WO2019230684A1 - 着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板 - Google Patents

着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板 Download PDF

Info

Publication number
WO2019230684A1
WO2019230684A1 PCT/JP2019/021004 JP2019021004W WO2019230684A1 WO 2019230684 A1 WO2019230684 A1 WO 2019230684A1 JP 2019021004 W JP2019021004 W JP 2019021004W WO 2019230684 A1 WO2019230684 A1 WO 2019230684A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
colored resin
colored
colorant
pigment
Prior art date
Application number
PCT/JP2019/021004
Other languages
English (en)
French (fr)
Inventor
井上欣彦
南部和樹
徳田拓人
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980034750.1A priority Critical patent/CN112189154B/zh
Priority to KR1020207033032A priority patent/KR102667981B1/ko
Priority to JP2019529274A priority patent/JP6958620B2/ja
Priority to EP19812017.2A priority patent/EP3805822A4/en
Priority to US17/052,598 priority patent/US20210179809A1/en
Publication of WO2019230684A1 publication Critical patent/WO2019230684A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0025Crystal modifications; Special X-ray patterns
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices

Definitions

  • the present invention relates to a colored resin composition and a method for producing the same, a near-infrared transmitting light-shielding film, and a decorative substrate.
  • biometric authentication In recent years, various types of biometric authentication have been adopted in various information terminals such as smartphones and tablet PCs to enhance security. In addition to conventional fingerprint authentication, studies such as face authentication and iris authentication are in progress, and near-infrared sensors and near-infrared cameras are used for face authentication and iris authentication. In automobiles, near-infrared sensors such as motion sensors for in-vehicle displays and near-infrared cameras such as driver monitoring cameras are used.
  • the above-mentioned near-infrared sensor and near-infrared camera are generally arranged at the periphery of various displays and housings. Since conventional near-infrared sensors and near-infrared cameras used a transparent or translucent cover, the near-infrared sensors and near-infrared cameras were visually recognized from the outside, and there was a problem of impairing design. In view of this, studies have been made on filters and paints for hiding near-infrared sensors and near-infrared cameras from the outside. These filters and paints are required to have high near-infrared transmittance and low visible light transmittance.
  • bisbenzofuranone-based pigments are known as pigments that have both high near-infrared transmittance and high visible light shielding properties, and include bis-oxodihydroindoleylene-benzodifuranone colorants, Alternatively, near-infrared inactive compositions containing isomers or tautomers thereof (for example, see Patent Document 4) have been studied.
  • Patent Documents 1 and 2 using metal fine particles, organic coloring pigments, and organic black pigments have good light resistance, it is difficult to achieve both visible light shielding properties and near infrared transmittance properties. There has been a problem that the image resolution of the near-infrared camera is greatly reduced by light scattering caused by particles.
  • an object of the present invention is to provide a colored resin composition that has excellent light resistance, high visible light shielding properties and near infrared transmittance, and little transmitted scattered light.
  • the present inventors have used a bisbenzofuranone-based pigment as a coloring material for a colored resin composition, and by setting the crystallite size of the bisbenzofuranone-based pigment in the colored resin composition within a specific range.
  • the present inventors have found that the above problems can be solved and completed the present invention.
  • the present invention is a colored resin composition containing (A) a resin, (B) a coloring material, and (C) an organic solvent, wherein the (B) coloring material contains at least a bisbenzofuranone-based pigment, and the coloring A colored resin composition in which a crystallite size of a bisbenzofuranone-based pigment in a colored film made of a cured product of the resin composition is 10 nm or more and 25 nm or less.
  • the colored resin composition of the present invention is excellent in light transmittance in the near infrared region (wavelength 800 to 1000 nm), light blocking property in the visible region, and light resistance, and can reduce transmitted scattered light.
  • An excellent near-infrared camera image can be obtained by the colored resin composition of the present invention.
  • the colored resin composition of the present invention contains (A) a resin, (B) a coloring material, and (C) an organic solvent.
  • the resin has an action as a binder in the composition
  • the colorant has an action of shielding visible light
  • the organic solvent is (A) the resin and / or (B ) It has the effect of uniformly dissolving or dispersing the coloring material.
  • at least a bisbenzofuranone pigment is contained as the colorant (B), and the crystallite size of the bisbenzofuranone pigment in the colored film made of a cured product of the colored resin composition is 10 nm or more and 25 nm or less. It is characterized by being.
  • a bisbenzofuranone pigment having both high near-infrared transmittance and high visible light shielding property is selected from among pigments having excellent light resistance.
  • the resin examples include an epoxy resin, an acrylic resin, a siloxane resin, and a polyimide resin. Two or more of these may be contained. Among these, from the viewpoints of storage stability of the colored resin composition and heat resistance of the colored film, a resin selected from an acrylic resin, a polyimide resin, and a siloxane resin is preferable.
  • the colored resin composition of the present invention may or may not have photosensitivity, it is colored by using (A) an alkali-soluble resin as the resin and further containing (D) a photosensitizer described later. Photosensitivity can be imparted to the resin composition.
  • the alkali-soluble resin in the present invention has a hydroxyl group and / or a carboxyl group as an alkali-soluble group, an acid value of 10 mgKOH / g or more, and a weight average molecular weight (Mw) of 500 or more and 150,000 or less. Refers to resin.
  • the weight average molecular weight (Mw) refers to a value obtained by analysis by gel permeation chromatography using tetrahydrofuran as a carrier, and conversion using a standard polystyrene calibration curve.
  • the acid value of alkali-soluble resin refers to the number of mg of potassium hydroxide required to neutralize 1 g of alkali-soluble resin (unit: mgKOH / g).
  • the alkali-soluble resin examples include cardo resin, acrylic resin, novolac resin, polyimide resin, polyimide precursor, polybenzoxazole resin, polybenzoxazole precursor, polyamide resin, and siloxane resin.
  • an acrylic resin or a polyimide resin is preferable from the viewpoint of pattern processability and coating film reliability, and an acrylic resin is more preferable from the viewpoint of dispersion stability.
  • a resin selected from a polyimide resin, a polyimide precursor, a polybenzoxazole resin, a polybenzoxazole precursor, and a siloxane resin is preferable from the viewpoint of pattern processability. From the viewpoint of pattern processability, a polyimide resin or a polyimide precursor is more preferable.
  • the colored resin composition of the present invention contains at least a bisbenzofuranone-based pigment as the colorant (B).
  • a bisbenzofuranone-based pigment as a colorant, light resistance can be improved, and both light shielding in the visible region and high light transmittance in the near infrared region can be achieved.
  • the bisbenzofuranone pigment has a structure represented by any of the following general formulas (I) to (III).
  • the structures represented by the following general formulas (I) to (III) are in a cis-trans isomer relationship, and may have two or more of these structures.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 4 are each independently R 10 , OR 11 , SR 11 , COR 11 , CONR 11 R 12 , NR 11 COR 12 , OCOR 11 , COOR 11 , SCOR 11 , OCSR 11 , COSR 11 , CSOR 11 represents a CN, a halogen atom or a hydroxyl group.
  • R 10 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • R 11 and R 12 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or 2 carbon atoms.
  • a and b each independently represents an integer of 0 to 4.
  • the bisbenzofuranone pigment itself having a structure represented by any of the above general formulas (I) to (III) is known and can be obtained, for example, by the method described in JP-T-2012-515233.
  • it is marketed as “Irgaphor” (registered trademark) Black S0100CF (trade name, manufactured by BASF Corporation).
  • K is a constant 0.9 and ⁇ is 0.15418 [nm].
  • is represented by the following formula (2).
  • ⁇ e is the half-value width of the diffraction peak
  • ⁇ O is the half-value width correction value (0.13 [°]).
  • ⁇ , ⁇ e, and ⁇ 2 O are calculated in radians.
  • the X-ray diffraction spectrum is measured by a wide angle X-ray diffraction method using CuK ⁇ rays as an X-ray source.
  • X-ray diffractometer for example, DS ADVANCE manufactured by Bruker AXS can be used.
  • the measurement conditions were: output 40 kV / 40 mA, slit system Div. Slit: 0.3 °, measurement step (2 ⁇ ) is 0.0171 °, and measurement time is 0.5 seconds / step.
  • the colored film in the present invention is a film made of a cured product of the colored resin composition of the present invention. It is preferable that the crosslinkable group contained in the resin (A) in the colored resin composition is crosslinked by heat and / or light and does not substantially remain in the colored film.
  • Such a colored film can be obtained by forming a coating film of a colored resin composition on a substrate, drying the coating film with a hot plate or the like, and then performing a heat treatment with a hot air oven or the like.
  • the heat treatment temperature is preferably 170 ° C. or higher, and the heat treatment time is preferably 30 minutes or longer.
  • the crystallite size of the bisbenzofuranone-based pigment in the colored film is larger than 25 nm, the near-infrared transmittance is reduced and the transmitted scattered light is increased. Therefore, the sharpness of the infrared camera image obtained through the colored film is increased. Decreases.
  • the crystallite size of the bisbenzofuranone pigment is preferably 20 nm or less.
  • the crystallite size of the bisbenzofuranone-based pigment in the colored film is less than 10 nm, it becomes difficult to stabilize the dispersion of the bisbenzofuranone-based pigment. Sexual deterioration occurs.
  • the crystallite size of the bisbenzofuranone pigment in the colored film As a means for setting the crystallite size of the bisbenzofuranone pigment in the colored film within the above range, it is preferable to disperse the bisbenzofuranone pigment in the resin stably and uniformly in a fine state without reaggregation. More specifically, a method of using a bisbenzofuranone pigment having a small crystallite size, a method of producing a colored resin composition by a method of using a bead mill described later, and the like.
  • coloring material other coloring materials may be contained together with the bisbenzofuranone-based pigment as long as the effects of the present invention are not impaired.
  • coloring materials other than bisbenzofuranone pigments include organic pigments, inorganic pigments, and dyes that are generally used. In order to improve the heat resistance, reliability, and light resistance of the colored film, an organic pigment or an inorganic pigment is preferable.
  • organic pigments include diketopyrrolopyrrole pigments; azo pigments such as azo pigments, disazo pigments, and polyazo pigments; phthalocyanine pigments such as copper phthalocyanine, halogenated copper phthalocyanine, and metal-free phthalocyanine; aminoanthraquinone, diaminodi Anthraquinone pigments such as anthraquinone, anthrapyrimidine, flavantron, anthanthrone, indanthrone, pyrantrone, violanthrone; quinacridone pigment; dioxazine pigment; perinone pigment; perylene pigment; thioindigo pigment; isoindoline pigment; Examples include linone pigments, quinophthalone pigments, selenium pigments, and metal complex pigments.
  • inorganic pigments include titanium oxide, zinc white, zinc sulfide, white lead, calcium carbonate, precipitated barium sulfate, white carbon, alumina white, kaolin clay, talc, bentonite, black iron oxide, cadmium red, red rose, molybdenum Red, molybdate orange, chrome vermilion, yellow lead, cadmium yellow, yellow iron oxide, titanium yellow, chromium oxide, viridian, titanium cobalt green, cobalt green, cobalt chrome green, Victoria green, ultramarine blue, bitumen, cobalt blue, cerulean Examples include blue, cobalt silica blue, cobalt zinc silica blue, manganese violet, and cobalt violet.
  • the dye examples include azo dyes, anthraquinone dyes, condensed polycyclic aromatic carbonyl dyes, indigoid dyes, carbonium dyes, phthalocyanine dyes, methine dyes, and polymethine dyes.
  • black colorant examples include black organic pigments, mixed color organic pigments, and inorganic pigments.
  • black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments.
  • the mixed color organic pigment examples include those obtained by mixing two or more pigments having colors such as red, blue, green, violet, yellow, magenta, and cyan into a pseudo black color.
  • the black inorganic pigment include graphite; fine particles of metal such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver; oxides of the above metals, composite oxides, sulfides, nitrides And oxynitrides.
  • white colorant examples include titanium dioxide, barium carbonate, zirconium oxide, calcium carbonate, barium sulfate, alumina white, and silicon dioxide.
  • a blue coloring material is preferable from the viewpoint of further improving the visible light shielding property of the colored film, and copper phthalocyanine is more preferable from the viewpoint of fastness.
  • the content thereof is preferably 5 parts by weight or more, more preferably 20 parts by weight or more with respect to 100 parts by weight of the bisbenzofuranone-based pigment.
  • the content of the colorant other than the bisbenzofuranone-based pigment is improved from the viewpoint of further improving near-infrared transmittance and further suppressing transmitted light scattering, with respect to 100 parts by weight of the bisbenzofuranone-based pigment, 75 parts by weight or less is preferable, and 30 parts by weight or less is more preferable.
  • the content of the colorant (B) in the colored resin composition of the present invention is preferably 1 to 60% by weight in the solid content.
  • solid content means the component which is solid at room temperature among the components contained in a colored resin composition.
  • the component corresponding to the solid content include (A) a resin, (B) a colorant, (D) a photosensitizer described later, (E) a radical polymerizable compound, and other additives.
  • (B) By making content of a coloring material into 1 weight% or more, even when the film thickness of a coloring film is thin, visible light light-shielding property can be improved.
  • content of a coloring material 10 weight% or more is more preferable.
  • the content of (B) the colorant is 60% by weight or less, the dispersion stability of the (B) colorant can be improved. Further, reflection of incident light at the interface between the colored film and the substrate can be suppressed, and the near infrared transmittance can be further improved.
  • the content of the colorant is preferably 40% by weight or less, and more preferably 17% by weight or less.
  • organic solvent examples include ethers, acetates, esters, ketones, aromatic hydrocarbons, amides, alcohols and the like.
  • ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl.
