a diameter of 100 mm, and press-molded under a pressure of 100 MPa to produce a press-molded body having a thickness of about 2 mm, and the press-molding density was measured. Thereafter, the press-formed body was degreased in air at 580 ° C. for 5 hours.
  • the press-formed body was placed in a carbon crucible whose inner surface was coated with boron nitride, and fired at 1800 ° C. for 5 hours in a nitrogen atmosphere to obtain a sintered body. After polishing the surface of the sintered body, the appearance was confirmed (discoloration due to mixing of metal impurities), the density, the volume resistivity, and the thermal conductivity were measured. Table 2 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

本発明の目的は、生産性が高く、プレス成形に供し、得られたプレス成形体を焼成してセラミックスを製造したとき、物性低下が抑制されたセラミックスを得ることが可能なセラミックス製造用顆粒の製造方法を提供することである。本発明は、無機化合物の粉末、結合剤および溶媒を含む混合物よりなるスラリーを調製するスラリー調製工程、前記スラリーをスプレードライ装置に導入して、前記無機化合物を含む顆粒物を形成する造粒工程、前記スプレードライ装置内の雰囲気ガスを、表面がセラミックス製のサイクロンを経由させて排気する排気工程、前記排気工程でサイクロンに回収された微粉を、前記造粒工程で得られた顆粒物に混合する工程、を含むことを特徴とする。

