WO2019233485A1 - 手持式动力工具 - Google Patents

手持式动力工具 Download PDF

Info

Publication number
WO2019233485A1
WO2019233485A1 PCT/CN2019/090426 CN2019090426W WO2019233485A1 WO 2019233485 A1 WO2019233485 A1 WO 2019233485A1 CN 2019090426 W CN2019090426 W CN 2019090426W WO 2019233485 A1 WO2019233485 A1 WO 2019233485A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
power tool
clutch
motor
ring gear
Prior art date
Application number
PCT/CN2019/090426
Other languages
English (en)
French (fr)
Inventor
钟红风
郑悦
张士松
孙益民
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to US15/734,932 priority Critical patent/US20220055120A1/en
Priority to EP19815626.7A priority patent/EP3808507A4/en
Publication of WO2019233485A1 publication Critical patent/WO2019233485A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/1207Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving obliquely to the axis of the chuck in a plane containing this axis
    • B23B31/1238Jaws movement actuated by a nut with conical screw-thread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/1207Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving obliquely to the axis of the chuck in a plane containing this axis
    • B23B31/123Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving obliquely to the axis of the chuck in a plane containing this axis with locking arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/001Housing of the drill, e.g. handgrip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/008Gear boxes, clutches, bearings, feeding mechanisms or like equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/0007Connections or joints between tool parts
    • B25B23/0035Connection means between socket or screwdriver bit and tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2231/00Details of chucks, toolholder shanks or tool shanks
    • B23B2231/06Chucks for handtools having means for opening and closing the jaws using the driving motor of the handtool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/044Clutches
    • B23B2260/0445Overload clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/068Flexible members

