WO2021100763A1 - 無機酸化物分散体および塗料 - Google Patents

無機酸化物分散体および塗料 Download PDF

Info

Publication number
WO2021100763A1
WO2021100763A1 PCT/JP2020/043008 JP2020043008W WO2021100763A1 WO 2021100763 A1 WO2021100763 A1 WO 2021100763A1 JP 2020043008 W JP2020043008 W JP 2020043008W WO 2021100763 A1 WO2021100763 A1 WO 2021100763A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
oxide dispersion
manufactured
dispersion
parts
Prior art date
Application number
PCT/JP2020/043008
Other languages
English (en)
French (fr)
Inventor
悟 相澤
亮介 権藤
酒井 隆行
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2021100763A1 publication Critical patent/WO2021100763A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • Embodiments of the present invention relate to inorganic oxide dispersions, paints, coatings, and films.
  • Patent Document 2 zirconia and titanium can be dispersed in a limited solvent system applicable to the treatment, it is difficult to develop the zirconia and titanium depending on the type of inorganic oxide. It has also been proposed to stabilize titania sol in an organic solvent by using a hydroxycarboxylic acid and a cationic surfactant in combination. However, although this method can be applied to titania sol, it is difficult to apply it to inorganic oxides produced by the vapor phase method, for example, because the dispersion is insufficient (Patent Document 3).
  • a polyamic acid in which a part of the imide is retained in an uncyclized state for the purpose of greatly improving the transparency and mechanical property values when imidized and improving the handleability.
  • a large amount of inorganic oxide is added for the purpose of further improving the mechanical property value of the polyamic acid, agglomerates are generated, and there is a problem that the transparency and the mechanical property value are lowered.
  • An object of the present invention is to provide an inorganic oxide dispersion having excellent dispersion stability and high transparency, and a coating material, a coating film, and a film containing the inorganic oxide dispersion. Further, in the embodiment of the present invention, by using various polyamic acids or inorganic oxide dispersions having high compatibility with polyimide, there is little coloring even after a high temperature of 300 ° C. or higher (high heat resistance). ), It is an object of the present invention to provide a coating film and a film having improved mechanical property values (thermal expandability).
  • an inorganic oxide an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, a silicon compound, and a solvent having a relative permittivity of 18 or more are used.
  • Concerning inorganic oxide dispersions including.
  • General formula A R 1 represents an alkyl group having 1 to 13 carbon atoms.
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.
  • the silicon compound is selected from the group consisting of a hydrolysis condensate of methylalkoxysilane, 3-methacryloxypropylalkoxysilane, methylhydrogenpolysiloxane, tetraethoxysilane and tetraethoxysilane.
  • the present invention relates to the inorganic oxide dispersion containing at least one kind.
  • one embodiment of the present invention relates to the inorganic oxide dispersion containing at least one inorganic oxide selected from the group consisting of alumina and zirconia.
  • one embodiment of the present invention relates to the inorganic oxide dispersion containing at least one selected from the group consisting of alcohol, ⁇ -butyrolactone and nitrogen-containing organic solvent as a solvent.
  • one embodiment of the present invention relates to a coating material containing the inorganic oxide dispersion.
  • one embodiment of the present invention relates to the coating material containing at least one binder selected from the group consisting of polyimide and polyamic acid.
  • one embodiment of the present invention relates to a coating film formed by using the inorganic oxide dispersion or the coating material.
  • one embodiment of the present invention relates to the inorganic oxide dispersion or a film formed by using the coating material.
  • an inorganic oxide dispersion having excellent dispersion stability and high transparency and a coating film, a coating film, and a film containing the inorganic oxide dispersion.
  • various polyamic acids or inorganic oxide dispersions having high compatibility with polyimide there is little coloring even after a high temperature of 300 ° C. or higher (high heat resistance).
  • the inorganic oxide dispersion according to the embodiment of the present invention contains an inorganic oxide, an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, a silicon compound, and a relative permittivity of 18 or more. Containing with a solvent.
  • an inorganic oxide dispersion contains an inorganic oxide, an amine represented by the following general formula A, an aliphatic hydroxy acid having a molecular weight of 200 or less, a silicon compound, and a relative permittivity of 18 or more. Containing with a solvent.
  • the material used for the inorganic oxide dispersion will be described.
  • Inorganic oxide As the inorganic oxide used in the inorganic oxide dispersion, an oxide of at least one element of a metal element and Si can be used. Inorganic oxides can be selected according to the physical characteristics required for the coating film, film, and the like. Examples of inorganic oxides include zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO), and zinc oxide.
  • ZrO 2 zirconia
  • TiO 2 titania
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Fe oxide Fe 2 O 3
  • CuO copper oxide
  • the above-mentioned inorganic oxide may be used alone or in combination of two or more.
  • the inorganic oxide is preferably at least one selected from the group consisting of alumina and zirconia.
  • the inorganic oxide preferably has an average particle size in the range of 15 to 50 nm.
  • the average particle size is an arithmetic mean value of the particle size observed with a scanning electron microscope (SEM). Specifically, it is a value obtained by observing the powder of inorganic oxide particles at a magnification of 20,000 times, selecting arbitrary 100 particles, and averaging the particle diameters of each.
  • SEM scanning electron microscope
  • Inorganic oxide synthesis methods are roughly classified into three types: solid phase method, liquid phase method, and vapor phase method. Since a fine inorganic oxide can be obtained, it is preferable to use an inorganic oxide synthesized by the liquid phase method or the vapor phase method.
  • the liquid phase method is a co-precipitation method in which a solution in which the constituent ions of the substance to be synthesized are dissolved is precipitated by changing the pH or adding a solvent, etc .; a hydrolysis method in which particles are synthesized by hydrolyzing a metal alkoxide.
  • a sorbothermal method in which material synthesis and crystal growth are performed by heating in a solvent under pressure; a sol in which particles are dispersed in a colloidal form by hydrolyzing a metal alkoxide is made into a non-fluid gel, and then the gel is formed.
  • a sol-gel method for obtaining particles by heating.
  • the inorganic oxide it is preferable to use particles obtained by firing at a high temperature of 250 ° C. or higher to stabilize the crystal skeleton of the inorganic oxide from the viewpoint of improving the mechanical property value.
  • the curing temperature is, for example, 300 to 400 ° C. Therefore, the inorganic oxide subjected to the above firing step is chemically stable, film shrinkage can be suppressed, defects in the film due to dehydration or the like do not occur, and good improvement in mechanical property value can be achieved.
  • the amount of the inorganic oxide added to the inorganic oxide dispersion is not particularly limited, but from the viewpoint of stability over time as a dispersion and handleability, 1 to 70 parts by mass of the inorganic oxide dispersion. It is by mass, preferably 5 to 50 parts by mass, and more preferably 10 to 40 parts by mass.
  • the amine used for the inorganic oxide dispersion includes an amine represented by the following general formula A.
  • R 1 represents an alkyl group having 1 to 13 carbon atoms.
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 13 carbon atoms.
  • the hydroxy acid used in the inorganic oxide dispersion is an aliphatic hydroxy acid having a molecular weight of 200 or less.
  • the curing temperature is, for example, 300 to 400 ° C.
  • the amount of amine and hydroxy acid added is preferably 1 part by mass to 50 parts by mass, and more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the inorganic oxide.
  • the amount of amine and hydroxy acid added is within the above range, the transparency of the inorganic oxide particles can be maintained for a long time, and the physical properties of the coating film and the film are not adversely affected.
  • Silicon compounds include, for example, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, as alkoxysilane compounds.
  • silanol compound examples include triethoxysilanol and trimethylsilanol, which can be obtained by hydrolysis of alkoxysilane or the like.
  • the polysiloxane compound obtained by polymerizing the silanol compound with a siloxane bond may be in the form of an oligomer or a polymer.
  • an alkylated silicone resin in which a part thereof is alkylated a phenylated silicone resin in which a part thereof is phenylated, a polysiloxane in which silicon and oxygen are alternately bonded, a dimethylpolysiloxane, and the like can be mentioned.
  • the silicone resin and polysiloxane may have a plurality of groups selected from a silyl group, a hydroxyl group, an alkyl group, a phenyl group, and an alkoxyl group in which hydrogen is bonded to silicon in the molecule, if necessary.
