WO2019230511A1 - アンテナ素子及びアンテナ素子の製造方法 - Google Patents

アンテナ素子及びアンテナ素子の製造方法 Download PDF

Info

Publication number
WO2019230511A1
WO2019230511A1 PCT/JP2019/020199 JP2019020199W WO2019230511A1 WO 2019230511 A1 WO2019230511 A1 WO 2019230511A1 JP 2019020199 W JP2019020199 W JP 2019020199W WO 2019230511 A1 WO2019230511 A1 WO 2019230511A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor pattern
pattern portion
magnetic
nonmagnetic
antenna element
Prior art date
Application number
PCT/JP2019/020199
Other languages
English (en)
French (fr)
Inventor
篤史 諌山
誠道 田村
大悟 松原
天野 信之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201990000282.1U priority Critical patent/CN211743416U/zh
Priority to JP2019557654A priority patent/JP6677359B1/ja
Publication of WO2019230511A1 publication Critical patent/WO2019230511A1/ja
Priority to US16/819,271 priority patent/US20200220266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the present invention generally relates to an antenna element and a method for manufacturing the antenna element, and more particularly to an antenna element in which a coil conductor is provided in a laminate including a nonmagnetic part and a magnetic part, and a method for manufacturing the antenna element.
  • an antenna device including an antenna coil (coil conductor) is known (see, for example, Patent Document 1).
  • a plurality of magnetic layers are stacked, and a plurality of wiring patterns (conductor pattern portions) in which antenna coils are formed on the surfaces of the plurality of magnetic layers. Is provided.
  • the antenna coil described in Patent Document 1 is formed on the magnetic layer with the coil winding axis aligned with the stacking direction of the magnetic layers.
  • the conventional antenna element such as the antenna device described in Patent Document 1 has a problem that the magnetic loss increases when the coil conductor is covered with the magnetic part.
  • the coil conductor is not covered with the magnetic part and the coil conductor is provided at a position away from the magnetic part.
  • the coil conductor is separated from the magnetic part, it may be difficult to efficiently radiate the magnetic flux, and the communication performance of the antenna element may be deteriorated.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an antenna element that can suppress magnetic loss and improve the communication performance of the antenna element, and a method for manufacturing the antenna element. There is to do.
  • the antenna element includes a laminated body and a coil conductor.
  • the stacked body includes a first nonmagnetic portion and a first magnetic portion.
  • the first magnetic part is stacked with the first nonmagnetic part.
  • the coil conductor is provided in the laminated body.
  • the winding axis of the coil conductor is parallel to the stacking direction of the stacked body.
  • the laminate has a first main surface and a second main surface.
  • the second main surface is a mounting surface facing the first main surface in the stacking direction.
  • the first magnetic part is closer to the first main surface in the stacking direction than the first nonmagnetic part.
  • the coil conductor includes a first conductor pattern portion and a first insulating portion.
  • the first conductor pattern portion is located between the first nonmagnetic portion and the first magnetic portion in the stacking direction.
  • the first insulating portion is provided on the second main surface side of the first conductor pattern portion, and has a width narrower than a line width of the first conductor pattern portion. The first insulating portion overlaps the first conductor pattern portion in a plan view from the stacking direction.
  • the method for manufacturing an antenna element includes a step of preparing a nonmagnetic layer that forms a nonmagnetic portion and a magnetic layer that forms a magnetic portion.
  • the method for manufacturing the antenna element further includes a step of providing a first conductor pattern portion on the main surface of the magnetic layer.
  • the method for manufacturing the antenna element further includes a step of providing an auxiliary film having a width narrower than the line width of the first conductor pattern portion on the first conductor pattern portion.
  • the method for manufacturing the antenna element further includes a step of laminating the nonmagnetic layer on the magnetic layer so as to cover the main surface on which the first conductor pattern portion and the auxiliary film are provided.
  • the magnetic layer and the nonmagnetic layer are stacked and pressed from the stacking direction, and the portion of the first conductor pattern portion where the auxiliary film is provided is changed from the remaining portion. Is further provided with a step of being positioned on the magnetic layer side.
  • the method for manufacturing the antenna element further includes a step of sintering the laminated body to form a first insulating portion having a width smaller than the line width of the first conductor pattern portion.
