WO2019230629A1 - 高い透明性を有する無機酸化物分散体 - Google Patents

高い透明性を有する無機酸化物分散体 Download PDF

Info

Publication number
WO2019230629A1
WO2019230629A1 PCT/JP2019/020836 JP2019020836W WO2019230629A1 WO 2019230629 A1 WO2019230629 A1 WO 2019230629A1 JP 2019020836 W JP2019020836 W JP 2019020836W WO 2019230629 A1 WO2019230629 A1 WO 2019230629A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
oxide dispersion
film
dispersion
manufactured
Prior art date
Application number
PCT/JP2019/020836
Other languages
English (en)
French (fr)
Inventor
亮介 権藤
酒井 隆行
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020207035123A priority Critical patent/KR20210013705A/ko
Priority to CN201980035581.3A priority patent/CN112424297A/zh
Publication of WO2019230629A1 publication Critical patent/WO2019230629A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to an inorganic oxide dispersion having high transparency, and an ink, a paint, a coating liquid, a coating film, and a film containing the dispersion.
  • Patent Document 1 When inorganic oxides are finely dispersed to the nano level, a large amount of dispersant is required to stabilize the dispersion of inorganic oxides, and the properties required for paints and films are reduced. .
  • Patent Document 2 In order to solve this problem, it has been proposed to introduce a skeleton having dispersibility in the binder to minimize the deterioration of characteristics, but applicable applications are limited (Patent Document 1).
  • Patent Document 1 a method has been proposed to minimize the influence on the final physical properties by treating with a low boiling point coupling agent and removing excess coupling agent by heating during film processing.
  • Patent Document 2 Although it is possible to disperse zirconia and titanium in a limited solvent system that can be used, it is difficult to use depending on the type of inorganic oxide.
  • An object of one embodiment of the present invention is to provide an inorganic oxide dispersion having excellent dispersion stability and high transparency, and a paint, a coating film, and a film containing the inorganic oxide dispersion.
  • one embodiment of the present invention is an inorganic oxide containing an inorganic oxide, an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, and a solvent having a relative dielectric constant of 18 or more. Concerning the dispersion.
  • Formula A (R 1 represents an alkyl group having 2 to 13 carbon atoms.
  • R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 2 to 13 carbon atoms.)
  • Another embodiment of the present invention relates to a paint containing the inorganic oxide dispersion.
  • Another embodiment of the present invention relates to a coating film formed using the inorganic oxide dispersion or the paint.
  • Another embodiment of the present invention relates to a film formed using the inorganic oxide dispersion or the paint.
  • an inorganic oxide dispersion having excellent dispersion stability and high transparency, and a paint, a coating film, and a film containing the inorganic oxide dispersion.
  • Embodiments of the present invention are as follows.
  • Formula A (R 1 represents an alkyl group having 2 to 13 carbon atoms.
  • R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 2 to 13 carbon atoms.)
  • the solvent contains at least one selected from the group consisting of water, alcohol, ⁇ -butyrolactone, and a nitrogen-containing organic solvent.
  • An inorganic oxide dispersion according to an embodiment of the present invention includes an inorganic oxide, an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, and a solvent having a relative dielectric constant of 18 or more.
  • an inorganic oxide dispersion includes an inorganic oxide, an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, and a solvent having a relative dielectric constant of 18 or more.
  • an oxide of at least one element selected from the group consisting of metals and Si can be used. It is possible to select an inorganic oxide according to physical properties required for a coating film, a film, etc.
  • the said inorganic oxide can be used individually by 1 type or in mixture of 2 or more types.
  • the particle diameter of the inorganic oxide is preferably in the range of an average particle diameter of 15 to 50 nm from the viewpoint of transparency.
  • the average particle diameter is an arithmetic average value of particle diameters observed with a scanning electron microscope (SEM). Specifically, it is a value obtained by observing the powder of paint particles at a magnification of 20000, selecting arbitrary 100 particles, and averaging the particle diameters.
  • SEM scanning electron microscope
  • inorganic oxide synthesis methods There are three types of inorganic oxide synthesis methods: solid phase method, liquid phase method, and vapor phase method. It is preferable to use an inorganic oxide synthesized from a liquid phase method or a gas phase method because a fine inorganic oxide can be obtained.
  • a coprecipitation method in which precipitation is caused by changing pH or adding a solvent from a solution in which constituent ions of a substance to be synthesized are dissolved
  • a hydrolysis method in which particles are synthesized by hydrolyzing a metal alkoxide.
  • a sol-gel method in which particles are obtained by heating.
  • the inorganic oxide is preferably fired at a high temperature of 250 ° C. or higher, and particles having stabilized the crystal skeleton of the inorganic oxide are preferably used from the viewpoint of improving mechanical properties, and the inorganic oxide fired at a high temperature of 400 ° C. or higher. It is more preferable to use In particular, when polyimide or polyamic acid varnish is used as a binder when the inorganic oxide dispersion is used as a paint or film, the curing temperature is required to be 300 to 400 ° C., and thus the above baking step was performed. Inorganic oxides are chemically stable, can suppress film shrinkage, do not cause defects in the film due to dehydration, etc., and can achieve good mechanical properties.
  • the inorganic oxide dispersion according to the embodiment of the present invention there is little coloration (high heat resistance) even at a high temperature of 300 ° C. or higher, and the mechanical properties of the coating film and film (thermal expansion property). ) Can be improved.
  • An amine represented by the following general formula A can be used for the inorganic oxide dispersion.
  • R 1 represents an alkyl group having 2 to 13 carbon atoms.
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 2 to 13 carbon atoms. Further, the total number of carbon atoms of R 1 to R 3 is preferably 6 to 25, more preferably 6 to 18, and still more preferably 6 to 12.
  • the inorganic oxide dispersion can be specifically dispersed, and high transparency can be achieved. Moreover, since the volatilization of amine at room temperature is difficult to occur, the composition as a dispersion is stable, and as a result, the stability over time is excellent.
  • ⁇ Hydroxy acid> For the inorganic oxide dispersion, an aliphatic hydroxy acid having a molecular weight of 80 to 200 can be used, and an aliphatic hydroxy acid having a molecular weight of 90 to 200 is preferably used.
  • a curing temperature 300 to 400 ° C. is required.
  • the addition amounts of amine and hydroxy acid are each preferably 1 to 50 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the inorganic oxide. If the addition amount of the amine and the hydroxy acid is within the above range, the transparency of the inorganic oxide particles can be maintained for a long time, and the physical properties when the coating film or film is formed are not adversely affected. By using a combination of an amine and a hydroxy acid, transparency can be ensured even if the amount of the dispersant is lower than that of the conventional method in which about 50 parts by weight is added to 100 parts by weight of the inorganic oxide. Can do.
  • a solvent having a relative dielectric constant of 18 or more can be used for the inorganic oxide dispersion.
  • the relative dielectric constant is a ratio between the dielectric constant of the medium and the dielectric constant of the vacuum.
  • the above-mentioned solvent has better dispersion stability of the inorganic oxide dispersion over time and fine dispersion of the dispersed particle diameter
  • water, alcohol, ⁇ -butyrolactone, or nitrogen-containing organic solvent is used.
  • ⁇ -butyrolactone or a nitrogen-containing organic solvent is more preferable.
  • the nitrogen-containing organic solvent is a generic term for solvents having nitrogen in the molecule, and examples thereof include N-methyl-2-pyrrolidone, dimethylacetamide, dimethylsulfoxide, dimethylformamide, and acetonitrile.
  • ⁇ -Butyrolactone and nitrogen-containing organic solvents are widely used as solvents for dissolving various polymers because they easily dissolve various polymers.
  • ⁇ -butyrolactone or a nitrogen-containing organic solvent should be used to prepare an inorganic oxide dispersion. Is preferred.
  • a disperser generally used for the purpose of achieving high transparency can be used.
  • a disper a homomixer, a planetary mixer, “CLEAMIX” manufactured by M Technique Co., Ltd.
  • PRIMIX“ FILMIX ” paint conditioner (manufactured by Red Devil), ball mill, sand mill (“ Shinmaru Enterprises ”“ Dino mill ”, etc.), attritor, pearl mill (such as“ DCP mill ”manufactured by Eirich), coball mill Wet jet mill (Genus PY, Genus Pystar, Sugino Machine Starburst, Nanomizer Nanomizer, etc.) M Technique Co., Ltd. Claire SS-5, Nara Machinery Co., Ltd. Dispersers such as “Micros” and roll mills. Only one type of disperser may be used alone, or a plurality of types may be used in combination.
  • the dispersion particle diameter of the inorganic oxide dispersion is preferably smaller from the viewpoint of transparency during coating or film, because the light scattering in the visible light region is reduced, but the thermal expansion of polyimide and the like is suppressed.
  • an inorganic oxide is added for the purpose, it is preferably in the range of 15 to 150 nm, more preferably in the range of 30 to 100 nm, considering compatibility with transparency.
  • the dispersed particle size is a particle size of 50% when the volume fraction of particles is integrated from the smallest particle size in the volume particle size distribution using a dynamic light scattering particle size distribution meter. is there.