Description

セラミックス製造用顆粒の製造方法
 本発明は、無機化合物、例えば窒化アルミニウムを焼結用粒子として含むセラミックス製造用顆粒の製造方法に関する。
 窒化アルミニウムに代表される無機材料は、溶媒、さらには必要により結合剤等を含むスラリーをスプレードライにより顆粒状に成形し、これを焼成して固めた焼結体、即ち、セラミックスとされる。上記セラミックスは種々の用途に使用されている。例えば、窒化アルミニウム製セラミックスは、高熱伝導性、高絶縁性を示し、放熱材料や電気絶縁材料として、電気機器の放熱基板や電子回路基板などの用途に広く使用されている(特許文献1及び2)。
 特に、上記のような顆粒状成形体は、粒径が揃っているため、プレス成形により所定形状に成形するのに適しており、このような成形体を焼成することにより、目的とする形状のセラミックスを得ることができる。
 前記スプレードライによる顆粒の製造においては、造粒された顆粒はスプレードライ装置の下部から回収され、微粉は排気とともにスプレードライ装置から排出され、サイクロン、バッグフィルターで捕集される。
 上記微粉はスプレードライ装置中での乾燥過程における顆粒同士の衝突、スラリーを噴霧する際に生成する微細な液滴の生成によって生成する。特に100μm以下の粒径の顆粒を作製しようとすると、その微粉の量は相対的に増え、得られる顆粒の収率を低下させるという問題があり、その改善が求められている。
特許第3479160号 特許第2525074号
 従って、本発明の目的は、前記顆粒の製造方法において、生産性に優れるセラミックス製造用顆粒の製造法を提供することにある。
 本発明によれば、
 無機化合物の粉末および溶媒を含む混合物よりなるスラリーを調製するスラリー調製工程、
 前記スラリーをスプレードライ装置に導入して、前記無機化合物を含む顆粒物を形成する造粒工程、
 前記スプレードライ装置内の雰囲気ガスを、表面がセラミックス製のサイクロンを経由させて排気する排気工程、
 前記排気工程でサイクロンに回収された微粉を、前記造粒工程で得られた顆粒物に混合する工程、
を含む、上記のセラミックス製造用顆粒の製造方法が提供される。
 本発明において、前記無機化合物としては、窒化アルミニウムが好適に使用される。
 本発明の前記製造方法によれば、前記顆粒の製造方法において、微粉として除外される生成物を回収し、得られる顆粒に混合して製品とすることにより、収率が著しく向上したセラミックス製造用顆粒の製造法を提供することが可能である。
 本発明の製造方法においては、微粉の回収技術と、回収された微粉を顆粒に混合することが最大の特徴である。
 本発明者らは、上記微粉の回収に使用されるサイクロンによる微粉の汚染に着目し、上記サイクロンの内面をセラミックスで構成することにより汚染が極めて少ない微粉の回収に成功した。更に、スプレードライにより得られる顆粒物に添加した際の影響について検討した結果、得られるセラミックス製造用顆粒の重装嵩密度の上昇が見られ、成形型への充填性の向上となるばかりでなく、成形後に焼結して得られる焼結体の特性や外観に殆ど影響を与えないことを確認した。また、微粉に含まれる鉄を中心とする金属不純物量が少ないため、微粉混合後の顆粒中の鉄含有量を20ppm以下に維持することを可能とした。
 このようなセラミックス製造用顆粒は、金属不純物の混入による焼結性の低下や外観の悪化を有効に回避でき、しかも、微粉由来の微粒子成分を多く含んでいるため、重装嵩密度が高められている。この結果、この顆粒をプレス成形に供した時、得られるプレス成形体は、粒子間隙が小さな緻密なものとなっている。従って、このようなプレス成形体を高温に加熱しての焼結によりセラミックスを作製したとき、粒子間隙による焼結性のバラツキが有効に抑制されており、安定した物性のセラミックスを得ることができる。
本発明のセラミックス製造用顆粒の製造方法のプロセスを示すフローチャート。
 図1のフローチャートを参照して、本発明のセラミックス製造用顆粒の製造工程は、大まかに言って、焼結材料である無機化合物の粉末、溶媒及び適宜使用される任意材料を原材料として用意し、これらの原材料を用いてスラリーを調製し(スラリー調製工程)、得られたスラリーをスプレードライ装置に供給して造粒し(造粒工程)、必要に応じて、得られた顆粒物を流動化する(流動化工程)という工程を有しており、さらに、サイクロンを用いての微粒分回収及び前記顆粒物への混合工程が設けられている。
原材料;
 本発明において、原材料として使用される無機化合物は、焼結材料であり、最終的に製造されるセラミックスの骨格を形成する成分であり、目的とするセラミックスの種類に応じた無機化合物が使用される。
 このような無機化合物としては、焼結体の特性や外観の悪化のおそれがある金属不純物の少ない、中でも、その一つである鉄の含量量が20ppm以下に抑制された高純度のものが使用され、このような高純度である限り、種々の無機化合物を使用することができるが、電子機器等の電子回路基板等に使用される窒化アルミニウムを使用することが最も好適である。中でも、金属不純物の少ない無機化合物として、還元窒化法により製造した窒化アルミニウムが好適に使用される。
 また、スプレードライに供するスラリーの調製に用いる無機化合物の粉末は、一般に、平均粒子径が5μm以下、特に0.5~3μm程度の範囲にあることが、均一な粒度分布を有する顆粒を得る上で好適である。この平均粒径は、例えば、レーザー回折法による粒度分布測定装置により測定される。
 上記の無機化合物粉末と共に使用される溶媒は、スラリー調製及びスプレードライによる造粒に必須の成分であり、無機化合物の種類により、水或いは揮発性の有機溶媒が使用される。