  • the antenna element according to the above aspect of the present invention can suppress magnetic loss and improve the communication performance of the antenna element.
  • an antenna element that suppresses magnetic loss and improves the communication performance of the antenna element can be manufactured.
  • FIG. 1A is a cross-sectional view of an antenna element according to Embodiment 1.
  • FIG. 1B is an enlarged view of a main part of the antenna element.
  • FIG. 2 is a perspective view of the antenna element.
  • FIG. 3 is a front view of the antenna element.
  • FIG. 4A is a schematic diagram showing the magnetic flux of the antenna element same as above.
  • FIG. 4B is a schematic diagram illustrating the magnetic flux of the antenna element of the comparative example.
  • FIG. 5 is a plan view of a part of a plurality of base material layers constituting the antenna element.
  • FIG. 6 is a remaining plan view of a plurality of base material layers constituting the antenna element of the above.
  • FIG. 7A is a cross-sectional view of the antenna element according to the second embodiment.
  • FIG. 7B is an enlarged view of the main part of the antenna element same as above.
  • FIG. 8 is a cross-sectional view of the antenna element according to the third embodiment.
  • FIG. 9 is a cross-sectional view of the antenna element according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view of the antenna element according to the fifth embodiment.
  • FIG. 11 is a plan view of a part of a plurality of base material layers constituting the antenna element.
  • FIG. 12 is a remaining plan view of a plurality of base material layers constituting the antenna element of the above.
  • FIG. 1A, FIG. 1B, FIG. 7A, FIG. 7B, and FIG. 8 to FIG. 10 are all cross-sectional views, but in order to make the structure easy to understand, a part of the configuration is shown with a dot pattern.
  • 1A is a cross-sectional view taken along line XX of FIG.
  • the “antenna element” is an antenna element used in a “wireless transmission system”.
  • the “wireless transmission system” is a system that performs wireless transmission by magnetic field coupling with a transmission partner (antenna of an external device).
  • Transmission includes both the transmission and reception of signals and the transmission and reception of power.
  • the “wireless transmission system” includes both the short-range wireless communication system and the wireless power feeding system. Since the antenna element performs wireless transmission by magnetic field coupling, the length of the current path of the antenna element, that is, the line length of a coil conductor described later, is sufficiently smaller than the wavelength ⁇ at the frequency used for wireless transmission, and is ⁇ / 10 or less. It is.
  • the wavelength ⁇ here is an effective wavelength considering the wavelength shortening effect due to the dielectric properties and permeability of the substrate on which the coil conductor is provided. Both ends of the coil conductor are connected to a power feeding circuit, and a substantially uniform current flows in the current path of the antenna, that is, the coil conductor.
  • near field communication using the “antenna element” includes, for example, NFC (Near Field Communication).
  • the frequency band used in short-range wireless communication is, for example, the HF band, particularly 13.56 MHz and a frequency band in the vicinity thereof.
  • a wireless power feeding method used for the “antenna element” for example, there is a magnetic field coupling method such as an electromagnetic induction method and a magnetic field resonance method.
  • an electromagnetic induction wireless power supply standard for example, there is a standard “Qi (registered trademark)” established by WPC (Wireless Power Consortium).
  • the frequency band used in the electromagnetic induction method is included, for example, in a range of 110 kHz to 205 kHz and a frequency band in the vicinity of the above range.
  • a magnetic resonance standard wireless power supply standard for example, there is a standard “AirFuel Resonant” formulated by AirFuel (registered trademark) Alliance.
  • a frequency band used in the magnetic field resonance method is, for example, a 6.78 MHz band or a 100 kHz band.
  • Embodiment 1 (1) Overview of Embodiment 1 First, an overview of Embodiment 1 will be described with reference to FIGS. 1A and 1B.
  • the antenna element 1 according to Embodiment 1 includes a laminated body 2 and a coil conductor 3.
  • the multilayer body 2 includes a first nonmagnetic part 41 and a first magnetic part 51 laminated with the first nonmagnetic part 41.
  • the coil conductor 3 is provided in the multilayer body 2, and the winding axis is parallel to the lamination direction D ⁇ b> 1 of the multilayer body 2.