Definitions

  • the present invention relates to a hand-held power tool, and more particularly, to a hand-held power tool having a chuck assembly.
  • a hand-held power tool such as an electric drill, is used to drill a workpiece (such as a wooden board or a cement board, etc.) or a screwdriver is used to loosen or tighten the screw, and a chuck assembly for clamping the tool head is installed on the drive shaft.
  • a workpiece such as a wooden board or a cement board, etc.
  • a screwdriver is used to loosen or tighten the screw
  • a chuck assembly for clamping the tool head is installed on the drive shaft.
  • different specifications and types of tool heads can be used (such as screwdriver bits, flat drills for drilling on wooden boards, impact drills for drilling on cement boards, and Twist drills drilled on steel plates, etc.), when replacing the tool head, the jaws need to be opened first to release the tool head originally clamped to the chuck, and then inserted into the new tool head and then locked in the jaw.
  • the chuck assembly includes at least a clamping jaw, a body for accommodating the clamping jaw, and an adjusting member that is threadedly connected to the clamping jaw so that the clamping jaw can move axially relative to the body, and these structures are mostly metal
  • the chuck assembly is heavy, so in order to stabilize the output, the chuck assembly needs to be supported on the casing.
  • the conventional method is to provide a bearing in the axial direction between the drive shaft located between the chuck assembly and the transmission planetary gear train, and the provided bearing occupies a longer axial length, and this support method causes the length of the whole machine to be longer.
  • the invention provides a hand-held power tool, which has a supporting structure that makes the structure of the whole machine more compact.
  • the hand-held power tool includes: a casing; a motor disposed in the casing and outputting rotational power; a chuck assembly, the chuck assembly including a main body, a plurality of clamping jaws movably disposed relative to the main body, and The plurality of adjusting members screw-connected to the jaw; and a transmission mechanism including a driving shaft for transmitting a driving force of the motor;
  • the power tool has at least a drilling mode and a collet adjustment mode, and when in the drilling mode, the The main body is driven by the drive shaft and rotates with the clamping jaw and the adjusting member; when in the chuck adjusting mode, one of the adjusting member and the main body can rotate relative to the other to realize the clamping jaw in a completely closed state and The fully-clamped state is switched between the fully opened state and the fully-closed state.
  • the jaw is closer to the motor in the axial direction of the drive shaft.
  • the power tool further includes a support for rotating the body to the casing.
  • a first support member and a second support member, the first support member is disposed close to the motor along the drive shaft axis with respect to the second support member, when the clamping jaw is in a fully opened state
  • the first support member and the clamping claw at least partially overlap in the axial direction of the driving shaft.
  • the second support member and the clamping claw overlap in the axial direction of the driving shaft. Since the first support member and the second support member overlap with the clamping jaws in the axial direction of the driving shaft, the axial size of the power tool is more compact.
  • the power tool further includes a clutch mechanism, and the clutch mechanism is used to disconnect the motor shaft when the torque between the plurality of jaws and the adjustment member reaches a predetermined value when the power tool is in a chuck adjustment mode.
  • Rotating power transmitted to the adjusting member or the body so that there is no relative rotation between the adjusting member and the claw, and the clutch mechanism and the clamping claw at least partially overlap in the axial direction of the driving shaft.
  • the clutch mechanism includes a first clutch member, a second clutch member, and a clutch elastic member, wherein one of the clutch members is connected to the adjusting member in a relatively non-rotating manner, and the other clutch member is connected to the casing or the motor in a rotation direction;
  • the first clutch member and the second clutch member mesh with each other.
  • the torque between the first clutch member and the second clutch member reaches a predetermined value, one of the clutch members of the clutch mechanism can The overcoming force of the clutch elastic member is moved relative to the other clutch member to disengage the engagement therebetween, so that the adjustment member and the plurality of clamping jaws have no relative rotation.
  • the adjusting member is sleeved on the outside of the plurality of clamping jaws, an inner thread of the adjusting member is provided with an internal thread, and the clamping jaw is provided with an external thread matched with the internal thread.
  • the body is provided with a receiving cavity, the receiving cavity has an opening facing the motor, and the first support is located in the receiving cavity.
  • the casing includes a main housing for housing the motor, an end cover extending inward from the main housing, and a support part extending from the end cover to the receiving cavity, and the first support is supported by the support. Outside.
  • the body has a first end near the motor and a second end remote from the motor, and the end cap is disposed immediately adjacent to the first end and is located between the body and the motor.
  • the power tool further includes at least one output planetary gear train located on a side of the end cover away from the motor.
  • the output planetary gear train includes at least a sun gear connected to a drive shaft, and is disposed on the body and connected to the sun gear.
  • the driving shaft can drive the body to rotate through the planetary gear.
  • the clamping jaw When the clamping jaw is fully opened, the clamping jaw and the planetary gear at least partially overlap in the axial direction of the driving shaft.
  • the supporting portion is a hollow cylindrical body
  • the driving shaft penetrates the cylindrical body
  • the sun gear is connected to an end of the driving shaft penetrating into the body.
  • the power tool includes at least a first-stage output planetary gear train
  • the output planetary gear train includes a sun gear connected to a drive shaft, a planet gear driven by the sun gear, and an output ring gear meshing with the planet gear.
  • the output ring gear is fixed relative to the casing
  • the drive shaft drives the body to rotate through the planetary gear
  • the clamping jaw is fully opened, the planetary gear and the clamping jaw are in The drive shafts overlap at least partially in the axial direction.
  • the power tool further includes a mode selection mechanism, and the mode selection mechanism is operable to switch the power tool between at least a drilling mode and a chuck adjustment mode.
  • the mode selection mechanism is operable to switch the power tool between at least a drilling mode and a chuck adjustment mode.
  • the body is relatively Fixed to the casing, the output ring gear can rotate relative to the casing under the driving of a motor and can transmit the rotational motion to the adjusting member.
  • the mode switching mechanism includes a mode selection member and a connection member driven by the mode selection member.
  • the connection member can transmit the driving force of the output ring gear to the adjustment member;
  • the connecting member disconnects the power transmission in the rotation direction of both the output ring gear and the adjusting member.
  • the connecting member and the clamping jaw axially overlap with each other on the drive shaft.
  • the mode switching mechanism further includes a locking element which is non-rotatably disposed with respect to the casing and can be driven by the mode selector, and the locking element selectively fixes the body or the output ring gear with respect to the casing.
  • the locking element and the clamping jaw axially overlap with each other on the drive shaft.
  • the power tool further includes a mode switching mechanism, and the mode selection mechanism includes a mode selector operable to switch the power tool between at least a drilling mode and a chuck adjustment mode, and the mode selector and the The jaws overlap at least partially in the axial direction of the drive shaft.
  • the mode selection mechanism includes a mode selector operable to switch the power tool between at least a drilling mode and a chuck adjustment mode, and the mode selector and the The jaws overlap at least partially in the axial direction of the drive shaft.
  • the chuck assembly includes a chuck housing covering at least a part of the body, the chuck housing is fixedly connected to the casing, and the second support is located at an end of the body away from the motor and the chuck. Between the shells.
  • the distance between the end surface of the motor close to the chuck assembly and the end surface of the body far from the motor is between 80mm-95mm.
  • the invention also provides a power tool which makes the radial size of the whole machine relatively compact, including:
  • the power tool has at least a drilling mode and a chuck adjustment mode, and when in the drilling mode, the body is driven by the motor and communicates with the clamping jaw Rotate with the adjustment piece; when in the chuck adjustment mode, one of the adjustment piece and the body can be rotated relative to the other to close or open the jaw;
  • the power tool is also
  • a first support is provided for rotatably supporting the body to the casing, a receiving cavity is provided in the body, the receiving cavity has an opening facing the motor, and the first support is located in the receiving cavity.
  • the power tool includes at least one stage output planetary gear train, which includes a sun gear driven and rotated by a motor shaft, a planet gear driven by the sun gear, and an output ring gear meshing with the planet gear.
  • the body can rotate under the driving of the planetary gear, and when the clamping jaw is in a fully opened state, the output planetary gear and the clamping jaw at least partially overlap in the axial direction of the driving shaft.
  • the distance between the end face of the motor close to the chuck assembly and the end face of the body far from the motor is between 80mm-95mm.
  • the radial length of the collet assembly is less than or equal to 60 mm.
  • FIG. 1 is a partially exploded perspective view of a transmission mechanism and a chuck assembly in a first embodiment of the present invention
  • FIG. 2 is a perspective view of a screwdriver according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a screwdriver in a chuck adjustment mode and a clamping jaw in a closed state according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a screwdriver in a chuck adjustment mode in a first embodiment of the present invention, and a clamping jaw is in a released state;
  • FIG. 5 is a cross-sectional view of a screwdriver in a drilling mode according to the first embodiment of the present invention, and the screwdriver is in a low-speed state;
  • FIG. 6 is a cross-sectional view of a screwdriver in a drilling mode according to a first embodiment of the present invention, and the screwdriver is in a high-speed state;
  • FIG. 7 is an enlarged view of a portion A in FIG. 3;
  • FIG. 8 is a schematic diagram of a positional relationship between a mode selector and a chute when an automatic chuck mode chuck adjustment mode jaw is in an open state in the first embodiment of the present invention
  • FIG. 9 is a schematic diagram of an opening trigger of a switching ring triggering a motor reversing switch in a state corresponding to FIG. 8;
  • FIG. 10 is a schematic diagram showing a positional relationship between a mode selector and a chute when the screwdriver is in a low-speed state in a drilling mode according to the first embodiment of the present invention
  • FIG. 11 is a schematic diagram showing a relationship between a position of a switching ring and a position of a motor reversing switch in a state corresponding to FIG. 10;
  • FIG. 12 is a schematic view showing a positional relationship between a mode selector and a chute when a clamping jaw of a chuck adjustment mode is in a locked state in the first embodiment of the present invention
  • FIG. 13 is a schematic diagram of a lock trigger of a switching ring triggering a motor reversing switch in a state corresponding to FIG. 12;
  • FIG. 14 is a schematic perspective view of a second ring gear with a shift wire in the first embodiment of the present invention.
  • 15 is a schematic diagram of a positional relationship among a gear box housing, a shift wire, a mode selection member, and a switching ring in the first embodiment of the present invention
  • 16 is a schematic perspective view of a mode selector and a slider connected to the mode selector in the first embodiment of the present invention
  • FIG. 17 is a schematic perspective view of a switching ring in the first embodiment of the present invention.
  • FIG. 18 is a schematic perspective view of a screwdriver in a low-speed state in a drilling mode according to the first embodiment of the present invention
  • FIG. 19 is a schematic perspective view of a screwdriver in a high-speed state in a drilling mode according to the first embodiment of the present invention.
  • FIG. 20 is a schematic perspective view in a state corresponding to FIG. 8;
  • FIG. 21 is a schematic perspective view of a state corresponding to FIG. 12;
  • 22 is a schematic perspective view of an output ring gear and a second push rod assembly connected thereto in the first embodiment of the present invention
  • FIG. 23 is a schematic perspective view of a body lock and a first push rod assembly connected thereto in the first embodiment of the present invention
  • FIG. 24 is a partially exploded perspective view of a transmission mechanism and a chuck assembly in a second embodiment of the present invention.
  • 25 is a cross-sectional view of a screwdriver in a drilling mode according to a second embodiment of the present invention.
  • 26 is a cross-sectional view of a screwdriver in a chuck adjustment mode according to a second embodiment of the present invention.
  • FIG. 27 is a partial cross-sectional view of a screwdriver in a drilling mode according to a third embodiment of the present invention.
  • FIG. 28 is a partial cross-sectional view of an intermediate state where the screwdriver is switched from the drilling mode to the chuck adjustment mode in the third embodiment of the present invention.
  • 29 is a partial cross-sectional view of an intermediate state where the screwdriver is switched from a drilling mode to a chuck adjustment mode in a third embodiment of the present invention.
  • FIG. 30 is a partial cross-sectional view of a screwdriver in a chuck adjustment mode according to a third embodiment of the present invention.
  • FIG. 31 is an exploded perspective view of a partial structure of a screwdriver in a fourth embodiment of the present invention.
  • 32 is a schematic cross-sectional view of a screwdriver in a drilling mode according to a fourth embodiment of the present invention.
  • 33 is a partial three-dimensional structural diagram of a screwdriver in a drilling mode according to a fourth embodiment of the present invention.
  • FIG. 34 is a schematic cross-sectional view of a screwdriver in a chuck adjustment mode in a fourth embodiment of the present invention.
  • 35 is a partial three-dimensional structural diagram of a screwdriver in a chuck adjustment mode in a fourth embodiment of the present invention.
  • FIG. 36 is a schematic partial three-dimensional structure diagram of a screwdriver in a drilling mode according to a fourth embodiment of the present invention, in which a switch trigger is pressed to an end position;
  • FIG. 37 is a schematic perspective view of a screw driver in a fourth embodiment of the present invention.
  • FIG. 38 is a schematic cross-sectional view of a screwdriver machine according to a fourth embodiment of the present invention, taken along line A-A corresponding to FIG. 34; FIG.
  • 39 is a schematic sectional view of a partial structure of a screwdriver in a fourth embodiment of the present invention.
  • FIG. 40 is a partial structural schematic view of a screwdriver in a drilling mode in a fourth embodiment of the present invention.
  • 41 is a partial structural diagram of a screwdriver in an automatic chuck mode in a fourth embodiment of the present invention.
  • FIG. 42 is a partial structural schematic view of a screwdriver in a drilling mode and a switch operating member is pressed in a fourth embodiment of the present invention.
  • FIG. 43 is a partial structural schematic view of a screwdriver of a screwdriver in a drilling mode according to a fifth embodiment of the present invention.
  • FIG. 44 is a schematic view of a screwdriver of a screwdriver in an intermediate state switched from a drilling mode to an automatic chuck mode in a fifth embodiment of the present invention.
  • FIG. 45 is a partial structural schematic view of a screwdriver of a screwdriver in an automatic chuck mode in a fifth embodiment of the present invention.
  • the hand-held power tool is a screwdriver.
  • it can be divided into a pneumatic screwdriver, a hydraulic screwdriver and an electric screwdriver.
  • a pneumatic screwdriver a pneumatic screwdriver
  • a hydraulic screwdriver a hydraulic screwdriver
  • an electric screwdriver a screwdriver
  • DC DC electric screwdriver
  • the present invention preferably uses a DC electric screwdriver as an example for specific description.
  • the DC electric screwdriver 10 includes a casing, a motor 12 that provides rotational power, a battery 18 for supplying power, a transmission mechanism, and a chuck assembly.
  • the chuck assembly includes a chuck housing 1104 and is at least partially located at Output device 15 in the collet housing 1104.
  • the housing includes a handle housing 1102 for forming a grip handle, and a rear housing 1103, which is fixedly connected to the handle housing 1102, and can be used to support and cover the motor 12, a chuck housing 1104 (front housing) and a rear housing. 1103 is abutted to form a cylindrical main case 1101 extending in the horizontal direction.
  • the main housing 1101 and the handle housing 1102 are arranged at an obtuse angle K.
  • the angle K is between 100 degrees and 130 degrees, so that the handle is more comfortable to operate.
  • the main housing 1101 has a rear position (the front and rear directions mentioned in the present invention refer to the front and rear directions of the hand-held power tool shown in FIG.
  • the main housing houses the motor 12, the transmission mechanism, and at least part of the output device 15 in this order from the rear end surface to the front end surface.
  • the chuck housing 1104 and the rear housing 1103 are fixedly connected, that is, the chuck housing of the power tool is always non-rotating. In this way, when the power tool is working, the chuck extends into a narrow space. There is no need to worry about the contact of the collet housing with the outer wall of the narrow space when the space is small, which makes the accessibility of the collet good.
  • both the handle case 1102 and the rear case 1103 are composed of a half case, and the half case of the rear case 1103 and the half case of the handle case 1102 are integrally formed, and the chuck case 1104 is a cylindrical case. (See Figure 1).
  • the chuck housing 1104 may also be composed of two half housings, or the half housings on the same side of the chuck housing 1104, the rear housing 1103, and the handle housing 1102 are integrally formed. To form two symmetrical half shells that make up the chassis.
  • the chuck housing 1104 may also be configured to be rotatable relative to the rear housing 1103. For example, when the power tool is working, the chuck housing 1104 rotates with the output device 15.
  • a button switch 19 is provided on an upper portion of the handle housing 1101 near the main housing 1101, and a battery 18 is fixed to a rear portion of the handle housing 1101.
  • the battery 18 may be a lithium-ion battery.
  • the lithium-ion battery mentioned here is based on lithium ion extraction-the general name of the rechargeable battery that is included in the reaction.
  • the positive electrode material it can constitute many systems, such as “lithium manganese” batteries, “lithium iron” “Batteries, etc.
  • the battery can also be other types of batteries, such as nickel-cadmium, nickel-hydrogen and the like, which are well known to those skilled in the art.
  • the transmission mechanism is specifically a planetary gear reduction mechanism 13, which is used to transmit the rotary motion output from the output shaft of the motor 12 to the output device 15 after being decelerated by the planetary gear reduction mechanism 13, and the tool head is further driven by the output device 15 Rotate to make the tool head output at the required speed.
  • the motor 12 is a motor, and the motor is fixed in the rear case 1103 through a positioning rib (not shown in the figure) and screws 17 in the casing.
  • the motor shaft 121 extends forward from the rear housing 1103.
  • the motor shaft 121 projects into the planetary gear reduction mechanism 13 and is output after being decelerated by the planetary gear reduction mechanism 13.
  • the planetary gear reduction mechanism 13 is a two-stage planetary gear reduction mechanism, which includes a first-stage planetary gear train 131 near the motor, and a second-stage planetary gear train 132 near the output device 15.
  • the first stage planetary gear train 131 includes a first sun gear 1310 fixed to the motor shaft 121, a first planet gear 1311 meshing with the first sun gear 1310 and disposed on the outer periphery of the first sun gear 1310, and a first planet gear 1311
  • the second stage planetary gear train 132 includes a second sun gear 1320 fixedly disposed on the first planet carrier 1313, and A second planetary gear 1321 meshed by two sun gears 1320, a second ring gear 1322 meshed with the second planetary gear 1321, and a second planet carrier 1323 for supporting the second-stage planetary gear 1321
  • the transmission mechanism further includes a A drive shaft 1325 connected to the second stage planet carrier 1323 and driven by the second stage planet carrier.
  • the output device 15 includes an output shaft 150.
  • the output shaft 150 includes a main body 151, a clamping groove 153 disposed on the main body 151 and at a certain angle with respect to the axis of the output shaft 150, and a receiving hole for receiving a tool head.
  • the output device 15 further includes a setting A clamping jaw 152 for clamping the tool head and an adjusting member sleeved on the outer periphery of the main body 151 are disposed in the clamping groove 153 and around the receiving hole.
  • the adjusting member includes a nut sleeve 154, an internal thread (not shown in the figure) is provided on the inner peripheral wall of the nut sleeve 154, and an external thread 1521 is provided on the side of the clamping jaw 152 facing the internal thread.
  • an internal thread (not shown in the figure) is provided on the inner peripheral wall of the nut sleeve 154
  • an external thread 1521 is provided on the side of the clamping jaw 152 facing the internal thread.
  • the gripper 152 can move between the front end position of the gripper 152 in the closed state and the rear end position in which the gripper 152 is fully opened along the grip groove.
  • the “closed state” here refers to the gripper When no tool head or object is clamped, the inner surfaces of multiple clamping jaws are in contact with each other. See the state diagrams of the clamping jaws in Figures 5 and 6. At this time, the clamping jaws are farthest from the motor along the axis of the drive shaft. ;
  • the “fully open state” here means that when one of the adjusting member and the clamping jaw is rotated relative to the other to open the clamping jaw, the clamping jaw has been opened to the maximum value, and the clamping jaw cannot be in the clamping groove 153 Continue to move, and the jaw is closest to the motor in the axial direction of the drive shaft 1325 at this time.
  • the gripper in the fully opened state approaches the motor in the axial direction of the drive shaft 1325 relative to the gripper in the fully closed state.
  • the nut sleeve 154 is disposed on the body 151 so as to be rotatable but not axially movable.
  • a ring groove 1511 is provided on the upper and outer periphery of the body 151, and a nut sleeve 154 is rotatably provided in the ring groove (not shown in the figure), and the ring groove can limit the axial movement of the nut sleeve 154. Referring to FIG.
  • the body 151 includes a first flange 1512 and a second flange 1513 located at two ends of the ring groove, respectively.
  • the first flange 1512 can abut against the end of the nut sleeve 154 near the tool head to restrict the nut sleeve 154.
  • the second flange 1513 can axially limit the end where the nut sleeve 154 is close to the motor 12 to prevent the nut sleeve 154 from moving toward the motor (i.e. Move backwards).
  • the gasket 156 is a wear-resistant metal gasket.
  • the nut sleeve 154 is formed by splicing two semi-circular half nut sleeves.
  • the arrangement manner of the nut sleeve 154 may also be composed of three or more half nut sleeves. Understandably, in order to effectively fix the two half nut sleeves together, a nut sleeve 157 is sleeved on the outside of the two half nut sleeves.
  • the diameter of the receiving hole is not less than 10 mm.
  • the diameter of the receiving hole is between 10 mm and 13 mm.
  • the second ring gear 1322 can move along the motor output shaft 121 in a first deceleration position near the motor (see FIG. 6) and a second deceleration position away from the motor ( (See Figure 5).
  • the second ring gear 1322 is rotatably disposed on the casing, and the second ring gear 1322 meshes with the first planet carrier 1313 and the second planet gear 1321 at the same time.
  • the first planetary carrier 1313, the second planetary gear 1321, and the second ring gear 1322 rotate together, and the second-stage planetary gear train 132 has no deceleration output, that is, the second planetary carrier 1323 has the same rotation speed as the first planetary carrier 1313.
  • the second planet carrier 1323 outputs high speed.
  • the carrier 1313 is disengaged but the second ring gear 1322 is still engaged with the second planetary gear 1321, so that the second planetary carrier 1323 outputs a predetermined reduction gear ratio relative to the first planetary carrier 1313, and the second planetary carrier 1323 outputs Low speed.
  • the first planet carrier 1313 includes a first pin (not shown) for mounting the first planet wheel 1311, a first disc-shaped body 1314, and a first disc-shaped body 1314 disposed away from the first The first planet carrier output shaft 1315 on the surface of the pin.
  • this embodiment is provided with a first support and a second support that support the body 1314 to the cabinet.
  • the first support member is disposed close to the motor along the drive shaft 1325 axially relative to the second support member. Referring to FIG. 4, when the jaw is fully opened, the jaw and the first support member 1327 are on the drive shaft. 1325 axially overlaps at least partially. Referring to FIG.
  • the clamping jaws and the second support member 16 axially overlap with each other on the driving shaft 1325.
  • the second support member 16 since the chuck housing is fixedly connected to the casing, the second support member 16 may be disposed between the body and the chuck housing and located at an end of the body 151 away from the motor.
  • the body 151 is provided with a receiving cavity 1515, the receiving cavity 1515 has an opening facing the motor, and the first support member 1327 is located in the receiving cavity 1515.
  • the rear case In order to support the first support member 1327 between the body and the casing, the rear case extends inward to form an end cover 1123 and the end cover 1123 extends to the receiving cavity 1515 to form a support portion 1124.
  • the first support member 1327 is supported on An outer side of the supporting portion 1124.
  • the body 151 has a first end close to the motor and a second end far from the motor.
  • the end cover 1123 is disposed immediately adjacent to the first end and is located between the body 151 and the motor. Therefore, the end cover can isolate the body 151 and the transmission in the axial direction.
  • the planetary gear train of the mechanism becomes a part of the gear box housing.
  • the gear box housing also includes a gear box rear cover 1121 for isolating the motor from the first-stage planetary gear train 131.
  • the gearbox sleeve 1122 outside the train 131 and the second-stage planetary gear train 132.
  • the output device 15 in this embodiment further includes an output planetary gear 1581 rotatably fixed to the body 151, an output ring gear 1582 located outside the output planetary gear 1581 and meshing with the output planetary gear 1581, and an output meshed with the output planetary gear 1581
  • the sun wheel 1583 is a hollow cylindrical body
  • the driving shaft 1125 penetrates the cylindrical body
  • an output sun gear 1583 is connected to an end of the driving shaft penetrating body 151.
  • the shape of the accommodation may also be other shapes.
  • the accommodation cavity is provided as an annular groove facing the opening of the motor, and the supporting portion 1124 is still a hollow cylindrical body.
  • the first supporting member 1327 mentioned above It is located between the inner wall of the cylindrical body and the groove wall of the annular groove.
  • the body 151 in order to facilitate processing and manufacturing of the output device 15, includes a first body 151a and a second body 151b rotatably connected to the first body 151a.
  • the strength requirement during torque transmission preferably, one of the first body 151a and the second body 151b extends to the other body to form an extension 151c that at least partially axially overlaps the other body, and passes through the first body 151a and the second body
  • the overlapping portion of the body 151b abuts in the circumferential direction for torque transmission, and the first body 151a and the second body 151b are fixedly connected by press-fitting.
  • the first body 151a is located between the planetary gear reduction mechanism 13 and the output planetary gear 1581 in the axial direction of the drive shaft 1325.
  • the projection of the clamping groove 153 on the axis of the output shaft 150 and the projection of the output planetary wheel on the axis of the output shaft 150 at least partially overlap, that is, the clamping groove 153 is at least partially located on the extension 151c.
  • the projection of the clamping groove 153 on the axis of the output shaft 150 and the projection of the first body 151a on the axis of the output shaft 150 at least partially axially overlap, that is, the clamping groove 153 is at least partially disposed on the first body 151a to provide A space in which the jaw 153 moves in the direction of the motor when opened.
  • the projection of the jaw 152 in the axial direction and the projection of the output planetary gear 1581 in the axial direction at least partially overlap. More preferably, when the clamping jaw 152 moves to the rear end position, the projection of the output planetary gear 1581, the output ring gear 1582, and the output sun gear 1582 in the axial direction of the driving shaft and the clamping jaw 153 upward on the driving shaft axis 1325 The projections overlap.
  • the distance from the end surface of the body 151 near the front cover 1123 to the front cover is L3 (Not shown in the figure)
  • the distance from the part of the jaw close to the front cover to the front cover is L4 (not shown)
  • L3 ⁇ L4 in other words, in order to shorten the axial length of the body as much as possible to shorten the power tool
  • the output device 15 further includes an output pin 1584 (see FIG. 6) fixed on the body 151, and the output planetary gear 1581 is rotatably disposed on the output pin 1584.
  • the output pin 1584 may be selectively fixed to the first body 151a or the second body 151b.
  • the output pin 1584 is close to one end of the first body 151a.
  • a washer 1337 is provided between the output planetary gear 1581 and the first bodies 151a and 151b (see FIGS. 1 and 7).
  • the gasket 1337 is a metal gasket.
  • the output pin 1584 may also be fixed on the second body 1335, or one end of the output pin 1584 is fixed on the first body 151a, and the other end is fixed on the second body 151b. It can be understood that, in other embodiments, the structure of the output device 15 may also be in other forms, and details are not described herein again.
  • the screwdriver further includes a mode selection mechanism.
  • the mode selection mechanism enables the screwdriver to switch between a drilling mode (hereinafter referred to as drill mode) and a chuck adjustment mode (hereinafter referred to as auto mode).
  • drill mode a drilling mode
  • auto mode a chuck adjustment mode
  • the motor 12 drives the body 151, the clamping jaw 152, and the adjusting member to rotate together to drive the tool head (screwdriver head) to perform work.
  • the screwdriver is in the autochuck mode, the nut sleeve 154 and the clamping jaw 152 can perform Relatively rotating, the clamping jaw 152 performs an opening or closing action.
  • the body 151 and the clamping jaw 152 located in the body 151 do not rotate, and the nut sleeve 154 rotates relative to the clamping jaw 152, so that the clamping jaw 152 performs Open or close action.
  • the output sun gear 1583 is located on the drive shaft 1325 protruding from the outside of the hollow support sleeve 1124 and meshes with the output planet gear 1581 provided on the body 151 to transmit the rotation of the second-stage planetary gear train 132 to the output device 15.
  • the output ring gear 1332 has a first working position that is close to the motor in the axial direction and a second working position that is far from the motor. See FIGS. 5-6. When the screwdriver is in drill mode, the output ring gear 1582 is located at the first position.
  • the output ring gear 1582 In a working position, the output ring gear 1582 is not rotatable relative to the casing, that is, the output ring gear 1582 cannot rotate relative to the casing, and the output ring gear 1582 meshes with the output planetary gear 1581. Therefore, the output sun gear 1583 transmits the rotation to the output planet gear 1581.
  • the output planet gear 1581 drives the body 151, the clamping jaw, and the tool head located in the body 151 to rotate under the action of the fixed output ring gear 1582.