  • the inorganic oxide dispersion according to the embodiment of the present invention may be added to various substrates by adding a binder, a curing agent, a drying inhibitor, a chelating agent, a rheology control agent, or a silane coupling agent, as necessary. It can be used as an inorganic oxide paint that can be applied to the surface.
  • the binder can be selected according to the physical properties required for the coating film or film, such as polyacryl, polycarbonate, polyester, polyamide, polyolefin, polyurethane, polyether, and polyvinylidene fluoride. Examples thereof include a varnish obtained by dissolving a resin in a solvent or a dispersed emulsion.
  • the inorganic oxide dispersion of the embodiment of the present invention preferably uses a polyimide or a polyamic acid varnish as a binder, and in particular, a polyimide or a polyamic acid by using a polyimide or a polyamic acid varnish as a binder.
  • Aliphatic hydroxy acids and amines volatilize at 300 to 400 ° C., which is a general curing temperature for varnishes, so that not only the transparency is maintained but also the mechanical properties are improved.
  • ⁇ Inorganic oxide coating film> It can be used as an inorganic oxide coating film by coating an inorganic oxide paint on various substrates, drying the solvent by heating, and curing as necessary.
  • the base material can be selected according to the required physical properties.
  • a resin such as polyacryl, polycarbonate, polyester, polyamide, polyolefin, polyurethane, polyether, polyvinylidene fluoride, or polyethylene terephthalate, iron And a film, plate, or molded product made of a metal such as stainless steel, copper, or aluminum, or an inorganic oxide such as glass.
  • the inorganic oxide coating film obtained by applying an inorganic oxide paint on various peelable substrates, drying the solvent by heating, and curing as necessary is peeled off from the substrate.
  • an inorganic oxide film can be obtained.
  • the obtained inorganic oxide film may be a resin such as polyacryl, polycarbonate, polyester, polyamide, polyolefin, polyurethane, polyether, polyvinylidene fluoride, or polyethylene terephthalate, iron, stainless steel, copper, aluminum, etc. It can be used as a laminated film by adhering and adhering to a film of an inorganic oxide such as glass or an inorganic oxide such as glass.
  • ⁇ Transparency> The higher the transparency, the better, and the total light transmittance of the coated plate coated with the inorganic oxide paint on the substrate was calculated based on the coated plate coated with the varnish to the same film thickness when dried. In this case, it is preferably 95 to 100%, more preferably 97 to 100%.
  • a coating film and a film using polyimide as a binder, and a film having a curing temperature of 300 ° C. to 400 ° C., preferably with less transparency loss due to coloring, etc. are coated with an inorganic oxide paint on a substrate.
  • the absolute value of the value obtained by subtracting the value of the total light transmittance after heating from the value of the total light transmittance before heating of the coated plate is preferably less than 1%, more preferably less than 0.5%.
  • ⁇ Thermal expansion> in a film using polyimide as a binder, it is possible to lower the linear expansion coefficient representing the dimensional change during heating than the binder alone by uniformly dispersing the inorganic oxide in the film.
  • the linear expansion coefficient becomes lower, which is preferable.
  • the linear expansion coefficient can be obtained by measuring the deformation of the material as a function of temperature by applying a non-vibrating load while changing the temperature of the material according to a regulated program. If the thickness of the film is about 50 ⁇ m, it is preferable to obtain it from deformation when a tensile stress is applied.
  • the present invention relates to the subject matter of Japanese Patent Application No. 2018-101435 filed on May 28, 2018, the entire disclosure of which is incorporated herein by reference.
  • AEROXIDE Alu C alumina, manufactured by Evonik Degussa
  • AEROSIL 200 Silica, manufactured by Evonik Degussa
  • PCS-60 Zero-Nippon Denko Corporation
  • TTO-V-3 Tianium oxide, manufactured by Ishihara Sangyo Co., Ltd.
  • NANOFINE 50A Zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd.
  • Biral Al-L40P alumina sol, manufactured by Taki Chemical Co., Ltd.
  • Triethylamine (tertiary amine, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) Tripropylamine (tertiary amine, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) Dibutylamine (secondary amine, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) Dihexylamine (secondary amine, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) Dioctylamine (secondary amine, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Didodecylamine (secondary amine, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) Octylamine (primary amine, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Dodecylamine (primary amine, manufactured by Tokyo Chemical Industry Co., Ltd.) Stearylamine (primary amine, manufactured by Tokyo Chemical Industry Co., Ltd.) Stearylamine (prim
  • ⁇ Aliphatic hydroxy acid> The aliphatic hydroxy acids used in Examples and Comparative Examples are listed below. Lactic acid (Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 90.08) DL-malic acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., molecular weight 134.09) Citric acid (Fuji Film Wako Pure Chemical Industries, Ltd., molecular weight 192.12) Tartaric acid (Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 150.09) Quinic acid (Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 192.17) 12-hydroxystearic acid (manufactured by Ito Oil Co., Ltd., molecular weight 300.48)
  • Ammonium lactate non-volatile content 40%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Triammonium citrate Fluji Film Wako Pure Chemical Industries, Ltd.
  • DisperBYK-102 acid dispersant, manufactured by Big Chemi Japan Co., Ltd.
  • viscosity The viscosity of the inorganic oxide dispersion was measured at 25 ° C. and 60 rpm using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., BII). A lower viscosity is preferable from the viewpoint of handling, and was evaluated according to the following criteria. A: 15 mPa ⁇ s or less (very good) B: Over 15 mPa ⁇ s, 50 mPa ⁇ s or less (good) C: 50 mPa ⁇ s exceeded (defect)
  • the dispersed particle size of the inorganic oxide dispersion is determined by using a dynamic light scattering particle size distribution meter (manufactured by Nikkiso Co., Ltd., Microtrac UPA). When integrated, a particle size of 50% was measured.
  • the samples used for the measurement were Examples 1, 3 to 28, and Comparative Examples 1 to 15 were added to the solvent used at the time of preparing the dispersion in a measurable amount, and the sample was used in a bath ultrasonic apparatus. Dispersed and adjusted. In Example 2, an arbitrary amount of the dispersion that can be measured was added to ethanol, and the dispersion was dispersed and adjusted using a bath-type ultrasonic device.
  • the dispersed particle diameter is preferably as small as possible from the viewpoint of transparency, and was evaluated according to the following criteria.
  • the stability of the inorganic oxide over time is the absolute value obtained by measuring the viscosity of a sample in which the inorganic oxide dispersion is allowed to stand at 50 ° C. for 7 days, and subtracting the value of the viscosity after standing from the value of the viscosity before standing. The value was evaluated as the rate of change in viscosity. The smaller the rate of change in viscosity, the better and the evaluation was made according to the following criteria.
  • the inorganic oxide paint was applied to a 10 cm ⁇ 10 cm glass substrate using a doctor blade so that the film thickness after drying was 2 ⁇ m, and dried in an oven at 140 ° C. for 30 minutes to form a coating film.
  • the binder was also coated and dried by the same method to form a coating film.
  • a haze meter NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the value of the total light transmittance of the inorganic oxide coating film was measured based on the value of the glass plate coated with the binder.
  • the value of the total light transmittance is preferably closer to 100 and evaluated according to the following criteria.
  • B 95% or more and less than 97% (good)
  • C Less than 95% (defect)
  • the inorganic oxide paint was applied to a PET film having a thickness of 250 ⁇ m using a doctor blade so that the film thickness after drying was 50 ⁇ m, and dried in an oven at 105 ° C. for 1 hour to form a coating film.
  • This coating film was peeled from the substrate to produce an inorganic oxide film.
  • Q400EM manufactured by TA Instruments
  • the binder was also coated and dried by the same method to form a film, and the linear expansion coefficient was measured. Evaluation was carried out according to the following criteria from the value obtained by subtracting the linear expansion coefficient of the inorganic oxide film from the value of the linear expansion coefficient of the binder-only film.
  • C Less than 5 ppm / ° C (defect)
  • the inorganic oxide dispersions of Examples 1 to 28 had good viscosity, dispersed particle diameter, and stability over time.
  • the inorganic oxide dispersions of Examples 1 to 8, 10 to 20, and 25 to 28 had better stability results with time.
  • the inorganic oxide paints and films of Examples 29 to 52 are both excellent in transparency and heat resistance.
  • the inorganic oxide paints of Examples 29 to 36 and 38 to 52 are used. And the film was even better.
  • the inorganic oxide dispersion of the embodiment of the present invention can be widely applied to inorganic oxides added for the purpose of adjusting mechanical properties (mechanical strength, etc.), optical properties, electrical properties, etc., surface hardness adjustment, It can be used for a wide range of applications such as coating films and films that require refractive index adjustment, infrared cut, antistatic property adjustment, thermal expansion property adjustment and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、誘電率18以上の溶媒と、を含むことによって高い経時安定性及び高い透明性を有する無機酸化物分散体を提供することができる。下記一般式Aにおいて、Rは、炭素数2~13からなるアルキル基を表す。R及びRはそれぞれ独立に水素原子、もしくは、炭素数2~13からなるアルキル基を表す。