  • Ether diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, Dipropylene glycol monomethyl ether , Dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol methyl-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene glycol Examples include monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, and tetrahydrofuran.
  • acetates examples include butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether.
  • esters examples include alkyl lactates such as methyl 2-hydroxypropionate and ethyl 2-hydroxypropionate; ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, 3-methoxypropionic acid Ethyl, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutylpropionate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-pentyl formate, i-pentyl acetate, n-butyl propionate , Ethyl butyrate,
  • ketones include methyl ethyl ketone, cyclohexanone, 2-heptanone, and 3-heptanone.
  • aromatic hydrocarbons examples include toluene and xylene.
  • amides include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • alcohols examples include butyl alcohol, isobutyl alcohol, pentaanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol, and the like. It is done.
  • Two or more of these solvents may be contained.
  • the content of acetates in the organic solvent is preferably 50 to 100% by weight, more preferably 70 to 100% by weight.
  • the colored resin composition preferably contains (C) two or more organic solvents.
  • the boiling point is 150 to 200 ° C.
  • the organic solvent (C) is preferably contained in an amount of 30 to 75% by weight in the organic solvent (C).
  • the content of the organic solvent (C) is preferably 50% by weight or more, more preferably 70% by weight or more, from the viewpoint of film thickness uniformity of the coating film in the coating process.
  • the content of (C) the organic solvent is preferably 95% by weight or less, more preferably 90% by weight or less, from the viewpoint of suppressing pigment sedimentation.
  • the colored resin composition of the present invention can impart photosensitivity to the colored resin composition by containing (A) an alkali-soluble resin as a resin and further containing (D) a photosensitizer.
  • Photosensitivity may have so-called negative photosensitivity, in which the exposed portion alkali solubility is reduced by pattern exposure through an exposure mask, and the unexposed portion is removed by an alkaline developer to form a pattern. Then, pattern exposure via an exposure mask increases the alkali solubility of the exposed area higher than that of the unexposed area, and removes the exposed area with an alkaline developer to form a pattern, so-called positive photosensitivity. You may have.
  • the photopolymerization initiator refers to a compound that generates radicals by bond cleavage and / or reaction upon exposure.
  • the radically polymerizable compound (E) can be photocured by exposure.
  • the photopolymerization initiator examples include carbazole photopolymerization initiators, acylphosphine oxide photopolymerization initiators, oxime ester photopolymerization initiators, ⁇ -aminoalkylphenone photopolymerization initiators, and the like. Two or more of these may be contained.
  • the carbazole photopolymerization initiator or the oxime ester photopolymerization is highly sensitive to the mixed line consisting of i-line (365 nm), h-line (405 nm), and g-line (436 nm) in the exposure process described later. Initiators are preferred.
  • the content of the photopolymerization initiator is preferably 1 part by weight or more with respect to 100 parts by weight of the total content of the alkali-soluble resin and the (E) radical polymerizable compound from the viewpoint of improving sensitivity to exposure.
  • the content of the photopolymerization initiator is preferably 60 parts by weight or less with respect to 100 parts by weight of the total content of the alkali-soluble resin and the (E) radical polymerizable compound, from the viewpoint of deep curability with respect to exposure. More preferred are parts by weight or less.
  • the radical polymerizable group possessed by the radical polymerizable compound is preferably a (meth) acrylic group from the viewpoint of improving sensitivity during exposure and improving the hardness of the colored film.
  • the (meth) acryl group here refers to a methacryl group or an acryl group.
  • the content of the radically polymerizable compound is preferably 5 parts by weight or more in the total content of 100 parts by weight of the alkali-soluble resin and (E) the radically polymerizable compound, from the viewpoint of improving sensitivity to exposure. 15 parts by weight or more is more preferable.
  • the content of the radically polymerizable compound (E) is preferably 80 parts by weight or less in the total content of 100 parts by weight of the alkali-soluble resin and the radically polymerizable compound (E) from the viewpoint of reflowability in the curing step. 60 parts by weight or less is preferable.
  • a photoacid generator as a photosensitive agent (D) in the colored resin composition, it is possible to relatively increase the alkali solubility in the exposed area and to impart positive photosensitivity.
  • a quinonediazide compound is preferable.
  • an esterified product of a compound having a phenolic hydroxyl group and a quinonediazidesulfonyl acid chloride is more preferable.
  • a part of the phenolic hydroxyl group may be intentionally left without esterification.
  • the content of the quinonediazide compound is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the alkali-soluble resin from the viewpoint of pattern processability.
  • the colored resin composition of the present invention preferably further contains a polymer dispersant.
  • the polymer dispersant means a material having both a pigment affinity group having a chemical bond or adsorption action to the pigment surface and a polymer chain or group having a solvophilic property.
  • the polymer dispersant improves the wettability of the pigment to the dispersion medium and promotes the deagglomeration of the pigment in the wet media dispersion treatment described later, and stabilizes the particle size and viscosity by steric hindrance and / or electrostatic repulsion effect. In addition, there is an effect of suppressing the occurrence of color separation during storage or application of the colored resin composition.
  • polymer dispersant examples include a polyester polymer dispersant, an acrylic polymer dispersant, a polyurethane polymer dispersant, a polyallylamine polymer dispersant, a carbodiimide dispersant, a polyamide polymer dispersant, and the like. Is mentioned. Among these, an acrylic polymer dispersant or a polyamide polymer dispersant is more preferable. As the polyamide-based polymer dispersant, those having a comb structure having a plurality of side chains composed of polyester chains are preferable.
  • a compound having a structure having a large number of nitrogen atoms in the main chain, such as polyalkyleneimine, and having a plurality of side chains of a polyester chain bonded via an amide bond through the nitrogen atoms is preferable.
  • a comb-shaped polyamide-based dispersant include “DISPERBYK” (registered trademark) 2200 (manufactured by BYK Chemie), “SOLSPERSE” (registered trademark) 11200, and 28000 (all manufactured by Lubrizol Corporation). ) And the like.
  • the polymer dispersant is a dispersant having an amine value of 1 mgKOH / g or more and an acid value of less than 1 mgKOH / g, a dispersant having an acid value of 1 mgKOH / g or more and an amine value of less than 1 mgKOH / g, an amine value Is 1 mgKOH / g or more and the acid value is 1 mgKOH / g or more, and the amine value is less than 1 mgKOH / g and the acid value is less than 1 mgKOH / g. Two or more of these may be contained. Among these, a dispersant having an amine value of 1 mgKOH / g or more is preferable.
  • Examples of the polymer dispersant having an amine value of 1 mgKOH / g or more and an acid value of less than 1 mgKOH / g include “DISPERBYK” (registered trademark) 102, 160, 161, 162, 2163, 164, 2164, 166.
  • Examples of the polymer dispersant having an amine value of 1 mgKOH / g or more and an acid value of 1 mgKOH / g or more include “DISPERBYK” (registered trademark) 142, 145, 2001, 2010, 2020, 2025, 9076, Anti- Terra-205 (all of which are manufactured by Big Chemie), “SOLSPERSE” (registered trademark) 24000 (manufactured by Lubrizol Corporation), “Asper” (registered trademark) PB821, PB880, PB881 (all of which are Ajinomoto Fine (Manufactured by Techno Co., Ltd.), “SOLSPERSE” (registered trademark) 9000, 11200, 13650, 24000SC, 24000GR, 32000, 32500, 32550, 326000, 33000, 34750, 35100, 35200, 37500, 39000 56000 (manufactured by Lubrizol Corporation), and the like.
  • DISPERBYK registered trademark
  • SOLSPERSE registered trademark
  • the content of the polymer dispersant in the colored resin composition of the present invention is preferably 10 parts by weight or more with respect to 100 parts by weight of the colorant (B) described later, and 20 weights. Part or more is more preferable.
  • the content of the polymer dispersant is preferably 100 parts by weight or less and more preferably 60 parts by weight or less with respect to 100 parts by weight of the colorant (B) from the viewpoint of improving the heat resistance and adhesion of the colored film. preferable.
  • the colored resin composition of the present invention may contain a thermal crosslinking agent.
  • a thermal crosslinking agent By containing a thermal crosslinking agent, the finally obtained coating film strength can be improved.
  • the thermal crosslinking agent include compounds having two or more alkoxymethyl groups and / or methylol groups, compounds having two or more epoxy groups, and the like. Two or more of these may be contained.
  • the colored resin composition of the present invention may contain a leveling agent.
  • leveling agents include anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine; cationic surfactants such as stearylamine acetate and lauryltrimethylammonium chloride; lauryldimethylamine oxide, laurylcarboxyl Amphoteric surfactants such as methylhydroxyethylimidazolium betaine; Nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether and sorbitan monostearate; Silicone surfactants with polydimethylsiloxane as the main skeleton Agents; fluorine-based surfactants and the like.
  • the average light transmittance in the near infrared region of the colored film from 920 nm to 960 nm is 90% or more. Preferably, it becomes 93% or more.
  • the average light transmittance at a wavelength of 920 nm to 960 nm is 90% or more, the infrared intensity obtained through the colored film can be further improved, and the near infrared sensor sensitivity and the near infrared camera image illuminance can be further improved.
  • the light transmittance of the colored film is obtained by forming a colored resin composition coating on a transparent substrate, drying the coating with a hot plate, etc., and then heat-treating with a hot air oven or the like to obtain a colored film. It can be determined by measurement using an ultraviolet-visible near-infrared-spectrophotometer.
  • the thickness of the coating film of the colored resin composition is adjusted so that the OD value of the resulting colored film is 4.
  • the crosslinkable group contained in the resin (A) in the colored resin composition should be cross-linked and not substantially remain.
  • the heat treatment temperature is preferably 170 ° C. or higher, and the heat treatment time is preferably 30 minutes or longer.
  • UV-visible spectrophotometer UV-3150 (manufactured by Shimadzu Corporation) is preferably used.
  • the light transmittance of the colored film is measured using the light transmittance of the transparent substrate used as a reference.
  • Tempax manufactured by AGC Techno Glass Co., Ltd. which is a translucent glass substrate is preferable.
  • the haze value in the visible region when the colored film is formed so that the optical density (OD value) is 2 is preferably 6% or less, and preferably 3% or less. It is more preferable.
  • the haze value is an index of the near-infrared transmitted light scattering intensity. If the haze value is 6% or less, the near-infrared transmitted light scattering intensity obtained through the colored film is further suppressed, and the near-infrared camera image solution is reduced. The image quality can be further improved.
  • the haze of the colored film can be determined by measuring the colored film formed on the transparent substrate using a haze meter in the same manner as the light transmittance.
  • a haze meter As a haze meter, NDH7000 (made by Nippon Denshoku Industries Co., Ltd.) is preferable.
  • a dispersion solution is used to disperse a resin solution containing (A) a resin, (B) a colorant, and (C) an organic solvent as necessary.
  • a method of preparing a colorant dispersion having a high material concentration in advance, and further adding (A) another component such as a resin and, if necessary, a photosensitizer and stirring is preferable. Filtration may be performed as necessary.
  • the bisbenzofuranone pigment is more stably dispersed in the colored resin composition or the colored film.
  • the crystallite size of the bisbenzofuranone pigment in can be easily adjusted to the desired range described above.
  • the crystallite size of the bisbenzofuranone pigment in the colored film can be easily reduced to 25 nm or less by a general dispersion method. Can do.
  • Examples of means for setting the crystallite size of the bisbenzofuranone pigment in the above range include, for example, a salt milling process in which a bisbenzofuranone pigment, an inorganic salt, and an organic solvent are kneaded and ground, and a bisbenzofuranone pigment is sulfuric acid. And acid slurry treatment in which it is once dissolved in a strong acid and then mixed with a poor solvent.
  • the salt milling process involves kneading a bisbenzofuranone pigment, a water-soluble inorganic salt, and an organic solvent that does not dissolve the inorganic salt, then throwing the kneaded material into water, filtering and washing the resulting slurry to remove the inorganic salt.
  • the method of removing is preferable.
  • polymers such as polymer dispersants and pigment derivatives may be added to suppress reaggregation of bisbenzofuranone pigments after atomization by salt milling treatment. be able to.
  • water-soluble inorganic salt examples include sodium chloride, potassium chloride, calcium chloride, barium chloride, sodium sulfate and the like.
  • the organic solvent is not particularly limited as long as it is water-soluble and does not dissolve the water-soluble inorganic salt. However, the temperature rises during salt milling, and the organic solvent easily evaporates. High boiling solvents are preferred.
  • 2-methoxyethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl glycol, diethylene glycol monobutyl ether, triethylene glycol, triethylene Examples include glycol monomethyl ether, liquid polyethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and low molecular weight polypropylene glycol. Two or more of these may be used.
  • kneader examples include “TRIMIX” (registered trademark) manufactured by Inoue Seisakusho, which is a kneader, mix muller, and planetary mixer, and “Miracle” manufactured by Asada Tekko Co., Ltd., which is a continuous uniaxial kneader. KCK "(registered trademark) and the like.
  • the specific surface area of the bisbenzofuranone pigment at the raw material stage is preferably 10 m 2 / g or more and 100 m 2 / g or less, and more preferably 40 m 2 / g or more and 100 m 2 / g or less.
  • the specific surface area of the bisbenzofuranone pigment can be determined by a BET multipoint method using a nitrogen gas adsorption method using a gas adsorption type specific surface area measuring device. Examples of the means for setting the specific surface area in the above range include the above-described salt milling treatment and acid slurry treatment.
  • Examples of the disperser that disperses the resin solution containing (A) resin, (B) colorant, and (C) an organic solvent as necessary include, for example, a ball mill, a bead mill, a sand grinder, a three-roll mill, and a high-speed impact. Mill etc. are mentioned. Among these, a bead mill is preferable for improving the dispersion efficiency and fine dispersion. Examples of the bead mill include a coball mill, a basket mill, a pin mill, and a dyno mill. Examples of beads of the bead mill include titania beads, zirconia beads, and zircon beads.