  • the output ring gear 1582 when the screwdriver is in the autochuck mode and the output ring gear 1582 is in the second working position, the output ring gear 1582 is still engaged with the third planetary gear 1331, but can be rotated relative to the casing, that is, When the output ring gear 1582 is in the second working position, the output planetary gear 1581 transmits rotation to the output ring gear 1582, so that the output ring gear 1582 rotates relative to the casing. In the second working position, the output ring gear 1582 can simultaneously transmit rotation to the nut sleeve 154 to rotate the nut sleeve 154 relative to the clamping jaw 152, so that the clamping jaw 152 can perform an opening or closing action as required.
  • the output planetary gear 1581 transmits the rotation to the output ring gear 1582 and further transmits the rotation to the nut sleeve 154 through the output ring gear 1582 to make the nut
  • the sleeve 154 rotates relative to the body 151 (clamping claw 152) which does not rotate at this time, so that the clamping claw 152 can perform an opening or closing action as required.
  • the body 151 is selectively locked to the casing so that the nut sleeve 154 can be rotated relative to the body 151 and the clamping jaw 152 provided in the body 151.
  • the first The main body 151a is selectively locked to the casing to realize the fixing of the main body 151 relative to the casing.
  • the mode selection mechanism includes a locking element 130 for fixing the first body 151 a.
  • the locking element 130 is always fixed to the machine in a non-rotatable circumferential direction.
  • the housing can be moved axially relative to the housing to switch between the first lock position and the second lock position, preferably, in this embodiment, the lock element 130 is moved in the axial direction to achieve the lock element 130 Switching between the first lock position and the second lock position, the first body 151a is provided with a lock fitting portion that is matched with the lock element 130 (body lock). In this embodiment, the first lock position is close to the first lock position.
  • the locking mating portion on a body 151a is mated with the locking mating portion, and the second lock position is far from the locking mating portion of the first body 151a and is separated from the locking mating portion.
  • the locking element 130 when the screwdriver is in an autochuck mode, the locking element 130 is located at the first locking position, and the locking element 130 locks the first body 151 a circumferentially and non-rotatably to the casing. 5 to 6, when in the drill mode, the locking element 130 is located in the second lock position, the locking element 130 releases the circumferential lock on the first body 151a, and the output planetary wheel 1581 can drive the body 151 and the body 151.
  • the inner jaws 152 rotate together.
  • the mode selection mechanism further includes the output ring gear 1582 in The structure fixed to the casing in the first working position, such as an internal ring gear lock.
  • the locking element 130 can also be used to lock the output ring gear 1582 relative to the casing. That is, in this embodiment, the locking element 130 also functions as an internal ring gear lock, that is, the locking element 130 includes a body lock for locking the body and an internal ring gear lock for locking the output ring gear 1582.
  • the locking element 130 releases the circumferential lock on the first body 151a, and at the same time is connected to the output ring gear 1582 and non-rotatably fixes the output ring gear 1582 to the casing, so that the output planetary gear 1581 can drive the body 151 And the clamping claw 152 rotates, that is, the part of the locking element that functions as the body lock is separated from the first body 151a, and the part of the locking element that functions as the ring gear lock is connected to the output ring gear 1582.
  • the locking element 130 includes a through groove 1340 provided on an inner wall thereof.
  • the output ring gear 1582 is provided with a ring gear locking tooth 1582a that cooperates with the through groove 1340, the above-mentioned through groove 1340 of the locking element 130, and the output ring gear.
  • the ring gear lock 1582a at the end of 1582 meshes to achieve the circumferential fixation of the output ring gear 1582, that is, the ring gear lock 1582a of the output ring gear 1582 is inserted into the corresponding axial through groove 1340 to fix the output ring gear 1582. .
  • the output sun gear 1583 transmits torque to the third planet gear 1331, and under the action of the output ring gear 1582, the output planet gear 1581 revolves around the output sun gear 1583 to drive the body 151 and the gripper 152 to rotate, and through the clamp The claw 152 drives the tool head to work.
  • the lock element 130 When the screwdriver is switched from the drill mode to the autochuck mode by the mode selection mechanism, the lock element 130 is moved from the second lock position toward the first body 151a (backward movement) to the first lock position to realize the first A body 151a is locked, and at the same time, the output ring gear 1582 is moved from the first working position away from the first body 151a and close to the nut sleeve 154 (forward) to the second working position to realize the locking with the locking element 130 (inner ring gear Lock) to be separated and rotatably connected to the nut sleeve 154.
  • the locking mating portion is a locking block 1510 provided on the first body 151a, and a second locking member mated with the locking mating portion is provided on the body lock.
  • the second locking member is the above-mentioned communicating portion.
  • the slot 1340 that is, the locking element 130 (body lock) is mated with the lock block 1510 through the through slot 1340 to realize the locking of the first body 151a. Therefore, in the autochuck mode, when the lock element 130 is in the first lock position, the output ring gear 1582 is in the second working position. At this time, the lock element 130 circumferentially locks the body 151 and the clamping jaw 152 to output the ring gear. 1582 drives the nut sleeve 154 to rotate relative to the clamping jaw 152.
  • the clamping jaw 152 in the autochuck mode, in order to ensure that after the clamping jaw 152 is closed or opened in place, the clamping jaw 152 is no longer closed or opened, that is, the nut sleeve 154 is no longer continued.
  • a torque is applied to the clamping jaw 152.
  • a clutch mechanism 20 is provided between the output ring gear 1582 and the nut sleeve 154 to disconnect the torque transmission between the output ring gear 1582 and the nut sleeve 154 after the clamping jaw 152 is clamped or fully opened.
  • the clutch mechanism 20 includes a first clutch member 21 capable of being rotatably connected to the output ring gear 1582, and a second clutch member 22 and a clutch elastic member 23 rotatably connected to the nut sleeve 154 and axially movable relative to the nut sleeve 154.
  • first clutch member 21 capable of being rotatably connected to the output ring gear 1582
  • second clutch member 22 and a clutch elastic member 23 rotatably connected to the nut sleeve 154 and axially movable relative to the nut sleeve 154.
  • the first clutch 21 is a snap ring sleeved around the outer periphery of the body 151, wherein an end of the snap ring near the output ring gear 1582 is provided with an engaging tooth that cooperates with the internal teeth of the output ring gear 1582 to achieve torque transmission. 211.
  • An end of the snap ring near the second clutch member 22 is provided with a clutch moving end tooth 212 for torque transmission with the second clutch member 22.
  • the second clutch member 22 is provided with a clutch static end tooth 222 which cooperates with the clutch moving end tooth 212, and the front end of the second clutch member 22 is provided with a clutch elastic member 23, so that when the clamping jaw 152 is clamped or fully opened, That is, when the torsional force between the first clutch member 21 and the second clutch member 22 increases to a predetermined value, the second clutch member 22 compresses the clutch elastic member 23 so that the clutch end teeth 212 and the clutch static end teeth 222 Disconnect.
  • the second clutch member 22 moves backward under the action of the clutch elastic member 23, that is, automatically resets and pushes the second clutch member 22 to the clutch end tooth 212 The meshing position with the clutch static end tooth 222. Therefore, after the clamping jaw 152 is clamped or fully opened, the clutch mechanism 20 performs a repeated automatic trip operation.
  • the clutch moving end teeth 212 and the clutch static end teeth 222 include a guide inclined surface (not shown in the figure).
  • the guide inclined surface enables the second clutch member 22 to compress the clutch elastic member 23 to make the first clutch member 21 and the second The clutch 22 is separated. It should be noted that when the clamping jaw 152 is clamped or fully opened, the guide inclined surface will also cause the first clutch 21 to move toward the motor, that is, the first clutch 21 will be subjected to a backward movement.
  • the screwdriver 10 further includes an axial abutting member that abuts axially with the first clutch member 21.
  • the axial contact member is a third flange 1514 (see FIG. 7) provided on the body 151.
  • the clutch mechanism and the gripper in this embodiment at least partially overlap in the axial direction of the drive shaft.
  • the overlap with the clamping jaws in the axial direction of the driving shaft in this embodiment means that the clamping jaws are at the front end with the clamping jaws.
  • the overlap of the position and the arbitrary position of the area spanned by the rear end position refer to FIG. 4, when the gripper 152 is located at the rear position, the projection position of the end of the gripper close to the motor on the axis of the drive shaft is N1.
  • the at least partial overlap of the clutch mechanism and the gripper 152 in the axial direction of the driving shaft in this embodiment means that the clutch mechanism is located at least partially in the axial direction of the driving shaft at N1 and N2. Across the area K. In this embodiment, the clutch mechanism at least partially overlaps the clamping claw 152 in the axial direction of the drive shaft 1325, so that the axial length occupied by the clutch mechanism in the axial direction is short.
  • a distance L1 between an end surface of the motor near the chuck assembly and an end surface of the body 151 away from the motor is between 80 mm and 95 mm, so that the fuselage structure is more compact.
  • the “end face of the motor near the chuck assembly” in this embodiment may specifically refer to an end face of the front bearing 1210 facing the chuck assembly that supports the end of the motor near the chuck assembly.
  • the first support member 1327 is located in the receiving cavity 1515 of the body, so the first support member 1327 does not increase the radial distance of the collet assembly.
  • the length of the outer diameter dimension of the collet assembly is less than or equal to 60 mm, and preferably, h is 52 mm.
  • the body 151 when in the chuck adjustment mode, the body 151 is fixedly disposed relative to the casing.
  • the second clutch members 21 and 22 can transmit the rotational power of the motor to the adjustment member so that the adjustment member can rotate relative to the body.
  • the first clutch member 21 and the second clutch member 22 are always engaged by the clutch elastic member 23, and only when the clamping jaws are fully opened or closed, the first Only the two clutch members 22 can overcome the force of the clutch elastic member 23 and be separated from the first clutch member. Therefore, the degree of engagement between the first clutch 21 and the second clutch and the tripping force are mainly affected by the clutch elastic member 23.
  • the magnitude of the clutch "trip" force is relatively constant, even if the first clutch and the second
  • the magnitude of the predetermined rotational force for the clutch to separate is relatively stable.
  • the clutch mechanism 20 includes a first clutch member 21, a second clutch member 22, and a clutch elastic member 23.
  • the first and second clutch members 21 and 22 are in the clutch.
  • the elastic members 23 mesh with each other under the action of the force; in the chuck adjustment mode, the clutch mechanism can transmit the rotational power of the motor to the adjustment member, so that the adjustment member can rotate relative to the body 151, and
  • the clutch mechanism can overcome the force of the clutch elastic member 23 and move axially along the motor shaft to The first and second clutch members 21 and 22 are disengaged, thereby disconnecting the power transmission from the motor to the adjusting member.
  • the second clutch member 22 and the adjusting member are always connected without relative rotation in the rotation direction.
  • the clutch mechanism can transmit the rotational power of the motor to the adjusting member, so that the The adjusting member can rotate relative to the body 151, and when the rotational force transmitted between the first clutch member 21 and the second clutch member 22 reaches a predetermined value, the first and second clutch members 21 and 22 are disengaged from each other. , So that the power transmission from the motor shaft to the adjusting member is disconnected.
  • the clutch mechanism may also be set to be in the meshing state.
  • the first and second clutch members 21 and 22 and the driving shaft 1325 are always connected in the rotation direction.
  • the adjusting member in this embodiment is an adjusting ring (nut sleeve) sleeved on the outside of a plurality of clamping jaws, that is, the clamping jaw is provided with an external thread, and the nut sleeve is provided with an internal thread.
  • the adjusting member may be It is arranged at least partially within the area surrounded by the clamping jaws, and the clamping jaws 152 are set as internal threads, and the adjusting member is set as external threads.
  • the clutch mechanism can transmit the power of the drive shaft 1325 to the adjusting member when the clutch mechanism is in the autochuck mode.
  • the implementation of autochuck can also be set such that the adjusting member is fixed relative to the casing, and the clamping claw 152 rotates relative to the adjusting member. At this time, the clutch mechanism is used to connect and connect the adjusting member and the casing.
  • one of the clutch members in the clutch mechanism has no relative rotation connection with the adjustment member, and the other clutch member is connected with the casing or the motor in the rotation direction; when in the chuck adjustment mode, the first clutch member and the second clutch member Mutual engagement, when the torque between the first clutch member and the second clutch member reaches a predetermined value, one of the clutch members of the clutch mechanism can overcome the force of the clutch elastic member to move relative to the other clutch member to disengage The engagement between the two makes the adjusting member and the plurality of clamping jaws 152 not rotate relative to each other.
  • the chute has a first chute 311 for switching the operating member between the high speed position and the low speed position in the drill working mode, and when the operating member 30 slides between the high speed position and the low speed position, the operating member 30
  • the second ring gear 1322 can be driven to move between the first deceleration position and the second deceleration position.
  • the chute also includes a second chute 312 for switching to the autochuck mode.
  • the second chute 312 is connected to the corresponding low-speed position in the first chute 311, so that the operating member 30 can only follow the low-speed position.
  • the second chute 312 moves to switch from the drill mode to the autochuck mode.
  • the second sliding groove 312 is two sections, which are respectively disposed on both sides of the first sliding groove 311 to realize the clamping groove 3121 of the clamping jaw 152 in the autochuck mode and the opening groove 3122 for releasing the clamping jaw, respectively.
  • the first sliding groove 311 extends along the axial direction of the motor shaft 121 on the casing
  • the second sliding groove 32 is distributed on both sides of the first sliding groove 311 and is substantially perpendicular to the first sliding groove 311. Therefore, the slide groove is roughly a "T" groove structure on the housing.
  • the operating member 30 drives the second ring gear 1322 to move between the first deceleration position and the second deceleration position through the connection component in the casing, preferably
  • the connecting assembly includes an arc-shaped shifting wire 41 and a sliding member 42 that connects the shifting wire 41 and the operating member 30 and can be moved axially under the driving of the operating member 30.
  • the two free ends of the shifting wire 41 are respectively located at the second In the ring groove 1326 of the ring gear 1322, the second ring gear 1322 is moved by the shift wire 41.
  • a gear box housing is provided for sliding Piece 42 moves the slide rail 1125 axially.
  • the sliding member 42 is disposed between the two free ends of the shift wire 41, and the shift wire 41 is pivotally connected to the gear box housing at a middle position between the sliding member 42 and the free end.
  • the operating member 30 and the sliding member 42 can rotate relative to each other, that is, when the operating member 30 can rotate relative to the sliding member 42 to switch the screwdriver from the drill mode to the autochuck mode.
  • the sliding member 42 is provided with an arc-shaped groove 421 along the circumferential direction, and the front end of the operation member 30 is provided with a guide block 300 that cooperates with the arc-shaped groove.
  • the guide block 300 When the operation member 30 is switched between the high speed position and the low speed position, the guide block 300 The arc-shaped groove 421 drives the sliding member 42 to move axially; when the operating member rotates at a low-speed position, that is, the operating member 30 moves along the second sliding groove at a low-speed position, the guide block 300 can rotate in the arc-shaped groove 421 so that The operation member 30 rotates with respect to the slider 42.
  • the mode selection mechanism further includes a switching ring 43 sleeved on the outside of the gear box housing and capable of being driven and rotated by the operating member 30, a guide member (not shown in the figure), a push rod assembly 45, and the above-mentioned both capable of locking the body 151
  • the locking element 130 of the output ring gear 1582 can also be locked.
  • the switching ring 43 is provided with a slot 431 so that the operating member 30 can move axially along the slot 431 to achieve high speed and low speed in the drill mode.
  • the switch ring 43 is provided with a first guide groove 4321 and a second guide groove 4322.
  • the push rod assembly 45 includes a first push rod assembly 451 connected to the locking element 130 and a second push rod assembly 452 connected to the output ring gear 1582.
  • the guide is a switching pin, and the switching pin includes a connecting pin.
  • the switching ring 43 is further provided with an opening trigger 433 and a locking trigger 434.
  • the opening trigger 433 triggers the motor reversing
  • the switch 435 causes the motor to rotate the nut sleeve 154 in a predetermined direction to perform the opening operation of the clamping claw 152. Referring to FIGS. 10 to 12 and 19 to 21, when the operating member 30 is switched from the position shown in FIG. 10 to the position shown in FIG.
  • the switching ring 43 triggers the motor reversing switch 435 through the locking trigger 434 connected to the switching ring 43 to rotate the nut sleeve 154 in a predetermined direction to perform the closing action of the clamping jaw 152.
  • the claws 152 are basically the same when opened, and will not be repeated here.
  • the first push rod assembly 451 includes a first link 4513 connected to the first switching pin 4514 and is connected to the locking element 130 through the first link 4513 to drive the locking element 130 axially forward. , Then move.
  • the first push rod assembly 451 further includes a first self-aligning element 4510, wherein the first self-aligning element 4510 includes a first push rod 4511 connected to the first switching pin 4514 and disposed on the first push rod 4511.
  • the first elastic element 4512 at the front end is located between the first push rod 4511 and the first link 4513.
  • the first switching pin 4514 When the first switching pin 4514 moves forward, it can push the first link 4513 to move forward through the first push rod 4511 and the first elastic element 4512 located at the front end of the first push rod 4511.
  • the first link 4513 extends radially in front of the first elastic element 4512 with a first blocking member 4518 (see FIGS. 1 and 23), and the first elastic element 4512 abuts on the first blocking member 4518.
  • the first connecting rod 4513 is provided with an axially extending connecting rod slot 4515 (see FIG. 20), and the first switching pin shaft 4514 passes through the connecting rod slot 4515 so that the first switching pin shaft 4514 is in the first guide slot.
  • the second push rod assembly 452 includes a second link 4523 connected to the second switching pin 4524, and is connected to the output ring gear 1582 through the second link 4523 to drive the output ring gear 1582 to move forward and backward in the axial direction.
  • the second push rod assembly 452 further includes a second self-aligning element 4520, wherein the second self-aligning element 4520 includes a first push rod 4511 connected to the second switching pin shaft 4524 and disposed at the first A second elastic element 4522 at the front end of the two push rods 4521 and located between the second push rod 4521 and the second link 4523.
  • the second switching pin 4524 moves forward, it can push the second link 4523 to move forward through the second push rod 4521 and the second elastic element 4522 located at the front end of the second push rod 4521.
  • a second resisting member 4528 see FIG.
  • the second link 4523 extends radially in front of the second elastic member 4522 from the second link 4523, and the second resilient member 4522 abuts on the second resisting member 4528.
  • the second link 4523 is provided with a second link slot 4525 (see FIG. 1) extending axially, and the second switch pin passes through the second link slot 4525 so that the second switch pin 4524 is at the first
  • the second link 4523 can be driven to move backward and provide the second switching pin 4524 with space for movement when the second switching pin 4524 moves forward.
  • the locking element 130 can be moved forward to mesh with the output ring gear 1582.
  • the output ring gear 1582 rotates a certain angle
  • the first self-aligning element 4510 makes the locking element 130 and the output ring gear 1582 smoothly mesh into position.
  • the second push rod assembly 452 to the second self-aligning element 4520
  • the line output ring gear 1582 can be moved forward and the "top tooth” phenomenon occurs during the meshing process with the meshing teeth 211 of the first clutch 21
  • the second self-aligning element 4520 is used to smoothly mesh the output ring gear 1582 with the meshing teeth 211 in place.
  • FIGS. 18 and 19 are state diagrams of the corresponding relationship between the switching ring 43 and the switching pin in the drill mode, and the screwdriver in FIG. 18 is in a high-speed state, and the screwdriver in FIG. 19 is in a low-speed state.
  • 20 and FIG. 21 are state diagrams corresponding to the switching ring 43 and the switching pin in the autochuck mode, that is, FIG. 19 is a state diagram corresponding to FIG. 10, and FIG. 20 is a state diagram corresponding to FIG. 8. 21 is a state diagram corresponding to FIG. 12.
  • the switching pin 4514 drives the first push rod 4511 to move forward.
  • the first push rod 4511 compresses the first elastic element 4512 and presses the first link 4513 through the first elastic element 4512.
  • the first link 4513 drives the locking element 130 to move forward
  • the second guide groove 4322 drives the second push rod 4521 to move backward through the second switch pin 4524.
  • the second push rod 4521 or the second switch pin 4524 drives the second link 4523 to move backward.
  • the first guide groove 4321 drives the first push rod 4511 to move forward through the first switching pin 4514.
  • the first push rod 4511 compresses the first elastic element 4512 and presses the first link 4513 through the first elastic element 4512 to drive the locking element 130 to move forward through the first link 4513.
  • the gearbox housing is provided with an axially extending first groove 1126 on the outer side thereof, and the first push rod 4511 and the first elastic element 4512 are located in the first groove 1126 so as to be able to follow the first groove 1126.
  • a groove 1126 performs axial movement.
  • the first link 4513 is located in the first groove 1126 and is disposed above the first push rod 4511 and the first elastic element 4512.
  • a second groove 1127 extending axially is also provided on the outer side of the gear box housing.
  • the second push rod 4521 and the second elastic element 4522 are located in the second groove 1126 so as to enable the shaft to follow the second groove 1127.
  • the second link 4523 is located in the second groove 1127 and covers the second push rod 4521 and the second elastic element 4522.
  • the first putter assembly 451 and the second putter assembly 452 are at least two groups.
  • the first switching pin 4514 can also be directly connected to the first link 4513 directly, so that the axial movement of the first switching pin 4514 directly drives the first link 4513 to perform Axial motion.
  • the first switching pin 4514 described above which is connected to the first self-aligning element 4510, when the first switching pin 4514 moves forward, it contacts the first elastic element 4512 through the first pusher 4511 and further passes the first An elastic element 4512 pushes the first link 4513 forward.
  • FIGS. 24-26 show a screwdriver 10 'according to a second embodiment of the present invention.
  • This embodiment discloses another way to realize that in the autochuck mode, the body 151' is rotated and fixed by the body lock 134 'while outputting teeth.
  • the ring 1582 ' drives the nut sleeve 154' to rotate; in the drill mode, the body lock 134 'releases the fixing of the body 151', and at the same time the output ring gear 1582 'is fixed relative to the casing.
  • the body 151' drives the gripper 152 under the drive of the motor 'Rotate to realize the rotation of the tool head, and it is not necessary to move the output ring gear 1582' axially when the mode is switched, so that the output ring gear 1582 'can be stably fixed in the casing, so that the output of the screwdriver 10' more stable.
  • the operating element in this embodiment is different from the above-mentioned first embodiment in that the operating element includes a mode selection element 301 'for mode switching and a speed operation element (not shown in the figure) for speed adjustment in drill mode, and the mode selection
  • the mechanism includes a mode selection member 301 ', a switching ring 43', a body lock 134 'for locking the body, a third switching pin 4534', a third push rod assembly 453 ', a connecting member 182', and an internal ring gear lock 181 '.
  • the body lock 134 ' is always fixed to the casing in a non-rotatable circumferential direction, but can be moved axially relative to the casing to switch between the first lock position and the second lock position.
  • the body lock 134 ' is moved in the axial direction to switch the body lock 134' between the first lock position and the second lock position.
  • the first body 151a is provided with a lock fitting portion that is matched with the body lock 134 '.
  • the first lock position is close to the lock fitting portion of the first body 151a 'and is matched with the lock fitting portion, and the second lock position is far from the lock fitting portion of the first body 151a' and is connected to the lock fitting portion. from.
  • the locking mating portion is a lock block 1510 provided on the first body 151a '.
  • the body lock 134' is engaged with the lock block 1510'
  • the body 151 ' is locked to the casing in a non-rotatable circumferential direction.
  • the body lock 134' releases the circumferential lock on the first body 151a' and outputs the planetary gear. 1581 'can rotate the body 151' and the clamping jaw 152 'holding the tool head together.
  • the mode selection member 301 ' is a rotating ring sleeved on the outside of the casing, the switching ring 43' is rotatably connected to the mode selection member 301 ', and the switching ring 43' is provided with a third guide groove 432 '.
  • the switching ring 43 ′ and the mode selection member 301 ′ may be integrally formed, that is, the guide groove 432 ′ is provided on the inner wall of the switching ring 43 ′, and the guide groove 432 ′ is used to be driven by the third switching pin 4534 ′.
  • the third push rod assembly 453 ' realizes axial movement.
  • One end of the third push rod assembly 453 ' is movably disposed in the third guide groove 432' through the third switching pin 4534 ', and the other end is connected to the connecting member 182' for driving the connecting member 182 'to move axially.
  • the connecting member 182 ' can be moved between a first switching position near the ring gear lock 181' and a second switching position away from the ring gear lock 181 ', and the connecting member 182' is always connected with the output tooth during the axial movement.
  • the ring 1582 ' is rotationally connected.
  • the ring gear lock 181 ' is fixed to the casing in a non-rotatable circumferential direction.
  • connection member 182' When the connection member 182' is in the first switching position, the connection member 182 'is rotatably connected to the ring gear lock 181' and passes through the ring gear lock 181 '. Limit the rotation of the output ring gear 1582 ', that is, at this time, the output ring gear 1582' is fixed relative to the casing circumferentially; when the connection member 182 'is in the second switching position, the connection member 182' and the internal ring gear lock 181 'shaft To the direction of separation, the output ring gear 1582 'can drive the connecting member 182' to rotate together.
  • the body lock 134' in order to implement the mode selection member 301 'to move the third push rod assembly 453' to drive the connecting member 182 ', the body lock 134' can also be moved to a corresponding position.
  • the body lock 134 ' is connected to A third elastic element 135 'is also provided between the piece 182' abutting axially and the body lock 134 'is located between the end far from the output ring gear 1582' and the casing.
  • the connecting member 182 ' moves axially, the connecting member 182' no longer axially contacts the body lock 134 ', and the body lock 134' can move axially under the action of the third elastic element 135 '.
  • the connecting member 182 ' pushhes the body lock 134' back to the corresponding position by overcoming the force of the third elastic element 135 '.
  • the body lock 134 ' when the screwdriver is in a drill mode, the body lock 134 'is located at a second lock position away from the lock fitting portion of the first body 151a' and separated from the lock fitting portion, and the body lock 134 'is separated from the first body 151a 'is separated, that is, the body lock 134' does not lock the first body 151a ', so that the body 151' is rotatably disposed in the casing; at the same time, the connecting member 182 'is located at the first switching position near the ring gear lock 181'.
  • the connecting member 182 ' is engaged with the ring gear fixing teeth 1811' on the inner peripheral wall of the ring gear lock 181 'through the locking teeth 1821' (see Fig.
  • the output planetary wheel 1581 ' drives the body 151' and the clamping jaw 152 'to rotate, and further drives the tool head located in the clamping jaw 152' to work.
  • the mode selector 301 ' When the rotation mode selector 301 'is in the autochuck mode, that is, when the screwdriver 10' is switched from the state shown in FIG. 25 to the state shown in FIG. 26, the mode selector 301 'drives the switching ring 43' to rotate, and the third pusher The component 453 'drives the connecting member 182' to move away from the ring gear lock 181 'under the action of the third guide groove 432' of the switching ring 43 ', that is, the connecting member 182' moves forward from the first switching position to the first.
  • the locking tooth 1821 'on the outer periphery of the connecting member 182' is disengaged from the inner ring fixing tooth 1811 'on the inner peripheral wall of the inner ring lock 181', and the output ring gear 1582 'can drive the connecting member 182' together. Rotate relative to the case. It should be noted that when the connecting member 182 'moves forward from the first switching position to the second switching position, the connecting member 182' is simultaneously connected to the nut sleeve 154 ', so the rotation of the output ring gear 1582' can drive the nut The sleeve 154 'rotates.
  • the upper locking block 1510 ' is engaged to realize the locking of the first body 151a'.
  • the output ring gear 1582 ' can be rotated relative to the fixed first body 151a' and the clamping jaw 152 'through the connecting member 182', thereby achieving the opening or closing action of the clamping jaw 152 '.
  • the locking teeth 1821' on the outer periphery of the connecting member 182 ' can smoothly fix the teeth with the inner ring gear of the inner ring gear lock 181'.
  • a fourth elastic element (not shown in the figure) is provided on the rear side of the ring gear lock 181', so that the locking teeth 1821 'on the outer periphery of the connecting member 182' and the ring gear of the ring gear lock 181 '
  • the connecting member 182' is compressed by the ring gear lock 181 'to rotate the fourth elastic element, and the ring gear lock 181' is engaged in position after the rotation.
  • This embodiment also includes a clutch mechanism 20 'for disconnecting the torque transmission between the output ring gear 1582' and the nut sleeve 154 'after the clamping jaw 152 is locked or opened.
  • the clutch mechanism 20' includes a coupling mechanism 182 ' The first clutch 21 'which is rotationally connected to the connecting member 182' after the front movement and the second clutch 22 'which is rotationally connected to the nut sleeve 154'.
  • the first clutch 21 'and the casing at the front end thereof are provided.
  • Clutch elastic member 23 ' When the clamping jaw 152 'is locked or fully opened, the first clutch member 21' moves forward against the elastic force of the clutch elastic member 23 'to disconnect the torque between the first clutch member 21' and the second clutch member 22 '. transfer.
  • the clutch mechanism 20 ' includes a first clutch member 21', a second clutch member 22 ', and a clutch elastic member 23'.