  • “parallel” in this specification does not necessarily mean strictly “parallel”, but may form an angle of 0 ° to ⁇ 15 ° with respect to a predetermined direction. That is, it may be substantially parallel.
  • the winding axis of the coil conductor 3 may form an angle of 0 ° to ⁇ 15 ° with respect to the stacking direction D1.
  • the laminate 2 has a first main surface 21 and a second main surface 22.
  • the second main surface 22 faces the first main surface 21 in the stacking direction D1 and is a mounting surface.
  • the first magnetic part 51 is closer to the first major surface 21 than the first nonmagnetic part 41 in the stacking direction D1.
  • the coil conductor 3 includes a first conductor pattern portion 61 and a first insulating pattern portion 71.
  • the first conductor pattern portion 61 is located between the first nonmagnetic portion 41 and the first magnetic portion 51 in the stacking direction D1.
  • the first insulating pattern portion 71 is provided on the second main surface 22 side of the first conductor pattern portion 61, and has a line width ⁇ 21 that is thinner than the line width ⁇ 11 of the first conductor pattern portion 61.
  • the first insulating pattern portion 71 overlaps the first conductor pattern portion 61 in plan view from the stacking direction D1.
  • the conductor pattern portion is located between the nonmagnetic portion and the magnetic portion in the stacking direction D1” means that the conductor pattern portion is in contact with both the nonmagnetic portion and the magnetic portion in the stacking direction D1. It means being.
  • the first conductor pattern portion 61 of the coil conductor 3 is provided between the first magnetic portion 51 and the first nonmagnetic portion 41. Thereby, a magnetic loss can be suppressed compared with the case where the coil conductor 3 is covered by the magnetic part.
  • the first conductor pattern portion 61 located between the first nonmagnetic portion 41 and the first magnetic portion 51, the first conductor pattern portion 61 has a first main surface 22 side on the first main surface 22 side.
  • a first insulating pattern portion 71 having a line width ⁇ 21 smaller than the line width ⁇ 11 of the conductor pattern portion 61 is provided.
  • the first conductor pattern portion 61 can be raised to the first main surface 21 side through a process such as pressing, so that the direction of the magnetic flux is laminated more than the direction D2 orthogonal to the lamination direction D1. It is possible to approach the direction D1.
  • the side surface on the first main surface 21 side of the first conductor pattern portion 61 can protrude larger than the side surface on the second main surface 22 side of the first conductor pattern portion 61, the direction of the magnetic flux is laminated. It can be easily brought close to the direction D1. As a result, the communication performance of the antenna element 1 can be improved.
  • the antenna element 1 according to Embodiment 1 includes a multilayer body 2 and a coil conductor 3.
  • the antenna element 1 is formed in a rectangular parallelepiped shape, for example, as shown in FIG.
  • the dimensions of the antenna element 1 are, for example, about 6 mm in length, about 3 mm in width, and about 1 mm in height.
  • the antenna element 1 is not limited to the above dimensions.
  • the laminate 2 includes a first nonmagnetic part 41 and a first magnetic part 51 laminated with the first nonmagnetic part 41.
  • the stacked body 2 further includes a second magnetic part 52.
  • the laminate 2 has a first main surface 21 and a second main surface 22.
  • the second main surface 22 faces the first main surface 21 in the stacking direction D1 of the stacked body 2 and is a mounting surface.
  • the first nonmagnetic part 41 is formed by stacking a plurality of nonmagnetic layers S3 to S9 (see FIGS. 5 and 6).
  • the first nonmagnetic portion 41 is sandwiched between the first magnetic portion 51 and the second magnetic portion 52 in the stacking direction D1.
  • the plurality of nonmagnetic layers S3 to S9 constituting the first nonmagnetic portion 41 are, for example, sintered bodies such as nonmagnetic ferrite of low temperature co-fired ceramics (LTCC).
  • the first magnetic part 51 is closer to the first major surface 21 than the first nonmagnetic part 41 in the stacking direction D1. More specifically, the first magnetic part 51 is disposed on the radiation surface side of the first nonmagnetic part 41.
  • the first magnetic part 51 is composed of at least one magnetic layer including the magnetic layer S10 (see FIG. 6).