  • the present invention it is preferable to disperse in multiple stages using a bead mill, and after dispersing with a bead mill using beads having an average bead diameter larger than 0.1 mm ⁇ , beads having an average bead diameter of 0.1 mm ⁇ or less are used. It is preferable to have a step of dispersing with the used bead mill. By carrying out a dispersion treatment with a bead mill using beads having an average bead diameter larger than 0.1 mm ⁇ , a bisbenzofuranone pigment having a large crystallite size can be efficiently crushed.
  • the bead mill preferably includes a centrifugal separator that can separate the fine beads and the dispersion.
  • the average bead diameter refers to the number average value of the equivalent circle diameter of the beads.
  • the bead was magnified 45 times with a stereomicroscope, and for 100 randomly selected beads, the longest diameter and the shortest diameter were measured, and the average value was taken as the equivalent circle diameter. By calculating the value, the bead diameter can be obtained.
  • a colored film can be obtained by curing the colored resin composition of the present invention.
  • the average light transmittance in the near infrared region with a wavelength of 920 nm to 960 nm per OD value 4 of the colored film is preferably 90% or more, and more preferably 93% or more.
  • the average light transmittance can be measured as described above.
  • the average light transmittance per OD value 4 of the colored film means the average light transmittance of the colored film at a film thickness at which the OD value of the colored film is 4. Since the OD value is proportional to the thickness of the colored film, the thickness at which the OD value of the colored film becomes 4 can be calculated from the measured OD value and thickness of the colored film.
  • the haze value in the visible region per OD value 2 is preferably 6% or less, and more preferably 3% or less. Haze can be measured as described above.
  • the haze value per OD value 2 of the colored film means the haze value of the colored film at a film thickness at which the OD value of the colored film is 2. Since the haze is also proportional to the film thickness, the haze at an OD value of 2 can be calculated in the same manner as described above.
  • the refractive index of the colored film with respect to light having a wavelength of 940 nm is preferably 1.40 or more and 1.60 or less, and more preferably 1.50 or more and 1.60 or less.
  • the colored film is obtained by applying a colored resin composition on a substrate and curing it, but it is possible to improve the infrared transmittance of the colored film by reducing the difference in refractive index between the colored film and the substrate. Become.
  • the refractive index of the colored film can be obtained by analyzing the reflected light of the colored film using ellipsometry or spectral reflectance method.
  • a photosensitive colored resin composition is applied onto a substrate to obtain a coating film.
  • the substrate include a transparent substrate made of soda glass, non-alkali glass, quartz glass or the like; a substrate made of silicon wafer, ceramics, gallium arsenide, or the like.
  • the coating method include spin coating using a spinner, spray coating, ink jet coating, die coating, and roll coating.
  • the film thickness of the coating film can be appropriately selected depending on the coating method and the like. Generally, the film thickness after drying is 1 to 150 ⁇ m.
  • the obtained coating film is dried to obtain a dry film.
  • the drying method include heat drying, air drying, reduced pressure drying, infrared irradiation, and the like.
  • Examples of the heat drying apparatus include an oven and a hot plate.
  • the drying temperature is preferably 50 to 150 ° C., and the drying time is preferably 1 minute to several hours.
  • the obtained dried film is irradiated with actinic radiation through a mask having a desired pattern to obtain an exposed film.
  • actinic radiation to be irradiated include ultraviolet rays, visible rays, electron beams, and X-rays.
  • the colored resin composition of the present invention is preferably irradiated with i-line (365 nm), h-line (405 nm) and g-line (436 nm) of a mercury lamp.
  • the resulting exposed film is developed using an alkaline developer or the like to remove unexposed portions and obtain a pattern.
  • alkaline compound used in the alkaline developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; ethylamine, n-propylamine, etc.
  • Secondary amines such as diethylamine and di-n-propylamine; tertiary amines such as triethylamine and methyldiethylamine; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), choline Quaternary ammonium salts such as; ethanolamines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol, diethylaminoethanol; pyrrole, piperidine, 1,8-diazabicyclo 5,4,0] -7-undecene, 1,5-diazabicyclo [4,3,0] -5-nonane, organic alkalis cyclic amines such as morpholine.
  • ethanolamines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol, diethylaminoethanol
  • pyrrole piperidine, 1,8-diazabicyclo 5,4,0] -7-und
  • the concentration of the alkaline compound in the alkaline developer is generally from 0.01 to 50% by weight, preferably from 0.02 to 1% by weight.
  • a surfactant such as a nonionic surfactant may be added to the developer in an amount of 0.1 to 5% by weight.
  • a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone may be added to the developer.
  • Examples of the developing method include an immersion method, a spray method, and a paddle method. Further, the obtained pattern may be rinsed with pure water or the like.
  • a patterned colored film can be obtained by subjecting the obtained pattern to a heat treatment (post-bake).
  • the heat treatment may be performed in air, in a nitrogen atmosphere, or in a vacuum state.
  • the heating temperature is preferably 150 to 300 ° C., and the heating time is preferably 0.25 to 5 hours.
  • the heating temperature may be changed continuously or may be changed stepwise.
  • a colored film for hiding near-infrared sensors and near-infrared cameras from the outside. It is preferably used for a transmission light shielding film or simply called a light shielding film. In these applications, it is often used as a decorative substrate in which a light shielding film is formed on a transparent substrate.
  • light-shielding films on decorative boards in display terminals such as smartphones and tablet PCs
  • near-infrared sensors for driver monitoring and gesture sensors mounted on in-vehicle displays and in-vehicle instruments and decorations for concealing near-infrared cameras
  • a light shielding film of a decorative substrate for a panel a light shielding film such as a black matrix of a color filter provided in a liquid crystal display device, a colored partition inside an organic EL display, and the like.
  • an X-ray diffraction spectrum was measured by a wide-angle X-ray diffraction method using an X-ray diffractometer DS ADVANCE (trade name) manufactured by Bruker AXS, using CuK ⁇ rays as an X-ray source.
  • the output is 40 kV / 40 mA
  • the slit system is Div. Slit: 0.3 °
  • measurement step (2 ⁇ ) was 0.0171 °
  • measurement time was 0.5 sec / step.
  • the crystallite size to be obtained was determined.
  • the benzofuran pigment Bk-1 used in the following production example and Bk-2 obtained in production example 1 were measured at 100 ° C. using a high-precision fully automatic gas adsorption device “BELSORP” 36 manufactured by Nippon Bell Co., Ltd. After vacuum degassing, the adsorption isotherm of the N 2 gas at the liquid nitrogen temperature (77 K) was measured, and this isotherm was analyzed by the BET method to determine the specific surface area.
  • the illuminance at a wavelength of 420 nm is 1.2 W / W using a Q-Lab Q-SUN xenon tester Xe-3, using the Xe lamp X-1800 as a light source.
  • the discoloration of the colored film after irradiation with ultraviolet rays for 300 hours at an intensity of m 2 was visually observed and evaluated for the presence or absence of fading.
  • the acid value of the acrylic resin is the amount (mg) of potassium hydroxide required to neutralize 1 g of the acrylic resin (unit: mgKOH / g), and the weight average molecular weight is gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the specific surface area of the obtained Bk-2 was measured by the above method and found to be 66 m 2 / g.
  • Table 1 shows the evaluation results of Bk-1 and Bk-2, which is a refined version of Bk-1. An X-ray diffraction profile is shown in FIG.
  • Table 2 shows the compositions and dispersion conditions of Production Examples 2 to 10.
  • Example 1 27.08 g of colorant dispersion (DP-1), 29.83 g of PGMEA 35 wt% solution of acrylic polymer (P-1), dipentaerythritol hexaacrylate as a polyfunctional monomer (manufactured by Nippon Kayaku Co., Ltd.) 8.74 g, 0.4 g of KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an adhesion improver, and 0.3 g of a 10 wt% PGMEA solution of a silicone-based surfactant “BYK” 333 (manufactured by BYK Chemie) as a surfactant A solution dissolved in 33.65 g of PGMEA was added to obtain a colored resin composition PC-1 having a total solid concentration of 25% by weight and a colorant content of 13% by weight in the total solids.
  • DP-1 colorant dispersion
  • PGMEA 35 wt% solution of acrylic poly
  • the obtained colored resin composition PC-1 was applied on an alkali-free glass substrate (AN100) using a spinner (1H-DS) manufactured by Mikasa Co., Ltd., and the coating film was applied on a hot plate at 100 ° C. Drying by heating for a minute gave a dry film. This dried film was post-baked in a hot air oven at 230 ° C. for 30 minutes to obtain a colored film C-1.
  • Two types of substrates having different film thicknesses were prepared so that the OD values of the colored film C-1 were 2 and 4, respectively.
  • the haze value was evaluated using a substrate having an OD value of 2 for the colored film C-1. Table 3 shows the results of evaluating this colored film C-1 by the method described above.
  • Example 2 A colored resin composition PC-2 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-2) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-2. The results are shown in Table 3.
  • Example 3 A colored resin composition PC-3 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-3) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-3. The results are shown in Table 3. Further, an X-ray diffraction profile of the colored film is shown in FIG.
  • Example 4 A colored resin composition PC-4 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-4) was used instead of the colorant dispersion (DP-1). Using the resulting colored resin composition PC-4, the same evaluation as in Example 1 was performed. The results are shown in Table 3.
  • Example 5 36.56 g of 35% by weight PGMEA solution of acrylic polymer (P-1) in 10.42 g of coloring material dispersion (DP-3), dipentaerythritol hexaacrylate as a polyfunctional monomer (manufactured by Nippon Kayaku Co., Ltd.) 9.72 g, 0.4 g of KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an adhesion improver, and 0.3 g of a 10 wt% PGMEA solution of a silicone-based surfactant “BYK” 333 (manufactured by BYK Chemie) as a surfactant A solution dissolved in 42.61 g of PGMEA was added to obtain a colored resin composition PC-5 having a total solid concentration of 25% by weight and a colorant content of 5% by weight in the total solids. The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-5. The results are shown in
  • Example 6 19.75 g of PGMEA 35 wt% solution of acrylic polymer (P-1) in 52.08 g of the colorant dispersion (DP-3), dipentaerythritol hexaacrylate as a polyfunctional monomer (manufactured by Nippon Kayaku Co., Ltd.) 7.27 g, 0.4 g of KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an adhesion improver, and 0.3 g of a 10 wt% PGMEA solution of a silicone-based surfactant “BYK” 333 (manufactured by BYK Chemie) as a surfactant A solution dissolved in 20.20 g of PGMEA was added to obtain a colored resin composition PC-6 having a total solid concentration of 25% by weight and a colorant content of 25% by weight in the total solids. The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-6. The results are shown
  • Example 7 In a mixed solution of 21.67 g of the colorant dispersion (DP-3) and 5.42 g of the blue colorant dispersion (DP-7), 29.83 g of a 35 wt% PGMEA solution of acrylic polymer (P-1), 8.74 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) as the polyfunctional monomer, 0.4 g of KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) as the adhesion improver, and silicone surfactant as the surfactant
  • Example 8 In the same manner as in Example 7, except that a mixed solution of 16.25 g of the coloring material dispersion (DP-3) and 10.83 g of the blue coloring material dispersion (DP-7) was used as the coloring dispersion. A colored resin composition PC-8 having a partial concentration of 25% by weight and a colorant content of 13% by weight in the total solid content was obtained. The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-8. The results are shown in Table 3.
  • Example 9 Except for adding 0.41 g of “Adeka Arcles” (registered trademark) NCI-831 (manufactured by ADEKA Co., Ltd.) as a photopolymerization initiator, the total solid content concentration was 25 wt% and the total solid content was the same as in Example 3.
  • a colored resin composition PC-9 having a colorant content of 13% by weight was obtained.
  • the obtained colored resin composition PC-9 was applied on an alkali-free glass substrate (AN100) using a spinner (1H-DS) manufactured by Mikasa Co., Ltd., and the coating film was applied on a hot plate at 100 ° C. Heat-dry for minutes.
  • the dried film was exposed to UV light at an exposure amount of 100 mJ / cm 2 using a mask aligner (PEM-6M) manufactured by Union Optics, and post-baked at 230 ° C. for 30 minutes in a hot air oven. As a result, a colored film C-9 was obtained. This colored film C-9 was evaluated in the same manner as in Example 1. The results are shown in Table 3.
  • Example 1 A colored resin composition PC-10 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-5) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-10. The results are shown in Table 3. Further, an X-ray diffraction profile of the colored film is shown in FIG.
  • Example 2 A colored resin composition PC-11 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-6) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-11. The results are shown in Table 3.
  • Example 3 A colored resin composition PC-12 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-8) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-12. The results are shown in Table 3.
  • Example 4 A colored resin composition PC-13 was obtained in the same manner as in Example 1 except that the colorant dispersion (DP-9) was used instead of the colorant dispersion (DP-1). The same evaluation as in Example 1 was performed using the obtained colored resin composition PC-13. The results are shown in Table 3.
  • the colored resin compositions of the examples have a low maximum transmittance in the visible region, a high average transmittance in the near infrared region, and a low haze.
  • the colored resin compositions of Comparative Examples 1 and 2 had low average transmittance in the near infrared region, high haze, and the obtained near infrared camera images were unclear.
  • the near-infrared camera image was not obtained, and in the comparative example 4, the fading was seen after the light resistance test.
  • the colored resin composition of the present invention can be suitably used as a black decorative ink for forming a near-infrared transparent light-shielding film suitable for concealing near-infrared cameras and sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(A)樹脂、(B)着色材および(C)有機溶剤を含有する着色樹脂組成物であって、前記(B)着色材として少なくともビスベンゾフラノン系顔料を含有し、前記着色樹脂組成物の硬化物からなる着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが10nm以上25nm以下である着色樹脂組成物。耐光性に優れ、高い可視光遮光性と近赤外線透過性を有し、透過散乱光が少ない着色樹脂組成物を提供する。