Description

高い透明性を有する無機酸化物分散体
 本発明は、高い透明性を有する無機酸化物分散体、並びに前記分散体を含むインキ、塗料、コーティング液、塗膜、及びフィルムに関する。
 樹脂単独では達成し難い機械的特性、及び光学的特性を塗料、フィルム等の用途で達成する為にシリカ等の無機酸化物を樹脂と混合する手法が古くから試みられてきた。無機酸化物と樹脂とを混合する際には、機械的特性や光学的特性の向上を目的として無機酸化物をナノレベルまで分散した分散体を用いる手法が用いられてきた。
 無機酸化物をナノレベルまで微細分散すると無機酸化物を分散安定化する為に必要となる分散剤が多量に必要となり、塗料やフィルムとして要求される特性が低下してしまうことが課題として挙げられる。この課題を解決する為に、バインダー中に分散性能を有する骨格を導入することにより特性低下を最小限とする提案されているが、適用できる用途が限定される(特許文献1)。また、低沸点のカップリング剤にて処理し、フィルム加工時の加熱によって余剰分のカップリング剤を除去することにより最終物性への影響を最小限とする方法が提案されているが、処理適用できる限定された溶剤系ではジルコニア、及びチタンの分散はできるものの、無機酸化物の種類によっては利用するには困難であった(特許文献2)。また、ヒドロキシカルボン酸とカチオン系界面活性剤を併用することにより有機溶剤中でチタニアゾルを安定化することが提案されているが、この方法は、チタニアゾルへの適応はできるが、例えば気相法によって製造された無機酸化物には分散不足となる為、適応が困難であった(特許文献3)。
 近年、このような無機酸化物と樹脂を混合することにより、機械的特性を向上させる手法が注目されている分野として透明ポリイミドの機械的特性、及び光学的特性制御が挙げられる。しかしながら、透明ポリイミドは、製造工程中において、250~350℃の加熱工程を経る為、一般的な樹脂型分散剤、及びカチオン系活性剤を用いた無機酸化物分散体では、分散剤の分解による黄変に伴って、ポリイミドの透明性、及び機械的物性値を損なってしまう課題があった。
国際公開第2007/138946号 特開2009-143974号公報 特開2003-95657号公報
 本発明の一実施形態は、分散安定性に優れ、高い透明性を有する無機酸化物分散体、並びに前記無機酸化物分散体を含む塗料、塗膜、及びフィルムを提供することを目的とする。
 すなわち、本発明の一実施形態は、無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、比誘電率18以上の溶媒と、を含む無機酸化物分散体に関する。
 