 このような有機溶媒としては、これに限定されるものではないが、例えば、アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン類;エタノール、プロパノール及びブタノール等のアルコール類;ベンゼン、トルエン及びキシレン等の芳香族炭化水素類;あるいはトリクロロエチレン、テトラクロロエチレン及びブロムクロロメタン等のハロゲン化炭化水素類;などを例示することができ、これらの有機溶媒は、2種以上を混合して使用することもできる。
 かかる溶媒は、例えば、得られるスラリーの20℃での粘度が0.02~2000mPa・sの範囲となるような量で使用されることが好適であり、例えば、前述した無機化合物粉末100質量部当り、20~200質量部の量で使用される。
 また、適宜使用される他の成分としては、セラミックスの成形に使用される公知の配合剤、例えば、結合剤(バインダー)、界面活性剤、焼結助剤などを挙げることができる。
 結合剤は、顆粒を用いてのセラミックスの成形に使用されるものであり、焼結に先立って、粒子がばらばらにならずに所定形状の成形体を成形するために使用されるものであり、従来公知の配合剤である。
 このような結合剤の例としては、これに制限されるものではないが、一般に、ポリビニルブチラールなどのポリビニルアセタール;ポリメチルメタクリレート、ポリエチルメタクリレート、ポリ2-エチルヘキシルメタクリレート、ポリブチルメタクリレート、ポリアクリレート、セルロースアセテートブチレートなどのアクリル系樹脂;ニトロセルロース、メチルセルロース、ヒドロキシメチルセルロース、ポリビニルアルコール、ポリオキシエチレンオキサイド及びポリプロピレンオキサイド等の含酸素有機高分子体;石油レジン、ポリエチレン、ポリプロピレン、ポリスチレン等の炭化水素系合成樹脂;ポリ塩化ビニール;ワックス及びそのエマルジョン等の有機高分子体を使用することができ、これらは、2種以上を混合して使用することもできる。
 このような結合剤としては、ポリビニルアセタール、アクリル系樹脂が好ましく、具体的には、積水化学工業(株)製エスレックB、(株)クラレ製モビタール、東亞合成(株)製アロンシリーズ、共栄社化学(株)製オリコックスKCシリーズ、日新化成(株)製NSKシリーズ、大成ファインケミカル(株)製KWEシリーズが挙げられる。
 かかる結合剤は、一般に、無機化合物粉末100質量部当り、0.1~30重量部の量で使用することが、焼結前の成形を効果的に行う上で好ましい。
 界面活性剤は、スラリー中に無機化合物粉末を均一に分散させるために使用するものであり、それ自体公知のものを使用することができるが、一般には、HLBが4.5~18、特に6.0~10.0の範囲にあるノニオン系界面活性剤が好適に使用される。
 このようなノニオン界面活性剤の例としては、カルボキシル化トリオキシエチレントリデシルエーテル、ジグセリンモノオレート、ジグリセリンモノステアレート、カルボキシル化ヘプタオキシエチレントリデシルエーテル、テトラグリセリンモノオレート、ヘキサグリセリンモノオレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノオレート等をあげることができ、これらは、2種以上を混合して使用することも可能である。
 かかる界面活性剤の使用量は、一般に、無機化合物粉末100質量部当り、0.01~10質量部、特に0.02~3.0質量部の範囲であることが好ましい。
 さらに、焼結助剤は、セラミックスを製造する際の焼結を促進させるために使用されるものであり、無機化合物粉末の種類に応じて、それ自体公知のものを使用することができる。例えば、窒化アルミニウム粉末を使用する場合には、酸化カルシウム、酸化ストロンチウム等のアルカリ土類金属酸化物;酸化イットリウム、酸化ランタン等の希土類酸化物;アルミン酸カルシウム等の複合酸化物;などが焼結助剤として好適であり、窒化アルミニウム粉末との合計量中に占める割合で0.1~10質量%の範囲で使用される。
スラリー調製;
 上述した各種の原材料は、公知の混合装置を使用して混合することができ、かかる混合装置としては、ボールミルを代表とする回転ミルが一般的である。これにより、無機化合物粉末が均一に分布したスラリーが得られる。
 得られたスラリーは、必要に応じて、濾過され、スラリー中の粗粒分を除去した後、スラリータンクに一時的に保存される。
 尚、上記の濾過は、一般に、スラリーを目開きが10~100μmの濾材を通すことにより行われる。
 このようにして、好適には20℃での粘度が0.02~2000mPa・sの範囲にあるスラリーが得られる。
スプレードライによる造粒;
 上記のようにして得られたスラリーは、スプレードライ装置に導入されて造粒されるが、無機金属化合物として窒化アルミニウムを使用する場合には、このスラリーを、マグネットフィルターを通してスプレードライ装置に供給することが好適である。
 即ち、窒化アルミニウム粉末は、非常に硬質であり、このため、この窒化アルミニウム粉末を含む材料の搬送配管が摩耗し、摩耗粉が不純物として混入するおそれがある。例えば、搬送配管としては、ステンレススチール製のものが使用されているが、この結果、Fe,Ni,Cr等を含む摩耗粉がスラリー中に混入しているおそれがある。このため、上記スラリーをマグネットフィルターに通して供給することにより、このような摩耗粉をスラリー中から好適に除去することができ、例えば、得られる顆粒中に金属不純物含量が20ppmを超えてしまうという不都合を有効に回避できる。
 尚、マグネットフィルターによる摩耗粉の除去は、造粒後に行うこともできるが、造粒後では、除去効率が低いため、スプレードライ装置にスラリーを供給する直前にマグネットフィルターを通して摩耗粉の除去を行うことが好適である。即ち、造粒により得られた顆粒物(粒状物)をマグネットフィルターに通すよりも、スラリーをマグネットフィルターに通す方が、マグネットフィルターに密に接触させることができるからである。