  • Methylhydrogenpolysiloxane in which a part of the methyl group of the polysiloxane is replaced with a hydrogen atom is preferable.
  • the silicon compound is a hydrolysis condensate of methyltrimethoxysilane, 3-methacryloxypropyltrialkoxysilane, methylhydrogenpolysiloxane, tetraethoxysilane, and tetraethoxysilane from the viewpoint of compatibility with polyamic acid. Therefore, it is preferable that it is a hydrolyzed condensate of tetraethoxysilane from the viewpoint of heat resistance.
  • hydrolysis by an action such as heating in the composition in which the inorganic oxide particles and tetraethoxysilane coexist can be carried out, and the tetraethoxysilane is chemically formed on the surface of the inorganic oxide particles. It is preferable because the bond is tightly bonded and the compatibility with polyimide and polyamic acid is improved.
  • the ethoxysilane moiety may remain, or the silanol moiety may be dehydrated and condensed to form an oligomer or a polymer.
  • methylhydrogenpolysiloxane in the coexistence of inorganic oxide particles and methylhydrogenpolysiloxane, it is strongly bonded to the surface of the inorganic oxide particles by chemical bonds due to actions such as heating, and it is combined with polyimide and polyamic acid. It is preferable because the compatibility of the particles is improved.
  • the amount of the silicon compound with respect to the inorganic oxide particles is not particularly limited, but 5 to 30 parts by mass is preferable from the viewpoint of viscosity and dispersion stability with respect to 100 parts by mass of the inorganic oxide particles, and 10 to 20 parts by mass is more preferable. ..
  • silicon compounds include, for example, KBM series, KBE series, KF series, KR series manufactured by Shinetsu Silicone Co., Ltd .; WACKER SILICATE series, WACKER SILANE series, GENIOSIL series, SILRES series manufactured by Asahi Kasei Wacker Silicone Co., Ltd .; DOWNSIL series and XIAMETER series manufactured by Toray Co., Ltd .; ethyl orthosilicate, methyl orthosilicate series and silicate series manufactured by Tama Chemical Industry Co., Ltd. can be mentioned.
  • the solvent used for the inorganic oxide dispersion is a solvent having a relative permittivity of 18 or more.
  • the relative permittivity is the ratio of the permittivity of the medium to the permittivity of the vacuum.
  • the above-mentioned solvents are water, alcohol, ⁇ -butyrolactone, and nitrogen-containing organic solvents because they maintain the dispersion stability of the inorganic oxide dispersion over time and have better fine dispersion of the dispersed particle size.
  • ⁇ -butyrolactone or a nitrogen-containing organic solvent is more preferable.
  • the nitrogen-containing organic solvent is a general term for solvents having nitrogen in the molecule, and examples thereof include N-methyl-2-pyrrolidone, dimethylacetamide, dimethyl sulfoxide, dimethylformamide, and acetonitrile.
  • ⁇ -Butyrolactone and nitrogen-containing organic solvent are generally widely used for polyimide or polyamic acid varnish because they easily dissolve various polymers. Therefore, when the inorganic oxide dispersion is mixed with polyimide or polyamic acid varnish and used, ⁇ -butyrolactone or a nitrogen-containing organic solvent is preferable.
  • the content of the solvent in the inorganic oxide dispersion is 30 to 99 parts by mass out of 100 parts by mass of the inorganic oxide dispersion from the viewpoint of the viscosity of the dispersion, the dispersed particle size, and the stability over time. It is preferably 35 to 95 parts by mass, more preferably 35 to 95 parts by mass.
  • Polyimide and polyamic acid As the binder, it is preferable to use at least one selected from the group consisting of polyimide and polyamic acid.
  • Polyimide is a general term for polymers having an imide bond in a repeating unit. In addition to the imide bond, amide bond, ester bond, urethane bond, ether bond, etc. may be introduced into the molecule of polyimide depending on the required physical properties such as heat resistance, flexibility, toughness, or transparency.
  • polyamic acid which is a precursor of polyimide obtained by reacting tetracarboxylic acid dianhydride with diamine in an equimolar amount, is used as a varnish dissolved in a solvent. , It is generally obtained by heating at 200 ° C. or higher after coating or molding.
  • Examples of the varnish in which polyimide is dissolved in a solvent include Rikacoat series manufactured by Shin Nihon Rikasha, HPC series manufactured by Hitachi Kasei Co., Ltd., Neoprim series manufactured by Mitsubishi Gas Chemical Company, SPIXAREA series manufactured by Somar Corporation, and the like. ..
  • Examples of the varnish in which polyamic acid is dissolved in a solvent include the Yupia series manufactured by Ube Industries, Ltd., I.C. S. Pyer M. made by T company. L, Uimide series manufactured by Unitika Ltd., HPI series manufactured by Hitachi Kasei Co., Ltd. can be mentioned.
  • a disperser generally used for the purpose of achieving high transparency can be used, for example, a disper, a homomixer, a planetary mixer, and "Clearmix” manufactured by M-Technique.
  • the dispersed particle size of the inorganic oxide in the inorganic oxide dispersion is preferably as the dispersed particle size is smaller from the viewpoint of transparency at the time of coating or film, because light scattering in the visible light region is reduced.
  • an inorganic oxide is added for the purpose of suppressing thermal expansion of polyimide or the like, it is preferably in the range of 15 to 150 nm, more preferably in the range of 30 to 100 nm, in consideration of compatibility with transparency. Is preferable.
  • the dispersed particle size is a particle size that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution using a dynamic light scattering type particle size distribution meter. is there.
  • the inorganic oxide dispersion is mixed with a polyimide or a varnish in which a polyamic acid is dissolved, a curing agent, a leveling agent, a defoaming agent, an antioxidant, a light stabilizer, a solvent, etc., if necessary, and optionally.
  • a paint to be applied to the substrate of the above can be obtained.
  • a coating film can be obtained by applying an inorganic oxide dispersion or a coating material to an arbitrary base material, and drying and curing the applied coating material at an arbitrary temperature.
  • the difference in refractive index between the inorganic oxide and the binder is small, and in order to obtain excellent transparency and mechanical properties, solubility in a solvent and an imide skeleton are obtained. It is preferable to use a polyamic acid because the derived aromatic skeleton can be contained in a high content.
  • the content of the inorganic oxide particles in the coating material is not particularly limited, but the content of the inorganic oxide particles in 100 parts by mass of the coating material containing the inorganic oxide particles is 1 to 15 parts by mass at the time of coating. From the viewpoint of viscosity, it is preferably 3 to 10 parts by mass.
  • the binder content in 100 parts by mass of the coating material is preferably 5 to 30 parts by mass from the viewpoint of the stability of the coating material.
  • the content of the inorganic oxide particles in the coating film is not particularly limited, but it is transparent that the content of the inorganic oxide particles in 100 parts by mass of the coating film containing the inorganic oxide particles is 10 to 50 parts by mass. It is preferable from the viewpoint of property, heat resistance, and thermal expansion property, and more preferably 20 to 40 parts by mass.
  • the dispersion is mixed with a varnish in which a binder is dissolved, a curing agent, a leveling agent, a defoaming agent, an antioxidant, a light stabilizer, a solvent and the like, if necessary.
  • a film can be obtained by applying the paint to a peelable substrate, drying and curing the paint, and then peeling the coating film. It can also be obtained by extrusion molding using a thermoplastic binder. When transparency of the film is required, it is preferable that the difference in refractive index between the inorganic oxide and the binder is small, and in order to obtain more excellent mechanical properties, it is preferable to use polyimide or polyamic acid as the binder.
  • the amount of the inorganic oxide added to the film is not particularly limited, but from the viewpoint of transparency and mechanical properties, 1 to 70 parts by mass, preferably 10 to 60 parts by mass, with respect to 100 parts by mass of the film containing the inorganic oxide. More preferably, it is 15 to 50 parts by mass.
  • ⁇ Transparency> The more transparent it is, the better.
  • the ratio of the total light transmittance of the coated plate coated with the inorganic oxide paint to the base material was calculated based on the coated plate coated with the varnish on the base material so as to have the same film thickness when dried, it was 95 to 100. It is preferably%, and more preferably 97 to 100%.
  • the varnish is, for example, a varnish in which polyimide or polyamic acid is dissolved.
  • ⁇ Heat resistance> In particular, with respect to a coating film using polyimide as a binder and a film, it is preferable that there is little decrease in transparency due to coloring or the like at a curing temperature of around 300 ° C. to 400 ° C.
  • the absolute value of the value obtained by subtracting the value of the total light transmittance after heating from the value of the total light transmittance before heating of the coated plate coated with the inorganic oxide paint on the base material is preferably less than 1%, and is 0. More preferably, it is less than 5.5%.