一般式A
Figure JPOXMLDOC01-appb-C000002
 
(Rは、炭素数2~13からなるアルキル基を表す。R及びRはそれぞれ独立に水素原子、もしくは、炭素数2~13からなるアルキル基を表す。)
 また、本発明の他の一実施形態は、前記無機酸化物分散体を含む塗料に関する。
 また、本発明の他の一実施形態は、前記無機酸化物分散体、もしくは前記塗料を用いて形成されてなる塗膜に関する。
 また、本発明の他の一実施形態は、前記無機酸化物分散体、もしくは前記塗料を用いて形成されてなるフィルムに関する。
 本発明の実施形態により、分散安定性に優れ、高い透明性を有する無機酸化物分散体、並びに前記無機酸化物分散体を含む塗料、塗膜、及びフィルムを提供することができる。
 以下、本発明の実施形態の無機酸化物分散体、塗料、塗膜、及びフィルムについて詳しく説明する。
 本発明の実施形態は、以下の通りである。
 [1]無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、比誘電率18以上の溶媒と、を含む無機酸化物分散体である。
一般式A
Figure JPOXMLDOC01-appb-C000003
(Rは、炭素数2~13からなるアルキル基を表す。R及びRはそれぞれ独立に水素原子、もしくは、炭素数2~13からなるアルキル基を表す。)
 [2]溶媒が、水、アルコール、γ―ブチロラクトン、及び窒素含有有機溶剤からなる群より選ばれる少なくとも一つを含む[1]記載の無機酸化物分散体である。
 [3][1]又は[2]記載の無機酸化物分散体を含む塗料である。
 [4]さらにポリイミド及びポリアミック酸からなる群より選ばれる少なくとも一つを含む[3]記載の塗料である。
 [5][1]又は[2]記載の無機酸化物分散体、もしくは、[3]又は[4]記載の塗料を用いて形成されてなる塗膜。
 [6][1]又は[2]記載の無機酸化物分散体、もしくは、[3]又は[4]記載の塗料を用いて形成されてなるフィルム。
<無機酸化物分散体>
 本発明の実施形態の無機酸化物分散体は、無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、比誘電率18以上の溶媒と、を含む。以下、本発明の無機酸化物分散体に使用する材料について説明する。
<無機酸化物>
 無機酸化物分散体に用いる無機酸化物は、金属、及びSiからなる群より選ばれる少なくともいずれか一つの元素の酸化物を用いることができる。塗膜、フィルム等に必要とされる物性値によって無機酸化物を選定することが可能であり、例えば、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(NbO5)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(BiO3)、セリア(CeO)、酸化アンチモン(Sb、Sb)等が挙げられる。上記無機酸化物は、1種を単独で、あるいは2種以上を混合して用いることができる。
 無機酸化物の粒子径は、透明性の観点から平均粒子径が15~50nmの範囲であることが好ましい。ここで平均粒子径は、走査型電子顕微鏡(SEM)で観察した粒子径の算術平均値である。詳細には、塗料用粒子の粉末を倍率20000倍で観察し、任意の100個の粒子を選択し、各々の粒子径を平均して求めた値である。粒子形状が長軸、短軸を有する場合には、長軸と短軸の長さの平均値を、その粒子の粒子径とする。
 無機酸化物の合成手法として、固相法、液相法、気相法の3種類に大別される。微細な無機酸化物を得ることができることから液相法、又は気相法から合成される無機酸化物を用いることが好ましい。特に液相法には、合成したい物質の構成イオンを溶かした溶液からpH変化、又は溶剤等の添加によって沈殿を生じさせる共沈法、金属アルコキシドを加水分解することによって粒子を合成する加水分解法、加圧下の溶媒中で加熱することによって物質合成又は結晶成長を行うソルボサーマル法、及び金属アルコキシドを加水分解することによってコロイド状に粒子が分散したゾルを流動性のないゲルとした後にゲルを加熱して粒子を得るゾルゲル法などがある。
 無機酸化物は、250℃以上の高温で焼成し、無機酸化物の結晶骨格を安定させた粒子を用いることが機械物性値の向上の観点から好ましく、400℃以上の高温で焼成した無機酸化物を用いることがより好ましい。特に無機酸化物分散体を塗料、もしくは、フィルムとして用いる際のバインダーとしてポリイミド、又は、ポリアミック酸ワニスを用いる際には、硬化温度が300~400℃必要となる為、上記の焼成工程を施した無機酸化物は、化学的に安定であり、膜収縮が抑制でき、脱水等に伴う膜内の欠陥が発生せず良好な機械的物性値の向上が達成できる。このため、本発明の実施形態の無機酸化物分散体を用いることで、300℃以上の高温においても、着色が少なく(高耐熱性)、塗膜、およびフィルムの機械的物性値(熱膨張性)を向上させ得ることができる。
<アミン>
 無機酸化物分散体には、下記一般式Aで表されるアミンを用いることができる。
 一般式A:
Figure JPOXMLDOC01-appb-C000004
 Rは、炭素数2~13からなるアルキル基を表す。R及びRは、それぞれ独立に水素原子、もしくは、炭素数2~13からなるアルキル基を表す。また、R~Rの炭素数の合計は、6~25が好ましく、6~18がより好ましく、6~12がさらに好ましい。本アミンを使用することにより、無機酸化物分散体を特異的に分散することが可能であり、高い透明性を達成できる。また、室温でのアミンの揮発が発生しにくい為、分散体としての組成が安定し、結果、経時安定性にも優れる。
<ヒドロキシ酸>
 無機酸化物分散体には、分子量80以上200以下の脂肪族ヒドロキシ酸を用いることができ、分子量90以上200以下の脂肪族ヒドロキシ酸を用いることが好ましい。特にヒドロキシ酸の分子骨格中のヒドロキシル基とカルボキシル基の個数の比率が、カルボキシル基/ヒドロキシル基=1~3であることが無機酸化物の透明性を長時間維持する上でより好ましい。また、無機酸化物分散体を塗料、もしくは、フィルムとして用いる際のバインダーとしてポリイミド、又は、ポリアミック酸ワニスを用いる際には、硬化温度が300~400℃必要となる。本発明の実施形態に用いるアミン、及びヒドロキシ酸を同時に用いることにより、硬化後の透明性を維持できるだけでなく、分解に伴う着色、並びに、物性値への悪影響を及ぼすことがない。
 アミンとヒドロキシ酸の添加量は、それぞれ、無機酸化物100質量部に対して、1質量部~50質量部であることが好ましく、より好ましくは5質量部~30質量部の範囲である。アミンとヒドロキシ酸の添加量が上記範囲にあれば、無機酸化物粒子の透明性を長時間維持でき、塗膜、又はフィルムにした際の物性値に悪影響を及ぼすことがない。アミンとヒドロキシ酸を組み合わせて用いることにより、無機酸化物100質量部に対して50重量部程度を添加している従来方法よりも分散剤量が低添加量であっても透明性を確保することができる。
<溶媒>
 無機酸化物分散体には、比誘電率18以上の溶媒を用いることができる。ここで比誘電率とは、媒質の誘電率と真空の誘電率の比である。
 前述の溶媒は、無機酸化物分散体の経時での分散安定性の保持、並びに、分散粒子径の微細分散がより良好であることから、水、アルコール、γ―ブチロラクトン、又は窒素含有有機溶剤が好ましく、γ―ブチロラクトン、又は窒素含有有機溶剤がさらに好ましい。ここで窒素含有有機溶剤とは、分子内に窒素を有する溶剤の総称であり、例えば、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、及びアセトニトリル等が挙げられる。