 本発明において、スプレードライ装置では、その上部から前記調製されたスラリーが適宜加熱された乾燥気流(例えば空気や窒素ガス)中に噴霧され、これにより溶媒が除去され、無機化合物を含む粒状物が得られる。
 スプレードライ装置内で噴霧する方法には、ノズル方式、またはディスク方式があるが、本発明の比較的粒径の小さいセラミックス顆粒では、ディスク方式が好適である。
 また、本発明において、造粒により得られた顆粒物はスプレードライ装置の下部から回収され、微粉は排気とともにスプレードライ装置から排出され、サイクロン、バッグフィルターで捕集される。
 尚、サイクロンを介さずに直接バッグフィルターで生成物を全量回収する方法も考えられるが、本発明者らの確認によれば、顆粒物が型崩れしたり、微粉が表面に強固に付着して重装嵩密度が低下した物が得られたりするという問題を有する。
 前記サイクロンに捕集される微粉は、スプレードライヤー下で捕集される顆粒物よりも小さい粒径のものであり、その粒径は、40μm以下の物であることが好ましい。サイクロンで補修されないさらに小さな粒径のものはバッグフィルターで捕集される。
 また、この微粉は、スプレードライにより得られた粒状物に混合されるものである。サイクロン内では微粉が遠心分離され、壁面に衝突しその後重力により落下、下に溜まる仕組みであるため、サイクロンの内面は摩耗しやすい。このため、サイクロンとしては、その内面がセラミックスコーティングされたものが使用される。これにより、サイクロンにより回収される微粉中への金属不純物の混入を確実に防止し、この微粉を、造粒により得られた粒状物に混合したときの金属不純物の混入を有効に回避することができる。前記無機化合物として、窒化アルミニウムを使用する場合、窒化アルミニウムセラミックスやアルミナセラミックスでコーティングするのが好適である。
 また、スプレードライ装置から排出された粒状物は、篩(例えば振動篩など)を通して粗粒分(例えば粒径が300μm以上の粒子)を除去することが好ましい。
微粉の混合;
 本発明では、前記の用にして得られた顆粒物に、上述したサイクロンで回収された微粉を混合するが、粒子径が40μm以下の微粒子成分が占める割合が10~25質量%の範囲となるように、微粉を混合することが好ましい。この混合方法については制限されないが、後述する流動化処理と兼ねて行うことが好ましい。
流動化処理;
 上記のようにして微粉が混合された顆粒物は、乱流の気体中に顆粒(顆粒物と微粉の混合物)を滞留させる工程(流動化工程)に供給し、流動性の向上、顆粒物の強度向上及び顆粒物とサイクロンで回収された微粉との更なる均一化を図ることが好ましい。
 セラミックス製造用顆粒として、窒化アルミニウム顆粒を例に取ると、この流動化に用いる気体は、窒化アルミニウム粉末や結合剤等の添加剤と実質的に反応しない気体であることが好ましく、例えば、空気、酸素、窒素などが挙げられる。また、供給される気体の風速は、顆粒の流動化に必要な風速であれば良い。顆粒の流動化に必要な風速は、例えば、化学工学協会編「化学工学便覧改訂4版」の176頁記載の流動化開始速度の式と1056頁記載の終末速度の式で計算される値の範囲から任意に選択される。また、顆粒物の滞留時間は、1分~36時間の範囲から選ぶことが好ましい。供給される気体の温度は、任意の温度が採用されるが、適当な破壊強度を有する窒化アルミニウム顆粒を得る為に、0~250℃の範囲から選択することが好ましい。この流動化工程により、スプレードライヤー下から補修された顆粒物とサイクロンで捕集された微粉が均一に混合される。また、顆粒物の流動性、強度を調整することができる。
 上記流動化工程は、流動床を備えた装置を使用し、バッチで行うことが一般的であるが、上記流動化工程に顆粒物を供給するスプレードライによる造粒工程においては、装置の操作上、連続で運転を行うことが好ましい。このような場合、造粒工程における運転を流動化工程に合わせてバッチで行うことを避けるため、造粒工程と流動化工程との間に、バッファーとなるホッパー、或いはタンクを設けて、造粒工程を連続して行いながら、前記流動化工程をバッチで行うことも可能であり、且つ、好ましい態様である。
 流動化工程を経て得られた顆粒は、適宜、篩にかけられ、これにより、さらに粗粒分が除去され、所定の平均粒径及び微粒子含量を有する本発明のセラミックス製造用顆粒として回収される。
セラミックス製造用顆粒;
 本発明の方法により製造されるセラミックス製造用顆粒は、無機化合物当りの金属不純物含量が0.1質量%以下の極めて高純度である。中でも、金属不純物の一つである鉄の含有量を元素換算で20ppm以下に抑制することができるため、このような金属不純物による焼結体の特性や外観の悪化を有効に防止することが可能となる。
 また、前記セラミックス製造用顆粒の平均粒子径が60~100μmの範囲となるように、前記顆粒物の製造条件の調整、前記微粉の混合量の調整等を行うことが、プレス成形に好適なセラミックス製造用顆粒とするために好ましい。即ち、顆粒物と共に含まれている微粉が、粒径の小さな顆粒として機能し、大きな粒子の間隙を埋めているため、プレス成形を経ての焼結に極めて適している。即ち、この顆粒を所定の型内に充填してプレス成形を行ったとき、得られるプレス成形体は、粒子同士が密に接合しているため、引き続いて行われる高温加熱により焼結に際して、空隙の存在による焼結性の低下を有効に回避することができる。
 尚、本発明において、顆粒等の粒子の平均粒径や微粒子成分含量は、レーザー回折散乱法により測定される。