  • the magnetic layer S10 constituting the first magnetic part 51 is a sintered body such as magnetic ferrite of low-temperature co-fired ceramics, for example.
  • “The first magnetic part 51 is closer to the first major surface 21 than the first nonmagnetic part 41 in the stacking direction D1” means that the major surface of the first magnetic part 51 is the first as shown in FIG. 1A. This includes both the case of the first main surface 21 and the case where the main surface of the first magnetic part 51 is different from the first main surface 21.
  • the second magnetic part 52 is closer to the second major surface 22 than the first nonmagnetic part 41 in the stacking direction D1. More specifically, the second magnetic part 52 is disposed on the mounting surface side of the first nonmagnetic part 41.
  • the second magnetic part 52 is composed of at least one magnetic layer including the magnetic layer S2 (see FIG. 5).
  • the magnetic layer S2 constituting the second magnetic unit 52 is a sintered body such as magnetic ferrite of low temperature co-fired ceramics, for example.
  • the second magnetic portion 52 is closer to the second main surface 22 than the first nonmagnetic portion 41 in the stacking direction D1” means that the main surface of the second magnetic portion 52 is the second main portion 52 as shown in FIG. 1A. This includes both the case of the two main surfaces 22 and the case where the main surface of the second magnetic part 52 is different from the second main surface 22.
  • the coil conductor 3 is provided in the multilayer body 2 as shown in FIG. 1A.
  • the winding axis of the coil conductor 3 is parallel to the stacking direction D1 of the stacked body 2. More specifically, the coil conductor 3 is located at the first nonmagnetic portion 41, the boundary between the first nonmagnetic portion 41 and the first magnetic portion 51, or the boundary between the first nonmagnetic portion 41 and the second magnetic portion 52. Is provided.
  • the coil conductor 3 includes a first conductor pattern portion 61, a second conductor pattern portion 62, a plurality (six in the illustrated example) of third conductor pattern portions 63, and a first insulating pattern portion 71.
  • the first conductive pattern part 61 is located between the first nonmagnetic part 41 and the first magnetic part 51 in the stacking direction D1. More specifically, the first conductor pattern portion 61 is a portion of the coil conductor 3 that is closest to the first main surface 21 (radiation surface), and is a boundary between the first nonmagnetic portion 41 and the first magnetic portion 51. Is provided.
  • the first conductor pattern portion 61 is a conductor pattern portion mainly composed of Ag, for example.
  • the second conductor pattern part 62 is located between the first nonmagnetic part 41 and the second magnetic part 52 in the stacking direction D1. More specifically, the second conductor pattern portion 62 is a portion of the coil conductor 3 that is closest to the second main surface 22 (mounting surface), and a boundary between the first nonmagnetic portion 41 and the second magnetic portion 52. Is provided.
  • the second conductor pattern part 62 is a conductor pattern part mainly composed of Ag, for example.
  • Each of the plurality of third conductor pattern parts 63 is located in the first nonmagnetic part 41. That is, each third conductor pattern portion 63 is covered with the first nonmagnetic portion 41.
  • the 3rd conductor pattern part 63 is a conductor pattern part which has Ag as a main component, for example.
  • the third conductor pattern portion 63 adjacent to the first conductor pattern portion 61 is electrically connected to the first conductor pattern portion 61 by an interlayer connection conductor.
  • the interlayer connection conductor is provided in the first nonmagnetic portion 41. More specifically, the interlayer connection conductor is provided so as to penetrate the nonmagnetic layer S9 (see FIG. 6) constituting the first nonmagnetic portion 41.
  • the third conductor pattern portion 63 adjacent to the second conductor pattern portion 62 is electrically connected to the second conductor pattern portion 62 by an interlayer connection conductor.
  • the interlayer connection conductor is provided in the first nonmagnetic portion 41. More specifically, the interlayer connection conductor is provided so as to penetrate the nonmagnetic layer S3 (see FIG. 5) constituting the first nonmagnetic portion 41.
  • the first insulation pattern part 71 is provided on the second main surface 22 side of the first conductor pattern part 61, and from the line width ⁇ 11 of the first conductor pattern part 61. Also has a narrow line width ⁇ 21.