  • ⁇ Thermal expansion property> For a film using polyimide as a binder, by uniformly dispersing the inorganic oxide in the film, it is possible to lower the coefficient of linear expansion representing the dimensional change during heating as compared with the binder alone. In particular, when alumina is used as the inorganic oxide, the coefficient of linear expansion becomes lower, which is preferable.
  • the coefficient of linear expansion can be determined by applying a non-vibrating load and measuring the deformation of the substance as a function of temperature while changing the temperature of the substance according to a regulated program. When the thickness of the film is about 50 ⁇ m, it is preferable to obtain it from the deformation when a tensile stress is applied.
  • TEOS Tetraethoxysilane, manufactured by Tama Chemical Industry Co., Ltd.
  • KF-9901 Silane group-containing silicone resin, manufactured by Shinetsu Silicone Co., Ltd.
  • KBM-503 (3-methacryloxypropyltrimethoxysilane, manufactured by Shinetsu Silicone Co., Ltd.
  • KBE-503 (3-methacryloxypropyltriethoxysilane, manufactured by Shinetsu Silicone Co., Ltd.
  • KBM-13 Metalhyltrimethoxysilane, manufactured by Shinetsu Silicone Co., Ltd.
  • KBM-403 (3-glycidoxypropyltrimethoxysilane, manufactured by Shinetsu Silicone)
  • KBM-3033 n-propyltrimethoxysilane, manufactured by Shinetsu Silicone
  • Citric acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 192.12
  • Lactic acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 90.08
  • Tartaric acid manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 150.09
  • 12-Hydroxystearic acid manufactured by Itoh Oil Chemicals, Inc., molecular weight 300.48
  • Ammonium lactate (non-volatile content 40%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Salicylic acid manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 138.12
  • DisperBYK-102 (acid dispersant, manufactured by Big Chemie Japan Co., Ltd.)
  • Examples 1 to 39 and Comparative Examples 1 to 9 ⁇ Preparation of inorganic oxide dispersion> According to the compounding composition shown in Table 1, each component was stirred and mixed so as to be uniform, further dispersed with a sand mill using zirconia beads having a diameter of 0.1 mm for 5 hours, and then filtered through a filter having a pore size of 1 ⁇ m for inorganic oxidation. Material dispersions were obtained respectively.
  • numbers without unit notation represent parts, and blanks indicate that they are not mixed.
  • the numbers described in hydroxy acids represent molecular weights.
  • Example 38 The inorganic oxide dispersion of Example 1 was stirred at 90 ° C. for 2 hours to obtain an inorganic oxide dispersion in which tetraethoxysilane was hydrolyzed and condensed on the surface of the inorganic oxide.
  • Example 39 The inorganic oxide of Example 14 was stirred at 90 ° C. for 2 hours to obtain an inorganic oxide dispersion whose surface was treated with methylhydrogenpolysiloxane.
  • Examples 40 to 78, Comparative Examples 10 to 16 ⁇ Preparation of inorganic oxide paint using polyimide varnish as a binder> 24.2 parts of each of the inorganic oxide dispersions of SPIXAREA TP001 48.0 parts, dimethylacetamide 27.8 parts, Examples 1 to 39, and Comparative Examples 1 to 5, 8 and 9 are stirred and mixed so as to be uniform. , Inorganic oxide paint was obtained.
  • Examples 79 to 117, Comparative Examples 17 to 23 ⁇ Preparation of inorganic oxide paint using varnish 1 polyamic acid as a binder> 1 48.0 parts of polyamic acid varnish, 27.8 parts of dimethylacetamide, Examples 1 to 39, and 24.2 parts of each of the inorganic oxide dispersions of Comparative Examples 1 to 5, 8 and 9 are made uniform. The mixture was stirred and mixed to obtain an inorganic oxide coating material.
  • Examples 118 to 156, Comparative Examples 24 to 30 ⁇ Preparation of inorganic oxide paint using varnish 2 polyamic acid as a binder> Make the polyamic acid varnish 2 60.0 parts, dimethylacetamide 15.8 parts, Examples 1-39, and 24.2 parts of each of the inorganic oxide dispersions of Comparative Examples 1-5, 8 and 9 uniform. The mixture was stirred and mixed to obtain an inorganic oxide coating material.
  • viscosity The viscosity of the inorganic oxide dispersion was measured at 25 ° C. and 60 rpm using a BII type viscometer (BLII manufactured by Toki Sangyo Co., Ltd.). Regarding the viscosity, the lower one is preferable from the viewpoint of handling, and the evaluation was made according to the following criteria. ⁇ : 20 mPa ⁇ s or less (extremely good) ⁇ : Exceeding 20 mPa ⁇ s, 50 mPa ⁇ s or less (good) ⁇ : Exceeding 50 mPa ⁇ s (defective)
  • Dispersed particle size For the dispersed particle size of the inorganic oxide dispersion, use a dynamic light scattering type particle size distribution meter (Microtrac UPA, manufactured by Nikkiso Co., Ltd.) to determine the volume ratio of the particles from the finest particle size in the volume particle size distribution. The particle size was measured to be 50% when integrated. As the sample used for the measurement, an arbitrary amount capable of measuring the dispersion particle size was added to the solvent used when the dispersion was prepared in Examples 1 to 2, 4 to 39 and Comparative Examples 1 to 9. Then, it was dispersed and prepared by a bath-type ultrasonic device.
  • a dynamic light scattering type particle size distribution meter Microtrac UPA, manufactured by Nikkiso Co., Ltd.
  • the dispersion was prepared by adding an arbitrary amount of the dispersed particle size to ethanol and dispersing it with a bath-type ultrasonic device.
  • the stability of the inorganic oxide over time is the absolute value obtained by measuring the viscosity of the sample in which the inorganic oxide dispersion was allowed to stand at 50 ° C. for 7 days, and subtracting the viscosity value after standing from the viscosity value before standing. Evaluated by value. The smaller the change width of the viscosity, the more preferable, and the evaluation was made according to the following criteria. ⁇ : 5 mPa ⁇ s or less (extremely good) ⁇ : Exceeding 5 mPa ⁇ s, 10 mPa ⁇ s (good) ⁇ : Exceeding 10 mPa ⁇ s (defective)
  • the inorganic oxide paint was applied to a 10 cm ⁇ 10 cm glass substrate using a doctor blade so that the film thickness after drying was 2 ⁇ m, and dried in an oven at 140 ° C. for 30 minutes to form a coating film.
  • the binder was also coated and dried in the same manner to form a coating film.
  • the total light transmittance of the obtained coating film with a glass substrate was measured using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the total light transmittance of the coating film with a glass substrate obtained from the inorganic oxide paint was measured. The ratio of the rates was calculated based on the total light transmittance of the coating film with a glass substrate coated with the binder.
  • the value of the ratio of the total light transmittance is preferably closer to 100%, and evaluated according to the following criteria. ⁇ : 97% or more, 100% or less (extremely good) ⁇ : 95% or more and less than 97% (good) X: Less than 95% (defective)
  • the inorganic oxide paint is applied to a 250 ⁇ m thick PET film (base material) using a doctor blade so that the film thickness after drying becomes 50 ⁇ m, and dried in an oven at 105 ° C. for 1 hour to form a coating film. Formed. This coating film was peeled off from the substrate to obtain an inorganic oxide film. The inorganic oxide film was heated in an oven at 250 ° C. for 1 hour and then processed into a 4.5 mm ⁇ 3.0 cm test piece. Using Q400EM (manufactured by TA Instruments), the coefficient of linear expansion of the inorganic oxide film was measured from the relationship between the temperature when a tensile load was applied and the strain of the test piece.
  • the binder was also coated and dried in the same manner to form a film, and the coefficient of linear expansion was measured.
  • the evaluation was made according to the following criteria from the value obtained by subtracting the coefficient of linear expansion of the inorganic oxide film from the value of the coefficient of linear expansion of the film containing only the binder. ⁇ : 10 ppm / ° C or higher (extremely good) ⁇ : Less than 10 ppm / ° C, 5 ppm or more (good) X: Less than 5 ppm / ° C (defective)
  • Examples 1 to 39 had good viscosity, dispersed particle size, and stability over time as the dispersion. Particularly for Examples 1-17, 20-24, and 27-39, the results of stability over time were even better. Further, as shown in Table 3, as paints and films using polyimide varnish as a binder, Examples 40 to 78 have good transparency and heat resistance, and in particular, Examples 40 to 42 and 44 to 78. Among them, Examples 40 to 41, 46 to 51, 53 to 56, 59 to 63, 66 to 73, and 75 to 78 also had good thermal expansion.
  • the paints and films using the polyamic acid varnish 1 as the binder have good transparency and heat resistance with respect to Examples 79 to 117, and in particular, Examples 79 to 80 and 92 to 92 to It was even better for 95, 98-102, and 105-117, of which Examples 79-80, 92-95, 98-102, 105-112, and 114-117 also had good thermal expansion. .. Further, as shown in Table 5, the paints and films using the polyamic acid varnish 2 as the binder have good transparency and heat resistance with respect to Examples 118 to 156, and in particular, Examples 118 to 120 and 122 to.
  • the highly transparent inorganic oxide dispersion according to the embodiment of the present invention can be widely applied as an inorganic oxide added for the purpose of adjusting mechanical strength, optical properties, electrical properties, etc., surface hardness adjustment, refractive index adjustment, etc. It can be used in a wide range of applications such as coating films and films that require infrared cut, antistatic property adjustment, thermal expansion property adjustment, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