 γ―ブチロラクトン、並びに、窒素含有有機溶剤は、種々のポリマーを溶解しやすいことから各種ポリマーを溶解する溶媒として広く用いられている。また、後述のとおり、バインダーが一般的に広く用いられているポリイミド、又は、ポリアミック酸ワニスのときは、無機酸化物分散体を作製するためにγ―ブチロラクトン、又は、窒素含有有機溶剤を用いることが好ましい。
<分散方法>
 無機酸化物分散体を作製するに当たり、高い透明性を達成する目的で一般的に用いられる分散機を用いることができ、例えば、ディスパー、ホモミキサー、プラネタリーミキサー、エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製の「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械製作所社製「マイクロス」、ロールミル等の分散機が挙げられる。分散機は、一種類のみ単独で用いてもよいし、複数種を併用してもよい。
<分散粒子径>
 無機酸化物分散体の分散粒子径は、塗料、又はフィルム時の透明性の観点から分散粒子径は小さい程、可視光領域における光散乱が低減される為好ましいが、ポリイミド等の熱膨張を抑制する目的で無機酸化物を添加する際には、透明性との両立を考えると15~150nmの範囲であることが好ましく、30~100nmの範囲であることがより好ましい。尚、分散粒子径とは、動的光散乱方式の粒度分布計を用いて、体積粒度分布において、粒子径の小さいものからその粒子の体積割合を積算した際に、50%となる粒子径である。
<無機酸化物塗料>
 本発明の実施形態の無機酸化物分散体は、必要に応じて、バインダー、硬化剤、乾燥防止剤、キレート剤、レオロジーコントロール剤、又はシランカップリング剤等を添加して、種々の基材上に塗工可能な無機酸化物塗料として用いることができる。
<バインダー>
 バインダーは、塗膜、又はフィルム等に必要とされる物性に応じて選定することが可能であり、例えば、ポリアクリル、ポリカーボネート、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタン、ポリエーテル、及びポリフッ化ビニリデン等の樹脂を溶媒に溶解したワニス、又は、分散したエマルジョンが挙げられる。特に本発明の実施形態の無機酸化物分散体は、バインダーとしてポリイミド、又は、ポリアミック酸ワニスを用いることが好ましく、特にポリイミド、又は、ポリアミック酸ワニスをバインダーとして用いることにより、ポリイミド、又は、ポリアミック酸ワニスの一般的な硬化温度である300~400℃で脂肪族ヒドロキシ酸、及びアミンが揮発し、透明性の維持だけでなく、機械的物性値が向上することからさらに好ましい。
<無機酸化物塗膜>
 種々の基材上に無機酸化物塗料を塗工し、加熱することにより溶媒を乾燥させ、必要に応じて硬化することにより、無機酸化物塗膜として用いることができる。基材は、必要とされる物性に応じて選定することが可能であり、例えば、ポリアクリル、ポリカーボネート、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタン、ポリエーテル、ポリフッ化ビニリデン、又はポリエチレンテレフタレート等の樹脂、鉄、ステンレス、銅、又はアルミ等の金属、もしくは、ガラス等の無機酸化物からなるフィルム、板、又は成型物等が挙げられる。
<無機酸化物フィルム>
 種々の剥離性のある基材上に無機酸化物塗料を塗工し、加熱することにより溶媒を乾燥させ、必要に応じて硬化することにより得た無機酸化物塗膜を、基材から剥離することにより、無機酸化物フィルムを得ることができる。得られた無機酸化物フィルムは、必要に応じて、ポリアクリル、ポリカーボネート、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタン、ポリエーテル、ポリフッ化ビニリデン、又はポリエチレンテレフタレート等の樹脂、鉄、ステンレス、銅、又はアルミ等の金属、もしくは、ガラス等の無機酸化物等のフィルム等に接着、粘着させ、積層フィルムとして用いることができる。
<透明性>
 透明性は、高いほど好ましく、無機酸化物塗料を基材に塗工した塗板の全光線透過率を、ワニスを基材に乾燥時に同膜厚となるように塗工した塗板を基準として算出した際に、95~100%であることが好ましく、97~100%であることがより好ましい。
<耐熱性>
 特にポリイミドをバインダーとして使用した塗膜、並びに、フィルムは、硬化温度300℃~400℃付近にて着色等に伴う透明性の低下が少ない方が好ましく、無機酸化物塗料を基材に塗工した塗板の加熱前の全光線透過率の値から加熱後の全光線透過率の値を引いた値の絶対値が1%未満であれば好ましく、0.5%未満であればより好ましい。
<熱膨張性>
 特にポリイミドをバインダーとして使用したフィルムでは、フィルム中に無機酸化物を均一に分散することにより、バインダー単独よりも加熱時の寸法変化を表す線膨張係数を低くすることが可能である。特に無機酸化物として、アルミナを用いた際には線膨張係数がより低くなり、好ましい。線膨張係数は、物質の温度を調節されたプログラムに従って変化させながら、非振動的な荷重を加えてその物質の変形を温度の関数として測定することにより求めることができる。フィルムの厚さが50μm程度であれば、引っ張り応力を掛けた際の変形から求めることが好ましい。
 本発明は2018年5月28日出願の日本特許出願番号2018-101435の主題に関連し、その全開示内容を参照により本明細書に取り込む。
 以下に、実施例により本発明の実施形態をより具体的に説明するが、本発明の実施形態は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例中、特に断りのない限り、「部」、「%」とは、それぞれ質量部、質量%を意味する。
<無機酸化物>
 実施例及び比較例で使用した無機酸化物を以下に列挙する。
AEROXIDE Alu C(アルミナ、エボニック デグサ社製)
AEROSIL 200(シリカ、エボニック デグサ社製)
PCS-60(ジルコニア、新日本電工株式会社製)
TTO-V-3(酸化チタン、石原産業株式会社製)
NANOFINE 50A(酸化亜鉛、堺化学工業株式会社製)
バイラール Al-L40P(アルミナゾル、多木化学株式会社製)
<アミン>
 実施例及び比較例で使用したアミンを以下に列挙する。
トリエチルアミン(三級アミン、富士フイルム和光純薬株式会社製)
トリプロピルアミン(三級アミン、富士フイルム和光純薬株式会社製)
ジブチルアミン(二級アミン、富士フイルム和光純薬株式会社製)
ジヘキシルアミン(二級アミン、富士フイルム和光純薬株式会社製)
ジオクチルアミン(二級アミン、富士フイルム和光純薬株式会社製)
ジドデシルアミン(二級アミン、富士フイルム和光純薬株式会社製)
オクチルアミン(一級アミン、富士フイルム和光純薬株式会社製)
ドデシルアミン(一級アミン、東京化成工業株式会社製)
ステアリルアミン(一級アミン)
ニッサンカチオン 2-DB-800E(四級アミン、不揮発分80%、日油株式会社製)
ニッサンカチオン MA(一級アミン酢酸塩、不揮発分100%、日油株式会社製)
<脂肪族ヒドロキシ酸>
 実施例及び比較例で使用した脂肪族ヒドロキシ酸を以下に列挙する。
乳酸(富士フイルム和光純薬株式会社製、分子量 90.08)
DL-リンゴ酸(富士フイルム和光純薬株式会社製、分子量 134.09)
クエン酸(富士フイルム和光純薬株式会社製、分子量 192.12)