Description

着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板
 本発明は、着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板に関する。
 近年、スマートフォン、タブレットPCなどの各種情報端末において、セキュリティー強化のため、様々な生体認証が採用されている。従来の指紋認証に加え、顔認証や虹彩認証などの検討が進んでおり、顔認証や虹彩認証には、近赤外線センサーや近赤外線カメラが使用されている。また、自動車においても、車内ディスプレイのモーションセンサーなどの近赤外線センサーや、運転者監視カメラなどの近赤外線カメラが使用されている。
 上記の近赤外線センサーや近赤外線カメラは、一般的に各種ディスプレイや筐体の周辺部に配置される。従来の近赤外線センサーや近赤外線カメラは、透明または半透明なカバーを用いていたため、外部から近赤外線センサーや近赤外線カメラが視認され、意匠性を損なう課題があった。そこで、近赤外線センサーや近赤外線カメラを外部から隠蔽するためのフィルタや塗料の検討がなされている。これらのフィルタや塗料には、近赤外線の高い透過性と可視光の低い透過性が要求される。着色材として従来一般的に用いられている染料を用いた場合、赤外線の透過性は十分に高いものの、耐光性が不十分であり、経時により光学特性が劣化する課題があった。そこで、例えば、支持体上に、少なくとも、赤外領域の光を透過し、かつ、可視領域の光を遮光できる平均分散粒子径が1~100nmの金属微粒子または半金属微粒子と焼成除去可能な有機物とガラス粉体とを少なくとも含む機能層が設けられた積層体(例えば、特許文献1参照)、緑色色素、および黒色色素を含有し、波長400~730nmの光の平均透過率が2%以下であり、波長800~1000nmの間に、平均透過率が80%以上となる連続する50nmの波長域を有する構造体を具備することを特徴とする光学フィルタ(例えば、特許文献2参照)などが検討されている。
 一方、高い近赤外線透過性と高い可視光遮光性を両立する顔料としては、ビスベンゾフラノン系顔料(例えば、特許文献3参照)が知られており、ビス-オキソジヒドロインドリレン-ベンゾジフラノン着色剤、またはその異性体もしくは互変異性体を含有する近赤外線不活性組成物(例えば、特許文献4参照)が検討されている。
特開2016-191729号公報 国際公開第2016/098810号 特表2010-534726号公報 特開2017-116955号公報
 しかしながら、金属微粒子や有機着色顔料、有機黒色顔料を用いた特許文献1~2に記載の技術は、耐光性は良好なものの、可視光遮光性と近赤外線透過性の両立が困難であり、特に、粒子に起因する光散乱により近赤外線カメラの画像解像性が大幅に低下する課題があった。
 そこで、本発明は、耐光性に優れ、高い可視光遮光性と近赤外線透過性を有し、透過散乱光が少ない着色樹脂組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、着色樹脂組成物の着色材としてビスベンゾフラノン系顔料を用い、着色樹脂組成物中におけるビスベンゾフラノン系顔料の結晶子サイズを特定の範囲とすることにより、上記課題を解決することができることを見出し、本発明を完成した。
 本発明は、(A)樹脂、(B)着色材および(C)有機溶剤を含有する着色樹脂組成物であって、前記(B)着色材として少なくともビスベンゾフラノン系顔料を含有し、前記着色樹脂組成物の硬化物からなる着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが10nm以上25nm以下である着色樹脂組成物である。ここで、結晶子サイズは、CuKα線をX線源として用いたX線回折スペクトルにおける回折角2θ=7.8°以上8.0°以下に現れる主ピークの半値幅より求めた値である。
 本発明の着色樹脂組成物は、近赤外線領域(波長800~1000nm)における光透過性、可視領域における遮光性、および、耐光性に優れ、かつ、透過散乱光を低減することができる。本発明の着色樹脂組成物により、優れた近赤外線カメラ画像を得ることができる。
ビスベンゾフラノン系顔料Bk-1とビスベンゾフラノン系顔料Bk-2のX線回折プロファイルである。 実施例3および比較例1において得られた着色膜のX線回折プロファイルである。
 本発明の着色樹脂組成物は、(A)樹脂、(B)着色材および(C)有機溶剤を含有する。(A)樹脂は、組成物におけるバインダーとしての作用を有し、(B)着色材は、可視光を遮蔽する作用を有し、(C)有機溶剤は、(A)樹脂および/または(B)着色材を均一に溶解または分散する作用を有する。本発明においては、前記(B)着色材として少なくともビスベンゾフラノン系顔料を含有し、前記着色樹脂組成物の硬化物からなる着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが10nm以上25nm以下であることを特徴とする。ここで、結晶子サイズは、CuKα線をX線源として用いたX線回折スペクトルにおける回折角2θ=7.8°以上8.0°以下に現れる主ピークの半値幅より求めた値である。
 (B)着色材として、耐光性に優れる顔料の中から、高い近赤外線透過性と高い可視光遮光性を両立するビスベンゾフラノン系顔料を選択し、さらに、ビスベンゾフラノン系顔料を特定の結晶子サイズとなるように着色樹脂組成物および着色膜中に分散させることにより、可視光を遮光する一方で、近赤外線透過性を大幅に向上させることができる。また、透過光の散乱を抑制することができることから、近赤外散乱光を抑制し、着色膜を介して鮮明な近赤外線カメラ画像を得ることができる。
 (A)樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シロキサン樹脂、ポリイミド樹脂などが挙げられる。これらを2種以上含有してもよい。これらの中でも、着色樹脂組成物の貯蔵安定性や着色膜の耐熱性の観点から、アクリル樹脂、ポリイミド樹脂およびシロキサン樹脂から選ばれた樹脂が好ましい。
 本発明の着色樹脂組成物は感光性を有しても有していなくてもよいが、(A)樹脂としてアルカリ可溶性樹脂を用い、後述する(D)感光剤をさらに含有することにより、着色樹脂組成物に感光性を付与することができる。ここで、本発明におけるアルカリ可溶性樹脂とは、アルカリ可溶性基として水酸基および/またはカルボキシル基を有し、酸価が10mgKOH/g以上で、重量平均分子量(Mw)が500以上150,000以下である樹脂を指す。ここで、重量平均分子量(Mw)とは、テトラヒドロフランをキャリヤーとするゲルパーミエーションクロマトグラフィーにより分析し、標準ポリスチレンによる検量線を用いて換算した値を指す。また、アルカリ可溶性樹脂の酸価とは、アルカリ可溶性樹脂1gを中和するために要する水酸化カリウムのmg数を指す(単位:mgKOH/g)。
 アルカリ可溶性樹脂としては、例えば、カルド樹脂、アクリル樹脂、ノボラック樹脂、ポリイミド樹脂、ポリイミド前駆体、ポリベンゾオキサゾール樹脂、ポリベンゾオキサゾール前駆体、ポリアミド樹脂、シロキサン樹脂などが挙げられる。着色樹脂組成物がネガ型の感光性を有する場合、パターン加工性と塗膜信頼性の観点から、アクリル樹脂またはポリイミド樹脂が好ましく、分散安定性の観点から、アクリル樹脂がより好ましい。一方、着色樹脂組成物がポジ型の感光性を有する場合、パターン加工性の観点から、ポリイミド樹脂、ポリイミド前駆体、ポリベンゾオキサゾール樹脂、ポリベンゾオキサゾール前駆体およびシロキサン樹脂から選ばれた樹脂が好ましく、パターン加工性の観点から、ポリイミド樹脂またはポリイミド前駆体がより好ましい。
 本発明の着色樹脂組成物は、(B)着色材として、少なくともビスベンゾフラノン系顔料を含有する。ビスベンゾフラノン系顔料を着色材として用いることにより、耐光性を向上させ、可視領域における遮光性と近赤外領域における高い光透過性を両立することができる。ビスベンゾフラノン系顔料は下記一般式(I)~(III)のいずれかで表される構造を有する。下記一般式(I)~(III)で表される構造は、それぞれシス-トランス異性体の関係にあり、これらの構造を2以上有してもよい。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)~(III)中、RおよびRは、それぞれ独立して、水素原子または炭素原子数1~10のアルキル基を表す。RおよびRは、それぞれ独立して、R10、OR11、SR11、COR11、CONR1112、NR11COR12、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、CN、ハロゲン原子または水酸基を表す。ただし、R10は炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基、炭素原子数7~30のアリールアルキル基または炭素原子数2~20の複素環基を表す。R11およびR12は、それぞれ独立して、水素原子、炭素原子数1~20のアルキル基、炭素原子数6~30のアリール基、炭素原子数7~30のアリールアルキル基または炭素原子数2~20の複素環基を表す。aおよびbは、それぞれ独立して、0~4の整数を表す。
 上記一般式(I)~(III)のいずれかで表される構造を有するビスベンゾフラノン系顔料自体は公知であり、例えば、特表2012-515233号公報に記載の方法により得ることができる。また、例えば、“Irgaphor”(登録商標)Black S0100CF(商品名、BASF(株)製)として市販されている。
 ビスベンゾフラノン系顔料とこれを含有する着色樹脂組成物および着色膜は、CuKα線をX線源として用いたX線回折スペクトルにおいて、回折角2θ=7.8°以上8.0°以下に最も強度の強い主ピークが観測される。そして、これらのX線回折ピークの半値幅から、下記式(1)に示すシェラーの式により、ビスベンゾフラノン系顔料の結晶子サイズを算出することができる。
Figure JPOXMLDOC01-appb-M000002
 上記式(1)におけるKは定数0.9であり、λは0.15418[nm]である。βは下記式(2)で表される。
Figure JPOXMLDOC01-appb-M000003
 上記式(2)における、βは回折ピークの半値幅、βは半値幅の補正値(0.13[°])である。ただし、β、βeおよびβはラジアンで計算される。
 X線回折スペクトルは、X線源としてCuKα線を用い、広角X線回折法により測定する。X線回折装置としては、例えば(株)Bruker AXS社製 DS ADVANCEを用いることができる。測定条件は、出力は40kV/40mA、スリット系はDiv.Slit:0.3°、測定ステップ(2θ)は0.0171°、計測時間は0.5秒/ステップとする。
 本発明の着色樹脂組成物の硬化物からなる着色膜は、CuKα線をX線源として用いたX線回折スペクトルにおける回折角2θ=7.8°以上8.0°以下に現れる主ピークの半値幅より求めたビスベンゾフラノン系顔料の結晶子サイズが10nm以上25nm以下であることが重要である。かかる結晶子サイズは、着色膜中におけるビスベンゾフラノン系顔料の分散状態の指標であり、結晶子サイズが小さいほど、ビスベンゾフラノン系顔料が着色膜中において微分散していることを意味する。ここで、本発明における着色膜とは、本発明の着色樹脂組成物の硬化物からなる膜である。着色樹脂組成物において(A)樹脂に含有されていた架橋性基は、熱および/または光により架橋され、着色膜においては実質的に残存していないことが好ましい。
 かかる着色膜は、基板上に、着色樹脂組成物の塗膜を形成し、ホットプレート等により塗膜を乾燥した後、熱風オーブン等により加熱処理することにより得ることができる。例えば、着色樹脂組成物が(A)樹脂としてアクリル樹脂を含有する場合、加熱処理温度は170℃以上が好ましく、加熱処理時間は30分間以上が好ましい。
 着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが25nmよりも大きい場合には、近赤外線透過性が低下し、透過散乱光が増加するため、着色膜を介して得られる赤外線カメラ画像の鮮明性が低下する。ビスベンゾフラノン系顔料の結晶子サイズは、20nm以下が好ましい。一方、着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが10nm未満である場合には、ビスベンゾフラノン系顔料の分散安定化が困難となり、顔料再凝集による透過散乱光の増加や、可視光遮光性の低下が生じる。着色膜におけるビスベンゾフラノン系顔料の結晶子サイズを上記の範囲とする手段としては、樹脂中にビスベンゾフラノン系顔料を再凝集させることなく微細な状態で安定かつ均一に分散させることが好ましい。より具体的には、結晶子サイズの小さいビスベンゾフラノン系顔料を用いる方法や、後述するビーズミルを用いる方法により着色樹脂組成物を製造する方法などが挙げられる。
 (B)着色材として、ビスベンゾフラノン系顔料とともに、本発明の効果を阻害しない範囲で、他の着色材を含有してもよい。ビスベンゾフラノン系顔料以外の着色材としては、一般的に用いられる、有機顔料、無機顔料、染料等が挙げられる。着色膜の耐熱性、信頼性および耐光性を向上させるためには、有機顔料または無機顔料が好ましい。
 有機顔料としては、例えば、ジケトピロロピロール系顔料;アゾ顔料、ジスアゾ顔料、ポリアゾ顔料等のアゾ系顔料;銅フタロシアニン、ハロゲン化銅フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料;アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系顔料;キナクリドン系顔料;ジオキサジン系顔料;ペリノン系顔料;ペリレン系顔料;チオインジゴ系顔料;イソインドリン系顔料;イソインドリノン系顔料;キノフタロン系顔料;スレン系顔料;金属錯体系顔料などが挙げられる。
 無機顔料としては、例えば、酸化チタン、亜鉛華、硫化亜鉛、鉛白、炭酸カルシウム、沈降性硫酸バリウム、ホワイトカーボン、アルミナホワイト、カオリンクレー、タルク、ベントナイト、黒色酸化鉄、カドミウムレッド、べんがら、モリブデンレッド、モリブデートオレンジ、クロムバーミリオン、黄鉛、カドミウムイエロー、黄色酸化鉄、チタンイエロー、酸化クロム、ビリジアン、チタンコバルトグリーン、コバルトグリーン、コバルトクロムグリーン、ビクトリアグリーン、群青、紺青、コバルトブルー、セルリアンブルー、コバルトシリカブルー、コバルト亜鉛シリカブルー、マンガンバイオレット、コバルトバイオレットなどが挙げられる。
 染料としては、例えば、アゾ染料、アントラキノン染料、縮合多環芳香族カルボニル染料、インジゴイド染料、カルボニウム染料、フタロシアニン染料、メチン染料、ポリメチン染料などが挙げられる。
 黒色の着色材としては、例えば、黒色有機顔料、混色有機顔料、無機顔料等が挙げられる。黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。混色有機顔料としては、赤、青、緑、紫、黄色、マゼンダ、シアンなどの色を有する2種以上の顔料を混色して疑似黒色化したものが挙げられる。黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀等の金属の微粒子;上記金属の酸化物、複合酸化物、硫化物、窒化物、酸窒化物などが挙げられる。