一実施形態は、無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、ケイ素化合物と、比誘電率18以上の溶媒と、を含む無機酸化物分散体に関する。式中、Rは、炭素数1~13からなるアルキル基を表す。RおよびRはそれぞれ独立に水素原子、もしくは、炭素数1~13からなるアルキル基を表す。

Description

無機酸化物分散体および塗料
 本発明の実施形態は、無機酸化物分散体、塗料、塗膜、およびフィルムに関する。
 樹脂単独では達成し難い機械的、光学的特性を塗料、フィルム等の用途で達成するために、シリカ等の無機酸化物と樹脂とを混合する手法が古くから試みられてきた。無機酸化物と樹脂とを混合する際には、機械特性および光学特性の向上を目的として無機酸化物をナノレベルまで分散した分散体を用いる手法が用いられてきた。
 無機酸化物をナノレベルまで微細分散すると無機酸化物を分散安定化するために必要となる分散剤が多量に必要となり、塗料またはフィルムとして要求される特性が低下してしまうことが課題として挙げられる。この課題を解決するために、バインダー中に分散性能を有する骨格を導入することにより特性低下を最小限とする提案されているが、適用できる用途が限定される(特許文献1)。また、低沸点のカップリング剤にて処理することによりフィルム加工時の加熱によって余剰分のカップリング剤を除去することにより最終物性への影響を最小限とする方法が提案されている。しかし、処理に適用できる、ある限定された溶剤系ではジルコニアおよびチタンの分散はできるものの、無機酸化物の種類によって展開するには困難であった(特許文献2)。また、ヒドロキシカルボン酸とカチオン系界面活性剤を併用することにより有機溶剤中でチタニアゾルを安定化する提案されている。しかし、この方法は、チタニアゾルへの適応はできるが、例えば気相法によって製造された無機酸化物には分散不足となるため、適応が困難であった(特許文献3)。
 近年、このような無機酸化物と樹脂を混合することにより、機械的特性を向上させる手法が注目されている分野として、透明ポリイミドの機械特性および光学特性制御が挙げられる。しかしながら透明ポリイミドは、製造工程中において、250~350℃の加熱工程を経るため、一般的な樹脂型分散剤およびカチオン系活性剤を用いた無機酸化物分散体では、分散剤および活性剤の分解による黄変に伴って、ポリイミドの透明性および機械物性値を損なってしまう課題があった。
 特にポリイミドフィルムを製造する場合には、イミド化した際に透明性および機械物性値の向上を大きくし、かつ、ハンドリング性を向上させる目的で、イミドの一部分を未環化状態で保持したポリアミック酸を溶剤に溶解して用いることが一般的である。ポリアミック酸の更なる機械物性値の向上を目的として、無機酸化物を多量に添加すると、凝集物が発生し、透明性および機械物性値が低下する課題があった。
国際公開第2007/138946号 特開2009-143974号公報 特開2003-95657号公報
 本発明の実施形態は、分散安定性に優れ、高い透明性を有する無機酸化物分散体、および前記無機酸化物分散体を含む塗料、塗膜、およびフィルムを提供することを目的とする。また、本発明の実施形態は、多様なポリアミック酸または、ポリイミドに対して高い相溶性を有する無機酸化物分散体を用いることで、300℃以上の高温を経ても、着色が少なく(高耐熱性)、機械物性値(熱膨張性)が向上した塗膜およびフィルムを提供することを目的とする。
 すなわち、本発明の一実施形態は、無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、ケイ素化合物と、比誘電率18以上の溶媒と、を含む無機酸化物分散体に関する。
一般式A
Figure JPOXMLDOC01-appb-C000002
(Rは、炭素数1~13からなるアルキル基を表す。RおよびRはそれぞれ独立に水素原子、もしくは、炭素数1~13からなるアルキル基を表す。)
 また、本発明の一実施形態は、ケイ素化合物が、メチルアルコキシシラン、3-メタクリロキシプロピルアルコキシシラン、メチルハイドロジェンポリシロキサン、テトラエトキシシランおよびテトラエトキシシランの加水分解縮合物からなる群より選ばれる少なくとも1種を含む前記無機酸化物分散体に関する。
また、本発明の一実施形態は、無機酸化物が、アルミナおよびジルコニアからなる群より選ばれる少なくとも1種を含む前記無機酸化物分散体に関する。
また、本発明の一実施形態は、溶媒が、アルコール、γ-ブチロラクトンおよび窒素含有有機溶剤からなる群より選ばれる少なくとも1種を含む前記無機酸化物分散体に関する。
 また、本発明の一実施形態は、前記無機酸化物分散体を含む塗料に関する。
 また、本発明の一実施形態は、ポリイミドおよびポリアミック酸からなる群より選ばれる少なくとも1種のバインダーを含む前記塗料に関する。
 また、本発明の一実施形態は、前記無機酸化物分散体または前記塗料を用いて形成された塗膜に関する。
 また、本発明の一実施形態は、前記無機酸化物分散体または前記塗料を用いて形成されたフィルムに関する。
 本発明の実施形態により、分散安定性に優れ、高い透明性を有する無機酸化物分散体、および前記無機酸化物分散体を含む塗料、塗膜、およびフィルムを提供することができる。また、本発明の実施形態により、多様なポリアミック酸または、ポリイミドに対して高い相溶性を有する無機酸化物分散体を用いることで、300℃以上の高温を経ても、着色が少なく(高耐熱性)、機械物性値(熱膨張性)が向上した塗膜およびフィルムを提供することができる。
 本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。
<無機酸化物分散体>
 本発明の実施形態である無機酸化物分散体は、無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、ケイ素化合物と、比誘電率18以上の溶媒と、を含む。以下、無機酸化物分散体に使用する材料について説明する。
<無機酸化物>
 無機酸化物分散体に用いる無機酸化物として、金属元素およびSiの少なくともいずれか一つの元素の酸化物を用いることができる。塗膜、フィルム等に必要とされる物性値によって無機酸化物を選定することが可能である。無機酸化物として、例えば、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)等が挙げられる。上記無機酸化物は、1種を単独で、あるいは2種以上を混合して用いることができる。無機酸化物は、アルミナおよびジルコニアからなる群より選ばれる少なくとも1種が好ましい。
 無機酸化物は、透明性の観点から平均粒子径が15~50nmの範囲であることが好ましい。ここで平均粒子径は、走査型電子顕微鏡(SEM)で観察した粒子径の算術平均値である。詳細には、無機酸化物粒子の粉末を倍率20,000倍で観察し、任意の100個の粒子を選択し、各々の粒子径を平均して求めた値である。粒子形状が長軸および短軸を有する場合には、長軸と短軸の長さの平均値を、その粒子の粒子径とする。
 無機酸化物の合成手法として、固相法、液相法、および気相法の3種類に大別される。微細な無機酸化物を得ることができることから液相法または気相法から合成される無機酸化物を用いることが好ましい。特に液相法の中では、合成したい物質の構成イオンを溶かした溶液からpH変化、溶剤等の添加によって沈殿を生じさせる共沈法;金属アルコキシドを加水分解することによって粒子を合成する加水分解法;加圧下の溶媒中で加熱することにより、物質合成および結晶成長を行うソルボサーマル法;金属アルコキシドを加水分解することによってコロイド状に粒子が分散したゾルを流動性のないゲルとした後にゲルを加熱して粒子を得るゾルゲル法などがある。
 無機酸化物としては、250℃以上の高温で焼成し、無機酸化物の結晶骨格を安定させた粒子を用いることが、機械物性値の向上の観点から好ましい。特に無機酸化物分散体を塗料、もしくは、フィルムとして用いる際に、ポリイミド、または、ポリアミック酸ワニスをバインダーとして使用する場合には、硬化温度が例えば300~400℃となる。そのため、上記の焼成工程を施した無機酸化物は、化学的に安定であり、膜収縮が抑制でき、脱水等に伴う膜内の欠陥が発生せず良好な機械物性値の向上が達成できる。
 無機酸化物分散体中の無機酸化物の添加量は特に限定されないが、分散体としての経時安定性、ならびに、ハンドリング性の観点から、無機酸化物分散体100質量部に対して、1~70質量部、好ましくは5~50質量部、より好ましいのは10~40質量部である。
<アミン>