 本発明のセラミックス製造用顆粒は、例えば、所定の型内に充填されてのプレス成形により所望の形状に成形され、次いで、用いた無機化合物の種類に応じての加熱により焼結され(例えば窒化アルミニウムの場合で600℃以上)、焼結不良による各種特性の低下が有効に介され、安定した特性を有するセラミックスを得ることができる。
 従って、原材料の無機化合物粉末として窒化アルミニウム粉末を用いた場合、最終製品であるセラミックスは極めて高品質であり、各種電子機器の回路基板や放熱板として、広く使用される。
 本発明をさらに具体的に説明するために、以下に実施例及び比較例を挙げるが、本発明はこれらの実施例に限定されるものではない。
 尚、以下の実施例及び比較例における各種の物性の測定は次の方法により行った。
(1)窒化アルミニウム粉末の平均粒子径
 酸化アルミニウム粉末、窒化アルミニウム粉末、窒化アルミニウムと未反応原料酸化アルミニウムの混合粉末の平均粒径は、試料をホモジナイザーにてピロリン酸ソーダ水溶液中に分散させ、日機装株式会社製 MICROTRAC HRAを用いてレーザー回折法により測定した。
(2)比表面積
 窒化アルミニウム粉末の比表面積は、(株)島津製作所製流動式表面積自動測定装置フローソーブ2300を用いてBET法により測定した。
(3)酸素含有量
 窒化アルミニウム粉末中の全酸素含有量は、(株)堀場製作所製セラミックス中酸素窒素分析装置EMGA-620Wを用いて測定した。
(4)炭素含有量
 窒化アルミニウム粉末中の炭素含有量は、(株)堀場製作所製金属中炭素分析装置「EMIA-110」を使用して、粉末を酸素気流中で燃焼させ、発生したCO、COガス量から定量した。
(5)窒化アルミニウム粉末の金属元素含有量
 窒化アルミニウム粉末のアルミニウム以外の金属元素含有量は、試料0.8gに硝酸2mL、りん酸10mLを加えて380℃、20分間加熱分解し、(株)島津製作所製ICPS-1000-IIを用いてICP発光分光分析法により測定した。
(6)顆粒の平均粒子径
 日機装株式会社製 MICROTRAC MT3300EXを用いて、レーザー回折法により、測定した。
(7)窒化アルミニウム顆粒の金属不純物量
 窒化アルミニウム顆粒中の金属元素含有量は、顆粒を600℃、5時間加熱、脱脂したものを試料とした。試料0.8gに硝酸2mL、りん酸10mLを加えて380℃、20分間加熱分解し、(株)島津製作所製ICPS-1000-IIを用いてICP発光分光分析法により測定した。
(8)重装嵩密度
 筒井理化学機械(株)製「A・B・D粉体特性測定器」を用いて重装嵩密度を測定した。
(9)プレス成形体密度
 プレス成形体の寸法と重量とから、プレス成形体密度を計算して求めた。
(10)焼結体密度
 (株)東洋精機製作所製「高精度比重計D-H」を使用して、アルキメデス法により求めた。
(11)体積抵抗率
 JIS  C2141に準拠した方法で、体積抵抗率測定装置(株)アドバンテスト製R8340にて測定を行った。
(12)熱伝導率
 作製したAlN焼結体の熱伝導率は京都電子工業(株)製LFA-502を用いてレーザーフラッシュ法により測定した。
<実施例1>
 内容積500Lの回転ボールミルに鉄心入りナイロンボールを入れ、次いで、表1に示す還元窒化法で製造された窒化アルミニウム粉末((株)トクヤマ製HグレードNo.1)120kg、酸化イットリウム6kg、ヘキサグリセリンモノオレート0.1kg、ポリメタクリル酸ブチル4kg、トルエン溶媒120kgを投入して、十分にボールミル混合した後、白色のスラリーを得た。
 こうして得られたスラリーをスプレードライヤーにより、アトマイザー回転数5000rpmで造粒した。造粒終了後、スプレードライヤー下で捕集された顆粒(顆粒物)100kgと、造粒中にサイクロンに捕集された顆粒(微粉)25kgを流動乾燥機に導入し、室温で2時間流動化処理を行い、窒化アルミニウム顆粒を作製した。サイクロンの内部は、アルミナセラミックスでコーティングしてものを用いた。
<実施例2>
 実施例1において、アトマイザー回転数を8000rpmとする以外は、実施例1と同様にして造粒した。造粒終了後、スプレードライヤー下で捕集された顆粒(顆粒物)88kgと、造粒中にサイクロンに捕集された顆粒(微粉)35kgを流動乾燥機に導入し、室温で2時間流動化処理を行い、窒化アルミニウム顆粒を作製した。
<比較例1>
 実施例1において、サイクロンの内部をアルミナセラミックスでコーティングしていないステンレス製のものを用いた以外は実施例1と同様にして造粒した。造粒終了後、スプレードライヤー下で捕集された顆粒(顆粒物)101kgと、造粒中にサイクロンに捕集された顆粒(微粉)24kgを流動乾燥機に導入し、室温で2時間流動処理を行い、窒化アルミニウム顆粒を作製した。
<参考例1>
 実施例1と同様にして造粒後、スプレードライヤー下で捕集された顆粒(顆粒物)100kgを流動乾燥機に導入し、室温で2時間流動化処理を行い、窒化アルミニウム顆粒を作製した。
 上記の実施例、比較例、参考例により得られた顆粒物および微粉の粒径および金属不純物(Fe、Cr、Ni)を測定した。また、それらを混合して得られた顆粒については、粒径、金属不純物(Fe、Cr、Ni)、重装嵩密度を測定した。これらの結果を表2に示す。
 さらに、顆粒物と微粉を混合して得られた顆粒30gをφ100mmの金型に導入し、100MPaの圧力でプレス成形し、厚さ約2mmのプレス成形体を作製し、プレス成形密度を測定した。その後、当該プレス成形体を空気中580℃5時間の条件下で脱脂した。次いで、当該プレス成形体を内面が窒化ホウ素でコートされたカーボン製るつぼに入れ、窒素雰囲気下1800℃5時間焼成し、焼結体を得た。当該焼結体表面を研磨後、外観の確認(金属不純物混入による変色の有無)、密度、体積抵抗率、熱伝導率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (2)