  • the first insulating pattern portion 71 overlaps the first conductor pattern portion 61 in plan view from the stacking direction D1. In other words, the first insulating pattern portion 71 having the line width ⁇ 21 narrower than the line width ⁇ 11 of the first conductor pattern portion 61 is arranged along the first conductor pattern portion 61.
  • the “insulating pattern portion” in the present specification corresponds to the “insulating portion” in the present invention.
  • the first insulating pattern portion 71 corresponds to the first insulating portion in the present invention.
  • the line width ⁇ 21 of the first insulating pattern portion 71 is thinner than the line width ⁇ 11 of the first conductor pattern portion 61, and the thickness of the first insulating pattern portion 71 is thinner than the thickness of the first conductor pattern portion 61.
  • the magnitude relationship of the dimension of the 1st insulating pattern part 71 and the 1st conductor pattern part 61 is not limited above.
  • the first conductor pattern portion 61 By providing the first insulating pattern portion 71 on the second main surface 22 side of the first conductor pattern portion 61, the first conductor pattern portion 61 passes through the first main surface 21 ( The shape rises to the (radiation surface) side.
  • the first conductor pattern portion 61 has a shape as shown in FIG. 1B. That is, the first conductor pattern portion 61 is convex. Or the 1st conductor pattern part 61 has the center part projected to the 1st magnetic part 51 side rather than both ends. Alternatively, the center of gravity O1 of the first conductor pattern portion 61 is positioned on the first magnetic portion 51 side in the stacking direction D1. That is, the center of gravity O1 of the first conductor pattern portion 61 is located closer to the first main surface 21 in the stacking direction D1 than the flat first conductor pattern portion. In addition, the 1st conductor pattern part 61 does not need to protrude sharply, and may protrude smoothly.
  • the auxiliary film 701 (see FIG. 6) is provided on the first conductor pattern portion 61 at the position where the first insulating pattern portion 71 is formed, the first nonmagnetic portion 41, the first magnetic portion 51, and the second magnetic portion.
  • the first conductor pattern portion 61 is pressed from the stacking direction D1, so that the center portion protrudes toward the first main surface 21 from both ends.
  • the auxiliary film 701 burns and the first insulating pattern portion 71 is formed.
  • the second conductor pattern portion 62 and the plurality of third conductor pattern portions 63 having no insulating pattern portion such as the first insulating pattern portion 71 are not shaped like the first conductor pattern portion 61 but are flat. Become a shape.
  • the first insulating pattern portion 71 is a gap. That is, the first insulating pattern portion 71 is a void pattern portion having a void pattern.
  • a first insulating pattern portion 71 having a line width ⁇ 21 smaller than the line width ⁇ 11 of the first conductor pattern portion 61 is provided on the second main surface 22 side of the first conductor pattern portion 61. .
  • the 1st conductor pattern part 61 becomes the shape which rose to the 1st main surface 21 side.
  • the direction of the magnetic flux ⁇ 1 is changed to the stacking direction D1 in the first magnetic portion 51 as shown by an arrow in FIG. 4A. It is possible to approach the stacking direction D1 from the orthogonal direction D2. That is, for the magnetic flux ⁇ 1, the component in the stacking direction D1 can be increased. As a result, the communication performance of the antenna element 1 can be improved.
  • the first conductor pattern portion 91 located between the first nonmagnetic portion 92 and the first magnetic portion 93 is The shape is not raised.
  • the direction of the magnetic flux ⁇ 10 in the first magnetic part 93 is closer to the direction D2 orthogonal to the stacking direction D1 than in the case of the first embodiment. For this reason, the component in the stacking direction D1 is small, and it is not easy to improve the communication performance of the antenna element.
  • the antenna element 1 according to the first embodiment has a shape in which the first conductor pattern portion 61 is raised on the first main surface 21 side, so that the first conductor pattern portion 91 is not raised.
  • the communication performance of the antenna element 1 can be improved.
  • the antenna element 1 according to Embodiment 1 is manufactured through the first to seventh steps.
  • the plurality of base material layers shown in FIGS. 5 and 6 are nonmagnetic layers S3 to S9 and magnetic layers S2 and S10.