 無機酸化物分散体に用いるアミンは下記一般式Aで表されるアミンを含む。
一般式A
Figure JPOXMLDOC01-appb-C000003
 Rは、炭素数1~13からなるアルキル基を表す。RおよびRはそれぞれ独立に水素原子、もしくは、炭素数1~13からなるアルキル基を表す。本アミンを使用することにより、無機酸化物分散体を良好に分散することが可能であり、高い透明性を達成できる。また、室温でのアミンの揮発が発生しにくいため、分散体としての組成が安定し、結果、経時安定性にも優れる。
 一般式Aで表されるアミンの具体例として、実施例において使用されているアミンを挙げることができる。
<ヒドロキシ酸>
 無機酸化物分散体に用いるヒドロキシ酸は、分子量200以下の脂肪族ヒドロキシ酸である。特にヒドロキシ酸の分子骨格中のヒドロキシル基とカルボキシル基の個数の比率が、カルボキシル基/ヒドロキシル基=1~3であることが無機酸化物の透明性を長時間維持する上でより好ましい。また、無機酸化物分散体を塗料、もしくは、フィルムとして用いる際のバインダーとしてポリイミド、または、ポリアミック酸ワニスを使用する場合には、例えば硬化温度が300~400℃となる。本発明の実施形態において、アミンと、ヒドロキシ酸を同時に用いることにより、硬化後の透明性を維持できるだけでなく、分解に伴う着色、ならびに、物性値への悪影響を及ぼすことを防止できる。
 アミンとヒドロキシ酸の添加量は、それぞれ、無機酸化物100質量部に対して、1質量部~50質量部であることが好ましく、より好ましくは5質量部~30質量部の範囲である。アミンとヒドロキシ酸の添加量が上記範囲にあれば、無機酸化物粒子の透明性を長時間維持でき、塗膜、フィルム化した際の物性値に悪影響を及ぼすことがない。
<ケイ素化合物>
 ケイ素化合物は、例えば、アルコキシシラン化合物として、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物等のジアルコキシシランまたはトリアルコキシシラン;テトラエトキシシラン、テトラメトキシシラン等のテトラアルコキシシランが挙げられる。
 シラノール化合物としては、トリエトキシシラノール、トリメチルシラノール等が挙げられ、アルコキシシランの加水分解などによって得ることができる。
 シラノール化合物がシロキサン結合にて重合したポリシロキサン化合物は、オリゴマー、または、ポリマーの形態であってもよい。例えば、その一部がアルキル化したアルキル化シリコーン樹脂、その一部がフェニル化したフェニル化シリコーン樹脂、ケイ素と酸素が交互に結合したポリシロキサン、ジメチルポリシロキサン等が挙げられる。シリコーン樹脂およびポリシロキサンは、必要に応じて、分子内のケイ素に水素が結合したシリル基、ヒドロキシル基、アルキル基、フェニル基、およびアルコキシル基から選択される基が複数種存在してもよく、ポリシロキサンのメチル基の一部が水素原子に置換されたメチルハイドロジェンポリシロキサンが好ましい。
 ケイ素化合物は、メチルトリメトキシシラン、3-メタクリロキシプロピルトリアルコキシシラン、メチルハイドロジェンポリシロキサン、テトラエトキシシラン、およびテトラエトキシシランの加水分解縮合物であることが、ポリアミック酸との相溶性の観点から好ましく、テトラエトキシシランの加水分解縮合物であることが耐熱性の観点から好ましい。
 テトラエトキシシランの加水分解縮合物に関しては、無機酸化物粒子とテトラエトキシシランが共存する組成物中で加温などの所作により加水分解することが、無機酸化物粒子の表面にテトラエトキシシランが化学結合により強固に結合し、ポリイミドおよびポリアミック酸との相溶性が向上することから好ましい。加水分解縮合物に関しては、エトキシシラン部位が残存していてもよく、また、シラノール部位が脱水縮合してオリゴマー化、もしくは、ポリマー化していてもよい。
 メチルハイドロジェンポリシロキサンに関しては、無機酸化物粒子とメチルハイドロジェンポリシロキサンが共存する中で加温などの所作により、無機酸化物粒子の表面に化学結合により強固に結合し、ポリイミドおよびポリアミック酸との相溶性が向上することから好ましい。
 無機酸化物粒子に対するケイ素化合物の量は特に限定されないが、無機酸化物粒子100質量部に対して、5~30質量部が粘度および分散安定性の観点から好ましく、10~20質量部がさらに好ましい。
 ケイ素化合物の市販品として、例えば、信越シリコーン株式会社製のKBMシリーズ、KBEシリーズ、KFシリーズ、KRシリーズ;旭化成ワッカーシリコーン株式会社製のWACKER SILICATEシリーズ、WACKER SILANEシリーズ、GENIOSILシリーズ、SILRESシリーズ;DOW・東レ株式会社製のDOWSILシリーズ、XIAMETERシリーズ;多摩化学工業株式会社製の正珪酸エチル、正珪酸メチル、シリケートシリーズなどが挙げられる。
<溶媒>
 無機酸化物分散体に用いる溶媒は、比誘電率18以上の溶媒である。ここで比誘電率とは、媒質の誘電率と真空の誘電率の比である。
 前述の溶媒は、無機酸化物分散体の経時での分散安定性の保持、ならびに、分散粒子径の微細分散がより良好であることから、水、アルコール、γ-ブチロラクトン、および窒素含有有機溶剤が好ましく、γ-ブチロラクトン、または窒素含有有機溶剤がさらに好ましい。ここで窒素含有有機溶剤とは、分子内に窒素を有する溶剤の総称であり、例えば、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル等が挙げられる。
 γ-ブチロラクトン、ならびに、窒素含有有機溶剤は、種々のポリマーを溶解しやすいことから、ポリイミド、または、ポリアミック酸ワニスに関しては、一般的に広く用いられている。そのため、無機酸化物分散体をポリイミド、または、ポリアミック酸ワニスと混合し、使用する際にはγ-ブチロラクトン、または、窒素含有有機溶剤が好ましい。
 無機酸化物分散体中の溶媒の含有量は、無機酸化物分散体100質量部中、30~99質量部であることが、分散体としての粘度、分散粒子径、および経時安定性の観点から好ましく、35~95質量部であることがより好ましい。
<ポリイミドおよびポリアミック酸>
 バインダーとして、ポリイミドおよびポリアミック酸よりなる群から選ばれる少なくとも1種を用いることが好ましい。
 ポリイミドは、繰り返し単位中にイミド結合を有するポリマーの総称である。ポリイミドは、耐熱性、柔軟性、強靭性、または透明性等の必要な物性に応じて、分子内にイミド結合以外にアミド結合、エステル結合、ウレタン結合、またはエーテル結合等が導入されていてもよく、主鎖および/または側鎖に芳香環、脂環、直鎖、または分岐状のアルキル、ハロゲン化アルキル、カルボン酸、スルホン酸、ホスホン酸、カルボン酸エステル、スルホン酸エステル、ホスホン酸エステル、アミン、ビニル、アクリル、メタクリル、イソシアネート、ヒドロキシル、またはグリシド等の官能基が導入されていてもよい。また、ポリイミドは溶剤への溶解性、ハンドリング性を調整するために、テトラカルボン酸二無水物とジアミンを等モルで反応させたポリイミドの前駆体であるポリアミック酸を、溶剤に溶解したワニスとして用い、塗布、もしくは、成型後に200℃以上で加熱することで得ることが一般的である。
 ポリイミドを溶剤に溶解したワニスとしては、例えば、新日本理科社製のリカコートシリーズ、日立化成社製のHPCシリーズ、三菱ガス化学社製のネオプリムシリーズ、ソマール社製のSPIXAREAシリーズ等が挙げられる。
 また、ポリアミック酸を溶剤に溶解したワニスとしては、例えば、宇部興産社製のユピアシリーズ、I.S.T社製のパイヤーM.L、ユニチカ社製のUイミドシリーズ、日立化成社製のHPIシリーズが挙げられる。
<分散方法>
 無機酸化物分散体を作製するに当たり、高い透明性を達成する目的で一般的に用いられる分散機を用いることができ、例えば、ディスパー、ホモミキサー、プラネタリーミキサー、エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製の「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械製作所社製「マイクロス」、ロールミル等の分散機が挙げられる。分散機は、一種類のみ単独で用いてもよいし、複数種を併用してもよい。
<分散粒子径>
 無機酸化物分散体中の無機酸化物の分散粒子径は、塗料、フィルム時の透明性の観点から分散粒子径は細かい程、可視光領域における光散乱が低減されるため好ましい。ポリイミド等の熱膨張を抑制する目的で無機酸化物を添加する際には、透明との両立を考えると15~150nmの範囲であることが好ましく、さらに好ましくは、30~100nmの範囲であることが好ましい。なお、分散粒子径とは、動的光散乱方式の粒度分布計を用いて、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算した際に、50%となる粒子径である。