  • the first and second clutch members 20 ' mesh with each other under the force of the clutch elastic member 23 '; in the chuck adjustment mode, the clutch mechanism can transmit the rotational power of the motor to the adjustment member, so that the adjustment member Capable of rotating relative to the body 151 ', and when the rotational force transmitted between the first clutch member 21' and the second clutch member 22 'reaches a predetermined value, at least one of the clutch members in the clutch mechanism can overcome the problem
  • the acting force of the clutch elastic member 23 ' moves axially along the motor shaft to disengage the first and second clutch members 21', 22 ', thereby disconnecting the power transmission from the motor to the adjusting member.
  • the output ring gear 1582 ' does not need to be moved axially during the mode switching process, that is, the output ring gear 1582' is axially opposite to the casing motor shaft.
  • the mode selection member 301 ' is operatively moved between the first position and the second position to drive the connection member 182', so that the connection member 182 'is connected to the output ring gear 1582' in the rotation direction in the chuck adjustment mode.
  • the clutch member, and the connection member 182 'in the drilling mode disconnects the connection between the output ring gear 1582' and the clutch members 21 ', 22' in the rotation direction.
  • the meshing between the inner peripheral teeth of the output ring gear 1582 'and the outer ring teeth of the output planetary gear 1581' The smaller the gap, the more stable the transmission, but when the output ring gear 1582 'needs to move axially, the meshing gap must be increased, otherwise the axial movement of the output ring gear will be blocked or more difficult, which makes the transmission stability worse. .
  • the axial movement through the connecting member 182 'instead of the axial movement of the output ring gear 1582' avoids the problem of poor transmission stability.
  • FIG. 27 to 30 show a partial cross-sectional view of a screwdriver 10 "according to a third embodiment of the present invention.
  • This embodiment discloses another way to realize the rotation of the body 151" through the body lock 134 "in the autochuck mode, and at the same time
  • the output ring gear 1582 drives the nut sleeve 154" to rotate and the body lock 134 "unfixes the body 151" in the drill mode.
  • the output ring gear 1582 is fixed relative to the casing, and the body 151” drives the clip under the drive of the motor.
  • the claw 152 rotateates to realize the rotation of the driving tool head.
  • the mode selection mechanism in this embodiment includes a mode selection member 301 ", a switching ring (not shown) provided with a guide groove (not shown), a guide member, a connecting member 182", a body lock 134 ", and an inner Ring gear lock.
  • the mode selection member 301 " is a rotating ring sleeved on the outside of the casing or the chuck housing, and the guide member includes a third switching pin 4534" for driving the connecting member 182 "axially
  • the guide groove includes a third guide groove 432 "for moving the third switching pin 4534".
  • the switching ring is integrally formed with the mode selection member 301 ", that is, a guide groove is provided on the inner peripheral surface of the mode selection member 301".
  • the body lock 134 is movable between a first lock position near the first body 151a "and a second lock position far from the first body 151a", but is not fixed in the circumferential direction relative to the casing. It is the same as the second embodiment described above.
  • the connecting member 182 "in this embodiment is always rotatably connected to the output ring gear 1582"
  • the internal ring gear lock 181 "is non-rotatably fixed to the casing and the connecting member 182" is axially moved to achieve the lock with the internal ring gear 181 "meshing or disengaging to achieve output ring gear 1582" circumferentially fixed or rotatable respectively, that is, the connecting member 182 'can be in the first switching position near the ring gear lock 181 "and away from the ring gear lock 181 "The second switching position moves, the connection piece 182" is always rotationally connected to the output ring gear 1582 "during the axial movement.
  • the ring gear lock 181" is non-rotatable in the circumferential direction and is fixed relative to the casing.
  • the connecting piece 182 ' is rotatably connected with the ring gear lock 181' and the rotation of the output ring gear 1582" is restricted by the ring gear lock 181, that is, the output ring gear 1582 "is opposite to It is fixed in the circumferential direction of the casing;
  • the connecting piece is 182 " In the second switching position, the connecting member 182 "is axially separated from the ring gear lock 181 ', and the output ring gear 1582" can drive the connecting member 182 "to rotate together, while the connecting member 182" is rotationally connected with the nut sleeve 154 ".
  • the switching pin in this embodiment also includes a connection with the body lock 134" for driving the body lock 134 "
  • the fourth switching pin 4516 "for radial movement, the guide groove further includes a fourth guiding slot (not shown in the figure) for one end of the fourth switching pin 4516" to move.
  • One end is connected to the body lock 134 "for driving the body lock 134" to perform radial movement, so that the body lock 134 "can realize locking and unlocking of the first body 151a”.
  • the fourth switch pin in this embodiment 4516 is integrated with the body lock 134". Referring to FIG.
  • connection member 182 when the screwdriver 10 "is switched from the drill mode to the autochuck mode, the connection member 182" is first disconnected from the ring gear lock 181 "during the movement, and the connection member 182" continues Move, the connecting piece 182 "is connected with the nut sleeve 154", and the body lock 134 "is connected with the body 151a” at this time.
  • the clutch mechanism 20 disconnects the connection between the output ring gear 1582 "and the nut sleeve 154", which is different from the above embodiment.
  • the clutch moving end teeth 212 are fixedly connected to the connecting piece 182
  • the clutch static end teeth 212 are fixed to the nut sleeve 154
  • the clutch elastic piece 23 is provided between the connecting piece 182" and the casing.
  • the connecting member 182 presses against the clutch elastic member 23
  • the clutch The moving end tooth 212 is separated from the clutch static end tooth 222.
  • the connecting member 182 is provided with There is an axially extending clutch groove 182a “so that the connector 182" can move relative to the third switching pin 4534 "when” tripped ".
  • the clutch mechanism 20 in this embodiment The first clutch (not shown) and the second clutch (not shown) are not always meshed. It is basically the same as the clutch mechanism described in the background art. Only in the autochuck mode, the first clutch and the first clutch The two clutch pieces only mesh (ie, the clutch moving end teeth 212 "and the clutch static end teeth 222" only mesh).
  • the screwdriver 10a includes a casing, a motor 12a, a battery 18 for supplying power, a transmission mechanism, and a chuck assembly.
  • the chuck assembly includes a clamp.
  • the cabinet includes a rear case 1103a extending horizontally and a handle case 1102a fixedly connected to the rear case 1103a for forming a holding handle.
  • the front case 1104a and the rear case 1103a are abutted to form a horizontal plane.
  • the main casing extends in a direction, and the main casing forms a receiving cavity for receiving at least a part of the output device 15a.
  • the motor 12a is disposed in the casing and outputs rotational power.
  • the output device 15a includes an output shaft 150a, and the output shaft 150a is provided with a receiving hole 1500a for receiving a tool head.
  • the transmission mechanism is located between the motor 12a and the output device 15a to transmit the rotational power of the motor 12a to the output device 15a.
  • the mode selection mechanism is used to switch the screwdriver 10a at least between the drilling mode or the chuck adjustment mode.
  • the output shaft 150a includes a main body 151d, a clamping jaw 152a provided around the receiving hole to clamp the tool head, and a clamping groove 153a provided on the main body 151d to receive the clamping jaw 152a.
  • the output device 15a further includes an output planet gear 1581a, an output ring gear 1582a located outside the output planet gear 1581a, and an adjustment ring provided outside the body 151a and capable of rotating relative to the body 151a and the gripper 152a to lock or open the gripper 152a, and
  • the above embodiments are basically the same.
  • the adjusting ring includes a nut sleeve 154a.
  • the inner peripheral wall of the nut sleeve 154a is provided with an internal thread (not shown).
  • the side of the clamping jaw 152a facing the internal thread is provided with an external thread 1521a.
  • the transmission mechanism is provided with an output sun gear 1583a for driving the output planet gear 1581a to rotate.
  • the mode selection mechanism includes a connecting member 420a capable of connecting the output ring gear 1582a and the adjustment ring, and a locking element 130a capable of selectively preventing the output ring gear 1582a or the body 151d from rotating, and the locking element 130a is non-rotatably disposed with respect to the casing, Among them, when in the drilling mode, the locking element 130a is connected to the output ring gear 1582a to prevent the output ring gear 1582a from rotating in the circumferential direction, and the output ring gear 1582a and the adjustment ring are disconnected under the action of the connecting member 420a, so that the body 151d and clamping jaw 152a can be rotated by a motor to drive the tool head to perform work; when the screwdriver 10a is switched from drilling mode to chuck adjustment mode, the locking element 130a is connected to the body 151a and disengaged from the output ring gear 1582a In order to prevent the body 151a from rotating in the circumferential direction and release the circumferential limitation on the output
  • the locking element 130a in this embodiment includes both a body lock for locking the body 151a and an internal ring gear lock for locking the output ring gear 1582a.
  • the The main body lock of the locking body 151a and the inner ring gear lock for locking the output ring gear 1582a are inseparably connected or integrally formed.
  • this embodiment enables the autochuck mode by providing a connecting member 420a.
  • the output ring gear 1582a is connected to the rotation direction of the adjustment member, but in the drill mode, the output ring gear 1582a and the adjustment member are disconnected in the rotation direction, instead of being realized by axially moving the output ring gear 1582a.
  • the mode selection mechanism further includes a first push rod assembly 451a connected to the locking element 130a for pushing the locking element 130a to move to realize that the locking element 130a selectively locks the body 151d or the output ring gear 1582a, and a connection The first putter assembly 451a and the fourth putter assembly 454a of the connection member 420a. Therefore, the fourth putter assembly 454a can drive the connection member 420a to move under the action of the first putter assembly 451a.
  • the locking element 130a is moved in the axial direction so as to switch the locking element 130a between the first locking position and the second locking position, and the connecting member 420a is realized in the first connecting position by axial movement. Switch to the second off position.
  • the first putter assembly 451a drives the fourth putter assembly 454a and the connecting member 420a connected to the fourth putter assembly 454a to move in conjunction with FIGS. 31 and 38-39.
  • the fourth putter assembly 454a includes a fourth link 4541a.
  • the first putter assembly 451a includes a first link 4511a. One end of the first link 4511a is connected to the mode connector 302a, and the other end is connected to the locking element 130a.
  • the screwdriver is switched from the drill mode to the autochuck mode, that is, the first link 4511a moves backward under the action of the external force, at this time the first link 4511a drives the locking element 130a to move axially backward.
  • the movement strokes may be different or asynchronous.
  • One of the first link 4511a or the fourth link 4541a is provided with an axially extending link guide groove 4510a, and the other of the first link 4511a or the fourth link 4541a is provided.
  • a link guide 4542a is located in the link guide groove 4510a. In this embodiment, the link guide 4510a is provided on the first link 4511a, and the link guide 4542a is located on the fourth link 4541a.
  • the first link 4511a drives the locking element 130a to move axially backward a certain distance
  • the locking element 130a is disconnected from the output ring gear 1582a at this time, and the link guide 4542a and the link guide groove 4512a continue to move backward
  • the first link 4511a not only drives the locking element 130a to move axially backward, but also drives the fourth link 4514a to move axially backward.
  • the locking element 130a is connected with the body in the rotation direction. The body is locked, at the same time, the connecting piece 420a is axially moved backward and connected to the output ring gear, and the screwdriver is switched to the autochuck mode.
  • the first link 4511a drives the locking element 130a to move forward in the axial direction under the action of the external force.
  • a push rod elastic member 480a is further provided between the first push rod assembly 451a and the fourth link 4541a, wherein the first push rod assembly 451a first drives the locking element 130a to move axially forward, and the forward movement of the first push rod assembly 451a compresses the push rod elastic member 480a, and passes through the push rod elastic member 480a after the push rod elastic member 480a is compressed to a certain extent The fourth link 4541a is pushed forward.
  • the locking element 130a when the screwdriver is in the autochuck mode, the locking element 130a is located at the first locking position, the connecting piece 420a is located at the first connecting piece position, and the locking element 130a locks the body 151d circumferentially in a non-rotatable manner At the same time, the connecting member 420a connects the output ring gear 1582a with the adjusting ring.
  • the locking element 130a when in the drill mode, the locking element 130a is located at the second locking position, and the locking element 130 releases the circumferential locking of the body 151d and moves the output ring gear 1582a circumferentially through axial movement.
  • the connecting member 420a disconnects the connection between the output ring gear 1582a and the adjustment ring, and the output planetary gear 1581a can drive the body 151d and the clamping jaw 152a located in the body 151d to rotate together.
  • the screwdriver 10a further includes a clutch mechanism 20a located between the adjustment ring and the output ring gear 1582a for disconnecting the torque transmission between the output ring gear 1582a and the adjustment ring after the jaw 152a is opened or closed in the autochuck mode.
  • the clutch mechanism 20a includes a first clutch member 21a that can be rotatably connected to the output ring gear 1582a, a second clutch member 22a that is rotatably connected to the adjustment ring and can move axially relative to the adjustment ring, and a clutch elastic member 23a. This embodiment In the middle, the clutch elastic member 23a is located between the second clutch member 22a and the front housing 1104a.
  • the second clutch member 22a compresses the clutch elastic member 23a, and the second clutch member 22a is axially oriented Moving forward, the first clutch 21a and the second clutch 22a are disengaged, and the output ring gear 1582a no longer transmits torque to the adjustment ring (nut sleeve 154a).
  • the first clutch member 21a is a snap ring sleeved on the outer periphery of the body 151a '.
  • the snap ring is provided with an axially extending clutch tooth groove 211a
  • the connecting member 420a is provided with a connecting tooth matching the tooth groove 211a.
  • the connecting member 420a and the first clutch 21a are always engaged, that is, the connecting tooth 421a is always located in the clutch tooth groove 211a, and the connecting tooth 421a is moved axially backward in the clutch tooth groove 211a. That is, it moves axially in the direction close to the output ring gear 1582a, so as to achieve the connection between the first clutch member 21a and the output ring gear 1582a.
  • the clutch structure 20a may also be provided in other ways, such as the clutch elastic member 23a is located between the first clutch member 21a and the housing 11a.
  • the first clutch member 22a compresses the clutch elastic member 23a, the first clutch member moves axially, the first clutch member 21a is disengaged from the second clutch member 22a, and the output ring gear 1582a no longer transmits torque to the nut sleeve 154a.
  • the mode selection mechanism further includes a mode selection member 301a.
  • the mode selection member 301a is connected to the first putter assembly 451a to transmit the movement of the mode selection member 301a to the first putter assembly 451a.
  • the mode selector 301a is disposed adjacent to the handle housing 1102a so that the operator can hold the handle and the control mode selector 301a linearly with one hand. motion.
  • the mode selection member 301a moves in the first direction under the pressure of the finger, and preferably, the output shaft 150a has a receiving hole 1500a provided in the axial direction.
  • the first end and the second end opposite to the first end, and the first direction is a direction from the first end to the second end, that is, the mode selector 301a has an initial position and a position after the initial position is moved in the first direction. Switching position, so when the mode selector 301a moves to the switching position in the first direction, the screwdriver is in the autochuck mode.
  • the mode selection mechanism in this embodiment further includes a mode reset element 303a.
  • the mode reset element 303a is located between the mode selection element 301a and the casing.
  • the mode reset element 303a moves to the switching position in the first direction, the mode reset element 303a is in the state of elastic energy storage by the mode selection member 301a under the action of external force, that is, when the mode reset element 303a is a tension spring, the mode reset element 303a is stretched by the external force, and when the mode reset element 303a is a compression spring, The mode reset element 303a is compressed by the external force.
  • the mode selector 301a is moved to the initial position by the mode reset element 303a.
  • the locking element 130a and the connecting member 420a in this embodiment both move in the first direction, which is consistent with the moving direction of the mode selecting member 301a.
  • This setting mode enables the mode selection member 301a to drive the locking element 130a and the connecting member 420a to move through a simple linkage mechanism (such as the first pusher assembly 451a and the fourth pusher assembly 454a described above), compared with the lock
  • the linkage mechanism does not need to switch the movement direction, and the linkage mechanism has a simple structure.
  • the connecting member 420a when in the drilling mode, the connecting member 420a is located on the side of the output ring gear 1582a away from the motor and is connected to the adjusting member without relative rotation through the clutch mechanism, and the locking element 130a and the The output ring gear 1582a is mated; when the power tool is switched from the drilling mode to the chuck adjustment mode, the connecting piece 420a and the locking element 130a move along the motor shaft axially toward the motor, so that the connecting piece 420a is drivingly connected between the output ring gear 1582a and the adjusting member in the rotation direction, and at the same time, the locking element 130a is disengaged from the output ring gear 1582a and fixes the body relative to the casing.
  • the screwdriver further includes a switch operation member 304a for controlling the power supply or power off of the motor, and a first control component for controlling the movement of the motor according to the movement of the switch operation member 304a.
  • the control of the speed of the motor is realized.
  • the first control component makes the rotation speed of the motor different, and when the stroke is larger, the rotation speed of the motor is higher.
  • the movement mode of the mode selector 301a in this embodiment is basically the same.
  • the switch operation member 304a is provided adjacent to the handle housing so that the operator can Simultaneously hold the handle and the switch operating member for movement with one hand.
  • the movement of the switch operating member 304a is preferably a linear movement.
  • the switch operating member 304 has an initial position of a switch that disconnects the motor from the power supply and connects the motor to the power supply. And the greater the travel distance of the switch operating member in the first direction, that is, the farther the operation position is from the output position, the higher the rotation speed of the motor.
  • the screwdriver when the screwdriver is in the autochuck mode, if the speed of the motor is high, the “tripping” sound may be harsh and the operating environment may be poor. In order to avoid this problem, it is necessary to limit the stroke of the movement of the switch operating member 304a, so as to avoid that a large stroke of the movement of the switch operating member 304 causes a high motor rotation speed.
  • the screwdriver further includes an interlocking mechanism 305a, which is pivotally disposed in the casing and can be pivoted according to a preset by the mode selection member 301a. Direction for pivotal movement.
  • the interlocking mechanism 305a includes a first limit arm 3051a and a second limit arm 3052a. As shown in FIGS. 35 and 36, when the mode selector 301a is switched to the switching position, the mode selector 301a forces the first limit
  • the position arm 3051 drives the interlocking mechanism 305a to pivot to the first limit position, and the free end of the second limit arm 3052a moves to between the switch initial position and the switch end operation position, that is, to the operation position to limit the movement of the switch operating member.
  • the stroke which controls the speed of the motor.
  • a mode connection member 302a is further provided between the interlocking mechanism 305a and the first link 4511a.
  • the mode connection member 302a is an elastic steel wire.
  • the mode selector 301a is provided with a mode switching slot 3011a that guides the free end movement of the first limit arm 3051a. See FIGS. 34-35.
  • the mode is selected, When the piece 301a moves in the first direction F1 shown in FIG. 33 to the position shown in FIG.
  • the switch operation member 304a cannot move from the switch initial position to the switch end position, that is, it cannot move beyond the predetermined position to the end position; as shown in FIG. 34 and FIG. 37, in the drill mode, the switch operation member 304a is moved from FIG. After the initial position shown is switched to the switch end position shown in FIG.
  • Interlocking mechanism 305a Method pivoted along a predetermined, and therefore, at this time the operation mode even if the member can not be operated or may operate but can not make the switch to the power tool chuck adjustment mode. It can be understood that, in this embodiment, when the switch operation member is switched from the initial position shown in FIG. 34 to the end position shown in FIG.
  • the arrangement of the interlocking mechanism 305a may also adopt other forms of structures, as shown in FIGS. 40-42.
  • the interlocking mechanism 305a ' is pivotally disposed on the casing, and can be selected in the mode.
  • the piece 301a ' is driven to perform a pivoting motion according to a preset pivoting direction.
  • the interlocking mechanism 305a ' includes a first limit arm 3051a' and a second limit arm 3052a '.
  • the mode selector 301a' When the mode selector 301a' is switched to the switching position, the mode selector 301a 'forces the first limit arm 3051' to move The interlocking mechanism 305a 'is pivoted to the first limit position, and the free end of the second limit arm 3052a' is moved to a predetermined position between the initial position of the switch and the end position of the switch to restrict the switch operating member from passing the predetermined position. After the switch operating member 304a 'moves to the end position, the second limit arm 3052a' abuts against the travel switch in the preset pivoting direction, and the mode selector 301a 'cannot move to the switching position.
  • the switch operating member 304a when the switch operating member 304a 'moves to a predetermined position and any position after the predetermined position, when the operation mode selection member 301a', the second limit arm 3052a 'is selected in the operation mode. If the part 301a 'does not reach the mode switching position, it will contact the switch operation part 304a'.
  • the mode selection member 301a ' is provided with a first abutment portion 3011a' which is in contact with the first limit arm 3051a '.
  • the switch operating member 304a' moves in the first direction
  • the mode selection member 301a 'moves in the first direction the first abutment portion 3011a' abuts against the first limit arm 3051a ', and the mode selection member 301a' cannot move to the switching position, that is, the mode selection member 301a 'cannot. Switch the screwdriver to autochuck mode.
  • the mode connection member 302a ' is directly connected to the mode selection member 301a', that is, the mode connection member 302a 'is not connected to the mode selection member 301a' through the limit mechanism 305a '.
  • the transmission mechanism is the same as the first implementation.
  • the transmission mechanism is a planetary gear reduction mechanism 13a.
  • the planetary gear reduction mechanism 13a is preferably a two-stage planetary gear reduction mechanism, including a first-stage planet close to the motor.
  • the gear train 131a and the second-stage planetary gear train 132a near the output device 15a.
  • the first stage planetary gear train 131a includes a first sun gear 1310a fixed to a motor shaft 121a, a first planet gear 1311a meshing with the first sun gear 1310a and disposed on the outer periphery of the first sun gear 1310a, and a first planet gear 1311a
  • the meshed first ring gear 1312a and the first planet carrier 1313a for supporting the first planet gear 1311a.
  • the second stage planetary gear train 132a includes a second sun gear 1320a fixedly disposed on the first planet carrier 1313a, and A second planetary gear 1321a meshed with the two sun gears 1320a, a second ring gear 1322a meshed with the second planetary gear 1321a, and a second planet carrier 1323a for supporting the second planetary gear 1321a.
  • the second ring gear 1322a is movable relative to the casing between the first deceleration position near the motor and the second deceleration position away from the motor along the motor output shaft 121a.
  • the second ring gear 1322a When the second ring gear 1322a is in the first deceleration position, the second ring gear 1322a is rotatably disposed in the casing, and the second ring gear 1322a meshes with the first planet carrier 1313a and the second planet gear 1321a at the same time. Therefore, the first planet carrier 1313a, the second planet gear 1321a, and the second ring gear 1322a rotate together, and the second stage planetary gear train 132a has no deceleration output, that is, the second planet carrier 1323a and the first planet carrier 1313a have the same rotation speed. The second planet carrier 1323a outputs high speed.
  • the second ring gear 1322a When the second ring gear 1322a is in the second deceleration position, the second ring gear 1322a is fixed to the rear case 110a in a non-rotatable manner in the circumferential direction, and the second ring gear 1322a is in contact with the first planet during the axial movement.
  • the carrier 1313a is disengaged but the second ring gear 1322a is still engaged with the second planetary gear 1321a, so that the second planetary carrier 1323a outputs a predetermined reduction gear ratio relative to the first planetary carrier 1313a, and the second planetary carrier 1323a outputs Low speed.
  • the mode selector 301a is provided with a switch trigger (not shown in the figure).
  • the switch trigger is triggered, the power supply circuit of the motor is turned on, and the motor drives the adjustment ring to face each other.
  • the body 151d is rotated to open or close the clamping jaws.
  • a “T” slot structure is set so that the second planetary carrier outputs low speed in the autochuck mode.
  • the screwdriver 10a in order to ensure that the rotation speed of the output shaft 15a is low in the autochuck mode, the screwdriver 10a further includes a position sensor 24a and a second control component.
  • the position sensor 24a is used to detect the position of the second ring gear 1322a, and The position signal of the second ring gear 1322a is transmitted to the second control component, and the second control component controls the rotation speed of the motor according to the position of the second ring gear 1322a so that the output shaft 15a can always be output in the autochuck low speed mode when in the autochuck mode. That is, output is performed at a speed lower than a preset speed.
  • the autochuk low speed mode in this embodiment is not a specific value, as long as the speed of the output shaft 15a is lower than a preset speed value.
  • the above-mentioned mode selection member 301a drives the locking element 130a and the connecting member 420a to move through the first pusher assembly 451a and the fourth pusher assembly 454a, respectively, and when the mode is switched, the locking elements 130a and The movement strokes of the connecting member 420a are inconsistent. It can be understood that in other embodiments, the movement strokes of the locking member 130a and the connecting member 420a can be set to be the same, that is, the locking member 130a and the connecting member 420a can be connected by the same connection. The rods move synchronously.
  • 43-45 are schematic diagrams of a screwdriver 10a according to a fifth embodiment of the present invention.
  • the same reference numerals are used for the same structures in this embodiment as in the fourth embodiment.
  • the first link 4511a simultaneously drives the lock
  • the element 130a and the connecting member 420a are moved.
  • the locking element 130a in the drill mode, is disengaged from the meshing teeth (not shown) on the body 151d and meshes with the meshing teeth (not shown) of the output ring gear 1582a.
  • the output ring gear 1582a is fixed relative to the casing; at the same time, the connecting member 420a is disengaged from the output ring gear 1582a.
  • the locking element 130a and the connecting member 420a move axially backwards under the action of the first link 4511a, and the locking element 130a and the output ring gear After 1582a is disconnected, it continues to move to engage with the meshing teeth on the body 151d. Accordingly, the connecting member 420a meshes with the meshing teeth portion of the output ring gear 1582a.
  • the connecting member 420a and the output gear The axial distance between the rings 1582a is greater than or equal to the axial length of the output ring gear 1582a.
  • the axial distance between the connecting member 420a and the output ring gear 1582a is greater than or equal to the axial length of the output ring gear 1582a.
  • the connecting member 420a is close to the side of the output ring gear to
  • the distance between the side surfaces of the locking element 130a near the output ring gear 1582a is d3, and the distance between the two side end surfaces in the axial direction of the output ring gear 1582a is d4 (not shown in the figure), and d3 is greater than or equal to d4. Because d3 is greater than or equal to d4 to prevent the motor from stalling when the connecting member 420a engages with the output ring gear 1582a when the locking element 130a has not disengaged the output ring gear 1582a.
  • the connecting member 420a The axial distance from the output ring gear 1582a is greater than or equal to the axial length of the output ring gear 1582a. It can also be understood that the axial distance between the connecting member 420a and the locking element 130a makes the meshing teeth of the output ring gear 1582a not Simultaneously meshes with the meshing teeth on the connecting piece 420a and the meshing teeth of the locking element 130a.
  • the locking element 130a is disengaged from the meshing teeth of the output ring gear 1582a and meshes with the meshing teeth on the body 151d, and the body 151d is in the rotation direction Being locked, at the same time, the connecting member 420a is connected to both the output ring gear 1582a and the first clutch 21a, so that the adjustment ring can be rotated relative to the body to open or close the jaws.
  • the connecting member moves between the output ring gear 1582a and the adjusting member in the axial direction of the driving shaft.
  • the member axially overlaps the jaw on the drive shaft 1325 in the axial direction of the drive shaft.
  • the clamping claw 152a is in a fully opened state (at the rear end position)
  • the locking element 130a and the clamping claw 152a axially overlap with each other on the drive shaft.
  • the mode selector and the gripper at least partially overlap in the axial direction of the drive shaft.
  • the clutch mechanism and the clamping jaw in the present invention at least partially overlap along the axial direction of the driving shaft. It should be noted that, when the clamping jaw is closed or expanded, the clamping jaw can be driven along the driving axis.
  • the shaft moves axially away from the front end position of the motor (as shown in Fig. 5) and near the rear end position of the motor (as shown in Fig. 4).
  • the overlap or partial overlap of the driving shaft along the axial direction of the gripper means that Overlap at any of the front end position or the rear end position.
  • the body in the autochuck mode, the body is fixed with respect to the casing, therefore, the grippers located in the body are also rotated with respect to the casing. It is fixed, and the adjusting member rotates relative to the clamping jaw under the driving of the driving shaft.
  • the support of the first support member and the second support member to the body in the present invention is not limited to the specific implementation in the autochuck mode (that is, the gripper is not moved, and the adjusting member is rotated relative to the gripper), as long as the gripper and the adjusting member One can be rotated relative to the other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Gripping On Spindles (AREA)