酒石酸(富士フイルム和光純薬株式会社製、分子量 150.09)
キナ酸(富士フイルム和光純薬株式会社製、分子量 192.17)
12-ヒドロキシステアリン酸(伊藤製油株式会社製、分子量 300.48)
<芳香族ヒドロキシ酸>
 比較例で使用した芳香族ヒドロキシ酸を以下に列挙する。
サリチル酸(富士フイルム和光純薬株式会社製、分子量 138.12)
3、4、5-トリヒドロキシ安息香酸(富士フイルム和光純薬株式会社製、分子量 170.12)
<脂肪族ヒドロキシ酸アンモニウム塩>
 比較例で使用した脂肪族ヒドロキシ酸アンモニウム塩を以下に列挙する。
乳酸アンモニウム(不揮発分40%、富士フイルム和光純薬株式会社製)
クエン酸三アンモニウム(富士フイルム和光純薬株式会社製)
<溶媒>
 実施例及び比較例で使用した溶媒を以下に列挙する。
精製水(比誘電率80.1)
N、N-ジメチルスルホキシド(比誘電率48.9、三菱ガス化学株式会社製)
N、N-ジメチルアセトアミド(比誘電率38.9、三菱ガス化学株式会社製)
N-メチル-2-ピロリドン(比誘電率32.0、三菱ケミカル株式会社製)
γ―ブチロラクトン(比誘電率18.3、三菱ケミカル株式会社製)
メタノール(比誘電率33.1、富士フイルム和光純薬株式会社製)
エタノール(比誘電率23.8、富士フイルム和光純薬株式会社製)
2-プロパノール(比誘電率18.3、富士フイルム和光純薬株式会社製)
メチルイソブチルケトン(比誘電率13.1、富士フイルム和光純薬株式会社製)
乳酸エチル(比誘電率13.1、富士フイルム和光純薬株式会社製)
PGMEA(プロピレングリコールモノメチルエーテルアセテート、比誘電率8.0、富士フイルム和光純薬株式会社製)
酢酸エチル(比誘電率6.0、富士フイルム和光純薬株式会社製)
<樹脂型分散剤>
 比較例で使用した樹脂型分散剤を以下に列挙する。
DisperBYK-102(酸性分散剤、ビックケミ―・ジャパン株式会社製)
<バインダー>
 実施例及び比較例で使用したバインダーを以下に列挙する。
SPIXAREA TP001(ポリイミド、ソマール株式会社製、不揮発分25w%)
<無機酸化物分散体の調製>
 表1に示す配合組成に従い、均一になるように撹拌混合した後、さらに直径0.1mmのジルコニアビーズを用いてサンドミルで5時間分散した後、孔径1μmのフィルタで濾過して無機酸化物分散体をそれぞれ作製した。尚、表1中、単位表記のない数字は部を表し、空欄は配合していないことを表す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
<無機酸化物塗料の調製>
 表2に示す配合組成に従い、均一になるように撹拌混合し、無機酸化物塗料をそれぞれ作製した。尚、表2中、単位表記のない数字は部を表し、空欄は配合していないことを表す。
Figure JPOXMLDOC01-appb-T000007
[評価]
 得られた無機酸化物分散体の、粘度、及び、分散性、経時安定性を下記の方法で評価した。結果を表3に示す。該無機酸化物分散体を用いて調整した無機酸化物塗料、及びフィルムの、透明性、耐熱性、を下記の方法で評価した。結果を表4に示す。
(粘度)
 無機酸化物分散体の粘度は、B型粘度計(東機産業社製、BII)を用いて25℃、60rpm時の粘度を測定した。粘度は、低い方が、ハンドリングの観点から好ましく、下記の基準に従って評価した。
A:15mPa・s以下(極めて良好)
B:15mPa・s超過、50mPa・s以下(良好)
C:50mPa・s超過(不良)
(分散粒子径)
 無機酸化物分散体の分散粒子径は、動的光散乱方式の粒度分布計(日機装社製、マイクロトラックUPA)を用いて、体積粒度分布において、粒子径の小さいものからその粒子の体積割合を積算した際に、50%となる粒子径を測定した。尚、測定に用いた試料は、実施例1、3~28、比較例1~15は分散体を分散体作製時に用いた溶剤に測定可能な任意の量を添加し、バス型超音波装置にて分散し、調整した。実施例2は、分散体をエタノールに測定可能な任意の量を添加し、バス型超音波装置にて分散し、調整した。分散粒子径は透明性の観点から小さい程好ましく、下記の基準に従って評価した。
A:100nm以下(極めて良好)
B:100nm超過、150nm以下(良好)
C:150nm超過(不良)
(経時安定性)
 無機酸化物の経時安定性は、無機酸化物分散体を50℃ 7日間静置した試料の粘度を測定し、静置前の粘度の値から静置後の粘度の値を引いた値の絶対値を粘度の変化率として評価した。粘度の変化率は、小さい程、好ましく、下記の基準に従って評価した。
A:5mPa・s以下(極めて良好)
B:5mPa・s超過、10mPa・s(良好)
C:10mPa・s超過(不良)
(透明性)
 無機酸化物塗料を、10cm×10cmのガラス基板に、乾燥後の膜厚が2μmになるようにドクターブレードを用いて塗工し、オーブンにて140℃ 30分間乾燥し、塗膜を形成した。バインダーも、同様の方法で塗工、乾燥し、塗膜を形成した。ヘーズメーター(日本電色工業社製、NDH-2000)を用いて、バインダーを塗工したガラス板の値を基準として、無機酸化物塗膜の全光線透過率の値を測定した。全光線透過率の値は、100に近い程好ましく、下記の基準に従って評価した。
A:97%以上、100%以下(極めて良好)
B:95%以上、97%未満(良好)
C:95%未満(不良)
(耐熱性)
 透明性評価に用いた塗膜をオーブンにて窒素雰囲気下、300℃ 1時間加熱した後に、透明性評価を行い、加熱前の全光線透過率の値から加熱後の全光線透過率の値を引いた値の絶対値から評価した。加熱前後の全光線透過率の変化は小さい程、耐熱性が高い為、好ましく、下記の基準に従って評価した。
A:0.5%未満(極めて良好)
B:0.5%以上、1%未満(良好)
C:1%以上(不良)
(熱膨張性)
 無機酸化物塗料を、250μm厚のPETフィルムに、乾燥後の膜厚が50μmになるようにドクターブレードを用いて塗工し、オーブンにて105℃ 1時間乾燥し、塗膜を形成した。この塗膜を基材から剥離し、無機酸化物フィルムを作製した。無機酸化物フィルムをオーブンにて250℃1時間 加熱後、4.5mm×3.0cmの試験片に加工し、Q400EM(TAインスツルメント社製)を用いて、引っ張り荷重をかけた際の温度と試験片のひずみの関係から線膨張係数を測定した。バインダーも、同様の方法で塗工、乾燥し、フィルムを形成し、線膨張係数を測定した。バインダーのみのフィルムの線膨張係数の値から無機酸化物フィルムの線膨張係数を差し引いた値から下記の基準に従って評価した。
A:10ppm/℃以上(極めて良好)
B:10ppm/℃未満、5ppm以上(良好)
C:5ppm/℃未満(不良)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3に示すように、実施例1~28の無機酸化物分散体は、粘度、分散粒子径、及び経時安定性共に良好であった。特に実施例1~8、10~20、及び25~28の無機酸化物分散体は、経時安定性の結果がさらに良好であった。また、表4に示すように、実施例29~52の無機酸化物塗料、及びフィルムは、透明性、耐熱性共に良好であり、特に実施例29~36、及び38~52の無機酸化物塗料、及びフィルムはさらに良好であった。
 本発明の実施形態の無機酸化物分散体は、機械的特性(機械強度等)、光学的特性、電気的特性などを調整する目的で添加する無機酸化物に広く適用できることから、表面硬度調整、屈折率調整、赤外線カット、帯電防止性調整、熱膨張性調整などを必要とする塗膜、フィルムなどへの幅広い用途へ利用可能である。