  • the dashed-dotted line in FIG.5 and FIG.6 has shown the main connection relations by an interlayer connection conductor.
  • the nonmagnetic layer S6 in FIG. 5 and the nonmagnetic layer S7 in FIG. 6 are electrically connected by an interlayer connection conductor.
  • a plurality of nonmagnetic layers S3 to S9 constituting the first nonmagnetic portion 41, a magnetic layer S2 constituting the second magnetic portion 52, and a magnetic layer S10 constituting the first magnetic portion 51 are formed.
  • the nonmagnetic layers S3 to S9 are, for example, sintered bodies (green sheets) such as nonmagnetic ferrite of low-temperature cofired ceramics.
  • the magnetic layers S2 and S10 are, for example, sintered bodies (green sheets) such as magnetic ferrite of low-temperature co-fired ceramics.
  • a plurality of terminal electrodes T1 to T6 are formed on the back surface of the magnetic layer S2.
  • Each of the plurality of terminal electrodes T1 to T6 is a substantially rectangular conductor pattern.
  • the material of the terminal electrodes T1 to T6 is, for example, a conductor whose main component is Ag.
  • a frame-like insulating film (not shown) that covers the outer edge portions of the terminal electrodes T1 to T6 is formed on the back surface of the magnetic layer S2. More specifically, after the terminal electrodes T1 to T6 are formed on the back surface of the magnetic layer S2, a nonmagnetic material (nonmagnetic ferrite) paste printed in a frame shape so as to cover the outer edges of the terminal electrodes T1 to T6 is fired. And formed as an insulating film.
  • the second conductor pattern portion 62 is provided on the back surface of the nonmagnetic layer S3, the third conductor pattern portion 63 is provided on the back surface of the nonmagnetic layers S4 to S9, and the second conductor pattern portion 63 is provided on the back surface (main surface) of the magnetic layer S10.
  • One conductor pattern portion 61 is provided. More specifically, the second conductor pattern portion 62 having about one turn is formed on the back surface of the nonmagnetic layer S3. A third conductor pattern portion 63 having about one turn is formed on the back surface of each of the nonmagnetic layers S4 to S9. On the back surface of the magnetic layer S10, the first conductor pattern portion 61 having about one turn is formed.
  • Each material of the 1st conductor pattern part 61, the 2nd conductor pattern part 62, and each 3rd conductor pattern part 63 is a conductor which has Ag as a main component, for example.
  • the auxiliary film 701 is provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10.
  • the auxiliary film 701 is, for example, a carbon film, and has a line width ⁇ 21 (see FIG. 1B) narrower than the line width ⁇ 11 (see FIG. 1B) of the first conductor pattern portion 61.
  • the magnetic layer S2, the nonmagnetic layer S3, the nonmagnetic layer S4, the nonmagnetic layer S5, the nonmagnetic layer S6, the nonmagnetic layer S7, the nonmagnetic layer S8, the nonmagnetic layer S9, and the magnetic layer S10 are stacked in this order.
  • the magnetic layer S2 is the lowermost layer
  • the magnetic layer S10 is the uppermost layer.
  • the nonmagnetic layer S9 is laminated on the magnetic layer S10 so as to cover the back surface on which the first conductor pattern portion 61 and the auxiliary film 701 are provided.
  • the magnetic layer and the nonmagnetic layer are stacked and pressed from the stacking direction D1, and the portion of the first conductor pattern portion 61 where the auxiliary film 701 is provided is made more magnetic than the remaining portion. It is located on the layer S10 side.
  • the laminated body is sintered to form the first insulating pattern portion 71 having a line width ⁇ 21 that is narrower than the line width ⁇ 11 of the first conductor pattern portion 61.
  • the auxiliary film 701 provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10 burns to form a gap as the first insulating pattern portion 71 at the position where the auxiliary film 701 is present.
  • the laminate 2 may include a nonmagnetic layer that is a layer other than the nonmagnetic layers S3 to S9 and is not provided with a conductor pattern portion. Moreover, the laminated body 2 may include a magnetic layer that is a layer other than the magnetic layers S ⁇ b> 2 and S ⁇ b> 10 and has no conductor pattern portion. The illustration and description of these nonmagnetic layers and magnetic layers are omitted.