  1.  無機化合物の粉末、結合剤および溶媒を含む混合物よりなるスラリーを調製するスラリー調製工程、
     前記スラリーをスプレードライ装置に導入して、前記無機化合物を含む顆粒物を形成する造粒工程、
     前記スプレードライ装置内の雰囲気ガスを、表面がセラミックス製のサイクロンを経由させて排気する排気工程、
     前記排気工程でサイクロンに回収された微粉を、前記造粒工程で得られた顆粒物に混合する工程、
    を含む、ことを特徴とするセラミックス製造用顆粒の製造方法。
  2.  前記無機化合物が窒化アルミニウムである、請求項1に記載のセラミックス製造用顆粒の製造方法。
PCT/JP2019/024893 2018-06-28 2019-06-24 セラミックス製造用顆粒の製造方法 WO2020004304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980043534.3A CN112368251A (zh) 2018-06-28 2019-06-24 陶瓷制造用颗粒的制造方法
EP19827459.9A EP3816138A4 (en) 2018-06-28 2019-06-24 PELLET PRODUCTION PROCESS FOR CERAMIC PRODUCTION
US17/256,114 US11884596B2 (en) 2018-06-28 2019-06-24 Method for producing granules for ceramic production
KR1020207037571A KR20210022588A (ko) 2018-06-28 2019-06-24 세라믹스 제조용 과립의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-123425 2018-06-28
JP2018123425A JP7137376B2 (ja) 2018-06-28 2018-06-28 セラミックス製造用顆粒の製造方法