Claims (6)

  1.  無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、比誘電率18以上の溶媒と、を含む無機酸化物分散体。
    一般式A
    Figure JPOXMLDOC01-appb-C000001
    (Rは、炭素数2~13からなるアルキル基を表す。R及びRはそれぞれ独立に水素原子、もしくは、炭素数2~13からなるアルキル基を表す。)
  2.  溶媒が、水、アルコール、γ―ブチロラクトン、及び窒素含有有機溶剤からなる群より選ばれる少なくとも一つを含む請求項1記載の無機酸化物分散体。
  3.  請求項1又は2記載の無機酸化物分散体を含む塗料。
  4.  さらにポリイミド及びポリアミック酸からなる群より選ばれる少なくとも一つを含む請求項3記載の塗料。
  5.  請求項1又は2記載の無機酸化物分散体、もしくは、請求項3又は4記載の塗料を用いて形成されてなる塗膜。
  6.  請求項1又は2記載の無機酸化物分散体、もしくは、請求項3又は4記載の塗料を用いて形成されてなるフィルム。
PCT/JP2019/020836 2018-05-28 2019-05-27 高い透明性を有する無機酸化物分散体 WO2019230629A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207035123A KR20210013705A (ko) 2018-05-28 2019-05-27 높은 투명성을 갖는 무기산화물 분산체
CN201980035581.3A CN112424297A (zh) 2018-05-28 2019-05-27 具有高透明性的无机氧化物分散体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-101435 2018-05-28
JP2018101435A JP6631656B2 (ja) 2018-05-28 2018-05-28 高い透明性を有する無機酸化物分散体