Abstract

本发明公开了一种手持式动力工具,属于手持式工具技术领域,包括机壳、马达、夹头组件以及具有驱动轴的传动机构,夹头组件包括本体、夹爪以及与夹爪螺纹连接的调整件;动力工具具有本体、夹爪和调整件一起转动的钻孔模式以及调整件和本体能够相对转动以实现夹爪打开或合拢的夹头调节模式;动力工具还包括将本体旋转的支撑于机壳的第一支撑件和第二支撑件,且第一、第二支撑件与夹爪沿驱动轴轴向至少部分重叠以使动力工具在轴向上结构紧凑。所述本体内设有收容腔,第一支撑件位于收容腔内,从而使得整机能够在径向上结构也较为紧凑。

Description

手持式动力工具 技术领域
本发明涉及一手持式动力工具,更为具体地,涉及一种具有夹头组件的手持式动力工具。
背景技术
手持式动力工具,例如电钻用于对工件(如木板或水泥板等)进行钻孔或螺丝批用于松开或拧紧螺钉,其驱动轴上安装有用于夹持工具头的夹头组件。根据手持式动力工具功能的不同可选用不同规格、类型的工具头(如用于拧螺钉的批头、可在木板上钻孔的扁钻、可用于在水泥板上钻孔的冲击钻头以及在钢板上钻孔的麻花钻等),在更换工具头时,首先需要将夹爪打开以释放原本夹紧于夹头的工具头,然后插入新工具头后再将其锁紧于夹爪内。
需要说明的是,由于夹头组件至少包括夹爪、容置夹爪的本体以及与夹爪螺纹配接以使夹爪能够相对本体轴向移动的调整件,且这些结构多为金属材质,使得夹头组件较重,因此,为了使输出较为稳定,需要将夹头组件支撑于机壳。常规的做法是位于夹头组件和传动行星轮系之间的驱动轴沿轴向上设置轴承,设置的轴承占用了较长的轴向长度,该支撑方式致使整机的长度较长。
发明内容
本发明提供一种手持式动力工具,该动力工具具有使整机结构较为紧凑的支撑结构。该手持式动力工具包括:机壳;马达,设置于所述机壳内并输出旋转动力;夹头组件,所述夹头组件包括本体、相对本体于活动设置的多个夹爪、以及与所述多个夹爪螺纹连接的调整件;以及传动机构,包括用于 传递马达驱动力的驱动轴;所述动力工具至少具有钻孔模式以及夹头调节模式,当处于钻孔模式时,所述本体由驱动轴驱动并与夹爪和调整件一起转动;当处于夹头调节模式时,所述调整件和所述本体二者之一能够相对于另一转动以实现夹爪在完全合拢状态和完全打开状态之间切换,且完全打开状态的夹爪相对于完全合拢状态的夹爪沿驱动轴轴向上靠近马达;所述动力工具还包括将所述本体旋转的支撑于所述机壳的第一支撑件和第二支撑件,所述第一支撑件相对于所述第二支撑件沿驱动轴轴向靠近所述马达设置,当夹爪处于完全打开状态时,所述第一支撑件与所述夹爪在驱动轴轴向至少部分重叠,当夹爪处于完全合拢状态时,所述第二支撑件与所述夹爪在驱动轴轴向重叠。由于第一支撑件和第二支撑件在驱动轴轴向上与夹爪均有重叠,使得动力工具的轴向尺寸更加紧凑。
优选地,所述动力工具还包括离合机构,当动力工具处于夹头调节模式下,所述离合机构用于在所述多个夹爪与调整件之间的扭矩达到预定值时断开马达轴传递至调整件或本体的旋转动力,以使所述调整件与卡爪之间无相对转动,所述离合机构与所述夹爪在驱动轴轴向上至少部分重叠。
优选地,所述离合机构包括第一离合件、第二离合件以及离合弹性件,其中一个离合件与调整件无相对转动地连接,另一个离合件与机壳或马达在旋转方向上连接;当处于夹头调节模式,第一离合件与第二离合件相互啮合,当所述第一离合件、第二离合件之间的扭矩达到预定值时,所述离合机构的其中一个离合件能够克服离合弹性件作用力相对于另一个离合件运动以脱开两者之间的啮合,从而使所述调整件与所述多个夹爪无相对转动。
优选地,所述调整件套设于多个夹爪的外侧,所述调整件的内周面设有内螺纹,所述夹爪上设有与内螺纹配接的外螺纹。
优选地,所述本体设置有收容腔,所述收容腔具有面向马达的开口,所述第一支撑件位于所述收容腔内。
优选地,所述机壳包括收容马达的主壳体、由主壳体向内侧延伸的端盖 以及由端盖向所述收容腔延伸的支撑部,所述第一支撑件支撑于所述支撑部的外侧。
优选地,所述本体具有靠近马达的第一端和远离马达的第二端,所述端盖紧邻所述第一端设置且位于本体和马达之间。
优选地,所述动力工具还包括至少一级位于所述端盖远离马达一侧的输出行星轮系,所述输出行星轮系至少包括连接于驱动轴的太阳轮、设置于本体且与太阳轮啮合的行星轮,钻孔模式时,所述驱动轴能够通过行星轮带动本体转动,当夹爪处于完全打开状态时,所述夹爪与所述行星轮在驱动轴轴向至少部分重叠。
优选地,所述支撑部为中空的筒状体,所述驱动轴贯穿所述筒状体,所述太阳轮连接于所述驱动轴穿入所述本体的端部。
优选地,所述动力工具至少包括一级输出行星轮系,所述输出行星轮系包括与驱动轴连接的太阳轮、由太阳轮驱动的行星轮,以及与行星轮啮合的输出齿圈,当处于钻孔模式时,所述输出齿圈相对于机壳固定,所述驱动轴通过所述行星轮带动本体转动,且当夹爪处于完全打开状态时,所述行星轮与所述夹爪在驱动轴轴向至少部分重叠。
优选地,所述动力工具还包括模式选择机构,所述模式选择机构可操作地使动力工具至少在钻孔模式以及夹头调节模式之间切换,当处于夹头调节模式时,所述本体相对于机壳固定,所述输出齿圈能够在马达的驱动下相对于机壳旋转并能够将旋转运动传递至调整件。
优选地,所述模式切换机构包括模式选择件以及由模式选择件带动的连接件,当处于夹头调节模式时,所述连接件能够将所述输出齿圈的驱动力传递至调整件;当处于钻孔模式时,所述连接件断开输出齿圈与调整件二者在旋转方向的动力传递。
优选地,当夹爪处于完全打开状态时,所述连接件与所述夹爪在驱动轴轴向重叠。
优选地,所述模式切换机构还包括不可转动地相对机壳设置且能够由模式选择件带动的锁止元件,所述锁止元件选择性地将本体或输出齿圈相对于机壳固定。
优选地,当夹爪处于完全打开状态时,所述锁止元件与所述夹爪在驱动轴轴向重叠。
优选地,所述动力工具还包括模式切换机构,所述模式选择机构包括可操作地使动力工具至少在钻孔模式以及夹头调节模式之间切换的模式选择件,所述模式选择件与所述夹爪在驱动轴轴向至少部分重叠。
优选地,所述夹头组件包括至少覆盖部分所述本体的夹头壳体,所述夹头壳体与机壳固定连接,所述第二支撑件位于所述本体远离马达的一端和夹头壳体之间。
优选地,其特征在于,所述马达靠近夹头组件的端面至本体远离马达的端面之间的距离在80mm-95mm之间。
本发明还提供一种使整机径向尺寸也较为紧凑的动力工具,包括:
机壳;马达,设置于所述机壳内并输出旋转动力;夹头组件,所述夹头组件包括本体、相对本体于活动设置的多个夹爪以及与所述多个夹爪螺纹连接的调整件;以及传动机构,包括用于传递马达驱动力的驱动轴;所述动力工具至少具有钻孔模式以及夹头调节模式,当处于钻孔模式时,所述本体由马达驱动并与夹爪和调整件一起转动;当处于夹头调节模式时,所述调整件和所述本体二者之一能够相对于另一个转动以实现夹爪的合拢或打开;其特征在于:所述动力工具还包括将所述本体旋转地支撑于所述机壳的第一支撑件,所述本体内设置有收容腔,所述收容腔具有面向马达的开口,所述第一支撑件位于所述收容腔内。
优选地,所述动力工具包括至少一级输出行星轮系,其包括由马达轴驱动旋转的太阳轮、由太阳轮驱动的行星轮、以及与行星轮啮合的输出齿圈,钻孔模式时,所述本体能够在所述行星轮的驱动下旋转,且当夹爪处于完全 打开状态时,所述输出行星轮与所述夹爪在驱动轴轴向至少部分重叠。
优选地,所述马达靠近夹头组件的端面至本体远离马达的端面之间的距离在80mm-95mm之间。
优选地,所述夹头组件的径向长度小于等于60mm。
附图说明
图1为本发明第一实施例中传动机构以及夹头组件的部分立体分解图;
图2为本发明第一实施例中螺丝批的立体图;
图3为本发明第一实施例中螺丝批处于夹头调节模式的剖视图,且夹爪处于合拢状态;
图4为本发明第一实施例中螺丝批处于夹头调节模式的剖视图,且夹爪处于松开状态;
图5为本发明第一实施例中螺丝批处于钻孔模式的剖视图,且螺丝批处于低速状态;
图6为本发明第一实施例中螺丝批处于钻孔模式的剖视图,且螺丝批处于高速状态;
图7为图3中A部的放大图;
图8为本发明第一实施例中自动夹头模式夹头调节模式夹爪处于打开状态时模式选择件与滑槽的位置关系示意图;
图9为与图8对应状态下切换环的打开触发件触发马达换向开关的示意图;
图10为本发明第一实施例中钻孔模式下螺丝批处于低速状态时模式选择件与滑槽位置关系示意图;
图11为与图10对应状态下切换环的位置与马达换向开关位置之间关系示意图;
图12为本发明第一实施例中夹头调节模式夹爪处于锁紧状态时模式选择件与滑槽位置关系示意图;
图13为与图12对应状态下切换环的锁紧触发件触发马达换向开关的示意图;
图14为本发明第一实施例中带有换挡钢丝的第二内齿圈的立体示意图;
图15为本发明第一实施例中齿轮箱壳体、换挡钢丝、模式选择件以及切换环的位置关系示意图;
图16为本发明第一实施例中模式选择件以及与模式选择件连接的滑动件的立体示意图;
图17为本发明第一实施例中切换环的立体示意图;
图18为本发明第一实施例中钻孔模式下螺丝批处于低速状态时的立体示意图;
图19为本发明第一实施例中钻孔模式下螺丝批处于高速状态时的立体示意图;
图20为与图8对应状态下的立体示意图;
图21为与图12对应状态下的立体示意图;
图22为本发明第一实施例中输出齿圈以及与其连接的第二推杆组件的立体示意图;
图23为本发明第一实施例中本体锁以及与其连接的第一推杆组件的立体示意图;
图24为本发明第二实施例中传动机构和夹头组件的部分立体分解图;
图25为本发明第二实施例中螺丝批处于钻孔模式时的剖视图;
图26为本发明第二实施例中螺丝批处于夹头调节模式时的剖视图;
图27为本发明第三实施例中螺丝批处于钻孔模式时的部分剖视图;
图28为本发明第三实施例中螺丝批由钻孔模式切换至夹头调节模式的中间状态部分剖视图;
图29为本发明第三实施例中螺丝批由钻孔模式切换至夹头调节模式的中间状态部分剖视图;
图30为本发明第三实施例中螺丝批处于夹头调节模式时的部分剖视图;
图31为本发明第四实施例中螺丝批的局部结构的立体分解图;
图32为本发明第四实施例中螺丝批处于钻孔模式的剖视示意图;
图33为本发明第四实施例中螺丝批处于钻孔模式的局部立体结构示意图;
图34为本发明第四实施例中螺丝批处于夹头调节模式的剖视示意图;
图35为本发明第四实施例中螺丝批处于夹头调节模式的局部立体结构示意图;
图36为本发明第四实施例中螺丝批处于钻孔模式的局部立体结构示意图,其中开关扳机按压至终点位置;
图37为本发明第四实施例中螺丝批螺丝批的立体结构示意图;
图38为本发明第四实施例中螺丝批整机沿图34对应的A-A线剖视示意图;
图39为本发明第四实施例中螺丝批的局部结构的剖视示意图;
图40为本发明第四实施例中螺丝批处于钻孔模式的局部结构示意图;
图41为本发明第四实施例中螺丝批处于自动夹头模式的局部结构示意图;
图42为本发明第四实施例中螺丝批处于钻孔模式,且开关操作件处于被按压状态的局部结构示意图。
图43为本发明第五实施例中螺丝批的螺丝批处于钻孔模式的局部结构示意图;
图44为本发明第五实施例中螺丝批的螺丝批处于由钻孔模式切换至自动夹头模式中间状态的示意图;
图45为本发明第五实施例中螺丝批的螺丝批处于自动夹头模式的局部结构示意图。
具体实施方式
第一实施方式
在本发明手持式动力工具的优选实施方式中,手持式动力工具为螺丝批,根据动力源的不同,可分为气动螺丝批、液动螺丝批和电动螺丝批,电动螺丝批里也有直流和交流之分,本发明优选以直流电动螺丝批为例进行具体说明。
参见图1-图6,直流电动螺丝批10包括机壳、提供旋转动力的马达12、用于供电的电池18,传动机构以及夹头组件,夹头组件包括夹头壳体1104以及至少部分位于夹头壳体1104内的输出装置15。
机壳包括用于形成握持手柄的手柄壳体1102以及与手柄壳体1102固定连接且可用于支撑和覆盖马达12的后壳体1103,夹头壳体1104(前壳体)与后壳体1103对接形成沿水平方向延伸的筒状的主壳体1101。本实施例中,主壳体1101和手柄壳体1102呈钝角K设置,优选地,角度K在100度到130度之间,这样握持手柄操作时会比较舒适。主壳体1101具有位于后方(本发明中的提到的前、后方向以手持式动力工具在图4中所示的前、后方向为参照标准,也即从后向前方向为由马达至输出装置的方向)的后端面以及位于前方的前端面,主壳体从后端面至前端面依次收容有马达12、传动机构以及至少部分输出装置15,本实施例中,需要说明的是,本实施例中,夹头壳体1104和后壳体1103之间为固定连接,也即电动工具的夹头壳体始终是不转动的,这样,当电动工具在工作时,在夹头伸入狭小的空间时不用担心夹头壳体与狭小空间的外壁接触,使得夹头的可接近性好。优选地,手柄壳体1102与后壳体1103均由half壳体组成,且后壳体1103的half壳体与手柄壳体1102的half壳体一体成型,夹头壳体1104为筒状壳体(参见图1)。可以理解的是,在其他实施例中,夹头壳体1104也可由两个half壳体组成,或夹头壳体1104、后壳体1103以及手柄壳体1102位于同一侧的half壳体一体成型以形成组成机壳的两个对称的half壳体。当然可以理解地,在其它实施例中,夹头壳体1104还可以设置为成相对于后壳体1103可转动, 如电动工具在工时,夹头壳体1104随输出装置15一起转动。
在手柄壳体1101的上部靠近主壳体1101的部分设有按钮开关19,电池18固定在手柄壳体1101部分的后部。作为优选地实施方式,该电池18可以是锂离子电池。需要说明的是,这里所说的锂离子电池是基于锂离子脱出-其纳入反应的可充电电池的总称,依据正极材料的不同,其可构成许多体系,如“锂锰”电池、“锂铁”电池等。当然,电池也可以是其他类型的电池,如镍镉、镍氢等本领域技术人员熟知的电池类型。本实施例中,传动机构具体为行星齿轮减速机构13,用于将马达12的输出轴输出的旋转运动经行星齿轮减速机构13减速后传递至输出装置15,并由输出装置15进一步带动工具头旋转以使工具头按照所需要的速度输出。
继续参见图1-图6,在本发明的优选实施例中,马达12为电机,电机通过机壳内的定位筋(图中未示出)以及螺钉17等固定于后壳体1103内,电机具有自后壳体1103向前延伸的电机轴121,电机轴121伸入行星齿轮减速机构13内,并经行星齿轮减速机构13减速后输出。优选地,行星齿轮减速机构13为二级行星齿轮减速机构,包括靠近电机的第一级行星轮系131、靠近输出装置15的第二级行星轮系132。第一级行星轮系131包括固定于电机轴121上的第一太阳轮1310、与第一太阳轮1310啮合且设置于第一太阳轮1310外周的第一行星轮1311,与第一行星轮1311啮合的第一内齿圈1312以及用于支撑第一行星轮1311的第一行星架1313,第二级行星轮系132包括固定设置于第一行星架1313上的第二太阳轮1320、与第二太阳轮1320啮合的第二行星轮1321、与第二行星轮1321啮合的第二内齿圈1322以及用于支撑第二级行星轮1321的第二行星架1323,所述传动机构还包括与第二级行星架1323连接的并由第二级行星架驱动的驱动轴1325。
输出装置15包括输出轴150,输出轴150包括本体151、设置于本体151并相对于输出轴150的轴线呈一定角度的夹槽153以及用于收容工具头的收容孔,输出装置15还包括设置于夹槽153内并围绕收容孔设置以夹持工具 头的夹爪152以及套设于本体151外周的调整件。优选地,调整件包括螺母套154,螺母套154的内周壁上设有内螺纹(图中未示出),夹爪152面向内螺纹的侧面上设有外螺纹1521,当螺母套154相对于夹爪152转动时,内螺纹与外螺纹1521之间的相互作用使得夹爪152进行打开或闭合的动作。夹爪152沿夹槽运动能够在使夹爪152在合拢状态的前端位置和夹爪152完全打开的后端位置之间运动,需要说明的是,此处的“合拢状态”指的是夹爪中未夹持任何工具头或物件时,多个夹爪的内表面相互接触,可参见图5和图6中夹爪的状态图,此时夹爪沿驱动轴的轴向上距离马达最远;此处的“完全打开状态”指的是当使调整件和夹爪中之一相对于另一个转动使夹爪打开时,夹爪已经张开到最大值,夹爪无法在夹槽153内继续移动,此时夹爪沿驱动轴1325的轴向上距离马达最近。在完全打开状态的夹爪相对于在完全合拢状态的夹爪沿驱动轴1325轴向上靠近马达。优选地,螺母套154可转动但不可轴向移动的设置于本体151。优选地,本体151上外周上设有环槽1511,螺母套154可转动地设于所述环槽(图中未标示)内,且环槽能够限制螺母套154轴向移动。请参见图7,本体151包括分别位于环槽两端的第一凸缘1512和第二凸缘1513,其中第一凸缘1512能够与螺母套154靠近工具头所在一端抵接,以限制螺母套154朝向工具头所在的一端移动(也即向前方移动),第二凸缘1513能够对螺母套154靠近电机12所在一端进行轴向限位,以防止螺母套154向靠近电机的方向移动(也即向后方移动)。可以理解的是,当夹爪152对工具头夹紧或邻近夹紧时,螺母套154旋转时受到来自夹爪152(夹爪螺纹)的作用力会加大,螺母套154具有轴向向后移动的趋势,也即螺母套154会使得第二凸缘1513承受较大的向后的轴向作用力,为此,螺母套154和第二凸缘1513之间设有端面轴承155以及垫片156,优选地,垫片156为耐磨的金属垫片。本实施例中,为方便安装,螺母套154由两个半圆的半螺母套拼接形成,当然在其他实施例中螺母套154的设置方式还可以3个或三个以上的半螺母套组成。可以理解地, 为使得两个半螺母套可有效的固定在一起,两个半螺母套的外侧套设有螺母套筒157。本实施例中,收容孔的直径设置不小于10mm,优选地,收容孔的直径在10mm至13mm之间。
参见图5和图6,本实施例中,第二内齿圈1322相对于机壳能够沿电机输出轴121在靠近电机的第一减速位置(见图6)和远离电机的第二减速位置(见图5)之间移动。当第二内齿圈1322位于第一减速位置时,第二内齿圈1322可转动的设置于机壳,且第二内齿圈1322与第一行星架1313和第二行星轮1321同时啮合,因此,第一行星架1313、第二行星轮1321、第二内齿圈1322一起转动,第二级行星轮系132无减速输出,也即第二行星架1323与第一行星架1313转速相同,第二行星架1323输出高速。当第二内齿圈1322位于第二减速位置时,第二内齿圈1322周向不可转动的固定于后壳体1103,且第二内齿圈1322在轴向移动的过程中与第一行星架1313脱开啮合但第二内齿圈1322仍与第二行星轮1321啮合,以使第二行星架1323相对于第一行星架1313呈预设的减速传动比输出,第二行星架1323输出低速。
参见图1和图5,第一行星架1313包括用于安装第一行星轮1311的第一销轴(图中未标示)、第一盘状本体1314以及设置于第一盘状本体1314背离第一销轴所在面的第一行星架输出轴1315。本实施例中为了夹头组件更好地进行支撑同时整机的结构仍然比较紧凑,本实施例设有将本体1314支撑于机壳的第一支撑件和第二支撑件。第一支撑件相对于第二支撑件沿驱动轴1325轴向靠近所述马达设置,参见图4,当夹爪处于完全打开状态时,所述夹爪与所述第一支撑件1327在驱动轴1325轴向至少部分重叠,参见图6,当夹爪处于完全合拢状态时,夹爪与所述第二支撑件16在驱动轴1325轴向重叠。可以理解地,本实施例中因夹头壳体与机壳固定连接,第二支撑件16可以设置在本体和夹头壳体之间且位于本体151远离马达的一端。对于第一支撑件1327,所述本体151设置有收容腔1515,收容腔1515具有面 向马达的开口,所述第一支撑件1327位于所述收容腔1515内。为了实现将第一支撑件1327支撑于本体和机壳之间,后壳体向内侧延伸形成端盖1123且端盖1123向所述收容腔1515延伸形成支撑部1124,第一支撑件1327支撑于所述支撑部1124的外侧。本体151具有靠近马达的第一端和远离马达的第二端,端盖1123紧邻所述第一端设置且位于本体151和马达之间,因此,端盖在轴向上能够隔离本体151和传动机构的行星齿轮系并成为齿轮箱壳体的一部分,齿轮箱壳体还包括用于隔离电机和第一级行星轮系131的齿轮箱后端盖1121、周向围设于第一级行星轮系131和第二级行星轮系132外侧的齿轮箱套筒1122。
本实施例中输出装置15还包括可转动的固定于本体151上的输出行星轮1581、位于输出行星轮1581外侧且与输出行星轮1581啮合的输出齿圈1582以及与输出行星轮1581啮合的输出太阳轮1583。本实施例中,支撑部1124为中空的筒状体,所述驱动轴1125贯穿所述筒状体,输出太阳轮1583连接于所述驱动轴穿入本体151的端部。可以理解地,在其它实施例中,收容的形状还可以为其它形状,如收容腔设置成面向马达开口的环槽,支撑部1124仍为中空的筒状体,但上述的第一支撑件1327位于筒状体内壁和环槽的槽壁之间。
本实施例中,为了方便对输出装置15进行加工制造,本体151包括第一本体151a以及与第一本体151a转动连接的第二本体151b,为了满足第一本体151a和第二本体151b之间的扭矩传递时的强度需求,优选地,第一本体151a和第二本体151b其中之一向另一本体延伸形成与另一本体至少部分轴向重叠的延伸部151c,并通过第一本体151a和第二本体151b的重叠部分周向抵接进行扭矩传递,第一本体151a和第二本体151b通过压装的方式固定连接。第一本体151a在驱动轴1325轴向上位于行星齿轮减速机构13和输出行星轮1581之间。
参见图1和图4,为了进一步缩短手持式动力工具的轴向长度,夹槽153 在输出轴150轴线上的投影与输出行星轮在输出轴150轴线上的投影至少部分重叠,也即夹槽153至少部分位于延伸部151c上。优选地,夹槽153在输出轴150轴线上的投影与第一本体151a在输出轴150轴线上的投影至少部分轴向重叠,也即夹槽153至少部分设置于第一本体151a上,以提供夹爪153在打开时向马达方向运动的空间。换句话说,当夹爪152运动至后端位置时,夹爪152在轴向上的投影与输出行星轮1581在轴向上的投影至少部分重叠。更为优选地,当夹爪152运动至后端位置时,输出行星轮1581、输出齿圈1582、以及输出太阳轮1583在驱动轴轴向的投影与所述夹爪153在驱动轴轴1325向上的投影重叠。更为优选地,为了尽可能缩短本体151的轴向长度以缩短动力工具的轴向长度,当夹爪152运动至后端位置时,本体151靠近前端盖1123的端面到前端盖的距离为L3(图中未标示),夹爪靠近前端盖的部分到前端盖的距离为L4(图中未标示),且L3≤L4,换句话说,为了尽可能缩短本体的轴向长度以缩短动力工具的轴向长度,当夹爪152运动至后端位置(也即使夹爪完全打开的位置时)夹爪152的后端部分比本体的后端部分在轴向更靠后或夹爪152的后端部分与本体的后端部分在轴向上齐平。
参见图6,本实施例中,输出装置15还包括固定于本体151上的输出销轴1584(参见图6),输出行星轮1581可转动的设置于输出销轴1584。优选地,为方便输出装置15的组装,输出销轴1584可选择性的固定于第一本体151a或第二本体151b,本实施例中,优选地,输出销轴1584靠近第一本体151a的一端固定于第一本体151a,输出销轴1584靠近第二本体151b的一端与第二本体151b间隔设置,也即输出销轴1584靠近第二本体151b的一端处于悬空状态,其并未固定于第二本体151b。为降低输出行星轮1581的端部与第一本体151a或第二本体151b之间的摩擦,输出行星轮1581与 第一本体151a和151b之间设有垫片1337(参见图1和图7),优选地,该垫片1337为金属垫片。需要说明的是,输出销轴1584也可固定在第二本体1335上,或输出销轴1584一端固定在第一本体151a上,另一端固定在第二本体体151b上。可以理解地,在其他实施例中,输出装置15的结构还可以为其他形式,此处不再赘述。
本实施例中,螺丝批还包括模式选择机构,模式选择机构能够使螺丝批在钻孔模式(以下简称drill模式)以及夹头调节模式(以下简称auto chuck模式)之间切换,当螺丝批处于drill模式时,马达12带动本体151、夹爪152以及调整件一起旋转以带动工具头(螺丝批头)执行工作;当螺丝批处于auto chuck模式时,螺母套154与夹爪152之间能够进行相对转动,夹爪152进行打开或闭合动作,优选地,本实施例中,本体151以及位于本体151内的夹爪152不转动,螺母套154相对于夹爪152转动,以使夹爪152进行打开或闭合动作。
输出太阳轮1583位于伸出空心支撑套1124外侧的驱动轴1325上,并与设置于本体151上的输出行星轮1581啮合,以将第二级行星轮系132的转动传递至输出装置15。本实施例中,输出齿圈1332具有沿轴向靠近电机的第一工作位置以及远离电机的第二工作位置,参见图5-图6,当螺丝批处于drill模式时,输出齿圈1582位于第一工作位置时,输出齿圈1582不可转动的相对于机壳固定,也即输出齿圈1582相对于机壳不能够转动,且输出齿圈1582与输出行星轮1581啮合。因此,输出太阳轮1583将转动传递给输出行星轮1581,输出行星轮1581在固定的输出齿圈1582的作用下带动本体151、夹爪以及位于本体151内的工具头旋转。
参见图3-图4,当螺丝批处于auto chuck模式时,输出齿圈1582位于第二工作位置时,输出齿圈1582仍然与第三行星轮1331啮合,但可相对于机壳转动,也即当输出齿圈1582位于第二工作位置时,输出行星轮1581将转动传递给输出齿圈1582,使得输出齿圈1582相对于机壳转动。在第二工作 位置时,输出齿圈1582同时能够将转动传递至螺母套154以使螺母套154相对于夹爪152转动,使得夹爪152能够根据需要进行打开或闭合动作。
通过上述描述可知,auto chuck模式下,输出齿圈1582位于第二工作位置时,输出行星轮1581将转动传递至输出齿圈1582并通过输出齿圈1582进一步将转动传递至螺母套154以使螺母套154相对于此时不转动的本体151(夹爪152)转动,使得夹爪152根据需要进行打开或闭合动作。优选地,本实施例通过将本体151选择性的锁定于机壳以实现螺母套154能够相对于本体151以及设置在本体151内的夹爪152转动,优选地,本实施例中通过将第一本体151a选择性的锁定于机壳以实现本体151相对于机壳固定。
参见图1,为实现auto chuck模式下第一本体151a相对于机壳固定,模式选择机构包括用于固定第一本体151a的锁止元件130,锁止元件130始终周向不可转动的固定于机壳,但能够相对于机壳进行轴向移动以在第一锁位置和第二锁位置之间切换,优选地,本实施例中,锁止元件130通过沿轴向移动以实现锁止元件130在第一锁位置和第二锁位置之间切换,第一本体151a上设有与锁止元件130(本体锁)配接的锁止配接部,本实施例中,第一锁位置靠近第一本体151a上的锁止配接部并与锁止配接部配接,第二锁位置远离第一本体151a的锁止配接部并与锁止配接部分离。参见图3和图4,当螺丝批处于auto chuck模式时,锁止元件130位于第一锁位置,锁止元件130将第一本体151a周向不可转动地锁定于机壳。参见图5-图6,当处于drill模式时,锁止元件130位于第二锁位置,锁止元件130解除对第一本体151a的周向锁定,输出行星轮1581能够带动本体151以及位于本体151内的夹爪152一起转动。需要说明的是,根据上述的描述可知,本实施例中,由于drill模式时,输出齿圈1582在相对于机壳不可转动的第一位置,因此,模式选择机构还包括将输出齿圈1582在第一工作位置时固定于机壳的结构,如内齿圈锁,本实施例为了简化螺丝批内部的结构,锁止元件130还能够用于对输出齿圈1582相对于机壳进行锁定,也即本实施例中,锁止 元件130同时起内齿圈锁的作用,也即锁止元件130包括用于锁定本体的本体锁以及用于锁定输出齿圈1582的内齿圈锁。
以下将结合附图对锁止元件130结构以及锁止元件130如何在drill模式以及auto chuck模式下分别起到本体锁的作用又起到内齿圈锁作用的工作原理进行详细说明。参见图5-图6,drill模式时,锁止元件130位于第二锁位置时,输出齿圈1582位于第一工作位置。此时,锁止元件130解除对第一本体151a的周向锁定,且同时与输出齿圈1582连接并将输出齿圈1582不可转动的固定于机壳,以使输出行星轮1581能够带动本体151以及夹爪152进行旋转,也即锁止元件起到本体锁作用的部分与第一本体151a分离,锁止元件起到内齿圈锁作用的部分与输出齿圈1582连接。优选地,锁止元件130包括设置于其内壁的通槽1340,输出齿圈1582上设有与通槽1340配合的齿圈锁齿1582a,锁止元件130的上述通槽1340以及位于输出齿圈1582端部的齿圈锁齿1582a啮合实现输出齿圈1582的周向固定,也即输出齿圈1582的齿圈锁齿1582a插入到对应的轴向通槽1340内以实现输出齿圈1582的固定。此时,输出太阳轮1583将扭矩传递至第三行星轮1331,且在输出齿圈1582的作用下,输出行星轮1581围绕输出太阳轮1583公转以带动本体151以及夹爪152转动,并通过夹爪152带动工具头进行工作。