 白色の着色材としては、例えば、二酸化チタン、炭酸バリウム、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、アルミナホワイト、二酸化珪素などが挙げられる。
 これらの着色材を2種以上含有してもよい。これらの中でも、着色膜の可視光遮光性をより向上させる観点から、青着色材が好ましく、堅牢性の観点から、銅フタロシアニンがより好ましい。
 ビスベンゾフラノン系顔料以外の着色材を含有する場合、その含有量は、ビスベンゾフラノン系顔料の含有量100重量部に対して、5重量部以上が好ましく、20重量部以上がより好ましい。一方、ビスベンゾフラノン系顔料以外の着色材の含有量は、近赤外線透過性をより向上させ、透過光散乱をより抑制する観点から、ビスベンゾフラノン系顔料の含有量100重量部に対して、75重量部以下が好ましく、30重量部以下がより好ましい。
 本発明の着色樹脂組成物における(B)着色材の含有量は、固形分中、1~60重量%が好ましい。ここで、固形分とは、着色樹脂組成物に含まれる成分のうち、室温において固形である成分を言う。固形分に該当する成分としては、(A)樹脂、(B)着色材、後述する(D)感光剤、(E)ラジカル重合性化合物、その他添加剤などが挙げられる。(B)着色材の含有量を1重量%以上とすることにより、着色膜の膜厚が薄い場合でも可視光遮光性を向上させることができる。(B)着色材の含有量は、10重量%以上がより好ましい。一方、(B)着色材の含有量を60重量%以下とすることにより、(B)着色材の分散安定性を向上させることができる。また、着色膜と基板との界面における入射光の反射を抑制し、近赤外線透過性をより向上させることができる。(B)着色材の含有量は、40重量%以下が好ましく、17重量%以下がより好ましい。
 (C)有機溶剤としては、例えば、エーテル類、アセテート類、エステル類、ケトン類、芳香族炭化水素類、アミド類、アルコール類などが挙げられる。
 エーテル類としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等が挙げられる。
 アセテート類としては、例えば、ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート(以下、「PGMEA」)、ジプロピレングリコールメチルエーテルアセテート、3―メトキシ-3-メチル-1-ブチルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート等が挙げられる。
 エステル類としては、例えば、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル等の乳酸アルキルエステル類;2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、蟻酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等が挙げられる。
 ケトン類としては、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。
 芳香族炭化水素類としては、例えば、トルエン、キシレンなどが挙げられる。
 アミド類としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 アルコール類としては、例えば、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコール等などが挙げられる。
 これらの溶媒を2種以上含有してもよい。
 これらの中でも、着色材をより分散安定化させるため、アセテート類が好ましい。(C)有機溶剤中におけるアセテート類の含有量は、50~100重量%が好ましく、70~100重量%がより好ましい。
 基板上に、着色樹脂組成物の塗膜を形成する方法としては、着色膜を形成する基板の大型化に伴い、ダイコーティング装置を用いた塗布が主流になりつつある。一方、カバーガラスの加飾や、近赤外線センサーおよび近赤外線カメラを隠蔽するための加飾膜として着色膜を形成する際には、小片ガラスに着色膜を形成する必要があり、インクジェット装置を用いた塗布が好ましい。これら、ダイコーティング装置およびインクジェット装置を用いた塗布における好適な揮発性や乾燥性を実現する観点から、着色樹脂組成物は、(C)有機溶剤を2種以上含有することが好ましい。着色樹脂組成物の塗布膜の膜厚を均一にし、表面の平滑性および粘着性を向上させる観点と、ダイコーティング装置およびインクジェット装置のノズルにおける乾燥異物を抑制する観点から、沸点が150~200℃の有機溶剤を、(C)有機溶剤中に30~75重量%含有することが好ましい。
 本発明の着色樹脂組成物における、(C)有機溶剤の含有量は、塗布工程における塗布膜の膜厚均一性の観点から、50重量%以上が好ましく、70重量%以上がより好ましい。一方、(C)有機溶剤の含有量は、顔料沈降を抑制する観点から、95重量%以下が好ましく、90重量%以下がより好ましい。
 本発明の着色樹脂組成物が、(A)樹脂としてアルカリ可溶性樹脂を含有し、さらに(D)感光剤を含有することにより、着色樹脂組成物に感光性を付与することができる。感光性としては、露光マスクを介したパターン露光により露光部アルカリ溶解性を低下させて、アルカリ現像液により未露光部を除去してパターン形成する、いわゆるネガ型の感光性を有してもよいし、露光マスクを介したパターン露光により露光部のアルカリ溶解性を未露光部のアルカリ溶解性よりも高くし、アルカリ現像液により露光部を除去してパターン形成する、いわゆるポジ型の感光性を有してもよい。本発明においては、遮光性が高い場合においても解像度の高いパターンを形成しやすいことから、ネガ型の感光性を有することが好ましい。
 (D)感光剤として光重合開始剤を含有し、さらに(E)ラジカル重合性化合物を含有することにより、露光部がラジカル重合反応により光硬化する、ネガ型の感光性を着色樹脂組成物に付与することができる。(E)ラジカル重合性化合物としては、2つ以上のラジカル重合性基を有する化合物が好ましい。
 光重合開始剤とは、露光によって結合開裂および/または反応することにより、ラジカルを発生する化合物をいう。光重合開始剤を含有することにより、露光により、(E)ラジカル重合性化合物を光硬化させることができる。
 光重合開始剤としては、例えば、カルバゾール系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、オキシムエステル系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤などが挙げられる。これらを2種以上含有してもよい。これらの中でも、後述する露光工程において、i線(365nm)、h線(405nm)、g線(436nm)からなる混合線に対する感度が高いことから、カルバゾール系光重合開始剤またはオキシムエステル系光重合開始剤が好ましい。
 光重合開始剤の含有量は、露光に対する感度向上の観点から、アルカリ可溶性樹脂と(E)ラジカル重合性化合物の合計含有量100重量部に対して、1重量部以上が好ましい。一方、光重合開始剤の含有量は、露光に対する深部硬化性の観点から、アルカリ可溶性樹脂と(E)ラジカル重合性化合物の合計含有量100重量部に対して、60重量部以下が好ましく、40重量部以下がより好ましい。
 (E)ラジカル重合性化合物が有するラジカル重合性基としては、露光時の感度向上および着色膜の硬度向上の観点から、(メタ)アクリル基が好ましい。ここでいう(メタ)アクリル基とは、メタクリル基またはアクリル基を指す。
 (E)ラジカル重合性化合物の含有量は、露光に対する感度向上の観点から、前述のアルカリ可溶性樹脂と(E)ラジカル重合性化合物の合計含有量100重量部中の、5重量部以上が好ましく、15重量部以上がより好ましい。一方、(E)ラジカル重合性化合物の含有量は、キュア工程におけるリフロー性の観点から、アルカリ可溶性樹脂と(E)ラジカル重合性化合物の合計含有量100重量部中の、80重量部以下が好ましく、60重量部以下が好ましい。
 着色樹脂組成物に(D)感光剤として光酸発生剤を含有することにより、露光部のアルカリ溶解性を相対的に高めて、ポジ型の感光性を付与することができる。
 光酸発生剤としては、キノンジアジド化合物が好ましい。キノンジアジド化合物としては、フェノール性水酸基を有する化合物とキノンジアジドスルホニル酸クロリドとのエステル化物がより好ましい。アルカリ溶解性を向上させるため、フェノール性水酸基の一部をエステル化せず意図的に残存させてもよい。
 キノンジアジド化合物の含有量は、パターン加工性の観点から、前述のアルカリ可溶性樹脂100重量部に対して1~50重量部が好ましい。
 本発明の着色樹脂組成物は、さらに高分子分散剤を含有することが好ましい。高分子分散剤とは、顔料表面への化学的結合または吸着作用を有する顔料親和性基と、親溶媒性を有する高分子鎖または基とを併せ持つものをいう。高分子分散剤は、後述の湿式メディア分散処理において、顔料の分散媒への濡れ性を向上させて顔料の解凝集を促進し、立体障害および/または静電反発効果により粒度および粘度を安定化させ、さらに、着色樹脂組成物の貯蔵時あるいは塗布時の色分離の発生を抑制する効果を奏する。
 高分子分散剤としては、例えば、ポリエステル系高分子分散剤、アクリル系高分子分散剤、ポリウレタン系高分子分散剤、ポリアリルアミン系高分子分散剤、カルボジイミド系分散剤、ポリアミド系高分子分散剤などが挙げられる。これらの中でも、アクリル系高分子分散剤またはポリアミド系高分子分散剤がより好ましい。ポリアミド系高分子分散剤としては、ポリエステル鎖からなる側鎖を複数有する櫛型構造のものが好ましい。より具体的には、ポリアルキレンイミンなどの多数の窒素原子を有する構造を主鎖に有し、その窒素原子を介してアミド結合したポリエステル鎖の側鎖を複数有する化合物が好ましい。このような櫛型構造のポリアミド系分散剤としては、例えば、“DISPERBYK”(登録商標)2200(ビックケミー社製)、“SOLSPERSE”(登録商標)11200、28000(いずれもルーブリゾール(株)製))などが挙げられる。
 高分子分散剤は、アミン価が1mgKOH/g以上であり酸価が1mgKOH/g未満である分散剤、酸価が1mgKOH/g以上でありアミン価が1mgKOH/g未満である分散剤、アミン価が1mgKOH/g以上であり酸価が1mgKOH/g以上である分散剤、アミン価が1mgKOH/g未満であり酸価が1mgKOH/g未満である分散剤に分類される。これらを2種以上含有してもよい。これらの中でも、アミン価が1mgKOH/g以上である分散剤が好ましい。
 アミン価が1mgKOH/g以上であり酸価が1mgKOH/g未満である高分子分散剤としては、例えば、“DISPERBYK”(登録商標)102,160,161,162,2163,164,2164,166,167,168,2000,2050,2150,2155,9075,9077、“BYK”(登録商標)-LP N6919,“DISPERBYK”(登録商標)-LP N21116,“DISPERBYK”(登録商標)-LP N21234(以上、いずれもビックケミー社製)、“EFKA”(登録商標)4015,4020,4046,4047,4050,4055,4060,4080,4300,4330,4340,4400,4401,4402,4403,4800(以上、いずれもBASF社製)、“アジスパー”(登録商標)PB711(味の素ファインテクノ(株)製)、“SOLSPERSE”(登録商標)13240,13940,20000,71000,76500(以上、いずれもルーブリゾール(株)製)などが挙げられる。
 アミン価が1mgKOH/g以上であり酸価が1mgKOH/g以上である高分子分散剤としては、例えば、“DISPERBYK”(登録商標)142,145,2001,2010,2020,2025,9076、Anti-Terra-205(以上、いずれもビックケミー社製)、“SOLSPERSE”(登録商標)24000(ルーブリゾール(株)社製)、“アジスパー”(登録商標)PB821,PB880,PB881(以上、いずれも味の素ファインテクノ(株)製)、“SOLSPERSE”(登録商標)9000,11200,13650,24000SC,24000GR,32000,32500,32550,326000,33000,34750,35100,35200,37500,39000、56000(ルーブリゾール(株)製)などが挙げられる。
 本発明の着色樹脂組成物中における高分子分散剤の含有量は、分散安定性を向上させる観点から、後述する(B)着色材100重量部に対して、10重量部以上が好ましく、20重量部以上がより好ましい。一方、高分子分散剤の含有量は、着色膜の耐熱性や密着性を向上させる観点から、(B)着色材100重量部に対して、100重量部以下が好ましく、60重量部以下がより好ましい。
 本発明の着色樹脂組成物は、熱架橋剤を含有してもよい。熱架橋剤を含有することにより、最終的に得られる塗膜強度を向上させることができる。熱架橋剤としては、アルコキシメチル基および/またはメチロール基を2つ以上有する化合物、エポキシ基を2つ以上有する化合物などが挙げられる。これらを2種以上含有してもよい。
 本発明の着色樹脂組成物は、レベリング剤を含有してもよい。レベリング剤を含有することにより、塗布性や着色膜の表面平滑性を向上させることができる。レベリング剤としては、例えば、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤;ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレート等の非イオン界面活性剤;ポリジメチルシロキサン等を主骨格とするシリコーン系界面活性剤;フッ素系界面活性剤などが挙げられる。これらを2種以上含有してもよい。界面活性剤の市販品としては、例えば、“BYK”-302、“BYK”-333、“BYK”-3550、“BYK”-392(以上、いずれもビックケミー社製)が挙げられる。
 本発明の着色樹脂組成物は、光学濃度(OD値)が4となるように着色膜を形成したときの、着色膜の波長920nmから960nmの近赤外領域における平均光透過率が90%以上となることが好ましく、93%以上となることがより好ましい。波長920nmから960nmにおける平均光透過率が90%以上であると、着色膜を介して得られる赤外線強度をより向上させ、近赤外線センサー感度や近赤外線カメラ画像照度をより向上させることができる。
 着色膜の光透過率は、透明基板上に、着色樹脂組成物の塗膜を形成し、ホットプレート等により塗膜を乾燥させた後、熱風オーブン等で加熱処理して着色膜を得て、紫外可視近赤外-分光光度計を用いて測定することにより求めることができる。
 着色樹脂組成物の塗膜の厚みは、得られる着色膜のOD値が4となるように調整する。塗膜や着色膜のOD値は、光学濃度計(361TVisual;X-Rite社製)を用いて、塗膜または着色膜の入射光および透過光の強度をそれぞれ測定し、下記式(3)により算出することができる。
OD値 = log10(I/I) ・・・ 式(3)
:入射光強度
I:透過光強度。
 塗膜の加熱処理の条件としては得られる着色膜において、着色樹脂組成物中の(A)樹脂に含有されていた架橋性基が、架橋されて、実質的に残存していないようにすることが好ましい。例えば、着色樹脂組成物が(A)樹脂としてアクリル樹脂を含有する場合、加熱処理温度は170℃以上が好ましく、加熱処理時間は30分間以上が好ましい。