<塗料および塗膜>
 例えば、無機酸化物分散体と、必要に応じてポリイミドまたは、ポリアミック酸が溶解したワニス、硬化剤、レベリング剤、脱泡剤、酸化防止剤、光安定化剤、溶剤等とを混合し、任意の基材に塗布する塗料を得ることができる。無機酸化物分散体または塗料を任意の基材に塗布し、塗布した塗料を、任意の温度にて乾燥、硬化させることにより、塗膜を得ることができる。塗料および塗膜の透明性が必要な場合には、無機酸化物とバインダーとの屈折率差が少ないことが好ましく、優れた透明性、機械特性を得るには、溶剤への溶解性とイミド骨格由来の芳香族骨格を高含有量で含むことができるため、ポリアミック酸を用いることが好ましい。
 塗料中の無機酸化物粒子の含有量は特に限定されないが、無機酸化物粒子を含む塗料100質量部中の無機酸化物粒子の含有量は、1~15質量部であることが塗工時の粘度の観点から好ましく、3~10質量部であることが好ましい。塗料100質量部中のバインダー含有量は、5~30質量部であることが塗料の安定性の観点から好ましい。
 塗膜中の無機酸化物粒子の含有量は特に限定されないが、無機酸化物粒子を含む塗膜100質量部中の無機酸化物粒子の含有量は、10~50質量部であることが、透明性、耐熱性、および熱膨張性の点から好ましく、20~40質量部であることがより好ましい。
<フィルム>
 無機酸化物分散体は、例えば、該分散体と、必要に応じて、バインダーが溶解したワニス、硬化剤、レベリング剤、脱泡剤、酸化防止剤、光安定化剤、溶剤等を混合し、塗料とした後、剥離可能な基材に塗布し、乾燥、硬化させた後、塗膜を剥離することによってフィルムを得ることができる。また、熱可塑性のバインダーを用いて、押し出し成型することによっても得ることができる。フィルムの透明性が必要な場合には無機酸化物とバインダーの屈折率差が少ないことが好ましく、更に優れた機械特性を得るには、バインダーとしてポリイミド、または、ポリアミック酸を用いることが好ましい。
 フィルム中の無機酸化物の添加量は特に限定されないが、透明性、機械物性の観点から無機酸化物を含むフィルム100質量部に対して、1~70質量部、好ましくは10~60質量部、より好ましくは15~50質量部である。
<透明性>
 透明性は、透明であればある程良い。無機酸化物塗料を基材に塗工した塗板の全光線透過率の比率を、ワニスを基材に乾燥時に同膜厚となるように塗工した塗板を基準として算出した際に、95~100%であることが好ましく、97~100%であることがより好ましい。ワニスは、例えば、ポリイミドまたはポリアミック酸を溶解させたワニスである。
<耐熱性>
 特にポリイミドをバインダーとして使用した塗膜、ならびに、フィルムに関しては、硬化温度300℃~400℃付近にて着色等に伴う透明性の低下が少ない方が好ましい。無機酸化物塗料を基材に塗工した塗板の加熱前の全光線透過率の値から加熱後の全光線透過率の値を引いた値の絶対値が1%未満であることが好ましく、0.5%未満であることがより好ましい。
<熱膨張性>
 特にポリイミドをバインダーとして使用したフィルムに関しては、フィルム中に無機酸化物を均一に分散することにより、バインダー単独よりも加熱時の寸法変化を表す線膨張係数を低くすることが可能である。特に無機酸化物として、アルミナを用いた際には線膨張係数がより低くなり、好ましい。線膨張係数は、物質の温度が調節されたプログラムに従って変化させながら、非振動的な荷重を加えてその物質の変形を温度の関数として測定することにより求めることができる。フィルムの厚さが50μm程度であれば、引っ張り応力を掛けた際の変形から求めることが好ましい。
 以下に、実施例により本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例中、特に断りのない限り、「部」、「%」とは、それぞれ質量部、質量%を意味する。
[分散体および塗料の調製に使用した材料]
 実施例および比較例で使用した材料を以下に列挙する。
<無機酸化物>
AEROXIDE Alu C(アルミナ、エボニック デグサ社製)
PCS-90(ジルコニア、新日本電工株式会社製)
AEROSIL 200(シリカ、エボニック デグサ社製)
TTO-V-3(酸化チタン、石原産業株式会社製)
NANOFINE 50A(酸化亜鉛、堺化学工業株式会社製)
バイラール Al-L40P(アルミナゾル、多木化学株式会社製)
<ケイ素化合物>
TEOS(テトラエトキシシラン、多摩化学工業社製)
KF-9901(シラン基含有シリコーン樹脂、信越シリコーン社製)
KBM-503(3-メタクリロキシプロピルトリメトキシシラン、信越シリコーン社製)
KBE-503(3-メタクリロキシプロピルトリエトキシシラン、信越シリコーン社製)
KBM-13(メチルトリメトキシシラン、信越シリコーン社製)
KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越シリコーン社製)KBM-3033(n-プロピルトリメトキシシラン、信越シリコーン社製)
<アミン>
ジメチルオクチルアミン(三級アミン、花王株式会社製)
トリエチルアミン(三級アミン、富士フイルム和光純薬株式会社製)
トリプロピルアミン(三級アミン、富士フイルム和光純薬株式会社製)
ドデシルアミン(一級アミン、東京化成工業株式会社製)
ジドデシルアミン(二級アミン、富士フイルム和光純薬株式会社製)
ニッサンカチオン 2-DB-800E(四級アミン、不揮発分80%、日油株式会社製)
<脂肪族ヒドロキシ酸>
クエン酸(富士フイルム和光純薬株式会社製、分子量 192.12)
乳酸(富士フイルム和光純薬株式会社製、分子量 90.08)
酒石酸(富士フイルム和光純薬株式会社製、分子量 150.09)
12-ヒドロキシステアリン酸(伊藤製油株式会社製、分子量 300.48)
<脂肪族ヒドロキシ酸アンモニウム塩>
乳酸アンモニウム(不揮発分40%、富士フイルム和光純薬株式会社製)
<芳香族ヒドロキシ酸>
サリチル酸(富士フイルム和光純薬株式会社製、分子量 138.12)
<溶媒>
N、N-ジメチルアセトアミド(比誘電率38.9、三菱ガス化学株式会社製)
γ-ブチロラクトン(比誘電率18.3、三菱ケミカル株式会社製)
N、N-ジメチルスルホキシド(比誘電率48.9、三菱ガス化学株式会社製)
N-メチル-2-ピロリドン(比誘電率32.0、三菱ケミカル株式会社製)
エタノール(比誘電率23.8、富士フイルム和光純薬株式会社製)
2-プロパノール(比誘電率18.3、富士フイルム和光純薬株式会社製)
メチルイソブチルケトン(比誘電率13.1、富士フイルム和光純薬株式会社製)
プロピレングリコールモノメチルエーテルアセテート(PGMEA)(比誘電率8.0、富士フイルム和光純薬株式会社製)
<樹脂型分散剤>
DisperBYK-102(酸性分散剤、ビックケミー・ジャパン株式会社製)
<ポリイミド>
ポリイミドワニス(SPIXAREA TP001、ソマール株式会社製、不揮発分25wt%(溶媒:γ-ブチロラクトン))
ポリアミック酸ワニス1(不揮発分25wt%)
ポリアミック酸ワニス2(不揮発分20wt%)
[実施例1~39および比較例1~9]
<無機酸化物分散体の調製>
 表1に示す配合組成に従い、均一になるように各成分を撹拌混合した後、さらに直径0.1mmのジルコニアビーズを用いてサンドミルで5時間分散した後、孔径1μmのフィルタで濾過して無機酸化物分散体をそれぞれ得た。なお、表1中、単位表記のない数字は部を表し、空欄は配合していないことを表す。なお、ヒドロキシ酸に記載の数字は分子量を表す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<実施例38>
 実施例1の無機酸化物分散体を90℃、2時間撹拌し、無機酸化物表面にテトラエトキシシランが加水分解縮合した無機酸化物分散体を得た。
<実施例39>
 実施例14の無機酸化物を90℃、2時間撹拌し、無機酸化物表面をメチルハイドロジェンポリシロキサンで処理した無機酸化物分散体を得た。
<ポリアミック酸ワニス1の合成例1>