  • the coil conductor 3 is provided between the first magnetic unit 51 and the first nonmagnetic unit 41 (boundary between the first magnetic unit 51 and the first nonmagnetic unit 41).
  • the first conductor pattern portion 61 is provided. Thereby, a magnetic loss can be suppressed compared with the case where the coil conductor 3 is covered by the magnetic part.
  • the second main surface 22 of the first conductor pattern portion 61 is the first conductor pattern portion 61 located between the first nonmagnetic portion 41 and the first magnetic portion 51.
  • a first insulating pattern portion 71 having a line width ⁇ 21 narrower than the line width ⁇ 11 of the first conductor pattern portion 61 is provided.
  • the first conductor pattern portion 61 can be raised to the first main surface 21 side through a process such as pressing, so that the direction of the magnetic flux is laminated more than the direction D2 orthogonal to the lamination direction D1. It is possible to approach the direction D1.
  • the side surface on the first main surface 21 side of the first conductor pattern portion 61 can protrude larger than the side surface on the second main surface 22 side of the first conductor pattern portion 61, the direction of the magnetic flux is laminated. It can be easily brought close to the direction D1. As a result, the communication performance of the antenna element 1 can be improved.
  • the antenna element 1 according to the first embodiment magnetic loss can be suppressed and the communication performance of the antenna element 1 can be improved.
  • the first insulating pattern portion 71 is a gap disposed between other conductors (the third conductor pattern portion 63 and the like).
  • the first conductor pattern portion 61 when other conductors exist around the first conductor pattern portion 61, stray capacitance is generated between the first conductor pattern portion 61 and the other conductors.
  • a gap when a gap is located between the first conductor pattern portion 61 and the other conductor, there is no gap between the first conductor pattern portion 61 and the other conductor (the first conductor pattern portion 61 and the other conductor and The stray capacitance generated between the first conductor pattern portion 61 and the other conductor is lower than when the first nonmagnetic portion 41 is all in between.
  • the relative dielectric constant of the first insulating pattern portion 71 is smaller than that of the first nonmagnetic portion 41. Therefore, compared with the case where the 1st insulation pattern part 71 is not provided (when all between the 1st conductor pattern part 61 and another conductor are the 1st nonmagnetic parts 41), the 1st conductor pattern part The stray capacitance generated between 61 and another conductor can be reduced. As a result, the Q value of the antenna element 1 can be improved.
  • the antenna element 1 In the method for manufacturing the antenna element 1 according to the first embodiment, between the magnetic layer S10 constituting the first magnetic part 51 and the nonmagnetic layer S9 constituting the first nonmagnetic part 41 (the magnetic layer S10 and the nonmagnetic layer S9).
  • the antenna element 1 in which the first conductor pattern portion 61 of the coil conductor 3 is provided at the boundary) is manufactured. Thereby, in the antenna element 1, a magnetic loss can be suppressed compared with the case where the coil conductor 3 is covered by the magnetic part.
  • the first conductor pattern portion 61 located between the nonmagnetic layer S9 and the magnetic layer S10, on the nonmagnetic layer S9 side of the first conductor pattern portion 61. Then, the first insulating pattern portion 71 is formed from the auxiliary film 701 having a line width ⁇ 21 smaller than the line width ⁇ 11 of the first conductor pattern portion 61.
  • the first conductor pattern portion 61 can be raised to the magnetic layer S10 side, so that the direction of the magnetic flux ⁇ 1 is more than the direction orthogonal to the stacking direction D1 (for example, the direction D2). It can be brought close to the stacking direction D1.
  • the side surface on the magnetic layer S10 side of the first conductor pattern portion 61 can be made to protrude larger than the side surface on the nonmagnetic layer S9 side of the first conductor pattern portion 61, so the direction of the magnetic flux ⁇ 1 is set in the stacking direction D1. Can be easily approached. As a result, the communication performance of the antenna element 1 can be improved.
  • the method for manufacturing the antenna element 1 according to the first embodiment it is possible to manufacture the antenna element 1 that suppresses magnetic loss and improves the communication performance of the antenna element 1.