 紫外可視分光光度計としては、UV-3150((株)島津製作所製)が好ましく用いられる。着色膜の光透過率は、用いられる透明基板の光透過率をリファレンスとして測定される。透明基板としては、透光性ガラス基板であるテンパックス(AGCテクノグラス(株)製)が好ましい。
 また、本発明の着色樹脂組成物は、光学濃度(OD値)が2となるように着色膜を形成したときの可視領域におけるヘイズ値が6%以下となることが好ましく、3%以下であることがより好ましい。ヘイズ値は近赤外線透過光の散乱強度の指標であり、ヘイズ値が6%以下であると、着色膜を介して得られる近赤外線透過光の散乱強度がより抑制され、近赤外線カメラ画像の解像性をより向上させることができる。
 着色膜のヘイズは、光透過率と同様に透明基板上に形成した着色膜について、ヘーズメーターを用いて測定することにより求めることができる。ヘーズメーターとしては、NDH7000(日本電色工業(株)製)が好ましい。
 本発明の着色樹脂組成物の製造方法としては、例えば、分散機を用いて(A)樹脂、(B)着色材、必要に応じて(C)有機溶剤を含有する樹脂溶液を分散させ、着色材濃度の高い着色材分散液を予め調製しておき、さらに(A)樹脂や、必要に応じて感光剤などの他の成分を添加して撹拌する方法が好ましい。必要に応じて濾過を行ってもよい。
 本発明においては、(B)着色材として、結晶子サイズが10nm以上90nm以下であるビスベンゾフラノン系顔料を用いることが好ましい。ここで、結晶子サイズは、CuKα線をX線源として用いたX線回折スペクトルにおける回折角2θ=7.8°以上8.0°以下に現れる主ピークの半値幅より求めた値である。着色樹脂組成物の製造において、原料段階のビスベンゾフラノン系顔料の結晶子サイズを10nm以上とすることにより、ビスベンゾフラノン系顔料を着色樹脂組成物や着色膜中により安定に分散させ、着色膜におけるビスベンゾフラノン系顔料の結晶子サイズを、容易に前述の所望の範囲にすることができる。一方、原料段階のビスベンゾフラノン系顔料の結晶子サイズを90nm以下とすることにより、一般的な分散手法によって、着色膜におけるビスベンゾフラノン系顔料の結晶子サイズを、容易に25nm以下にすることができる。
 ビスベンゾフラノン系顔料の結晶子サイズを前記範囲とする手段としては、例えば、ビスベンゾフラノン系顔料と無機塩と有機溶剤とを混練磨砕するソルトミリング処理や、ビスベンゾフラノン系顔料を硫酸などの強酸にいったん溶解した後、貧溶媒と混合するアシッドスラリー処理などが挙げられる。
 ソルトミリング処理としては、ビスベンゾフラノン系顔料、水溶性無機塩および無機塩を溶解しない有機溶剤を混練した後、混練物を水中に投入し、得られたスラリーを濾過および水洗して無機塩を除去する方法が好ましい。ビスベンゾフラノン系顔料、水溶性無機塩および有機溶剤とともに、高分子分散剤などの樹脂や顔料誘導体を添加してもよく、ソルトミリング処理による微粒化後のビスベンゾフラノン顔料の再凝集を抑制することができる。
 水溶性無機塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化バリウム、硫酸ナトリウム等が挙げられる。
 有機溶剤としては、水溶性であり、水溶性無機塩を溶解しないものであれば特に限定されないが、ソルトミリング時に温度が上昇し、有機溶剤が蒸発し易い状態になるため、安全性の点から、高沸点溶剤が好ましい。例えば、2-メトキシエタノール、2-ブトキシエタノール、2-(イソペンチルオキシ)エタノール、2-(ヘキシルオキシ)エタノール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルグリコール、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、液体ポリエチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、低分子量ポリプロピレングリコール等が挙げられる。これらを2種以上用いてもよい。
 混練装置としては、例えば、ニーダー、ミックスマーラー、プラネタリー型ミキサーである井上製作所(株)製の“トリミックス”(登録商標)、連続式一軸混練機である浅田鉄工(株)製の“ミラクルKCK”(登録商標)等が挙げられる。
 原料段階のビスベンゾフラノン系顔料の比表面積は、10m/g以上100m/g以下が好ましく、40m/g以上100m/g以下がより好ましい。ビスベンゾフラノン系顔料の比表面積を10m/g以上とすることにより、ビスベンゾフラノン系顔料を微細に分散させやすく、着色樹脂組成物中における分散安定性を向上させることができる。一方、ビスベンゾフラノン系顔料の比表面積を100m/g以下とすることにより、ビスベンゾフラノン系顔料の再凝集を抑制し、着色樹脂組成物中における分散安定性や、着色膜の可視光遮光性をより向上させることができる。ここで、ビスベンゾフラノン系顔料の比表面積は、ガス吸着式比表面積測定装置を用いて、窒素ガス吸着法によるBET多点法により求めることができる。比表面積を前記範囲とする手段としては、上述のソルトミリング処理やアシッドスラリー処理などが挙げられる。
 (A)樹脂、(B)着色材、および必要に応じて(C)有機溶剤を含有する樹脂溶液を分散させる分散機としては、例えば、ボールミル、ビーズミル、サンドグラインダー、3本ロールミル、高速度衝撃ミルなどが挙げられる。これらの中でも、分散効率化および微分散化のため、ビーズミルが好ましい。ビーズミルとしては、例えば、コボールミル、バスケットミル、ピンミル、ダイノーミルなどが挙げられる。ビーズミルのビーズとしては、例えば、チタニアビーズ、ジルコニアビーズ、ジルコンビーズなどが挙げられる。
 本発明においては、ビーズミルを用いて多段階で分散することが好ましく、平均ビーズ径が0.1mmφよりも大きいビーズを用いたビーズミルにより分散処理した後、平均ビーズ径が0.1mmφ以下のビーズを用いたビーズミルにより分散処理する工程を有することが好ましい。平均ビーズ径が0.1mmφよりも大きいビーズを用いたビーズミルにより分散処理することにより、結晶子サイズの大きなビスベンゾフラノン系顔料を効率的に解砕することができる。その後に平均ビーズ径が0.1mmφ以下の微小なビーズを用いたビーズミルにより分散処理することにより、ビスベンゾフラノン系顔料へ与えるエネルギーを小さくしてビスベンゾフラノン系顔料の表面活性を抑えながら微分散することができ、着色樹脂組成物中におけるビスベンゾフラノン系顔料の再凝集を抑制し、より均一に分散させることができる。この場合、ビーズミルには、微小なビーズと分散液とを分離することが可能な、遠心分離方式によるセパレーターを備えることが好ましい。ここで、平均ビーズ径とは、ビーズの円相当径の数平均値をいう。具体的には、ビーズを実体顕微鏡で45倍に拡大撮影し、無作為に選んだ100個のビーズについて、それぞれ最長径と最短径を測定してその平均値を円相当径とし、その数平均値を算出することにより、ビーズ径を求めることができる。
 本発明の着色樹脂組成物を硬化させることにより、着色膜を得ることができる。着色膜のOD値4あたりの波長920nmから960nmの近赤外領域における平均光透過率は、90%以上が好ましく、93%以上がより好ましい。平均光透過率は、前述のようにして測定することができる。ここで、着色膜のOD値4あたりの平均光透過率とは、着色膜のOD値が4になる膜厚における着色膜の平均光透過率を意味する。OD値は着色膜の膜厚に比例するので、測定した着色膜のOD値と膜厚から、着色膜のOD値が4になる膜厚が計算できる。一方、光透過率Tは吸光度Aと下記式の関係にあり、吸光度Aは膜厚に比例することから、着色膜のOD値が4になる膜厚における着色膜の平均光透過率を算出することができる。
T=10-A
また、OD値2あたりの可視領域におけるヘイズ値は、6%以下が好ましく、3%以下がより好ましい。ヘイズは、前述のようにして測定することができる。ここで、着色膜のOD値2あたりのヘイズ値とは、着色膜のOD値が2になる膜厚における着色膜のヘイズ値を意味する。ヘイズについても、膜厚に比例することから、上記と同様にOD値2におけるヘイズを算出することができる。
 また、着色膜の波長940nm光に対する屈折率としては、1.40以上1.60以下が好ましく、1.50以上1.60以下がより好ましい。着色膜は基板上に着色樹脂組成物を塗布し、硬化させることにより得られるが、着色膜と基板との屈折率差を小さくすることにより、着色膜の赤外線透過率を向上させることが可能となる。
 着色膜の屈折率は、エリプソメトリーあるいは分光反射率法を用いて、着色膜の反射光を解析することにより求めることができる。
 次に、本発明の着色樹脂組成物を硬化させて着色膜を形成する方法について、ネガ型の感光性の着色樹脂組成物を例に挙げて説明する。
 感光性の着色樹脂組成物を基板上に塗布して、塗布膜を得る。基板としては、例えば、ソーダガラス、無アルカリガラス、石英ガラス等からなる透明基板;シリコンウエハー、セラミックス類、ガリウムヒ素等からなる基板などが挙げられる。塗布方法としては、例えば、スピンナーを用いた回転塗布、スプレー塗布、インクジェット塗布、ダイコーティング、ロールコーティングなどが挙げられる。塗布膜の膜厚は、塗布方法等によって適宜選択することができる。乾燥後の膜厚を1~150μmとすることが一般的である。
 得られた塗布膜を乾燥して、乾燥膜を得る。乾燥方法としては、例えば、加熱乾燥、風乾、減圧乾燥、赤外線照射等が挙げられる。加熱乾燥装置としては、例えば、オーブン、ホットプレートなどが挙げられる。乾燥温度は50~150℃が好ましく、乾燥時間は1分間~数時間が好ましい。
 得られた乾燥膜に、所望のパターンを有するマスクを介して化学線を照射して、露光膜を得る。照射する化学線としては、例えば、紫外線、可視光線、電子線、X線などが挙げられる。本発明の着色樹脂組成物に対しては、水銀灯のi線(365nm)、h線(405nm)およびg線(436nm)を照射することが好ましい。
 得られた露光膜を、アルカリ性現像液等を用いて現像することにより未露光部を除去し、パターンを得る。アルカリ性現像液に用いられるアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、n-プロピルアミン等の1級アミン類;ジエチルアミン、ジ-n-プロピルアミン等の2級アミン類;トリエチルアミン、メチルジエチルアミン等の3級アミン類;テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩;トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール等のアルコールアミン類;ピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン、モルホリン等の環状アミン類等の有機アルカリ類が挙げられる。
 アルカリ性現像液におけるアルカリ性化合物の濃度は0.01~50重量%が一般的であり、0.02~1重量%が好ましい。また、現像により得られるパターンのパターン形状をより良好なものとするため、現像液に非イオン系界面活性剤等の界面活性剤を0.1~5重量%添加しても構わない。さらに現像液がアルカリ水溶液の場合には、現像液にエタノール、γ-ブチロラクトン、ジメチルホルムアミド、N-メチル-2-ピロリドン等の水溶性有機溶剤を添加しても構わない。
 現像方法としては、例えば、浸漬法、スプレー法、パドル法などが挙げられる。さらに得られたパターンに、純水等を用いてリンス洗浄をしても構わない。
 得られたパターンを加熱処理(ポストベーク)することにより、パターニングされた着色膜を得ることができる。加熱処理は、空気中、窒素雰囲気下、真空状態のいずれで行ってもよい。加熱温度は150~300℃が好ましく、加熱時間は0.25~5時間が好ましい。加熱温度を連続的に変化させてもよいし、段階的に変化させてもよい。
 本発明の着色樹脂組成物および着色膜は、近赤外線の高い透過性と可視光の低い透過性を有するため、近赤外線センサーや近赤外線カメラを外部から隠蔽するための着色膜(以下、近赤外線透過遮光膜、もしくは単に遮光膜と呼ぶ)に好適に使用される。これらの用途では、透明基板上に遮光膜が形成された加飾基板として用いられる場合も多い。具体的には、スマートフォンやタブレットPCなどの表示端末における加飾基板の遮光膜、車載ディスプレイや車載計器に搭載する運転者監視用やジェスチャーセンサー用の近赤外線センサーおよび近赤外線カメラ隠蔽用の加飾パネル用の加飾基板の遮光膜、液晶表示装置等が備えるカラーフィルターのブラックマトリクス等の遮光膜、有機ELディスプレイ内部の着色隔壁などに好適に利用できる。
 以下に本発明を実施例および比較例を挙げて詳細に説明するが、本発明はこれらの態様に限定されるものではない。
 <評価方法>
 [ビスベンゾフラン系顔料の結晶子サイズ]
 原料段階のビスベンゾフラノン系顔料の結晶子サイズ測定サンプルとして、下記製造例にて用いたベンゾフラン系顔料Bk-1および製造例1により得られたBk-2をそれぞれアルミ製標準試料ホルダーに詰めた。また、着色膜中のビスベンゾフラノン系顔料の結晶子サイズ測定サンプルとして、各実施例および比較例により得られた着色膜をガラス基板より削りだして、アルミ製標準試料ホルダーに詰めた。これらの測定サンプルについて、(株)Bruker AXS製X線回折装置DS ADVANCE(商品名)を用いて、X線源としてCuKα線を用いて、広角X線回折法によりX線回折スペクトルを測定した。測定条件としては、出力は40kV/40mA、スリット系はDiv.Slit:0.3°、測定ステップ(2θ)は0.0171°、計測時間は0.5秒/ステップとした。
 回折角2θ=7.9°付近に観察されるベンゾフラン系顔料に由来する主ピークの回折角および半値幅を測定し、前記式(1)で表されるシェラーの式を用いて、粒子を構成する結晶子サイズを求めた。
 [比表面積]
 下記製造例にて用いたベンゾフラン系顔料Bk-1および製造例1により得られたBk-2について、日本ベル(株)製高精度全自動ガス吸着装置“BELSORP”36を用いて、100℃で真空脱気後、Nガスの液体窒素温度(77K)における吸着等温線を測定し、この等温線をBET法で解析し、比表面積を求めた。
 [遮光性]
 各実施例および比較例により得られた着色膜について、X-Rite社製光学濃度計361TVisualを用いて、膜厚1μmあたりのOD値を算出した。
 [可視光遮光性および近赤外線透過性]
 各実施例および比較例により得られた着色膜について、(株)島津製作所製紫外-可視分光光度計UV-3150を用いて、OD値が4となる膜厚における、波長400nmから700nmの光の透過率を測定し、最大透過率を求めた。最大透過率が低いほど、可視領域における遮光性に優れる。また、各実施例および比較例により得られた着色膜について、OD値が4となる膜厚における、波長920nmから960nmの光の透過率を同様に測定し、平均透過率を求めた。平均透過率が高いほど、近赤外領域における光透過性に優れる。
 [透過光散乱]
 各実施例および比較例により得られた着色膜について、日本電色工業(株)製ヘーズメーター NDH7000(商品名)を用いて、OD値が2となる膜厚における、ヘイズ値を測定した。ヘイズ値が小さいほど、透過光の散乱が抑制されている。
 [屈折率]
 各実施例および比較例により得られた着色膜について、高速分光エリプソメーター(M-2000、J.A.Woollam社製)を用いて、入射角を50°、60°および70°とし、解析ソフトとしてWVASE32を用い、波長940nmの光に対する屈折率を測定した。屈折率が小さいほど、近赤外での透過率が高くなっている。