 熱電対、冷却器および撹拌機を備えた300mLの4口フラスコに、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル19.2g部、4,4’-ジアミノジフェニルスルホン14.9部、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物18.5部、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物17.8部およびN-メチル-2-ピロリドン(NMP)211部を加え、窒素下、80℃で8時間撹拌することでポリアミック酸ワニス1を得た。
<ポリアミック酸ワニス2の合成例2>
 熱電対、冷却器および撹拌機を備えた300mLの4口フラスコに、4,4’-ジアミノジフェニルエーテル22.0部、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物33.4部およびN-メチル-2-ピロリドン(NMP)222部を加え、窒素下、80℃で8時間撹拌することでポリアミック酸ワニス2を得た。
[実施例40~78、比較例10~16]
<ポリイミドワニスをバインダーとする無機酸化物塗料の調製>
 SPIXAREA TP001 48.0部、ジメチルアセトアミド27.8部、実施例1~39、比較例1~5、8および9のそれぞれの無機酸化物分散体24.2部を均一になるように撹拌混合し、無機酸化物塗料を得た。
[実施例79~117、比較例17~23]
<ポリアミック酸ワニス1をバインダーとする無機酸化物塗料の調製>
 ポリアミック酸ワニス1 48.0部、ジメチルアセトアミド27.8部、実施例1~39、並びに比較例1~5、8および9のそれぞれの無機酸化物分散体24.2部を均一になるように撹拌混合し、無機酸化物塗料を得た。
[実施例118~156、比較例24~30]
<ポリアミック酸ワニス2をバインダーとする無機酸化物塗料の調製>
 ポリアミック酸ワニス2 60.0部、ジメチルアセトアミド15.8部、実施例1~39、並びに比較例1~5、8および9のそれぞれの無機酸化物分散体24.2部を均一になるように撹拌混合し、無機酸化物塗料を得た。
[評価]
 得られた無機酸化物分散体に関して、粘度、分散性、および、経時安定性を下記の方法で評価した。結果を表2に示す。該無機酸化物分散体を用いて調製した無機酸化物塗料およびフィルムに関して、透明性、耐熱性、および熱膨張性を下記の方法で評価した。バインダーにポリイミドワニスを用いた結果を表3、ポリアミック酸ワニス1を用いた結果を表4に、ポリアミック酸ワニス2を用いた結果を表5に示す。
(粘度)
 無機酸化物分散体の粘度は、BII型粘度計(東機産業社製、BLII)を用いて25℃、60rpm時の粘度を測定した。粘度に関しては、低い方が、ハンドリングの観点から好ましく、下記の基準に従って評価した。
◎:20mPa・s以下(極めて良好)
○:20mPa・s超過、50mPa・s以下(良好)
×:50mPa・s超過(不良)
(分散粒子径)
 無機酸化物分散体の分散粒子径は、動的光散乱方式の粒度分布計(日機装社製、マイクロトラックUPA)を用いて、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算した際に、50%となる粒子径を測定した。なお、測定に用いた試料は、実施例1~2、4~39、および比較例1~9では分散体を分散体作製時に用いた溶剤に、分散粒子径を測定可能な任意の量を添加し、バス型超音波装置にて分散し、調製した。実施例3に関しては、分散体をエタノールに、分散粒子径を測定可能な任意の量を添加し、バス型超音波装置にて分散し、調製した。分散粒子径は透明性の観点から細かい程好ましく、下記の基準に従って評価した。
◎:100nm以下(極めて良好)
○:100nm超過、150nm以下(良好)
×:150nm超過(不良)
(経時安定性)
 無機酸化物の経時安定性は、無機酸化物分散体を50℃7日間静置した試料の粘度を測定し、静置前の粘度の値から静置後の粘度の値を引いた値の絶対値により評価した。粘度の変化幅は、小さい程好ましく、下記の基準に従って評価した。
◎:5mPa・s以下(極めて良好)
○:5mPa・s超過、10mPa・s(良好)
×:10mPa・s超過(不良)
(透明性)
 無機酸化物塗料を、10cm×10cmのガラス基板に、乾燥後の膜厚が2μmになるようにドクターブレードを用いて塗工し、オーブンにて140℃30分間乾燥し、塗膜を形成した。バインダーも、同様の方法で塗工、乾燥し、塗膜を形成した。得られたガラス基板付き塗膜の全光線透過率をヘーズメーター(日本電色工業社製、NDH-2000)を用いて測定し、無機酸化物塗料から得たガラス基板付き塗膜の全光線透過率の比率を、バインダーを塗工したガラス基板付き塗膜の全光線透過率を基準として、算出した。全光線透過率の比率の値は、100%に近い程好ましく、下記の基準に従って評価した。
◎:97%以上、100%以下(極めて良好)
○:95%以上、97%未満(良好)
×:95%未満(不良)
(耐熱性)
 透明性評価に用いた塗膜をオーブンにて窒素雰囲気下、300℃1時間加熱した後に、全光線透過率の測定を行い、加熱前の全光線透過率の値から加熱後の全光線透過率の値を引いた値の絶対値から評価した。加熱前後の全光線透過率の変化は少ない程、耐熱性が高いために好ましく、下記の基準に従って評価した。
◎:0.5%未満(極めて良好)
○:0.5%以上、1%未満(良好)
×:1%以上(不良)
(熱膨張性)
 無機酸化物塗料を、250μm厚のPETフィルム(基材)に、乾燥後の膜厚が50μmになるようにドクターブレードを用いて塗工し、オーブンにて105℃1時間乾燥し、塗膜を形成した。この塗膜を基材から剥離し、無機酸化物フィルムを得た。無機酸化物フィルムをオーブンにて250℃1時間、加熱後、4.5mm×3.0cmの試験片に加工した。Q400EM(TAインスツルメント社製)を用いて、引っ張り荷重をかけた際の温度と試験片のひずみの関係から、無機酸化物フィルムの線膨張係数を測定した。バインダーも、同様の方法で塗工、乾燥し、フィルムを形成し、線膨張係数を測定した。バインダーのみのフィルムの線膨張係数の値から無機酸化物フィルムの線膨張係数を差し引いた値から下記の基準に従って評価した。
◎:10ppm/℃以上(極めて良好)
○:10ppm/℃未満、5ppm以上(良好)
×:5ppm/℃未満(不良)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表2に示すように、分散体として、実施例1~39は、粘度、分散粒子径、および経時安定性共に良好であった。特に実施例1~17、20~24、および27~39に関しては、経時安定性の結果がさらに良好であった。
 また、表3に示すように、バインダーとしてポリイミドワニスを使用した塗料、フィルムとして、実施例40~78に関しては、透明性、耐熱性ともに良好であり、特に実施例40~42、および44~78に関しては更に良好であり、その中でも実施例40~41、46~51、53~56、59~63、66~73、および75~78が熱膨張性も良好であった。
 また、表4に示すように、バインダーとしてポリアミック酸ワニス1を使用した塗料、フィルムとしては実施例79~117に関しては、透明性、耐熱性共に良好であり、特に実施例79~80、92~95、98~102、および105~117に関しては更に良好でり、その中でも実施例79~80、92~95、98~102、105~112、および114~117が熱膨張性も良好であった。
 また、表5に示すように、バインダーとしてポリアミック酸ワニス2を使用した塗料、フィルムとしては実施例118~156に関しては、透明性、耐熱性共に良好であり、特に実施例118~120、122~134、および137~156に関してはさらに良好であり、その中でも実施例118~119、124~134、137~141、144~151、および153~156が熱膨張性も良好であった。
 表3、4、および5に示すように、ポリイミドワニス、ポリアミック酸ワニス1、およびポリアミック酸ワニス2を使用した塗料3種に対しては実施例1~2、14~17、20~24、27~34、および36~39の分散体が透明性、耐熱性、熱膨張性が特に良好であり、骨格の異なるイミドまたはポリアミック酸ワニスへの相溶性が良好であった。
 本発明の実施形態である高透明無機酸化物分散体は、機械強度、光学特性、および電気特性などを調整する目的で添加する無機酸化物として広く適用できることから、表面硬度調整、屈折率調整、赤外線カット、帯電防止性調整、および熱膨張性調整などを必要とする塗膜、およびフィルムなどへの幅広い用途へ利用可能である。
 本願の開示は、2019年11月21日に出願された特願2019-210137号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。