Publications (1)

Publication Number Publication Date
WO2019230629A1 true WO2019230629A1 (ja) 2019-12-05

Family

ID=68698195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020836 WO2019230629A1 (ja) 2018-05-28 2019-05-27 高い透明性を有する無機酸化物分散体

Country Status (5)

Country Link
JP (1) JP6631656B2 (ja)
KR (1) KR20210013705A (ja)
CN (1) CN112424297A (ja)
TW (1) TW202003724A (ja)
WO (1) WO2019230629A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080396A (ja) * 2019-11-21 2021-05-27 東洋インキScホールディングス株式会社 高い透明性を有する無機酸化物分散体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279725A (ja) * 1993-03-24 1994-10-04 Mitsubishi Paper Mills Ltd 酸化チタン分散液の製造方法
JPH10168360A (ja) * 1996-12-16 1998-06-23 Toyo Ink Mfg Co Ltd 塗料組成物
JP2003192348A (ja) * 2001-12-21 2003-07-09 Taki Chem Co Ltd 有機溶媒分散型酸化チタンゾル及びその製造方法
JP2011521870A (ja) * 2008-02-14 2011-07-28 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド コロイド性二酸化チタンゾル
JP2015129258A (ja) * 2013-12-05 2015-07-16 東洋インキScホールディングス株式会社 顔料組成物およびその製造方法、摩砕混練用の水溶性有機溶剤、並びにカラーフィルタ用顔料組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069330B2 (ja) * 1997-03-03 2008-04-02 日産化学工業株式会社 酸化チタン−酸化スズ複合ゾルの製造方法
JP4022970B2 (ja) * 1997-03-04 2007-12-19 日産化学工業株式会社 酸化チタン−酸化ジルコニウム−酸化スズ複合ゾルの製造方法
JP4521801B2 (ja) 2001-09-25 2010-08-11 多木化学株式会社 有機溶媒分散型酸化チタンゾル及びその製造方法
MX2007004121A (es) * 2004-10-08 2007-09-11 Tokuyama Corp Composiciones de recubrimiento y proceso para la produccion de las mismas.
JP2006131899A (ja) * 2004-10-08 2006-05-25 Tokuyama Corp コーティング剤用組成物及びその製造方法
KR101051228B1 (ko) 2006-05-29 2011-07-21 토요잉크Sc홀딩스주식회사 금속산화물 조성물, 경화막 및 적층체
JP5082814B2 (ja) 2007-12-11 2012-11-28 住友大阪セメント株式会社 無機酸化物含有透明複合体及びその製造方法
JP5728816B2 (ja) * 2010-03-26 2015-06-03 東洋インキScホールディングス株式会社 無機酸化物分散用ビニル重合体、およびそれを含んでなる導電性無機酸化物分散体
JP6741202B2 (ja) * 2015-04-30 2020-08-19 日産化学株式会社 コーティング組成物及び光学部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279725A (ja) * 1993-03-24 1994-10-04 Mitsubishi Paper Mills Ltd 酸化チタン分散液の製造方法
JPH10168360A (ja) * 1996-12-16 1998-06-23 Toyo Ink Mfg Co Ltd 塗料組成物
JP2003192348A (ja) * 2001-12-21 2003-07-09 Taki Chem Co Ltd 有機溶媒分散型酸化チタンゾル及びその製造方法
JP2011521870A (ja) * 2008-02-14 2011-07-28 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド コロイド性二酸化チタンゾル
JP2015129258A (ja) * 2013-12-05 2015-07-16 東洋インキScホールディングス株式会社 顔料組成物およびその製造方法、摩砕混練用の水溶性有機溶剤、並びにカラーフィルタ用顔料組成物

Also Published As

Publication number Publication date
TW202003724A (zh) 2020-01-16
KR20210013705A (ko) 2021-02-05
JP6631656B2 (ja) 2020-01-15
CN112424297A (zh) 2021-02-26
JP2019206611A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
EP3178789B1 (en) Organic solvent dispersion of zirconium oxide particles and method for producing same
WO2014132606A1 (ja) 亜酸化銅粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
JPWO2002013999A1 (ja) 金属コロイド溶液及びその製造方法並びにそれを用いた塗料
WO2011004750A1 (ja) 高屈折率粉末、その製造方法及び用途
WO2020129872A1 (ja) カーボンナノチューブ分散液、及びその製造方法
WO2021123127A1 (en) Printing ink containing undried, coated titanium dioxide
JP2010031158A (ja) 黒色顔料分散液とその製造方法および用途
WO2019230629A1 (ja) 高い透明性を有する無機酸化物分散体
JP5337393B2 (ja) 透明酸化チタンオルガノゾルおよびそれを配合したコーティング組成物,光学基材
JP6347368B2 (ja) 酸化チタン粒子分散液、コーティング剤組成物及び抗菌・抗ウイルス性部材
JP3976484B2 (ja) 導電性粉末有機溶剤系分散体及び導電性塗料
JP3979465B2 (ja) 導電性粉末有機溶剤系分散体及び導電性塗料
JP2019038738A (ja) 酸化ジルコニウム粒子の有機溶媒分散液
JP2018521939A (ja) タングステンがドープされた酸化第二スズコロイド懸濁液及びその調製方法
JP2005008515A (ja) 金属酸化物粒子及びその製造方法
WO2021100763A1 (ja) 無機酸化物分散体および塗料
JP5084418B2 (ja) 有機溶媒に再分散可能な塊状組成物、その製造方法および該塊状組成物を再分散させた有機溶媒分散ゾル
TWI772450B (zh) 熱線遮蔽粒子分散液及其之製造方法
JPH0277473A (ja) 無機導電塗料
JPH03227376A (ja) 無機導電性塗料の製造方法
WO2008133723A2 (en) Dispersing agent for metallic nanoparticles in an organic media
JP2010146878A (ja) 導電性酸化亜鉛微粒子及びその製造方法
KR20150072264A (ko) 분산성이 우수한 고굴절 티타니아 졸의 제조방법
EP4067309A1 (en) Dispersion of titanium dioxide microparticles in organic solvent, method for producing same, and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035123

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19811659

Country of ref document: EP

Kind code of ref document: A1