 [近赤外線カメラ画像]
 各実施例および比較例により得られた着色膜について、アルファーテクノロジー社製赤外線カメラモジュールFreemoを着色膜の背面に配置し、得られたカメラ画像について以下の基準に基づき評価を行った。
A:鮮明な画像が確認できる
B:画像が確認できるが、輪郭が不明瞭
C:画像を確認できない。
 [耐光性]
 各実施例および比較例により得られた着色膜について、Q-Lab社製Q-SUNキセノン試験機Xe-3を用いて、XeランプX-1800を光源として、波長420nmにおける照度が1.2W/mとなる強度で300時間、紫外線を照射した後の着色膜の変色を目視にて観察し、褪色の有無について評価を行った。
 (合成例1 アクリル樹脂(P-1)の合成)
 特許第3120476号明細書の実施例1に記載の方法により、メチルメタクリレート/メタクリル酸/スチレン共重合体(重量比30/40/30)を合成した。得られた共重合体100重量部に対し、グリシジルメタクリレート40重量部を付加させ、精製水で再沈し、濾過および乾燥することにより、重量平均分子量15,000、酸価110mgKOH/gのアルカリ可溶性のアクリル樹脂(P-1)を得た。なお、アクリル樹脂の酸価は、アクリル樹脂1gを中和するのに要した水酸化カリウムの量(mg)とし(単位:mgKOH/g)、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)「HLC-8220GPC」(東ソー(株)製試験装置)を用いて、キャリヤーをテトラヒドロフランとして、ポリスチレン換算により測定した。
 (製造例1 ビスベンゾフラン系顔料Bk-2の製造)
 微細化する原料のビスベンゾフラン系顔料としてBASF(株)製“Irgaphor”Black S0100CF(Bk-1)を準備した。Bk-1の比表面積を上記の方法により測定したところ4m/gであった。また、Bk-1の2θ=7.90°の主ピークの半値幅を上記の方法により測定したところ0.145°であり、この値から算出した結晶子サイズは124nmであった。
 200gの上記Bk-1、2400gの塩化ナトリウムおよび400gのジエチレングリコールをニーダー((株)森山製作所製、S型ニーダー(商品名))に投入し、70℃で8時間混練した。次に、この混練物を約10Lの温水に投入し、40℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とした。その後、スラリーを濾過し、水洗して塩化ナトリウムおよびジエチレングリコールを除き、80℃で24時間真空乾燥してビスベンゾフラン系顔料Bk-2を得た。得られたBk-2の比表面積を上記の方法により測定したところ66m/gであった。また、Bk-2の2θ=7.90°の主ピークの半値幅を上記の方法により測定したところ0.261°であり、この値から算出した結晶子サイズは42nmであった。
 Bk-1およびこれを微細化したBk-2の評価結果を表1に示す。また、X線回折プロファイルを図1に示す。
Figure JPOXMLDOC01-appb-T000004
 (製造例2 着色材分散液(DP-1)の製造)
 前記ビスベンゾフラノン系顔料Bk-1 120g、合成例1により得られたアクリル樹脂(P-1)のプロピレングリコールモノメチルエーテルアセテート(PGMEA)35重量%溶液171g、高分子分散剤としてポリアミド系高分子分散剤“DISPERBYK”(登録商標)2200(BYK-2200)20gおよびPGMEA689gをタンクに仕込み、ホモミキサーで20分撹拌し、予備分散液を得た。ビーズ径0.30mmφのジルコニアビーズを75体積%充填した遠心分離セパレーターを具備した寿工業(株)製分散機ウルトラアペックスミルUAM015に、得られた予備分散液を供給し、回転速度12m/sで20分間分散処理を行った。続いて、分散処理後の液を、ビーズ径0.05mmφのジルコニアビーズを75体積%充填したウルトラアペックスミルUAM015に供給し、回転速度8m/sで90分間分散処理を行い、固形分濃度20重量%、着色材/(樹脂+高分子分散剤)(重量比)=60/40の着色材分散液DP-1を得た。
 (製造例3 着色材分散液(DP-2)の製造)
 ビスベンゾフラノン系顔料Bk-1の代わりに、製造例1により得られたビスベンゾフラノン系顔料Bk-2を用いた以外は製造例2と同様にして、予備分散液を得た。ビーズ径0.10mmφのジルコニアビーズを75体積%充填した遠心分離セパレーターを具備した寿工業(株)製分散機ウルトラアペックスミルUAM015に、得られた予備分散液を供給し、回転速度8m/sで90分間分散処理を行い、固形分濃度20重量%、着色材/(樹脂+高分子分散剤)(重量比)=60/40の着色材分散液DP-2を得た。
 (製造例4 着色材分散液(DP-3)の製造)
 ビスベンゾフラノン系顔料Bk-1の代わりに、製造例1により得られたビスベンゾフラノン系顔料Bk-2を用いた以外は製造例2と同様にして、多段階で分散処理を行い、着色材分散液(DP-3)を得た。
 (製造例5 着色材分散液(DP-4)の製造)
 高分子分散剤として“DISPERBYK”(登録商標)2200の代わりに、アクリル系高分子分散剤“DISPERBYK”(登録商標)-LP N21116(アミン価=32mgKOH/g)を用いた以外は製造例4と同様にして、着色材分散液(DP-4)を得た。
 (製造例6 着色材分散液(DP-5)の製造)
 ベンゾフラノン系顔料としてBk-1を用い、高分子分散剤として“DISPERBYK”(登録商標)-LP N21116を用い、分散ビーズとしてビーズ径0.30mmφのジルコニアビーズを用いた以外は製造例3と同様にして、着色材分散液(DP-5)を得た。
 (製造例7 着色材分散液(DP-6)の製造)
 分散ビーズとしてビーズ径0.10mmφのジルコニアビーズを用いた以外は製造例6と同様にして、着色材分散液(DP-6)を得た。
 (製造例8 着色材分散液(DP-7)の製造)
 着色材として青色顔料(銅フタロシアニン)PB15:6(東洋インキ製)を用いた以外は製造例7と同様にして、着色材分散液(DP-7)を得た。
 (製造例9 着色材分散液(DP-8)の製造)
 着色材としてスルホン酸基により表面が修飾されたカーボンブラック(キャボット製TPK1227)を用いた以外は製造例7と同様にして、着色材分散液(DP-8)を得た。
 (製造例10 着色材分散液(DP-9)の製造)
 着色材として黒色染料OILBlack860(オリヱント化学工業(株)製)120g、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート(PGMEA)35重量%溶液229g、およびPGMEA651gをタンクに仕込み、ホモミキサーで20分撹拌し染料を溶解させ、固形分濃度20重量%、着色材/樹脂(重量比)=60/40の着色材分散液(DP-9)を得た。
 製造例2~10の組成と分散条件を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 (実施例1)
 27.08gの着色材分散液(DP-1)に、アクリルポリマー(P-1)のPGMEA35重量%溶液を29.83g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を8.74g、密着改良剤としてKBM5103(信越化学(株)製)を0.4g、界面活性剤としてシリコーン系界面活性剤“BYK”333(ビックケミー社製)のPGMEA10重量%溶液0.3gを33.65gのPGMEAに溶解した溶液を添加して、全固形分濃度25重量%、全固形分中の着色材含有量13重量%の着色樹脂組成物PC-1を得た。
 得られた着色樹脂組成物PC-1を、無アルカリガラス基板(AN100)上に、ミカサ(株)製スピンナー(1H-DS)を用いて塗布し、塗布膜を100℃のホットプレート上で2分間加熱乾燥し、乾燥膜を得た。この乾燥膜を熱風オーブン中230℃で30分間ポストベークして着色膜C-1を得た。なお、着色膜C-1のOD値が、それぞれ2および4となるように膜厚を変えた2種類の基板を作成し、着色膜C-1のOD値が4の基板を用いて遮光性の評価を、着色膜C-1のOD値が2の基板を用いてヘイズ値の評価を行った。この着色膜C-1について、前述の方法により評価した結果を表3に示す。
 (実施例2)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-2)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-2を得た。得られた着色樹脂組成物PC-2を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例3)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-3)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-3を得た。得られた着色樹脂組成物PC-3を用いて、実施例1と同様の評価をした。結果を表3に示す。また、着色膜のX線回折プロファイルを図2に示す。
 (実施例4)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-4)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-4を得た。得られた着色樹脂組成物PC-4を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例5)
 10.42gの着色材分散液(DP-3)に、アクリルポリマー(P-1)のPGMEA35重量%溶液を36.56g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を9.72g、密着改良剤としてKBM5103(信越化学(株)製)を0.4g、界面活性剤としてシリコーン系界面活性剤“BYK”333(ビックケミー社製)のPGMEA10重量%溶液0.3gを42.61gのPGMEAに溶解した溶液を添加して、全固形分濃度25重量%、全固形分中の着色材含有量5重量%の着色樹脂組成物PC-5を得た。得られた着色樹脂組成物PC-5を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例6)
 52.08gの着色材分散液(DP-3)に、アクリルポリマー(P-1)のPGMEA35重量%溶液を19.75g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を7.27g、密着改良剤としてKBM5103(信越化学(株)製)を0.4g、界面活性剤としてシリコーン系界面活性剤“BYK”333(ビックケミー社製)のPGMEA10重量%溶液0.3gを20.20gのPGMEAに溶解した溶液を添加して、全固形分濃度25重量%、全固形分中の着色材含有量25重量%の着色樹脂組成物PC-6を得た。得られた着色樹脂組成物PC-6を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例7)
 21.67gの着色材分散液(DP-3)と5.42gの青色着色材分散液(DP-7)の混合溶液に、アクリルポリマー(P-1)のPGMEA35重量%溶液を29.83g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を8.74g、密着改良剤としてKBM5103(信越化学(株)製)を0.4g、界面活性剤としてシリコーン系界面活性剤“BYK”333(ビックケミー社製)のPGMEA10重量%溶液0.3gを33.65gのPGMEAに溶解した溶液を添加して、全固形分濃度25重量%、全固形分中の着色材含有量13重量%の着色樹脂組成物PC-7を得た。得られた着色樹脂組成物PC-7を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例8)
 着色分散液として16.25gの着色材分散液(DP-3)と10.83gの青色着色材分散液(DP-7)の混合溶液を用いた以外は実施例7と同様にして、全固形分濃度25重量%、全固形分中の着色材含有量13重量%の着色樹脂組成物PC-8を得た。得られた着色樹脂組成物PC-8を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (実施例9)
 光重合開始剤として“アデカアークルズ”(登録商標)NCI-831((株)ADEKA製)を0.41g添加した以外は実施例3と同様にして、全固形分濃度25重量%、全固形分中の着色材含有量13重量%の着色樹脂組成物PC-9を得た。得られた着色樹脂組成物PC-9を、無アルカリガラス基板(AN100)上に、ミカサ(株)製スピンナー(1H-DS)を用いて塗布し、塗布膜を100℃のホットプレート上で2分間加熱乾燥した。この乾燥膜に対して、ユニオン光学(株)製マスクアライナー(PEM-6M)を用いて、全面に紫外線を100mJ/cmの露光量で露光した後、熱風オーブン中230℃で30分間ポストベークして着色膜C-9を得た。この着色膜C-9について、実施例1と同様の評価をした。結果を表3に示す。
 (比較例1)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-5)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-10を得た。得られた着色樹脂組成物PC-10を用いて、実施例1と同様の評価をした。結果を表3に示す。また、着色膜のX線回折プロファイルを図2に示す。
 (比較例2)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-6)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-11を得た。得られた着色樹脂組成物PC-11を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (比較例3)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-8)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-12を得た。得られた着色樹脂組成物PC-12を用いて、実施例1と同様の評価をした。結果を表3に示す。
 (比較例4)
 着色材分散液(DP-1)の代わりに着色材分散液(DP-9)を用いた以外は実施例1と同様にして、着色樹脂組成物PC-13を得た。得られた着色樹脂組成物PC-13を用いて、実施例1と同様の評価をした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例の着色樹脂組成物は、可視領域における最大透過率が低く、近赤外領域における平均透過率が高く、ヘイズも低いことがわかる。一方、比較例1、2の着色樹脂組成物は、近赤外領域における平均透過率が低く、ヘイズも高く、得られた近赤外線カメラ画像が不明瞭であった。また、比較例3においては近赤外線カメラ画像が得られず、比較例4においては耐光性試験後に褪色が見られた。
 本発明の着色樹脂組成物は、近赤外線カメラおよびセンサーの隠蔽に適した近赤外線透過遮光膜を形成する黒色加飾インクとして好適に利用できる。