当螺丝批通过模式选择机构由drill模式切换至auto chuck模式时,此时锁止元件130由第二锁位置向靠近第一本体151a方向移动(向后移动)至第一锁位置以实现对第一本体151a的锁定,同时输出齿圈1582由第一工作位置向远离第一本体151a且靠近螺母套154的方向(向前)移动至第二工作位置以实现与锁止元件130(内齿圈锁)分开并与螺母套154旋转连接。优选地,锁止配接部为设置于第一本体151a上的锁块1510,本体锁上设有与锁止配接部配接的第二锁定件,优选地,第二锁定件为上述通槽1340,也即锁止元件130(本体锁)通过通槽1340与锁块1510配接实现对第一本体151a的锁定。因此,在auto chuck模式下,锁止元件130位于第一锁位 置时,输出齿圈1582位于第二工作位置,此时,锁止元件130将本体151、夹爪152周向锁定,输出齿圈1582带动螺母套154相对于夹爪152转动。
参见图1和图6,本实施例中,在auto chuck模式下,为了保证在夹爪152合拢或张开到位后,夹爪152不再继续合拢或继续打开,也即螺母套154不再继续对夹爪152施加扭力,上述输出齿圈1582和螺母套154之间设有用于在夹爪152夹紧或完全打开后使输出齿圈1582和螺母套154之间断开扭矩传递的离合机构20。离合机构20包括能够与输出齿圈1582转动连接的第一离合件21,以及与螺母套154转动连接的且可相对于螺母套154轴向移动的第二离合件22以及离合弹性件23,其中,当夹爪152夹紧或完全打开后,第二离合件22轴向向前移动,第一离合件21与第二离合件22脱开,输出齿圈1582不再将扭矩传递至螺母套154。优选地,第一离合件21为套设于本体151外周的的卡环,其中,卡环靠近输出齿圈1582的一端设有与输出齿圈1582的内齿配合的以实现扭矩传递的啮合齿211,卡环靠近第二离合件22的一端设有用于与第二离合件22进行扭矩传递的离合动端齿212。第二离合件22上设有与离合动端齿212配合作用的离合静端齿222,且第二离合件22的前端设有离合弹性件23,以使当夹爪152夹紧或完全打开后,也即第一离合件21和第二离合件22之间的扭力增大到预定值时,第二离合件22压缩离合弹性件23,以使离合动端齿212和离合静端齿222间脱开连接。在第二离合件22与第一离合件21脱开后,第二离合件22在离合弹性件23的作用下向后运动,也即自动复位并推动第二离合件22至离合动端齿212和离合静端齿222啮合的位置。因此,当夹爪152夹紧或完全打开后,离合机构20进行反复的自动脱扣动作。
参见图1,离合动端齿212以及离合静端齿222包括导向斜面(图中未标示),通过导向斜面使得第二离合件22能够压缩离合弹性件23以使第一离合件21和第二离合件22分离。需要说明的是,当夹爪152夹紧或完全打开后,导向斜面同样会使得第一离合件21也具有向靠近电机方向运动的趋 势,也即第一离合件21会受到一个向后运动的轴向力,为防止第一离合件21向后运动以抵压输出齿圈1582(需要说明的是,当输出齿圈1582受到来自第一离合件的在脱扣时的轴向力时,也即受到离合力时,输出齿圈1582同样会给带动其运动的模式选择机构一个轴向力,如给带动输出齿圈1582运动的操作件一个轴向力,这样操作件将会受力),螺丝批10还包括一个与第一离合件21轴向抵接的轴向抵接件。优选地,轴向抵接件为设置于本体151上的第三凸缘1514(参见图7)。
从图3和图4可以看出,本实施例中,本实施例中离合机构与夹爪在驱动轴轴向上至少部分重叠。需要说明的是由于夹爪沿驱动轴轴向上能够在前端位置和后端位置之间移动,本实施例所述的与夹爪在驱动轴轴向上的重叠指的是与夹爪在前端位置和后端位置所跨越区域的任意位置的重叠。具体可参见图4,当夹爪152位于后端位置时,夹爪靠近马达的一端在驱动轴轴向上的投影位置为N1,当夹爪运动至前端位置时,夹爪远离马达的一端在驱动轴轴向上的投影位置为N2,本实施例所述离合机构与夹爪152在驱动轴轴向上的至少部分重叠指的是离合机构在驱动轴轴向上至少部分位于位于N1和N2的跨越区域K内。本实施例通过将离合机构在驱动轴1325轴向上与夹爪152至少部分重叠,使得离合机构在轴向上所占用的轴向长度较短。
参见图5,优选地,本实施例中,马达靠近夹头组件的端面至本体151远离马达的端面之间的距离L1在80mm-到95mm之间,以使得机身结构较为紧凑。需要说明的是,本实施例中“马达靠近夹头组件的端面”具体的可以指是对马达靠近夹头组件一端支撑的前轴承1210的面向夹头组件的端面。
另外,通过上述对第一支撑件1327以及支撑部1124的描述可知,第一支撑件1327位于本体的收容腔1515内,因此第一支撑件1327并不会增加夹头组件的径向的距离,优选地,本实施例中夹头组件的外径尺寸的长度小于等于60mm之间,优选地,h为52mm。
由以上电动螺丝批在drill模式和auto chuck模式时的工作原理的描述可知,参见图5所示,当处于夹头调节模式时,本体151相对于机壳固定设置,处于啮合状态的第一、第二离合件21、22能够将马达的旋转动力传递至调整件从而使所述调整件能够相对于本体转动,参见图6,当第一、第二离合件21、22之间传递的旋转力达到预定值时(也即夹头夹紧或打开到位后),上述离合件21、22中的至少一个克服离合弹性件23的作用力进行运动以使第一离合件21和第二离合件22断开连接,从而断开驱动轴1325和调整件在旋转方向的连接;当处于钻孔模式时,第一、第二离合件21、22无法将马达的旋转动力传递至调整环,且本体151在旋转方向连接至马达并带动夹爪152和调整环转动以带动工具头执行工作。因此,电动螺丝批无论是在drill模式还是auto chuck模式,第一离合件21和第二离合件22之间始终在离合弹性件23的作用下啮合,只有当夹爪完全打开或闭合后,第二离合件22才会克服离合弹性件23的作用力并与第一离合件分离。因此,第一离合件21和第二离合件之间的啮合程度以及脱扣力主要受离合弹性件23的影响,离合“脱扣”力的大小比较恒定,也即使第一离合件和第二离合件分离的预定旋转力的大小比较稳定。
由上述描述可知,所述离合机构20包括第一离合件21、第二离合件22以及离合弹性件23,在钻孔模式下,所述第一、第二离合件21、22在所述离合弹性件23的作用力下相互啮合;在夹头调节模式下,所述离合机构能够将马达的旋转动力传递至调整件,从而使所述调整件能够相对于所述本体151转动,且当所述第一离合件21和第二离合件22之间传递的旋转力达到预定值时,上述离合机构中的至少一个离合件能够克服所述离合弹性件23的作用力沿马达轴轴向运动以使第一、第二离合件21、22脱开啮合,从而断开所述马达至调整件的动力传递。
本实施例中,第二离合件22与调整件始终在旋转方向无相对转动地连接,当动力工具处于auto chuck模式,所述离合机构能够将马达的旋转动力 传递至调整件,从而使所述调整件能够相对于所述本体151转动,且当所述第一离合件21和第二离合件22之间传递的旋转力达到预定值时,第一、第二离合件21、22脱开啮合,从而断开马达轴至调整件的动力传递,由此可知,当第一、第二离合件处于啮合状态时,无论在auto chuck模式还是在drill模式,第一、第二离合件与所述调整件在旋转方向连接,当然在其它实施例中,离合机构也可以设置成为处于啮合状态时的第一、第二离合件21、22与所述驱动轴1325一直在旋转方向连接。
另外,本实施例中的调整件为套设在多个夹爪外侧的调整环(螺母套),也即夹爪设置外螺纹,螺母套设置内螺纹,当然在其它实施例中,调整件可以设置成至少部分位于夹爪所围设的区域内,并将夹爪152设置成内螺纹,调整件设置为外螺纹。
通过对上述对本实施例的描述可知,基于特定的auto chuck实现方式,离合机构在auto chuck模式时,能够将驱动轴1325的动力传递至调整件。在其它的实施实施方式中,auto chuck的实现方式还可以设置成调整件相对于机壳固定,夹爪152相对于调整件转动,此时的离合机构用于连接连接调整件和机壳。因此,离合机构中的其中一个离合件与调整件无相对转动的连接,另一个离合件与机壳或马达在旋转方向上连接;当处于夹头调节模式,第一离合件与第二离合件相互啮合,当所述第一离合件、第二离合件之间的扭矩达到预定值时,所述离合机构的其中一个离合件能够克服离合弹性件作用力相对于另一个离合件运动以脱开两者之间的啮合,从而使所述调整件与所述多个夹爪152无相对转动。
以下将结合图8-图23对本实施例中的模式选择机构的操作件30以及与操作件30相关的结构进行进一步介绍。通过上述对auto chuck模式下离合机构20的“脱扣”原理的描述可知,在离合弹性件23作用下,离合静端齿222与离合动端齿212反复进行啮合和脱开动作,会产生较大噪音,且尤其在转速较高时,该声音会非常刺耳。本实施例中通过对模式选择机构中供操 作件30运动的滑槽的设置,使得螺丝批只有在低速模式下才能够处于auto chuck模式。参见图8-图13,滑槽具有供操作件在drill工作模式下的高速位置和低速位置之间切换的第一滑槽311,且操作件30在高速位置和低速位置滑动时,操作件30能够带动上述的第二内齿圈1322相应在第一减速位置和第二减速位置之间移动。此外,滑槽还包括用于切换至auto chuck模式的第二滑槽312,第二滑槽312与第一滑槽311中对应的低速位置相连接,使得操作件30只有在低速位置时才能沿第二滑槽312运动以进行从drill模式切换至auto chuck模式。优选地,第二滑槽312为两段,分别设置于第一滑槽311的两侧以分别实现auto chuck模式下夹爪152的夹紧的夹紧槽3121和夹爪松开的打开槽3122。优选地,第一滑槽311在机壳上沿电机轴121的轴向延伸,第二滑槽32分布于第一滑槽311两侧且大致与第一滑槽311垂直。因此,滑槽大致呈位于壳体上的“T”型槽结构。
参见图14-图16,本实施例中,在drill模式下,操作件30通过机壳内的连接组件带动第二内齿圈1322在第一减速位置和第二减速位置之间移动,优选地,连接组件包括圆弧形换挡钢丝41以及连接换挡钢丝41和操作件30且可在操作件30带动下轴向移动的滑动件42,换挡钢丝41的两个自由端分别位于第二内齿圈1322的环槽1326内以通过换挡钢丝41带动第二内齿圈1322移动,为了使滑动件42能够在机壳内沿着预定的路径运动,齿轮箱壳体上设有供滑动件42轴向移动的滑轨1125。优选地,滑动件42设置于换挡钢丝41的两自由端中间,换挡钢丝41于滑动件42和自由端中间位置枢接于齿轮箱壳体。本实施例中,操作件30与滑动件42之间可相对转动,也即操作件30能够相对于滑动件42转动以使螺丝批从drill模式切换至auto chuck模式时。优选地,滑动件42沿圆周方向设置弧形槽421,操作件30的前端设有与弧形槽配合的导向块300,当操作件30在高速位置和低速位置之间切换时,导向块300通过弧形槽421带动滑动件42轴向移动;当操作件在低速位置转动时,也即操作件30在低速位置沿第二滑槽运动, 导向块300能够在弧形槽421内转动以使操作件30相对于滑动件42转动。
优选地,模式选择机构还包括套设在齿轮箱壳体外侧且能够通过操作件30驱动转动的切换环43、导引件(图中未标示)、推杆组件45以及上述既能够锁定本体151又能够锁定输出齿圈1582的锁止元件130,优选地,切换环43上设有开槽431,使得操作件30能够沿开槽431进行轴向移动以实现在drill模式下在高速位置和低速位置之间切换;当操作件30在低速位置沿第二滑槽运动时,也即操作件30进行周向转动时,操作件30在转动的过程中周向抵接切换环43以使切换环43一起转动,切换环43上设有第一导向槽4321以及第二导向槽4322。推杆组件45包括与锁止元件130连接的第一推杆组件451以及与输出齿圈1582连接的第二推杆组件452,优选地,导引件为切换销轴,切换销轴包括连接第一推杆组件451和第一导向槽4321的第一切换销轴4514以及连接第二推杆组件452以及第一导向槽4322的第二切换销轴4524。
参见图8-图11和图18-图21,当操作件30由图10所示的位置切换至图8所示的位置时,也即由drill模式低速状态切换至auto chuck模式下夹爪152打开状态,切换环43在操作件30的作用下随操作件30一起按图11中的箭头L方向旋转,切换环43上的第一导向槽4321通过第一切换销轴4514和第一推杆组件451带动锁止元件130轴向向后移动,同时切换环43上的第二导向槽4322通过第二切换销轴4524和第二推杆组件452带动输出齿圈1582进行轴向向前移动,以实现本体151的固定以及输出齿圈1582与螺母套154旋转连接。优选地,本实施例中,切换环43还设有打开触发件433和锁紧触发件434,在输出齿圈1582以及锁止元件130运动到预定的位置后,打开触发件433触发马达换向开关435以使电机按预定的方向带动螺母套154旋转进行夹爪152的打开动作。参见图10-图12和图19-图21,当操作件30由图10所示的位置切换至图12所示的位置时,也即由drill模式低速状态切换至auto chuck模式下夹爪152闭合状态,切换环43在转动到位 后通过与其连接的锁紧触发件434触发马达换向开关435以使电机按预定的方向带动螺母套154旋转进行夹爪152的闭合动作,其原理与上述夹爪152打开时基本相同,此处不再赘述。
参见图23,优选地,第一推杆组件451包括与第一切换销轴4514连接的第一连杆4513并通过第一连杆4513与锁止元件130连接以带动锁止元件130轴向前、后移动。优选地,第一推杆组件451还包括第一自对位元件4510,其中第一自对位元件4510包括与第一切换销轴4514连接的第一推杆4511、设置于第一推杆4511前端且位于第一推杆4511和第一连杆4513之间的第一弹性元件4512。当第一切换销轴4514向前运动时,其能够通过第一推杆4511以及位于第一推杆4511前端的第一弹性元件4512推动第一连杆4513向前运动。优选地,第一连杆4513于第一弹性元件4512的前方径向延伸有第一抵挡件4518(见图1、图23),第一弹性元件4512抵接在第一抵挡件4518上。第一连杆4513上设有轴向延伸的连杆缺槽4515(参见图20),第一切换销轴4514穿过连杆缺槽4515,以使第一切换销轴4514在第一导向槽4321的作用下向后运动时能够带动第一连杆4513向后运动并在第一切换销轴4514向前运动时给第一切换销轴4514提供运动的空间。第二推杆组件452包括与第二切换销轴4524连接的第二连杆4523,并通过第二连杆4523与输出齿圈1582连接以带动输出齿圈1582轴向前后移动。
参见图22,优选地,第二推杆组件452还包括第二自对位元件4520,其中第二自对位元件4520包括与第二切换销轴4524连接的第一推杆4511、设置于第二推杆4521前端且位于第二推杆4521和第二连杆4523之间的第二弹性元件4522。当第二切换销轴4524向前运动时,其能够通过第二推杆4521以及位于第二推杆4521前端的第二弹性元件4522推动第二连杆4523向前运动。第二连杆4523于第二弹性元件4522的前方径向延伸有第二抵挡件4528(见图1),第二弹性元件4522抵接在第二抵挡件4528上。第二连杆4523上设有轴向延伸的第二连杆缺槽4525(见图1),第二切换销轴穿 过第二连杆缺槽4525,以使第二切换销轴4524在第二导向槽4322的作用下向后运动时能够带动第二连杆4523向后运动并在第二切换销轴4524向前运动时给第二切换销轴4524提供运动的空间。本实施例通过将第一推杆组件451设置第一自对位元件4510能够使得锁止元件130向前运动与输出齿圈1582啮合出现“顶齿”现象时,在输出齿圈1582转动一定角度后,通过第一自对位元件4510使得锁止元件130与输出齿圈1582顺利啮合到位。可以理解地,通过将第二推杆组件452设置第二自对位元件4520能够使得行输出齿圈1582向前运动与第一离合件21的啮合齿211啮合过程中出现“顶齿”现象时,在输出齿圈1582转动一定角度后,通过第二自对位元件4520使得输出齿圈1582顺利与啮合齿211啮合到位。
参见18-图21,其中图18和19为drill模式下切换环43与切换销轴所对应关系的状态图,且其中图18中螺丝批处于高速状态,图19中螺丝批处于低速状态,图20和图21为auto chuck模式下切换环43与切换销轴所对应关系的状态图,也即图19为与图10所对应的状态图,图20为与图8所对应的状态图,图21为与图12所对应的状态图。当操作件30由图10切换至图8时,切换环43则由图19所示状态按照图19中箭头B方向转动至图20所示状态时,此时,第一导向槽4321通过第一切换销轴4514带动第一推杆4511向前运动,当第一推杆4511向前运动时,第一推杆4511压缩第一弹性元件4512并通过第一弹性元件4512抵压第一连杆4513以通过第一连杆4513带动锁止元件130向前运动,同时第二导向槽4322通过第二切换销轴4524带动第二推杆4521向后运动,第二推杆4521或第二切换销轴4524带动第二连杆4523向后运动。当切换环43由图19所示状态按照图19中箭头F方向转动至图21所示状态时,第一导向槽4321通过第一切换销轴4514带动第一推杆4511向前运动,当第一推杆4511向前运动时,第一推杆4511压缩第一弹性元件4512并通过第一弹性元件4512抵压第一连杆4513以通过第一连杆4513带动锁止元件130向前运动。参见图20,优选地,齿轮箱 壳体的外侧设有轴向延伸的第一凹槽1126,第一推杆4511、第一弹性元件4512位于第一凹槽1126内以使其能够沿着第一凹槽1126进行轴向运动,第一连杆4513位于第一凹槽1126内且盖设于第一推杆4511和第一弹性元件4512的上方。齿轮箱壳体的外侧还设有轴向延伸的第二凹槽1127,第二推杆4521、第二弹性元件4522位于第二凹槽1126内以使其能够沿着第二凹槽1127进行轴向运动,第二连杆4523位于第二凹槽1127内且盖设于第二推杆4521和第二弹性元件4522的上方。优选地,第一推杆组件451以及第二推杆组件452至少为两组。
可以理解地,在其他实施例中,也可以通过将第一切换销轴4514直接与第一连杆4513固定连接,以实现第一切换销轴4514的轴向运动直接带动第一连杆4513进行轴向运动。但相比较上述的第一切换销轴4514与第一自对位元件4510连接,在第一切换销轴4514向前运动时,通过第一推杆4511抵接第一弹性元件4512并进一步通过第一弹性元件4512来推动第一连杆4513向前运动的方式,上述方式在操作件30操作到位后,若锁止元件130上的开槽1340没有与第一本体151a上的锁块1510啮合到位,也即出“顶齿”现象,因为第一弹性元件4512的存在,本体151在转动后,受压缩的第一弹性元件1322会继续推动第一连杆4513以使锁止元件130的开槽1340再次与第一本体151a上的锁块1510啮合。
第二实施例
图24-图26显示了本发明的第二实施例的螺丝批10',本实施例揭示了另一种方式实现在auto chuck模式下,本体151'通过本体锁134'旋转固定,同时输出齿圈1582'带动螺母套154'转动;在drill模式下,本体锁134'解除对本体151'固定,同时输出齿圈1582'相对于机壳固定,本体151'在马达的驱动下带动夹爪152'转动以实现带动工具头的转动,且在模式切换时不需要将输出齿圈1582'进行轴向移动,这样输出齿圈1582'可以稳定的固定于机壳内,使螺丝批10'的输出更稳定。
本实施例中操作件与上述第一实施例不同的是,操作件包括用于模式切换的模式选择件301'以及drill模式下速度调节的速度操作件(图中未标出),且模式选择机构包括模式选择件301'、切换环43'、用于锁定本体的本体锁134'、第三切换销轴4534'、第三推杆组件453'、连接件182'以及内齿圈锁181'。同上述的第一实施例相同的是本体锁134'始终周向不可转动的固定于机壳,但能够相对于机壳进行轴向移动以在第一锁位置和第二锁位置之间切换,本体锁134'通过沿轴向移动以实现本体锁134'在第一锁位置和第二锁位置之间切换,第一本体151a上设置有与本体锁134'配接的锁止配接部,且第一锁位置靠近第一本体151a'的锁止配接部并与锁止配接部配接,第二锁位置远离第一本体151a'的锁止配接部并与锁止配接部分离。锁止配接部为设置于第一本体151a'上的锁块1510,当螺丝批处于auto chuck模式时,本体锁134'位于第一锁位置时,本体锁134'通过与锁块1510'啮合将本体151'周向不可转动的锁定于机壳,当处于drill模式时,本体锁134'位于第二锁位置时,本体锁134'解除对第一本体151a'的周向锁定,输出行星轮1581'能够带动本体151'以及夹持有工具头的夹爪152'一起转动。
优选地,模式选择件301'为套设于机壳外侧的旋转环,切换环43'与模式选择件301'转动连接,切换环43'设有第三导向槽432',可以理解地,在其他实施例中,切换环43'与模式选择件301'还可以一体成型,也即导向槽432'设置于切换环43'的内壁,导向槽432'用于通过第三切换销轴4534'带动第三推杆组件453'实现轴向运动。第三推杆组件453'的一端通过第三切换销轴4534'可活动的设置于第三导向槽432'内,另一端与连接件182'相连用于带动连接件182'轴向移动。连接件182'可在靠近内齿圈锁181'的第一切换位置和远离内齿圈锁181'的第二切换位置之间移动,连接件182'在轴向移动的过程中始终与输出齿圈1582'旋转连接。内齿圈锁181'周向不可转动的相对于机壳固定,当连接件182'在第一切 换位置时,连接件182'与内齿圈锁181'旋转连接并通过内齿圈锁181'限制输出齿圈1582'的转动,也即此时输出齿圈1582'相对于机壳周向固定;当连接件182'在第二切换位置时,连接件182'与内齿圈锁181'轴向分离,输出齿圈1582'能够带动连接件182'一起转动。
本实施例中,为了实现模式选择件301'使第三推杆组件453'带动连接件182'运动的同时,本体锁134'也能够运动到相应的位置,优选地,本体锁134'与连接件182'轴向抵接且本体锁134'在远离输出齿圈1582'的一端和机壳之间还设置有第三弹性元件135'。当连接件182'轴向运动后,连接件182'不再轴向抵接本体锁134',本体锁134'在第三弹性元件135'的作用下可轴向移动,当连接件182'反向运动后,连接件182'通过克服第三弹性元件135'的作用力推动本体锁134'回到对应的位置。
以下将结合附图24-图26进一步介绍螺丝批10'在drill模式和auto chuck模式之间切换的原理。
参见图25,当螺丝批处于drill模式时,本体锁134'位于远离第一本体151a'锁止配接部的第二锁位置并与锁止配接部分离,本体锁134'与第一本体151a'分离,也即本体锁134'未锁定第一本体151a',从而本体151'可转动的设置于机壳内;同时,连接件182'位于靠近内齿圈锁181'的第一切换位置,连接件182'通过位于其外周上的锁定齿1821'(见图24)与内齿圈锁181'的内周壁上的齿圈固定齿1811'啮合,输出齿圈1582'不可转动的固定于机壳,因此,在该模式下输出行星轮1581'带动本体151'以及夹爪152'转动,并进一步带动位于夹爪152'内的工具头进行工作。
当旋转模式选择件301'至auto chuck模式时,也即螺丝批10'由图25所示状态切换至图26所示状态时,模式选择件301'带动切换环43'转动,第三推杆组件453'在切换环43'的第三导向槽432'的作用下带动连接件182'向远离内齿圈锁181'方向移动,也即连接件182'由第一切换位置向前运动至第二切换位置,连接件182'其外周上的锁定齿1821'与内齿圈锁 181'的内周壁上的内齿圈固定齿1811'脱开,输出齿圈1582'可带动连接件182'一起相对机壳转动。需要说明的是,当连接件182'由第一切换位置向前运动至第二切换位置时,连接件182'同时与螺母套154'旋转连接,因此,输出齿圈1582'的转动能够带动螺母套154'转动。由于连接件182'与本体锁134'轴向抵接,因而,当连接件182'由第一切换位置向前移动至第二切换位置时,本体锁134'在第三弹性元件135'作用下由远离第一本体的第一锁位置运动至靠近第一本体151a'的第二锁位置,本体锁134'通过位于其内周壁的行星架锁齿(图中未标示)与第一本体151a'上的锁块1510'啮合以实现对第一本体151a'的锁定。因此,该模式下输出齿圈1582'能够通过连接件182'相对于固定的第一本体151a'和夹爪152'转动,从而实现夹爪152'的打开或闭合动作。
继续旋转模式操作件时,螺丝批由auto chuck模式切换至drill模式时,模式选择件301'带动切换环43'转动,切换环43'的转动使得第三推杆组件453'克服第三弹性元件135'的弹性力,以带动连接件182'以及第连接件182'抵接的本体锁134'一起向后运动,从而螺丝批回复至上述drill模式状态。优选地,为使连接件182'由第二切换位置向后移动至第一切换位置时,连接件182'外周的锁定齿1821'能够顺利的与内齿圈锁181'的内齿圈固定齿1811'啮合,内齿圈锁181'的后侧设有第四弹性元件(图中未标示),以使连接件182'的外周的锁定齿1821'与内齿圈锁181'的内齿圈固定齿1811'出现“顶齿”时,使得连接件182'通过内齿圈锁181'压缩第四弹性元件进行转动,并在转动后齿圈锁181'啮合到位。
本实施例还包括用于当夹爪152锁紧或打开后断开输出齿圈1582'与螺母套154'之间扭矩传递的离合机构20',离合机构20'包括能够在连接件182'向前移动后与连接件182'转动连接的第一离合件21',以及与螺母套154'转动连接的第二离合件22',第一离合件21'和其前端的机壳之间设有离合弹性件23'。当夹爪152'锁紧或完全打开后,第一离合件 21'克服离合弹性件23'的弹性力向前移动从而断开第一离合件21'和第二离合件22'之间的扭矩传递。
由对第二实施例的描述可知,所述离合机构20'包括第一离合件21'、第二离合件22'以及离合弹性件23',在钻孔模式下,所述第一、第二离合件21'、22'在所述离合弹性件23'的作用力下相互啮合;在夹头调节模式下,所述离合机构能够将马达的旋转动力传递至调整件,从而使所述调整件能够相对于所述本体151'转动,且当所述第一离合件21'和第二离合件22'之间传递的旋转力达到预定值时,上述离合机构中的至少一个离合件能够克服所述离合弹性件23'的作用力沿马达轴轴向运动以使第一、第二离合件21'、22'脱开啮合,从而断开所述马达至调整件的动力传递。
需要说明的是,在本发明的第二实施例中,输出齿圈1582'在模式切换的过程中并不需要进行轴向移动,也即输出齿圈1582'相对于机壳马达轴轴向相对固定,模式选择件301'可操作地在第一位置和第二位置之间运动以带动连接件182'运动,从而使得夹头调节模式下连接件182'在旋转方向上连接输出齿圈1582'和离合件,且钻孔模式下连接件182'在旋转方向上断开所述输出齿圈1582'和上述离合件21'、22'之间的连接。由于输出齿圈1582'的内周齿需要与输出行星轮1581'外圈齿啮合,通常情况来讲,输出齿圈1582'的内周齿与输出行星轮1581'的外圈齿之间的啮合间隙越小则传动越稳定,但当输出齿圈1582'需要进行轴向移动时,啮合间隙必须增大,不然输出齿圈的轴向移动将受阻或比较困难,这就使得传动稳定性较差。本发明的第二实施例中,通过连接件182'进行轴向移动代替输出齿圈1582'轴向移动避免了造成的传动稳定性差的问题。
第三实施例