Publications (1)

Publication Number Publication Date
WO2020004304A1 true WO2020004304A1 (ja) 2020-01-02

Family

ID=68986967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024893 WO2020004304A1 (ja) 2018-06-28 2019-06-24 セラミックス製造用顆粒の製造方法

Country Status (7)

Country Link
US (1) US11884596B2 (ja)
EP (1) EP3816138A4 (ja)
JP (1) JP7137376B2 (ja)
KR (1) KR20210022588A (ja)
CN (1) CN112368251A (ja)
TW (1) TWI788579B (ja)
WO (1) WO2020004304A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112934108B (zh) * 2021-03-05 2022-11-25 江苏道宁药业有限公司 一种一水乳糖细粉的细化造粒设备及细化造粒方法
ES2912038A1 (es) * 2022-01-14 2022-05-24 Asociacion De Investig De Las Industrias Ceramicas Aice Equipo de microatomizacion para la caracterizacion de muestras de materias primas y procedimiento de caracterizacion de una muestra microatomizada
CN116253571A (zh) * 2023-03-16 2023-06-13 无锡海古德新技术有限公司 一种氮化铝陶瓷造粒粉及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155101A (ja) * 1989-11-14 1991-07-03 Ngk Insulators Ltd 電圧非直線抵抗体の製造方法
JPH0348123B2 (ja) * 1983-09-14 1991-07-23 Tokuyama Soda Kk
JP2525074B2 (ja) 1990-06-15 1996-08-14 株式会社トクヤマ 窒化アルミニウム顆粒及びその製造方法
JPH11302081A (ja) * 1998-04-23 1999-11-02 Bridgestone Corp スプレードライヤー及びそれを用いて得られるセラミック粉体
JP3479160B2 (ja) 1995-06-19 2003-12-15 株式会社トクヤマ 窒化アルミニウム顆粒及びその製造方法
US20160184387A1 (en) * 2013-08-09 2016-06-30 Dominique Charmot Compounds and methods for inhibiting phosphate transport
CN106082993A (zh) * 2016-06-08 2016-11-09 中国船舶重工集团公司第七二五研究所 一种制备高性能ito造粒粉的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1803007A1 (de) * 1967-10-17 1969-05-08 Niro Atomizer As Verfahren zur Herstellung eines freistroemenden Glukoseproduktes
US4451330A (en) * 1982-09-13 1984-05-29 Kalama Chemical, Inc. Process for the recovery of alkali metal salts from aqueous solutions thereof
JP2525074Y2 (ja) 1991-03-29 1997-02-05 昭和電工株式会社 液体アンモニア注入用インジェクター
JPH06144918A (ja) * 1992-11-11 1994-05-24 Toshiba Corp セラミックス造粒粉の製造方法およびセラミックス焼結体の製造方法
JP3543347B2 (ja) * 1994-01-24 2004-07-14 日本油脂株式会社 点火薬造粒物の製造方法
JP4783513B2 (ja) 2001-03-30 2011-09-28 日本特殊陶業株式会社 スラリー状又は溶液状材料の乾燥方法、スラリー状又は溶液状材料の乾燥装置及びセラミック焼結体の製造方法
JP2004292178A (ja) * 2003-03-25 2004-10-21 Gifu Prefecture 窒化アルミニウム顆粒の製造方法及び製造装置
JP2005089251A (ja) * 2003-09-18 2005-04-07 Mitsui Chemicals Inc 窒化アルミニウム顆粒、その製造方法及び用途
WO2014159440A1 (en) * 2013-03-13 2014-10-02 Basf Corporation Cyclone particulate filtration for lean burn engines
CN103230842A (zh) * 2013-04-26 2013-08-07 无锡市华威耐火材料有限公司 陶瓷旋风子及其制备方法
CN104556988A (zh) 2015-02-08 2015-04-29 河北联合大学 一种重介质旋流器衬里氧化铝-碳化硅陶瓷及制备方法
CN104628366A (zh) 2015-02-11 2015-05-20 河北联合大学 一种氧化铝-氮化硅陶瓷衬里及制备方法
CN205473405U (zh) * 2016-03-08 2016-08-17 江苏金盛陶瓷科技有限公司 一种氮化硅陶瓷喷雾造粒粉体机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348123B2 (ja) * 1983-09-14 1991-07-23 Tokuyama Soda Kk
JPH03155101A (ja) * 1989-11-14 1991-07-03 Ngk Insulators Ltd 電圧非直線抵抗体の製造方法
JP2525074B2 (ja) 1990-06-15 1996-08-14 株式会社トクヤマ 窒化アルミニウム顆粒及びその製造方法
JP3479160B2 (ja) 1995-06-19 2003-12-15 株式会社トクヤマ 窒化アルミニウム顆粒及びその製造方法
JPH11302081A (ja) * 1998-04-23 1999-11-02 Bridgestone Corp スプレードライヤー及びそれを用いて得られるセラミック粉体
US20160184387A1 (en) * 2013-08-09 2016-06-30 Dominique Charmot Compounds and methods for inhibiting phosphate transport
CN106082993A (zh) * 2016-06-08 2016-11-09 中国船舶重工集团公司第七二五研究所 一种制备高性能ito造粒粉的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816138A4
THE SOCIETY OF CHEMICAL ENGINEERS: "A Handbook of Chemical Engineering", pages: 1056