Claims (12)

  1. (A)樹脂、(B)着色材および(C)有機溶剤を含有する着色樹脂組成物であって、前記(B)着色材として少なくともビスベンゾフラノン系顔料を含有し、前記着色樹脂組成物の硬化物からなる着色膜におけるビスベンゾフラノン系顔料の結晶子サイズが10nm以上25nm以下である着色樹脂組成物。
  2. 前記(B)着色材として青着色材をさらに含有する請求項1に記載の着色樹脂組成物。
  3. 前記青着色材が銅フタロシアニンである請求項2に記載の着色樹脂組成物。
  4. さらにポリアミド系高分子分散剤を含有する請求項1~3のいずれか1項に記載の着色樹脂組成物。
  5. 前記ポリアミド系高分子分散剤がポリエステル鎖からなる側鎖を有する櫛型構造のポリアミド系分散剤である請求項4に記載の着色樹脂組成物。
  6. 前記(B)着色材の含有量が、全固形分中、1~17重量%である請求項1または2に記載の着色樹脂組成物。
  7. 前記(A)樹脂としてアルカリ可溶性樹脂を含有し、光重合開始剤およびラジカル重合性化合物をさらに含有する請求項1~6のいずれか1項に記載の着色樹脂組成物。
  8. 少なくとも(A)樹脂、(B)着色材および(C)有機溶剤を配合する着色樹脂組成物の製造方法であって、前記(B)着色材として、結晶子サイズが10nm以上90nm以下であるビスベンゾフラノン系顔料を含有する請求項1~7のいずれか1項に記載の着色樹脂組成物の製造方法。
  9. 請求項1~7のいずれか一項記載の着色樹脂組成物の硬化物からなる、近赤外線透過遮光膜。
  10. 波長940nmの光に対する屈折率が1.40以上1.60以下である請求項9に記載の近赤外線透過遮光膜。
  11. 基板および請求項9または請求項10記載の近赤外線透過遮光膜を具備する、加飾基板。
  12. 基板および請求項9または請求項10に記載の近赤外線透過遮光膜を具備する、近赤外線センサーまたは近赤外線カメラ隠蔽用加飾パネル用の加飾基板。
PCT/JP2019/021004 2018-06-01 2019-05-28 着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板 WO2019230684A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980034750.1A CN112189154B (zh) 2018-06-01 2019-05-28 着色树脂组合物及其制造方法、近红外线透过性遮光膜和装饰基板
KR1020207033032A KR102667981B1 (ko) 2018-06-01 2019-05-28 착색 수지 조성물과 그의 제조 방법, 근적외선 투과 차광막 및 장식 기판
JP2019529274A JP6958620B2 (ja) 2018-06-01 2019-05-28 着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板
EP19812017.2A EP3805822A4 (en) 2018-06-01 2019-05-28 COLORED RESIN COMPOSITION, METHOD FOR PREPARING IT, PROTECTIVE FILM AGAINST NEAR INFRARED TRANSMISSION LIGHT AND DECORATIVE SUBSTRATE
US17/052,598 US20210179809A1 (en) 2018-06-01 2019-05-28 Colored resin composition, preparing method for same, near-infrared transmission light shielding film, and decorative substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105802 2018-06-01
JP2018-105802 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230684A1 true WO2019230684A1 (ja) 2019-12-05

Family

ID=68696977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021004 WO2019230684A1 (ja) 2018-06-01 2019-05-28 着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板

Country Status (7)

Country Link
US (1) US20210179809A1 (ja)
EP (1) EP3805822A4 (ja)
JP (1) JP6958620B2 (ja)
KR (1) KR102667981B1 (ja)
CN (1) CN112189154B (ja)
TW (1) TWI805769B (ja)
WO (1) WO2019230684A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022199A1 (ja) * 2021-08-18 2023-02-23 積水化学工業株式会社 近赤外線透過黒色粒子
WO2023182412A1 (ja) 2022-03-24 2023-09-28 大日本印刷株式会社 赤外線センサー用の樹脂パネル、並びに、前記樹脂パネルを用いた赤外線センサー及び物品
KR20240090123A (ko) 2021-10-18 2024-06-21 도레이 카부시키가이샤 착색 수지 조성물, 착색막, 가식 기판

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240084147A1 (en) * 2022-09-14 2024-03-14 Raytheon Company Water-based acrylic latex paint transmissive in the nir and swir bands

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120476B2 (ja) 1991-02-26 2000-12-25 東レ株式会社 カラーフィルタ用着色ペースト
JP2012515233A (ja) 2009-01-19 2012-07-05 ビーエーエスエフ ソシエタス・ヨーロピア カラーフィルタ用のブラックマトリックス
WO2015034726A1 (en) 2013-09-03 2015-03-12 Caterpillar Inc. Hybrid apparatus and method for hydraulic systems
JP2015185096A (ja) * 2014-03-26 2015-10-22 東レ株式会社 遮光膜形成基板及びタッチパネル
US20160098810A1 (en) 2008-12-18 2016-04-07 Vmware, Inc. Watermarking and Scalability Techniques for a Virtual Desktop Planning Tool
JP2016191729A (ja) 2015-03-30 2016-11-10 株式会社トッパンTdkレーベル 赤外透過及び可視隠蔽用積層体
JP2017116955A (ja) 2017-03-03 2017-06-29 富士フイルム株式会社 赤外線透過フィルタ用組成物、赤外線透過フィルタ、赤外線透過フィルタの製造方法、及び、赤外線センサー
WO2018034082A1 (ja) * 2016-08-18 2018-02-22 富士フイルム株式会社 組成物、硬化膜、赤外線透過フィルタ、固体撮像素子および赤外線センサ
WO2018043085A1 (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 硬化性組成物、硬化膜、カラーフィルタ、固体撮像素子、赤外線センサ、硬化膜の製造方法、及び、カラーフィルタの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718915B2 (ja) * 1995-10-16 2005-11-24 味の素株式会社 顔料分散剤
TW200634448A (en) * 2005-02-09 2006-10-01 Showa Denko Kk Photosensitive composition removing liquid
JP5092326B2 (ja) * 2005-09-26 2012-12-05 三菱化学株式会社 色材分散液、着色樹脂組成物、カラーフィルタ、及び液晶表示装置
WO2009010521A2 (en) 2007-07-19 2009-01-22 Basf Se Nir-inert substrates comprising bis-oxodihydroindolylen-benzodifuranones
JP2010111750A (ja) * 2008-11-05 2010-05-20 Fujifilm Corp 光吸収性組成物
JP6170673B2 (ja) * 2012-12-27 2017-07-26 富士フイルム株式会社 カラーフィルタ用組成物、赤外線透過フィルタ及びその製造方法、並びに赤外線センサー
KR20150028463A (ko) * 2013-09-06 2015-03-16 동우 화인켐 주식회사 착색 감광성 수지 조성물 및 이를 포함하는 컬러필터 및 표시장치
KR20150093331A (ko) * 2014-02-07 2015-08-18 동우 화인켐 주식회사 착색 감광성 수지 조성물, 이를 포함하는 컬러필터 및 표시장치
KR20190021493A (ko) * 2014-05-01 2019-03-05 후지필름 가부시키가이샤 착색 조성물, 막, 컬러 필터, 패턴 형성 방법, 컬러 필터의 제조 방법, 고체 촬상 소자 및 적외선 센서
KR101925813B1 (ko) * 2014-05-27 2018-12-06 후지필름 가부시키가이샤 착색 조성물, 막, 컬러 필터, 패턴 형성 방법, 컬러 필터의 제조 방법, 고체 촬상 소자 및 적외선 센서
JP6662299B2 (ja) 2014-12-19 2020-03-11 Agc株式会社 光学フィルタ及びこれを用いた装置
TWI723994B (zh) * 2015-05-22 2021-04-11 日商富士軟片股份有限公司 著色組成物、膜、彩色濾光片、圖案形成方法、彩色濾光片的製造方法、固體攝像元件及紅外線感測器
WO2017043428A1 (ja) * 2015-09-10 2017-03-16 積水化学工業株式会社 感光性樹脂組成物、平坦化膜、ブラックマトリックス、カラーフィルター、及び、表示素子
WO2018056127A1 (ja) * 2016-09-20 2018-03-29 富士フイルム株式会社 近赤外線吸収有機顔料、顔料分散液、硬化性組成物、膜、近赤外線カットフィルタ、積層体、固体撮像素子、画像表示装置および赤外線センサ
WO2018061781A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 ドライエッチング用組成物、キット、パターン形成方法および光学フィルタの製造方法
KR102202906B1 (ko) * 2016-09-29 2021-01-14 후지필름 가부시키가이샤 조성물, 경화막, 컬러 필터, 고체 촬상 소자, 적외선 센서, 근적외선 센서, 및 근접 센서

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3120476B2 (ja) 1991-02-26 2000-12-25 東レ株式会社 カラーフィルタ用着色ペースト
US20160098810A1 (en) 2008-12-18 2016-04-07 Vmware, Inc. Watermarking and Scalability Techniques for a Virtual Desktop Planning Tool
JP2012515233A (ja) 2009-01-19 2012-07-05 ビーエーエスエフ ソシエタス・ヨーロピア カラーフィルタ用のブラックマトリックス
WO2015034726A1 (en) 2013-09-03 2015-03-12 Caterpillar Inc. Hybrid apparatus and method for hydraulic systems
JP2015185096A (ja) * 2014-03-26 2015-10-22 東レ株式会社 遮光膜形成基板及びタッチパネル
JP2016191729A (ja) 2015-03-30 2016-11-10 株式会社トッパンTdkレーベル 赤外透過及び可視隠蔽用積層体
WO2018034082A1 (ja) * 2016-08-18 2018-02-22 富士フイルム株式会社 組成物、硬化膜、赤外線透過フィルタ、固体撮像素子および赤外線センサ
WO2018043085A1 (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 硬化性組成物、硬化膜、カラーフィルタ、固体撮像素子、赤外線センサ、硬化膜の製造方法、及び、カラーフィルタの製造方法
JP2017116955A (ja) 2017-03-03 2017-06-29 富士フイルム株式会社 赤外線透過フィルタ用組成物、赤外線透過フィルタ、赤外線透過フィルタの製造方法、及び、赤外線センサー

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022199A1 (ja) * 2021-08-18 2023-02-23 積水化学工業株式会社 近赤外線透過黒色粒子
KR20240090123A (ko) 2021-10-18 2024-06-21 도레이 카부시키가이샤 착색 수지 조성물, 착색막, 가식 기판
WO2023182412A1 (ja) 2022-03-24 2023-09-28 大日本印刷株式会社 赤外線センサー用の樹脂パネル、並びに、前記樹脂パネルを用いた赤外線センサー及び物品

Also Published As

Publication number Publication date
TWI805769B (zh) 2023-06-21
TW202003721A (zh) 2020-01-16
KR20210016348A (ko) 2021-02-15
CN112189154B (zh) 2022-08-12
JPWO2019230684A1 (ja) 2021-06-03
EP3805822A4 (en) 2022-05-11
JP6958620B2 (ja) 2021-11-02
KR102667981B1 (ko) 2024-05-23
CN112189154A (zh) 2021-01-05
US20210179809A1 (en) 2021-06-17
EP3805822A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6958620B2 (ja) 着色樹脂組成物とその製造方法、近赤外線透過遮光膜および加飾基板
US10095107B2 (en) Composition and fabricating method thereof, and infrared ray sensor
JP6569220B2 (ja) タッチパネル用黒色樹脂組成物
JP5962865B1 (ja) 感光性着色組成物、それを用いた固体撮像素子の製造方法
JP7111250B2 (ja) 黒色樹脂組成物、近赤外線透過遮光膜、加飾基板、加飾フィルムおよび有機elディスプレイ用の着色隔壁
KR101926411B1 (ko) 수지 블랙 매트릭스 기판 및 터치패널
JP2015068893A (ja) 樹脂ブラックマトリクス基板
KR102548098B1 (ko) 착색 수지 조성물
JP6330412B2 (ja) 遮光膜形成基板及びタッチパネル
WO2023067962A1 (ja) 着色樹脂組成物、着色膜、加飾基板
CN115210322B (zh) 树脂组合物、布线基板及导电性图案的制造方法
JP2022112699A (ja) 着色樹脂組成物、遮光膜、加飾基板及び加飾フィルム
JP2023030340A (ja) 自発光型表示装置用基板および自発光型表示装置用基板の製造方法
JP6678003B2 (ja) 固体撮像素子用着色組成物、およびカラーフィルタ
KR20200025833A (ko) 착색 감광성 수지 조성물
KR20220136211A (ko) 적색 착색 조성물
KR20180081035A (ko) 착색 감광성 수지 조성물 및 이를 이용하는 컬러 필터

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529274

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019812017

Country of ref document: EP

Effective date: 20210111