图27-图30显示了本发明的第三实施例的螺丝批10"的部分剖视图,本实施例揭示了另一种方式实现在auto chuck模式下本体151"通过本体锁134"旋转固定,同时输出齿圈1582"带动螺母套154"转动以及在drill模 式下本体锁134"解除对本体151"的固定,同时输出齿圈1582"相对于机壳固定,本体151"在马达的驱动下带动夹爪152"转动以实现带动工具头的转动。
本实施例中模式选择机构包括模式选择件301"、设有导向槽(图中未示出)的切换环(图中未示出)、导向件、连接件182"、本体锁134"以及内齿圈锁。优选地,模式选择件301"为套设于机壳或夹头壳体外侧的旋转环,导向件包括用于带动连接件182"轴向移动的第三切换销轴4534",导向槽包括用于供第三切换销轴4534"运动的第三导向槽432"。优选地,本实施例中切换环与模式选择件301"一体成型,也即模式选择件301"的内周面上设有导向槽。第三切换销轴4534"的一端可活动的设置于第三导向槽内432",另一端与连接件182"相连以带动连接件182"轴向移动。本体锁134"可在靠近第一本体151a"的第一锁位置和远离第一本体151a"的第二锁位置之间移动但周向不可转动的相对于机壳固定。同上述第二实施例相同,本实施例中的连接件182"始终与输出齿圈1582"旋转连接,内齿圈锁181"不可转动的固定于机壳,连接件182"通过轴向移动以实现与内齿圈锁181"啮合或分开从而分别实现输出齿圈1582"的周向固定或周向可旋转,也即连接件182'可在靠近内齿圈锁181"的第一切换位置和远离内齿圈锁181"的第二切换位置之间移动,连接件182"在轴向移动的过程中始终与输出齿圈1582"旋转连接。内齿圈锁181"周向不可转动的相对于机壳固定,当连接件182"在第一切换位置时,连接件182'与内齿圈锁181'旋转连接并通过内齿圈锁181"限制输出齿圈1582"的转动,也即此时输出齿圈1582"相对于机壳周向固定;当连接件182"在第二切换位置时,连接件182"与内齿圈锁181'轴向分离,输出齿圈1582"能够带动连接件182"一起转动,同时连接件182"与螺母套154"旋转连接。
本实施例与上述第二实施例主要不同的是本实施例中本体锁134"的结构以及运动方式。本实施例中的切换销轴还包括与本体锁134"连接用于带 动本体锁134"进行径向运动的第四切换销轴4516",导向槽还包括供第四切换销轴4516"的一端运动的第四导向槽(图中未示出)。第四切换销轴4516"的另一端与本体锁134"连接用于带动本体锁134"进行径向运动,以使本体锁134"能够实现对第一本体151a"的锁定和解锁,优选地,本实施例中第四切换销轴4516"与本体锁134"一体成型。参见图27,当螺丝批10"位于drill模式时,本体锁134"与第一本体151a"径向分离,同时内齿圈锁181"通过连接件182"与输出齿圈1582"旋转连接,且连接件182"与螺母套154"分离,因此,在该模式下,本体151"的转动能够带动夹爪152"以及位于夹爪152"内的工具头一起旋转。参见图29,当螺丝批10"位于auto chuck模式时,本体锁134"与第一本体151a"径向啮合以使本体151"相对于机壳旋转固定,同时内齿圈锁181"通过连接件182"与输出齿圈1582"分离,且连接件182"与螺母套154"旋转连接,因此,在该模式下,输出齿圈1582"能够带动连接件182"以及螺母套154"一起相对于本体151"内的夹爪152"转动从而使得夹爪进行打开或闭合动作。
参见图28-图29,当螺丝批10"由drill模式切换至auto chuck模式时,连接件182"在移动的过程中首先与内齿圈锁181"断开连接,随着连接件182"继续移动,连接件182"与螺母套154"连接,且此时本体锁134"与本体151a"连接。需要说明的是,本实施例中,当夹爪152"在打开或锁紧后,离合机构20"断开输出齿圈1582"与螺母套154"之间的连接,与上述实施例不同的是,本实施例中的离合动端齿212"固定连接于连接件182"上,离合静端齿212"固定于螺母套154",连接件182"与机壳之间设置有离合弹性件23"。参见图30,当auto chuck模式下,输出齿圈1582"通过连接件182"带动螺母套154"使得夹爪152"夹紧或完全打开后,连接件182"抵压离合弹性件23",离合动端齿212"与离合静端齿222"分离。优选地,为使得在“脱扣”时,连接件182"的运动不会导致与连接件182"连接的第三切换销轴4534"以及模式操作件301"的运动,连接件 182"上设有轴向延伸的离合槽182a",以使得在“脱扣”时连接件182"能够相对于第三切换销轴4534"进行运动。需要说明的是,由对本实施例中螺丝批10"在drill模式切换和auto chuck模式的工作原理以及drill模式切换到auto chuck模式的切换原理的描述可知,本实施例中的离合机构20"的第一离合件(图中未标示)和第二离合件(图中未标示)并非始终啮合,其与背景技术中描述的离合机构基本相同,只有在auto chuck模式下,第一离合件和第二离合件之间才啮合(也即离合动端齿212"与离合静端齿222"才啮合)。
第四实施方式
图31-图42为本发明另一实施例中的电动螺丝批10a的示意图,螺丝批10a包括机壳、马达12a、用于供电的电池18,传动机构以及夹头组件,夹头组件包括夹头壳体(前壳体)1104a以及至少部分位于夹头壳体1104内的输出装置15。具体而言,机壳包括呈水平方向延伸的后壳体1103a以及与后壳体1103a固定连接的用于形成握持手柄的手柄壳体1102a,前壳体1104a与后壳体1103a对接形成沿水平方向延伸的主壳体,主壳体形成至少收容部分输出装置15a的收容腔。
马达12a设置于所述机壳内,并输出旋转动力。输出装置15a包括输出轴150a,所述输出轴150a上设有用于收容工具头的收容孔1500a。传动机构位于马达12a和输出装置15a之间以将所述马达12a的旋转动力传递至输出装置15a。模式选择机构用于将螺丝批10a至少在钻孔模式或夹头调节模式之间切换。
参见图31-图37所示,输出轴150a包括本体151d、围绕收容孔设置用以夹持工具头的夹爪152a以及设置于本体151d上用以容置所述夹爪152a的夹槽153a,输出装置15a还包括输出行星轮1581a、位于输出行星轮1581a外侧的输出齿圈1582a以及设于本体151a外侧能够相对于本体151a和夹爪152a转动以锁紧或打开夹爪152a的调整环,与上述实施例基本相同,调整 环包括螺母套154a,螺母套154a的内周壁上设有内螺纹(图中未示出),夹爪152a面向内螺纹的侧面上设有外螺纹1521a,当螺母套154a相对于夹爪152a转动时,内螺纹与外螺纹1521a之间的相互作用使得夹爪152a进行打开或闭合的动作。传动机构设有用于带动输出行星轮1581a转动的输出太阳轮1583a。
模式选择机构包括能够连接输出齿圈1582a和调整环的连接件420a以及能够选择性地阻止输出齿圈1582a或本体151d转动的锁止元件130a,锁止元件130a相对于机壳不可转动地设置,其中,当处于钻孔模式时,锁止元件130a与输出齿圈1582a连接以阻止输出齿圈1582a周向转动,且输出齿圈1582a和调整环在连接件420a的作用下断开连接,从而本体151d和夹爪152a能够在马达的驱动下旋转以带动工具头执行工作;当螺丝批10a由钻孔模式切换至夹头调节模式时,锁止元件130a与本体151a连接并与输出齿圈1582a脱离以阻止本体151a周向转动并解除对输出齿圈1582a的周向限定,且输出齿圈1582a和调整环在连接件420a的作用下连接,从而输出齿圈1582a能够在马达12a的作用下带动调整环相对于本体151d以及夹爪152a转动以实现夹爪152a的打开或闭合。因此,与上述的第一实施例相同,本实施例中的锁止元件130a既包括用于锁定本体151a的本体锁又包括用于锁定输出齿圈1582a的内齿圈锁,换句话说,用于锁定本体151a的本体锁与用于锁定输出齿圈1582a的内齿圈锁不可分离地连接或一体成型,与上述的第一实施例不同的是,本实施例通过设置连接件420a使得autochuck模式下,输出齿圈1582a和调整件旋转方向上连接,但在drill模式下,输出齿圈1582a和调整件在旋转方向上断开连接,而非通过轴向移动输出齿圈1582a来实现。
本实施例中,模式选择机构还包括与锁止元件130a连接用于推动锁止元件130a运动以实现锁止元件130a选择性地锁定本体151d或输出齿圈1582a的第一推杆组件451a以及连接第一推杆组件451a和连接件420a的第 四推杆组件454a,因此,第四推杆组件454a能够在第一推杆组件451a的作用下带动连接件420a运动。优选地,本实施例中,锁止元件130a通过沿轴向移动以实现锁止元件130a在第一锁位置和第二锁位置之间切换,连接件420a通过轴向移动实现在第一连接位置和第二断开位置之间切换。
以下将结合图31、图38-图39进一步讲述第一推杆组件451a如何带动第四推杆组件454a以及与第四推杆组件454a连接的连接件420a进行运动。第四推杆组件454a包括第四连杆4541a,第一推杆组件451a包括第一连杆4511a,第一连杆4511a的一端与模式连接件302a相连,另一端与锁止元件130a相连,当螺丝批由drill模式切换至auto chuck模式时,也即第一连杆4511a在外力的作用下向后运动,此时第一连杆4511a带动锁止元件130a轴向向后运动。为使得第一连杆4511a能够带动第四连杆4541a轴向向后运动,并且第一连杆4511a(也即锁止元件130a)的运动行程与第四连杆4541a(也即连接件420a)的运动行程可以不相同或不同步,第一连杆4511a或第四连杆4541a之一设有轴向延伸的连杆导槽4510a,第一连杆4511a或第四连杆4541a之另一设有位于连杆导槽4510a内的连杆导向件4542a,本实施例中,连杆导槽4510a设置于第一连杆4511a,连杆导向件4542a位于第四连杆4541a。当第一连杆4511a带动锁止元件130a轴向向后运动一定距离后,此时锁止元件130a与输出齿圈1582a脱开连接,继续向后运动连杆导向件4542a与连杆导槽4512a抵接,因此,第一连杆4511a不仅带动锁止元件130a轴向向后运动,同时还带动第四连杆4514a轴向向后运动,此时,锁止元件130a与本体在旋转方向连接,本体被锁定,同时连接件420a轴向向后移动后与输出齿圈连接,螺丝批切换至auto chuck模式。
当螺丝批由auto chuck切换至drill模式时,第一连杆4511a在外力作用下带动锁止元件130a沿轴向向前进行移动。为使得第一连杆4511a能够带动第四连杆4541a轴向向前移动,第一推杆组件451a和第四连杆4541a之间还设有推杆弹性件480a,其中,第一推杆组件451a首先带动锁止元件130a 轴向向前移动,且第一推杆组件451a的向前运动使得推杆弹性件480a压缩,并在推杆弹性件480a压缩到一定程度后通过推杆弹性件480a推动第四连杆4541a向前移动。
参见图35和图36,当螺丝批处于auto chuck模式时,锁止元件130a位于第一锁位置,连接件420a位于第一连接件位置,锁止元件130a将本体151d周向不可转动地锁定于机壳,同时连接件420a将输出齿圈1582a与调整环进行连接。参见图33-图34,当处于drill模式时,锁止元件130a位于第二锁位置,锁止元件130通过轴向移动解除对本体151d的周向锁定并对输出齿圈1582a进行周向锁定,同时连接件420a断开输出齿圈1582a和调整环之间的连接,输出行星轮1581a能够带动本体151d以及位于本体151d内的夹爪152a一起转动。
螺丝批10a还包括位于调整环和输出齿圈1582a之间用以在auto chuck模式下且夹爪152a打开或闭合后用以断开输出齿圈1582a和调整环之间扭矩传递的离合机构20a,离合机构20a包括能够与输出齿圈1582a转动连接的第一离合件21a,以及与调整环转动连接且可相对于调整环轴向移动的第二离合件22a,以及离合弹性件23a,本实施例中,离合弹性件23a位于第二离合件22a和前壳体1104a之间,当夹爪152a夹紧或完全打开后,第二离合件22a压缩离合弹性件23a,第二离合件22a轴向向前移动,第一离合件21a与第二离合件22a脱开,输出齿圈1582a不再将扭矩传递至调整环(螺母套154a)。优选地,第一离合件21a为套设于本体151a'外周的的卡环,卡环上设有轴向延伸的离合齿槽211a,连接件420a上设有与齿槽211a配合的连接齿牙421a,本实施例中,连接件420a与第一离合件21a常啮合,也即连接齿牙421a始终位于离合齿槽211a内,并通过连接齿牙421a在离合齿槽211a内轴向后移动,也即轴向向靠近输出齿圈1582a方向移动,从而实现将第一离合件21a与输出齿圈1582a的连接。当然,可以理解地,在其他实施例中离合结构20a还可以为其他设置方式,如离合弹性件23a位于第 一离合件21a和壳体11a之间,当夹爪152a夹紧或完全打开后,第一离合件22a压缩离合弹性件23a,第一离合件轴向移动,第一离合件21a与第二离合件22a脱开,输出齿圈1582a不再将扭矩传递至螺母套154a。
本实施例中,模式选择机构还包括模式选择件301a,模式选择件301a和第一推杆组件451a连接以将模式选择件301a的运动传递至第一推杆组件451a,本实施例中,为了方便操作者在单手握持手柄壳体1102a的时候方便进行模式切换,模式选择件301a邻近所述手柄壳体1102a设置从而使操作者能够单手同时进行握持手柄和控制模式选择件301a线性运动。优选地,本实施例中,当螺丝批切换至autochuck模式时,模式选择件301a在手指的按压作用下沿第一方向运动,优选地,上述输出轴150a沿轴向具有设有收容孔1500a的第一端以及与第一端相对的第二端,且第一方向为第一端至第二端的方向,也即,模式选择件301a具有初始位置以及由初始位置沿第一方向运动到位后的切换位置,因此,当模式选择件301a沿第一方向运动至切换位置后,螺丝批处于autochuck模式。另外,本实施例的中模式选择机构还包括模式复位元件303a,模式复位元件303a位于模式选择件301a和机壳之间,当模式选择件301a沿第一方向运动至切换位置后,模式复位元件303a通过模式选择件301a在外力的作用下处于弹性蓄能状态,也即当模式复位元件303a为拉簧时,模式复位元件303a在外力作用下拉伸,当模式复位元件303a为压簧时,模式复位元件303a在外力作用下压缩,当外力释放后,模式选择件301a在模式复位元件303a作用下运动至初始位置。需要说明的是,当螺丝批10a由drill模式切换至auto chuck模式时,本实施例中的锁止元件130a以及连接件420a均沿第一方向运动,其与模式选择件301a的运动方向一致,该设置方式使得模式选择件301a通过简单的联动机构(如上述的第一推杆组件451a和第四推杆组件454a)即可带动锁止元件130a和连接件420a进行运动,相比较当锁止元件130a或连接件420a与模式选择件301a运动方向不一致时,联动机构不需要进行运动方向的切换,联动 机构结构简单。通过上述描述可知,当处于钻孔模式时,所述连接件420a位于输出齿圈1582a远离马达的一侧并通过离合机构与调整件无相对转动地连接,且所述锁止元件130a与所述输出齿圈1582a配接;当动力工具由钻孔模式切换至夹头调节模式时,所述连接件420a以及所述锁止元件130a沿马达轴轴向向靠近马达的方向移动,从而使得连接件420a在旋转方向传动连接于输出齿圈1582a和调整件之间,同时锁止元件130a与输出齿圈1582a脱开并将本体相对于机壳固定。
本实施例中,螺丝批还包括用于对马达进行供电或断电的控制的开关操作件304a以及根据开关操作件304a的运动控制马达运动的第一控制组件,为了方便在操作开关操作件时实现对马达速度的控制,随着开关操作件运动的行程的大小不同,第一控制组件使得马达的转速也不同,且当行程越大时,马达的转速越高。与本实施例中模式选择件301a的运动方式基本相同,为了方便操作者在单手握持手柄的时候方便进行控制开关操作件,开关操作件304a邻近所述手柄壳体设置从而使操作者能够单手同时进行握持手柄和控制开关操作件进行运动,开关操作件304a的运动优选为线性运动,开关操作件304具有使马达与供电电源断开连接的开关初始位置以及使马达与供电电源连接的操作位置,且开关操作件沿第一方向运动的行程越大,也即操作位置距离输出位置的距离越远,马达的转速越高。
由上述的第一实施例的描述可知,当螺丝批处于autochuck模式时,若马达的速度较高容易造成“脱扣”声音刺耳、操作环境差的问题。为了避免该问题的出现,需要限制开关操作件304a的运动的行程,以避免开关操作件304运动的行程较大导致马达转速较高。参见图33-图37,本实施例中,螺丝批还包括互锁机构305a,所述互锁机构305a枢转的设置于机壳,且能够在模式选择件301a的带动下按预设枢转方向进行枢转运动。互锁机构305a包括第一限位臂3051a和第二限位臂3052a,参见图35和36所示,当所述模式选择件301a切换至切换位置时,所述模式选择件301a迫使第一限 位臂3051带动互锁机构305a枢转至第一限定位置,第二限位臂3052a的自由端运动至开关初始位置和开关终点操作位置之间,也即运动至操作位置以限制开关操作件运动的行程,从而控制马达的转速。为了防止在drill模式时,操作者误操作模式选择件301a,当开关操作件304a运动至任一操作位置后,若操作模式选择件301a,当模式选择件301a带动第一限位臂3051a的自由端枢转至初始位置和切换位置之间时,行程开关在预设枢转方向上与第二限位臂3052a抵接,模式选择件301a无法运动至切换位置。本实施例中,互锁机构305a和第一连杆4511a之间还设有模式连接件302a,优选地,模式连接件302a为弹性钢丝。
参见图32-37所示,本实施例中,模式选择件301a上设有导引第一限位臂3051a的自由端运动的模式切换槽3011a,参见图34-图35所示,当模式选择件301a沿图33所示的第一方向F1进行运动时至图35所示位置时,第一限位臂3051a的自由端在模式切换槽3011a的作用下按预设路径运动,互锁机构305a按预设的方向进行枢转,第二限位臂3052a枢转至开关终点位置和开关初始位置之间的预定位置,因此开关操作件304将会在预定位置与第二限位臂3052a抵接,从而开关操作件304a无法从开关初始位置运动至开关终点位置,也即无法越过预定位置运动至终点位置;参见图34和图37所示,当drill模式下,开关操作件304a从图34所示的初始位置切换至图37所示的开关终点位置后,第二限位臂3502a的自由端在能够在预设的旋转方向上与开关操作件304a抵接,当此时操作模式选择件时,互锁机构305a无法沿预设的方向枢转,因此,此时的模式操作件无法进行操作或即使可以操作但无法使动力工具切换至夹头调节模式。可以理解地是,本实施例中,当开关操作件从图34所示的初始位置切换至图37所示的终点位置之间时,也即开关操作件切换至预定位置时或越过预定位置时,当切换模式操作件时,在模式切换件还未运动至切换位置时,也即动力工具还未完成模式切换时,第二限位臂3052a便与开关操作件304抵接,因此,模式选择件301a 无法完成模式切换。
在本发明的其他实施例中,互锁机构305a的设置还可以采用其它形式的结构,参见图40-图42所示,互锁机构305a'枢转地设置于机壳,且能够在模式选择件301a'的带动下按预设枢转方向进行枢转运动。互锁机构305a'包括第一限位臂3051a'和第二限位臂3052a',当所述模式选择件301a'切换至切换位置时,模式选择件301a'迫使第一限位臂3051'带动互锁机构305a'枢转至第一限定位置,第二限位臂3052a'的自由端运动至开关初始位置和开关终点位置之间的预定位置以限制开关操作件越过预定的位置。当开关操作件304a'运动至终点位置后,第二限位臂3052a'在预设枢转方向上与行程开关抵接,模式选择件301a'无法运动至切换位置。可以理解地,同上输的第一实施例,当开关操作件304a'运动至预定位置以及预定位置之后的任一位置,当操作模式选择件301a',第二限位臂3052a'在操作模式选择件301a'未到达模式切换位置之间便将会与开关操作件304a'抵接。模式选择件301a'上设有与第一限位臂3051a'抵接的第一抵接部3011a',参见图40-图41,当模式选择件301a'沿第一方向运动时,第一抵接部3011a'抵接第一限位臂3051a',第一限位臂3051a'带动限位机构305a'按预设方向进行枢转。开关操作件304a'上设有能够与第二限位臂3052a'抵接的第二抵接部3041a',当开关操作件304a'沿第一方向运动时,第二抵接部3041a'与第二限位臂3052a'抵接,第二限位臂3052a'带动互锁机构305a'按预设方向反向枢转,从而第一限位臂3051a'的自由端运动至初始位置和切换位置之间。当模式选择件301a'沿第一方向运动时,第一抵接部3011a'与第一限位臂3051a'抵接,模式选择件301a'无法运动至切换位置,也即模式选择件301a'无法将螺丝批切换至autochuck模式。另外,本实施例中,模式连接件302a'与模式选择件301a'直接连接,也即模式连接件302a'并非通过限位机构305a'与模式选择件301a'进行连接。
与上述第一是实施的传动机构设置方式相同,本实施例中,传动机构为行星齿轮减速机构13a,其中行星齿轮减速机构13a优选为二级行星齿轮减速机构,包括靠近电机的第一级行星轮系131a、靠近输出装置15a的第二级行星轮系132a。第一级行星轮系131a包括固定于电机轴121a上的第一太阳轮1310a、与第一太阳轮1310a啮合且设置于第一太阳轮1310a外周的第一行星轮1311a,与第一行星轮1311a啮合的第一内齿圈1312a以及用于支撑第一行星轮1311a的第一行星架1313a,第二级行星轮系132a包括固定设置于第一行星架1313a上的第二太阳轮1320a、与第二太阳轮1320a啮合的第二行星轮1321a、与第二行星轮1321a啮合的第二内齿圈1322a以及用于支撑第二行星轮1321a的第二行星架1323a。第二内齿圈1322a相对于机壳能够沿电机输出轴121a在靠近电机的第一减速位置和远离马达的第二减速位置之间移动。当第二内齿圈1322a位于第一减速位置时,第二内齿圈1322a可转动的设置于机壳,且第二内齿圈1322a与第一行星架1313a和第二行星轮1321a同时啮合,因此,第一行星架1313a、第二行星轮1321a、第二内齿圈1322a一起转动,第二级行星轮系132a无减速输出,也即第二行星架1323a与第一行星架1313a转速相同,第二行星架1323a输出高速。当第二内齿圈1322a位于第二减速位置时,第二内齿圈1322a周向不可转动的固定于后壳体110a,且第二内齿圈1322a在轴向移动的过程中与第一行星架1313a脱开啮合但第二内齿圈1322a仍与第二行星轮1321a啮合,以使第二行星架1323a相对于第一行星架1313a呈预设的减速传动比输出,第二行星架1323a输出低速。
本实施例中,模式选择件301a设有开关触发件(图中未示出),当模式切换件运动至切换位置后,开关触发件被触发,马达的供电电路导通,马达带动调整环相对于本体151d转动以实现夹爪的打开或闭合。需要说明的是,在上述第一实施例中,为了保证autochuck模式时,输出轴15的转速较低,通过设置“T”槽结构,使得auto chuck模式时第二行星架输出低速。 本实施例中,为了保证autochuck模式时,输出轴15a的转速较低,螺丝批10a还包括位置传感器24a以及第二控制组件,位置传感器24a用于检测第二内齿圈1322a的位置,并将第二内齿圈1322a的位置信号传递给第二控制组件,第二控制组件根据第二内齿圈1322a的位置控制电机的转速以使输出轴15a在autochuck模式时始终能够处于autochuck低速模式输出,也即以低于预设的速度进行输出。需要说明的是本实施例中autochuk低速模式并非某一特定的值,只要输出轴15a的速度低于预设的转速值即可。
在本实施例中,上述的模式选择件301a通过第一推杆组件451a和第四推杆组件454a分别带动锁止元件130a和连接件420a进行运动,且在模式切换时,锁止元件130a和连接件420a的运动行程不一致,可以理解地,在其它实施例中,锁止元件130a和连接件420a的运动行程还可以设置成一致的,也即锁止元件130a和连接件420a可以由同一连杆带动同步进行运动。
第五实施方式
图43-图45为本发明第五实施例的螺丝批10a的示意图,本实施例与第四实施例中结构相同的部分用同一标号,在本实施中,第一连杆4511a同时带动锁止元件130a和连接件420a进行运动。与第四实施例相同,drill模式下,锁止元件130a与本体151d上的啮合齿(图中未标示)脱开啮合,并与输出齿圈1582a的啮合齿部分(图中未标示)进行啮合,输出齿圈1582a相对于机壳固定;同时,连接件420a与输出齿圈1582a脱开啮合。
参见图44,当螺丝批10a由drill模式切换至auto chuck模式过程中,锁止元件130a以及连接件420a在第一连杆4511a的作用下轴向向后移动,锁止元件130a与输出齿圈1582a脱开连接后,继续移动与本体151d上的啮合齿啮合,相应地,连接件420a与输出齿圈1582a的啮合齿部分进行啮合。需要说明的是,为了避免锁止元件130a还未脱开输出齿圈1582a时,连接件420a与输出齿圈1582a啮合出现马达堵转现象,本实施例中,优选地,连接件420a和输出齿圈1582a之间的轴向间距大于等于输出齿圈1582a的 轴向长度。优选地,本实施例中连接件420a和输出齿圈1582a之间的轴向间距大于等于输出齿圈1582a的轴向长度在一种实施例中理解为,连接件420a靠近输出齿圈的侧面至锁止元件130a靠近输出齿圈1582a的侧面之间的距离为d3,输出齿圈1582a轴向上两个侧端面之间的距离为d4(图中未标示),d3大于等于d4。由于d3大于等于d4是为了避免锁止元件130a还未脱开输出齿圈1582a时,连接件420a与输出齿圈1582a啮合出现马达堵转现象,可以理解地,在其它实施例中,连接件420a和输出齿圈1582a之间的轴向间距大于等于输出齿圈1582a的轴向长度还可以理解成,连接件420a和锁止元件130a之间的轴向间距使得输出齿圈1582a的啮合齿不会同时与连接件420a上的啮合齿以及锁止元件130a的啮合齿同时啮合。
参见图45所示,当螺丝批10a切换至auto chuck模式时,锁止元件130a与输出齿圈1582a的啮合齿脱开啮合并与与本体151d上的啮合齿进行啮合,本体151d在旋转方向上被锁定,同时连接件420a既连接输出齿圈1582a又连接第一离合件21a,从而调整环能够相对于本体转动以实现夹爪的打开或闭合。
从上述的第四、第五实施例里描述以及图34和图35可知,连接件在驱动轴轴向上位于输出齿圈1582a和调整件之间移动,当夹爪位于后端位置时,连接件在驱动轴轴向与夹爪在驱动轴1325轴向重叠。优选地,当夹爪152a处于完全打开状态时(后端位置时),所述锁止元件130a与所述夹爪152a在驱动轴轴向重叠。另外,在第四实施例和第五实施例中,模式选择件与所述夹爪在驱动轴轴向上至少部分重叠。
从上述对不同实施例的描述来看,本发明中离合机构与所述夹爪沿驱动轴的轴向至少部分重叠,需要说明的是,当夹爪进行合拢或张开时,夹爪能够在沿驱动轴轴向远离马达的前端位置(如图5)和靠近马达的后端位置(如图4)之间移动,本本发明所说的沿驱动轴轴向与夹爪的重叠或部分重叠,指的是在前端位置或后端位置中任意一位置的重叠。
另外,由本发明对上述第一到第五实施例的描述可知,虽本发明中,auto chuck模式下,本体相对于机壳固定,因此,位于本体内的夹爪也在旋转方向相对于机壳固定,调整件在驱动轴的驱动下相对于夹爪转动。但本发明中第一支撑件以及第二支撑件对本体的支撑并不限于auto chuck模式下特定的实施方式(即夹爪不动,调整件相对于夹爪转动),只要夹爪和调整件之一能够相对于另一转动即可。
本发明并不局限于前述实施例中的实施方式,本领域技术人员在本发明技术精髓的启示下还可能做出其他变更,但只要其实现的功能与本发明相同或相似均应涵盖于本发明的保护范围内。