Also Published As

Publication number Publication date
EP3816138A1 (en) 2021-05-05
EP3816138A4 (en) 2022-03-30
KR20210022588A (ko) 2021-03-03
CN112368251A (zh) 2021-02-12
TW202010725A (zh) 2020-03-16
JP2020001968A (ja) 2020-01-09
TWI788579B (zh) 2023-01-01
US20210221745A1 (en) 2021-07-22
JP7137376B2 (ja) 2022-09-14
US11884596B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP4939932B2 (ja) 窒化アルミニウム粉末及びその製造方法
WO2020004304A1 (ja) セラミックス製造用顆粒の製造方法
US9376348B2 (en) Method for making a dense sic based ceramic product
US11708308B2 (en) Sinterable powder for making a dense slip casted pressureless sintered SiC based ceramic product
WO2021161883A1 (ja) 窒化アルミニウム粉末および製造方法
US7670979B2 (en) Porous silicon carbide
JP2019519460A (ja) 六方晶窒化ホウ素成形体、それを製造するための六方晶窒化ホウ素造粒物及びその製造方法
JP7112900B2 (ja) セラミックス製造用顆粒の製造法
JPH0952704A (ja) 窒化アルミニウム顆粒及びその製造方法
JP2011063487A (ja) ホウ化ランタン焼結体、その焼結体を用いたターゲット及びその焼結体の製造方法
JP5258650B2 (ja) 窒化アルミニウム焼結体の製造方法
JP4050798B2 (ja) 窒化アルミニウムプレス体
JP3877813B2 (ja) 大型窒化アルミニウム焼結体及びその製造方法
JP3479160B2 (ja) 窒化アルミニウム顆粒及びその製造方法
JP4958353B2 (ja) 窒化アルミニウム粉末及びその製造方法
JP2009179488A (ja) 射出成形用窒化アルミニウム組成物、窒化アルミニウム焼結体および窒化アルミニウム焼結体の製造方法
JP2008280217A (ja) 射出成形用窒化アルミニウム粉末、射出成形用窒化アルミニウム組成物、窒化アルミニウム焼結体および窒化アルミニウム焼結体の製造方法
JP2020001940A (ja) セラミック製造用顆粒の製造方法
JP4832048B2 (ja) 窒化アルミニウム粉末及びその製造方法
JP2001139379A (ja) 高熱伝導性窒化アルミニウム焼結体の製造方法
JP2000203940A (ja) SiC焼結体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019827459

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019827459

Country of ref document: EP

Effective date: 20210128