Claims (8)

  1.  無機酸化物と、下記一般式Aで表されるアミンと、分子量200以下の脂肪族ヒドロキシ酸と、ケイ素化合物と、比誘電率18以上の溶媒とを含む無機酸化物分散体。
    一般式A
    Figure JPOXMLDOC01-appb-C000001
    (Rは、炭素数1~13からなるアルキル基を表す。RおよびRはそれぞれ独立に水素原子、もしくは、炭素数1~13からなるアルキル基を表す。)
  2.  前記ケイ素化合物が、メチルアルコキシシラン、3-メタクリロキシプロピルアルコキシシラン、メチルハイドロジェンポリシロキサン、テトラエトキシシランおよびテトラエトキシシランの加水分解縮合物からなる群より選ばれる少なくとも1種を含む請求項1記載の無機酸化物分散体。
  3.  前記溶媒が、アルコール、γ-ブチロラクトンおよび窒素含有有機溶剤からなる群より選ばれる少なくとも1種を含む請求項1または2記載の無機酸化物分散体。
  4.  前記無機酸化物が、アルミナおよびジルコニアからなる群より選ばれる少なくとも1種を含む請求項1~3いずれか記載の無機酸化物分散体。
  5. 請求項1~4いずれか記載の無機酸化物分散体を含む塗料。
  6.  さらにポリイミドおよびポリアミック酸からなる群より選ばれる少なくとも1種のバインダーを含む請求項5記載の塗料。
  7.  請求項1~4いずれか記載の無機酸化物分散体、または、請求項5もしくは6記載の塗料を用いて形成された塗膜。
  8.  請求項1~4いずれか記載の無機酸化物分散体、または、請求項5もしくは6記載の塗料を用いて形成されたフィルム。
PCT/JP2020/043008 2019-11-21 2020-11-18 無機酸化物分散体および塗料 WO2021100763A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210137A JP2021080396A (ja) 2019-11-21 2019-11-21 高い透明性を有する無機酸化物分散体
JP2019-210137 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100763A1 true WO2021100763A1 (ja) 2021-05-27

Family

ID=75964184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043008 WO2021100763A1 (ja) 2019-11-21 2020-11-18 無機酸化物分散体および塗料

Country Status (3)

Country Link
JP (1) JP2021080396A (ja)
TW (1) TW202120435A (ja)
WO (1) WO2021100763A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015756A (ja) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JP2006008869A (ja) * 2004-06-25 2006-01-12 Tokuyama Corp コーティング組成物及びその積層体
JP2006070078A (ja) * 2004-08-31 2006-03-16 Tokuyama Corp コーティング組成物及びその積層体
JP2006131899A (ja) * 2004-10-08 2006-05-25 Tokuyama Corp コーティング剤用組成物及びその製造方法
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
JP2019206611A (ja) * 2018-05-28 2019-12-05 東洋インキScホールディングス株式会社 高い透明性を有する無機酸化物分散体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015756A (ja) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JP2006008869A (ja) * 2004-06-25 2006-01-12 Tokuyama Corp コーティング組成物及びその積層体
JP2006070078A (ja) * 2004-08-31 2006-03-16 Tokuyama Corp コーティング組成物及びその積層体
JP2006131899A (ja) * 2004-10-08 2006-05-25 Tokuyama Corp コーティング剤用組成物及びその製造方法
JP2014177554A (ja) * 2013-03-14 2014-09-25 New Japan Chem Co Ltd 複合樹脂組成物
JP2019206611A (ja) * 2018-05-28 2019-12-05 東洋インキScホールディングス株式会社 高い透明性を有する無機酸化物分散体

Also Published As

Publication number Publication date
JP2021080396A (ja) 2021-05-27
TW202120435A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6843452B2 (ja) カーボンブラックを含む組成物を調製する方法
JP5072820B2 (ja) シリコーン樹脂組成物
JP2007277505A (ja) 酸化物微粒子分散体およびその製造方法
JP6892639B2 (ja) シラン処理フォルステライト微粒子及びその製造方法、並びにシラン処理フォルステライト微粒子の有機溶媒分散液及びその製造方法
KR20130082300A (ko) 유리용 전도성 코팅액 조성물 및 이의 제조방법
JP6825556B2 (ja) チタン酸バリウム粒子粉末、該粉末を含有する分散体及び塗膜
JP2012140520A (ja) 塗料組成物
KR20200069685A (ko) 양친성 고분자 사슬을 가지는 다리걸친 유기 실리카 전구체를 이용한 불소 함유 유-무기 하이브리드형 발수 코팅용 조성물 및 이의 제조 방법
JP2013107926A (ja) 被膜形成用組成物およびその製造方法ならびにそれを用いた太陽電池モジュール
WO2021100763A1 (ja) 無機酸化物分散体および塗料
JP2009155435A (ja) 金属酸化物分散体及びそれを用いてなる樹脂組成物ならびに成形体
WO2021095771A1 (ja) 硫酸バリウム分散体、塗料、塗膜、およびフィルム
JP6631656B2 (ja) 高い透明性を有する無機酸化物分散体
KR102539617B1 (ko) 티타늄산바륨 미립자 분말, 분산체 및 도막
JP2007277073A (ja) 酸化物微粒子分散体およびその製造方法
JP2014133697A (ja) シリカ粒子の表面処理方法
WO2007116988A1 (en) Curable silicone coating agent
WO2022138601A1 (ja) 被覆板状チタン酸粒子及びその製造方法並びにその用途
JP4374177B2 (ja) 導電性微粒子及びそれを用いた有機溶剤系分散体並びに導電性塗料
JP5084418B2 (ja) 有機溶媒に再分散可能な塊状組成物、その製造方法および該塊状組成物を再分散させた有機溶媒分散ゾル
JP6794151B2 (ja) コーティング膜、コーティング膜の製造方法、及びコーティング組成物
JP2007106936A (ja) 帯電防止膜形成用組成物
JP2018176058A (ja) 積層体の製造方法
KR102397564B1 (ko) 티타니아 분산액 조성물 및 이의 제조방법
WO2021106569A1 (ja) 膜形成用組成物及び気体分離膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891055

Country of ref document: EP

Kind code of ref document: A1