Claims (22)

  1. 一种手持式动力工具,包括:
    机壳;
    马达,设置于所述机壳内并输出旋转动力;
    夹头组件,所述夹头组件包括本体、相对本体于活动设置的多个夹爪、以及与所述多个夹爪螺纹连接的调整件;以及
    传动机构,包括用于传递马达驱动力的驱动轴;
    所述动力工具至少具有钻孔模式以及夹头调节模式,当处于钻孔模式时,所述本体由驱动轴驱动并与夹爪和调整件一起转动;当处于夹头调节模式时,所述调整件和所述本体二者之一能够相对于另一转动以实现夹爪在完全合拢状态和完全打开状态之间切换,且完全打开状态的夹爪相对于完全合拢状态的夹爪沿驱动轴轴向上靠近马达;
    其特征在于:所述动力工具还包括将所述本体旋转的支撑于所述机壳的第一支撑件和第二支撑件,所述第一支撑件相对于所述第二支撑件沿驱动轴轴向靠近所述马达设置,当夹爪处于完全打开状态时,所述第一支撑件与所述夹爪在驱动轴轴向至少部分重叠,当夹爪处于完全合拢状态时,所述第二支撑件与所述夹爪在驱动轴轴向重叠。
  2. 如权利要求1所述的手持式动力工具,其特征在于,所述动力工具还包括离合机构,当动力工具处于夹头调节模式下,所述离合机构用于在所述多个夹爪与调整件之间的扭矩达到预定值时断开马达轴传递至调整件或本体的旋转动力,以使所述调整件与卡爪之间无相对转动,所述离合机构与所述夹爪在驱动轴轴向上至少部分重叠。
  3. 如权利要求2所述的手持式动力工具,其特征在于,所述离合机构包括第一离合件、第二离合件以及离合弹性件,其中一个离合件与调整件无相对转动地连接,另一个离合件与机壳或马达在旋转方向上连接;当处于夹头调节模式,第一离合件与第二离合件相互啮合,当所述第一离合件、第二离 合件之间的扭矩达到预定值时,所述离合机构的其中一个离合件能够克服离合弹性件作用力相对于另一个离合件运动以脱开两者之间的啮合,从而使所述调整件与所述多个夹爪无相对转动。
  4. 如权利要求1所述的手持式动力工具,其特征在于,所述调整件套设于多个夹爪的外侧,所述调整件的内周面设有内螺纹,所述夹爪上设有与内螺纹配接的外螺纹。
  5. 如权利要求1所述的手持式动力工具,其特征在于,所述本体设置有收容腔,所述收容腔具有面向马达的开口,所述第一支撑件位于所述收容腔内。
  6. 如权利要求5所述的手持式动力工具,其特征在于,所述机壳包括收容马达的主壳体、由主壳体向内侧延伸的端盖以及由端盖向所述收容腔延伸的支撑部,所述第一支撑件支撑于所述支撑部的外侧。
  7. 如权利要求6所述的手持式动力工具,其特征在于,所述本体具有靠近马达的第一端和远离马达的第二端,所述端盖紧邻所述第一端设置且位于本体和马达之间。
  8. 如权利要求7所述的手持式动力工具,其特征在于,所述动力工具还包括至少一级位于所述端盖远离马达一侧的输出行星轮系,所述输出行星轮系至少包括连接于驱动轴的太阳轮、设置于本体且与太阳轮啮合的行星轮,钻孔模式时,所述驱动轴能够通过行星轮带动本体转动,当夹爪处于完全打开状态时,所述夹爪与所述行星轮在驱动轴轴向至少部分重叠。
  9. 如权利要求8所述的手持式动力工具,其特征在于,所述支撑部为中空的筒状体,所述驱动轴贯穿所述筒状体,所述太阳轮连接于所述驱动轴穿入所述本体的端部。
  10. 如权利要求1所述的手持式动力工具,其特征在于,所述动力工具至少包括一级输出行星轮系,所述输出行星轮系包括与驱动轴连接的太阳轮、由太阳轮驱动的行星轮,以及与行星轮啮合的输出齿圈,当处于钻孔模式时,所述输出齿圈相对于机壳固定,所述驱动轴通过所述行星轮带动本体转动,且当夹爪处于完全打开状态时,所述行星轮与所述夹爪在驱动轴轴向至少部分重叠。
  11. 如权利要求10所述的手持式动力工具,其特征在于,所述动力工具还包括模式选择机构,所述模式选择机构可操作地使动力工具至少在钻孔模式以及夹头调节模式之间切换,当处于夹头调节模式时,所述本体相对于机壳固定,所述输出齿圈能够在马达的驱动下相对于机壳旋转并能够将旋转运动传递至调整件。
  12. 如权利要求11所述的手持式动力工具,其特征在于,所述模式切换机构包括模式选择件以及由模式选择件带动的连接件,当处于夹头调节模式时,所述连接件能够将所述输出齿圈的驱动力传递至调整件;当处于钻孔模式时,所述连接件断开输出齿圈与调整件二者在旋转方向的动力传递。
  13. 如权利要求12所述的手持式动力工具,其特征在于,当夹爪处于完全打开状态时,所述连接件与所述夹爪在驱动轴轴向重叠。
  14. 如权利要求11所述的手持式动力工具,其特征在于,所述模式切换机构还包括不可转动地相对机壳设置且能够由模式选择件带动的锁止元件,所述锁止元件选择性地将本体或输出齿圈相对于机壳固定。
  15. 如权利要求14所述的手持式动力工具,其特征在于,当夹爪处于完全打开状态时,所述锁止元件与所述夹爪在驱动轴轴向重叠。
  16. 如权利要求1所述的手持式动力工具,其特征在于,所述动力工具 还包括模式切换机构,所述模式选择机构包括可操作地使动力工具至少在钻孔模式以及夹头调节模式之间切换的模式选择件,所述模式选择件与所述夹爪在驱动轴轴向至少部分重叠。
  17. 如权利要求1所述的手持式动力工具,其特征在于,所述夹头组件包括至少覆盖部分所述本体的夹头壳体,所述夹头壳体与机壳固定连接,所述第二支撑件位于所述本体远离马达的一端和夹头壳体之间。
  18. 如权利要求1-17任意一项所述的手持式动力工具,其特征在于,所述马达靠近夹头组件的端面至本体远离马达的端面之间的距离在80mm-95mm之间。
  19. 一种手持式动力工具,包括:
    机壳;
    马达,设置于所述机壳内并输出旋转动力;
    夹头组件,所述夹头组件包括本体、相对本体于活动设置的多个夹爪以及与所述多个夹爪螺纹连接的调整件;以及
    传动机构,包括用于传递马达驱动力的驱动轴;所述动力工具至少具有钻孔模式以及夹头调节模式,当处于钻孔模式时,所述本体由马达驱动并与夹爪和调整件一起转动;当处于夹头调节模式时,所述调整件和所述本体二者之一能够相对于另一个转动以实现夹爪的合拢或打开;其特征在于:所述动力工具还包括将所述本体旋转地支撑于所述机壳的第一支撑件,所述本体内设置有收容腔,所述收容腔具有面向马达的开口,所述第一支撑件位于所述收容腔内。
  20. 如权利要求19所述的手持式动力工具,其特征在于,所述动力工具包括至少一级输出行星轮系,其包括由马达轴驱动旋转的太阳轮、由太阳轮驱动的行星轮、以及与行星轮啮合的输出齿圈,钻孔模式时,所述本体能够在所述行星轮的驱动下旋转,且当夹爪处于完全打开状态时,所述输出行星 轮与所述夹爪在驱动轴轴向至少部分重叠。
  21. 如权利要求19或20所述的手持式动力工具,其特征在于,所述马达靠近夹头组件的端面至本体远离马达的端面之间的距离在80mm-95mm之间。
  22. 如权利要求19或20所述的手持式动力工具,其特征在于,所述夹头组件的径向长度小于等于60mm。
PCT/CN2019/090426 2018-06-06 2019-06-06 手持式动力工具 WO2019233485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/734,932 US20220055120A1 (en) 2018-06-06 2019-06-06 Hand-held power tool
EP19815626.7A EP3808507A4 (en) 2018-06-06 2019-06-06 PORTABLE POWER TOOL

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810575313.8 2018-06-06
CN201810575313 2018-06-06
CN201811037767 2018-09-06
CN201811037767.6 2018-09-06

Publications (1)

Publication Number Publication Date
WO2019233485A1 true WO2019233485A1 (zh) 2019-12-12

Family

ID=68770783

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/090415 WO2019233482A1 (zh) 2018-06-06 2019-06-06 手持式动力工具以及夹头组件
PCT/CN2019/090426 WO2019233485A1 (zh) 2018-06-06 2019-06-06 手持式动力工具

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090415 WO2019233482A1 (zh) 2018-06-06 2019-06-06 手持式动力工具以及夹头组件

Country Status (4)

Country Link
US (1) US20220055120A1 (zh)
EP (1) EP3808507A4 (zh)
CN (7) CN210188575U (zh)
WO (2) WO2019233482A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561359A (zh) * 2018-06-06 2019-12-13 苏州宝时得电动工具有限公司 手持式动力工具以及夹头组件
TWI740707B (zh) * 2020-11-06 2021-09-21 朝程工業股份有限公司 動力工具之扳機結構
EP4155032A4 (en) * 2020-06-30 2023-12-20 Nanjing Chervon Industry Co., Ltd. TORQUE OUTPUT TOOL

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877324A (zh) * 2018-09-06 2020-03-13 苏州宝时得电动工具有限公司 手持式动力工具及其控制方法和操作方法
CN111590524A (zh) * 2020-06-11 2020-08-28 浙江德硕电器有限公司 多功能动力工具的头身快换结构及多功能动力工具
TWI737463B (zh) * 2020-08-25 2021-08-21 朝程工業股份有限公司 電動工具結構
TWI743964B (zh) * 2020-08-25 2021-10-21 朝程工業股份有限公司 電動工具結構
TWI746288B (zh) * 2020-11-26 2021-11-11 郭穎宗 可調整夾距之麥克風夾
CN114024404A (zh) * 2021-11-08 2022-02-08 浙江鼎琛起重设备科技有限公司 一种带保护的调节式离合电机
CN114325036B (zh) * 2021-11-22 2023-12-29 深圳供电局有限公司 钳形电流表
CN115446706B (zh) * 2022-08-29 2024-04-23 浙江明磊锂能源科技股份有限公司 一种电动工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332518A (zh) * 2007-06-26 2008-12-31 创科实业有限公司 夹盘组件
US20100193206A1 (en) * 2009-01-23 2010-08-05 Mobiletron Electronics Co., Ltd. Electric power tool
CN101797744A (zh) * 2009-02-05 2010-08-11 创科电动工具科技有限公司 具有锤击机构的电动工具卡盘组件
CN202377572U (zh) * 2010-09-27 2012-08-15 布莱克和戴克公司 电动工具及卡盘
CN205674154U (zh) * 2016-05-30 2016-11-09 南京德朔实业有限公司 手持式动力工具

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB772817A (en) * 1954-01-27 1957-04-17 John Ford Harper Improvements in or relating to automatic machines for deburring, polishing and buffing
DE3241528C2 (de) * 1982-11-10 1986-04-10 Eugen Lutz GmbH u. Co Maschinenfabrik, 7130 Mühlacker Werkzeugspannfutter für einen Bohrhammer
US5741016A (en) * 1996-10-02 1998-04-21 Power Tool Holders Incorporated Chuck
US6550786B2 (en) * 1997-12-12 2003-04-22 Black & Decker Inc. Removable chuck
US5988653A (en) * 1998-06-18 1999-11-23 Chum Power Machinery Corp. Auto-locking bit holding system of a hand tool
AU2002226192B2 (en) * 2001-01-24 2006-07-20 Demain Technology Pty Ltd Power tool
CN2629881Y (zh) * 2003-06-18 2004-08-04 杨宗勋 夹头
US7080964B2 (en) * 2003-08-26 2006-07-25 Credo Technology Corporation Tool chuck having a light transmitting capability
JP4227028B2 (ja) * 2004-01-09 2009-02-18 株式会社マキタ ドライバドリル
DE102004056411A1 (de) * 2004-11-23 2006-05-24 Robert Bosch Gmbh Handwerkzeugmaschine mit Betriebsartumschaltung
US20060185870A1 (en) * 2005-02-18 2006-08-24 Black & Decker Inc. Drill chuck
US7491020B2 (en) * 2005-02-18 2009-02-17 Black & Decker Inc. Three position selector for automated chuck
US7503734B2 (en) * 2005-02-18 2009-03-17 Black & Decker Inc. Drill chuck actuator
US20060232022A1 (en) * 2005-04-18 2006-10-19 Nickels Richard C Jr Tool chuck with sliding sleeve and chuck mechanism
US7677844B2 (en) * 2005-04-19 2010-03-16 Black & Decker Inc. Electronic clutch for tool chuck with power take off and dead spindle features
US7455303B2 (en) * 2005-09-02 2008-11-25 The Jacobs Chuck Manufacturing Company Chuck with internal nut
US8075229B2 (en) * 2007-06-26 2011-12-13 Techtronic Power Tools Technology Limited Multi-speed drill and chuck assembly
CN101422823B (zh) * 2007-11-01 2012-07-18 苏州宝时得电动工具有限公司 动力工具
CN201108972Y (zh) * 2007-11-07 2008-09-03 苏州宝时得电动工具有限公司 动力工具
CN101433973B (zh) * 2007-11-16 2011-12-07 苏州宝时得电动工具有限公司 动力工具
US8042434B2 (en) * 2008-01-24 2011-10-25 Junkers John K Safety torque intensifying tool
CN201220406Y (zh) * 2008-02-03 2009-04-15 南京德朔实业有限公司 一种电动工具
US20090200758A1 (en) * 2008-02-07 2009-08-13 Chin Hung Lam Auto Locking Chuck
DE102008000470A1 (de) * 2008-02-29 2009-09-03 Robert Bosch Gmbh Handwerkzeugmaschine
JP5405864B2 (ja) * 2009-03-23 2014-02-05 株式会社マキタ 打撃工具
JP5403804B2 (ja) * 2009-04-28 2014-01-29 本田技研工業株式会社 ハンドルスイッチ
CN102625738A (zh) * 2009-07-17 2012-08-01 迪美科技控股有限公司 电动工具
DE102009054930B4 (de) * 2009-12-18 2017-07-27 Robert Bosch Gmbh Bohrmaschine
JP2011229319A (ja) * 2010-04-21 2011-11-10 Makita Corp 電動工具用バッテリパック
CN201988760U (zh) * 2010-06-18 2011-09-28 浙江三鸥机械股份有限公司 新型的装卸快捷的钻夹头及与其配合的动力输出轴
CN102335908B (zh) * 2010-07-20 2014-04-16 苏州宝时得电动工具有限公司 动力工具
CN102335904B (zh) * 2010-07-20 2014-04-16 苏州宝时得电动工具有限公司 动力工具
DE102011002331A1 (de) * 2011-04-29 2012-10-31 Röhm Gmbh Bohrvorrichtung
DE102011055869A1 (de) * 2011-11-30 2013-06-06 Röhm Gmbh Bohrvorrichtung
CN103909501B (zh) * 2013-01-08 2016-04-27 苏州宝时得电动工具有限公司 手持式工具
US20130327552A1 (en) * 2012-06-08 2013-12-12 Black & Decker Inc. Power tool having multiple operating modes
DE202013103023U1 (de) * 2012-07-14 2013-10-04 Hitachi Koki Co., Ltd. Elektrowerkzeug
DE202012102742U1 (de) * 2012-07-23 2013-04-25 Röhm Gmbh Bohrfutter
EP2759378B1 (en) * 2013-01-28 2015-11-04 Chervon (HK) Limited A multi-tool for fasteners
CN103963016B (zh) * 2013-02-05 2016-05-18 苏州宝时得电动工具有限公司 电动工具及用于该电动工具的操作方法
US10882119B2 (en) * 2013-03-14 2021-01-05 Black & Decker Inc. Chuck sleeve for power tool
EP2799170A1 (de) * 2013-04-30 2014-11-05 HILTI Aktiengesellschaft Handwerkzeugmaschine und Steuerungsverfahren
JP5991439B2 (ja) * 2013-08-22 2016-09-14 日立工機株式会社 電動工具およびそれを用いたポリッシャ
CN104416187B (zh) * 2013-08-28 2017-06-16 苏州宝时得电动工具有限公司 动力工具及其快速锁紧和释放工作附件的操作方法
DE102013113868A1 (de) * 2013-12-11 2015-06-11 Röhm Gmbh Bohrvorrichtung und Bohrfutter
CN204700332U (zh) * 2014-04-28 2015-10-14 米沃奇电动工具公司 用于旋转电动工具的卡盘组件
TW201601861A (zh) * 2014-07-03 2016-01-16 xuan-cheng Liu 具換軸構造之電鑽
CN105619343A (zh) * 2014-11-07 2016-06-01 苏州宝时得电动工具有限公司 手持式动力工具
CN105563428A (zh) * 2014-11-07 2016-05-11 苏州宝时得电动工具有限公司 手持式动力工具
CN105772799B (zh) * 2014-12-23 2017-12-29 苏州宝时得电动工具有限公司 枪钻及其模式切换机构
US10682750B2 (en) * 2015-01-29 2020-06-16 Positec Power Tools (Suzhou) Co., Ltd. Hand-held power tool and operating method thereof
CN106553160B (zh) * 2015-09-30 2019-08-06 南京德朔实业有限公司 离合装置以及具有该离合装置的电锤
CN107282959B (zh) * 2016-03-31 2021-08-10 苏州宝时得电动工具有限公司 夹头及使用该夹头的动力工具
JP6902334B2 (ja) * 2016-06-08 2021-07-14 京セラインダストリアルツールズ株式会社 電動工具
CN107542877B (zh) * 2016-06-29 2020-04-14 苏州宝时得电动工具有限公司 锁止机构及具有锁止机构的链锯
CN205967474U (zh) * 2016-07-22 2017-02-22 山东威达机械股份有限公司 一种冲击夹紧钻夹头
CN206326155U (zh) * 2016-08-11 2017-07-14 诺希德实业(深圳)有限公司 一种以气动马达驱动的铝合金机壳的手持式气动冲击钻机
CN107838878A (zh) * 2016-09-20 2018-03-27 苏州宝时得电动工具有限公司 一种动力工具
JP6757226B2 (ja) * 2016-10-07 2020-09-16 株式会社マキタ 電動工具
KR20180001073U (ko) * 2016-10-10 2018-04-19 계양전기 주식회사 전원연결 와이어의 보호 구조를 갖는 전동공구
CN207547697U (zh) * 2016-11-01 2018-06-29 苏州宝时得电动工具有限公司 动力工具
CN108015322A (zh) * 2017-12-12 2018-05-11 重庆浪尖渝力科技有限公司 多功能电钻
US20220055120A1 (en) * 2018-06-06 2022-02-24 Positec Power Tools (Suzhou) Co., Ltd Hand-held power tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332518A (zh) * 2007-06-26 2008-12-31 创科实业有限公司 夹盘组件
US20100193206A1 (en) * 2009-01-23 2010-08-05 Mobiletron Electronics Co., Ltd. Electric power tool
CN101797744A (zh) * 2009-02-05 2010-08-11 创科电动工具科技有限公司 具有锤击机构的电动工具卡盘组件
CN202377572U (zh) * 2010-09-27 2012-08-15 布莱克和戴克公司 电动工具及卡盘
CN205674154U (zh) * 2016-05-30 2016-11-09 南京德朔实业有限公司 手持式动力工具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110561359A (zh) * 2018-06-06 2019-12-13 苏州宝时得电动工具有限公司 手持式动力工具以及夹头组件
EP4155032A4 (en) * 2020-06-30 2023-12-20 Nanjing Chervon Industry Co., Ltd. TORQUE OUTPUT TOOL
TWI740707B (zh) * 2020-11-06 2021-09-21 朝程工業股份有限公司 動力工具之扳機結構

Also Published As

Publication number Publication date
WO2019233482A1 (zh) 2019-12-12
CN110560717A (zh) 2019-12-13
CN210996564U (zh) 2020-07-14
CN110560737B (zh) 2021-06-11
US20220055120A1 (en) 2022-02-24
CN110561359A (zh) 2019-12-13
EP3808507A1 (en) 2021-04-21
CN110560737A (zh) 2019-12-13
CN110560738A (zh) 2019-12-13
CN210188575U (zh) 2020-03-27
EP3808507A4 (en) 2022-11-23
CN210589111U (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2019233485A1 (zh) 手持式动力工具
EP2554306B1 (en) Electric power tool
US20230035085A1 (en) Multispeed power tool
US9604354B2 (en) Tool having multi-speed compound planetary transmission
EP2388107B1 (en) Multi-function tool system
US20150151415A1 (en) Power tool
US10315292B2 (en) Power tool
CN107999824B (zh) 动力工具
JP2016153153A (ja) 震動機構付き電動工具
US9308630B2 (en) Impact screwdriver
WO2011029387A1 (zh) 动力工具
US10751869B2 (en) Speed-changing tool
CN210998541U (zh) 手持式动力工具
CN105983946B (zh) 手持式动力工具及其操作方法
US11980948B2 (en) Rotary tool
US20210331254A1 (en) Power tool chuck
WO2018082717A1 (zh) 动力工具及动力工具的操作方法
CN212887454U (zh) 一种动力工具及其附件
US20220297205A1 (en) Hole cutting accessory for power tool
US11998996B2 (en) Hole cutting accessory for power tool
CN211136963U (zh) 用于冲击扳手上的夹头
EP4086027A1 (en) Hole cutting accessory for power tool
CN201342499Y (zh) 动力驱动器
KR101173939B1 (ko) 구동축 결합용 퀵 커플러
CN112936191A (zh) 一种手持式动力工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815626

Country of ref document: EP

Effective date: 20210111