  • the first insulating pattern portion 71 may be formed of an insulating paste having a relative dielectric constant smaller than that of the first non-magnetic portion 41 instead of a gap.
  • the first insulating pattern portion 71 is formed by providing an insulating paste on the second main surface 22 side of the first conductor pattern portion 61.
  • the coil conductor 3 may include only one third conductor pattern portion 63.
  • the coil conductor 3 only needs to include at least one third conductor pattern portion 63.
  • the antenna element 1a according to the second embodiment is different from the antenna element 1 according to the first embodiment in that a second insulating pattern portion 72 is provided on the second conductor pattern portion 62a. (See FIG. 1A and FIG. 1B).
  • the same components as those of the antenna element 1 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the antenna element 1a according to the second embodiment includes a coil conductor 3a as shown in FIG. 7A in place of the coil conductor 3 of the first embodiment.
  • the second magnetic portion 52 is disposed on the second main surface 22 (mounting surface) side of the first nonmagnetic portion 41 as in the first embodiment.
  • the coil conductor 3a includes a second conductor pattern portion 62a instead of the second conductor pattern portion 62 of the first embodiment. Further, the coil conductor 3 a further includes a second insulating pattern portion 72.
  • description is abbreviate
  • the second conductor pattern portion 62a is located between the first nonmagnetic portion 41 and the second magnetic portion 52 in the stacking direction D1, similarly to the second conductor pattern portion 62 of the first embodiment.
  • the second insulating pattern portion 72 is provided on the first main surface 21 side of the second conductor pattern portion 62a, and has a line width ⁇ 22 that is narrower than the line width ⁇ 12 of the second conductor pattern portion 62.
  • the second insulating pattern portion 72 overlaps the second conductor pattern portion 62a in plan view from the stacking direction D1. That is, the second insulating pattern portion 72 having a line width ⁇ 22 narrower than the line width ⁇ 12 of the second conductor pattern portion 62a is disposed along the second conductor pattern portion 62a.
  • the second insulating pattern portion 72 corresponds to the second insulating portion in the present invention.
  • the line width ⁇ 22 of the second insulating pattern portion 72 is narrower than the line width ⁇ 12 of the second conductor pattern portion 62a, and the thickness of the second insulating pattern portion 72 is thinner than the thickness of the second conductor pattern portion 62a.
  • the magnitude relationship of the dimension of the 2nd insulation pattern part 72 and the 2nd conductor pattern part 62a is not limited above.
  • the second conductor pattern portion 62a Since the second insulating pattern portion 72 is provided on the first main surface 21 side of the second conductor pattern portion 62a, the second conductor pattern portion 62a is raised on the second main surface 22 (mounting surface) side. become.
  • the second conductor pattern portion 62a has a shape as shown in FIG. 7B. That is, the second conductor pattern portion 62a is convex. Or as for the 2nd conductor pattern part 62a, the center part has protruded to the 2nd magnetic part 52 side rather than both ends.
  • the center of gravity O2 of the second conductor pattern portion 62a is positioned on the second magnetic portion 52 side in the stacking direction D1. That is, the center of gravity O2 of the second conductor pattern portion 62a is located on the second main surface 22 side in the stacking direction D1 as compared to the flat second conductor pattern portion. Note that the second conductor pattern portion 62a may not protrude sharply and may protrude smoothly.
  • the laminated body of the first nonmagnetic portion 41, the first magnetic portion 51, and the second magnetic portion 52 Is pushed from the laminating direction D1
  • the second conductor pattern portion 62a is pushed from the laminating direction D1, so that the center part of the second conductor pattern part 62a protrudes toward the second main surface 22 side from both ends.
  • the laminated body is sintered in a state where it is pushed from the lamination direction D1
  • the auxiliary film burns and the second insulating pattern portion 72 is formed.
  • the plurality of third conductor pattern parts 63 having no insulation pattern part such as the second insulation pattern part 72 are not shaped like the second conductor pattern part 62a, but are flat.
  • the second insulating pattern portion 72 is a gap. That is, the second insulating pattern portion 72 is a void pattern portion having a void pattern.
  • a second insulating pattern portion 72 having a line width ⁇ 22 smaller than the line width ⁇ 12 of the second conductor pattern portion 62a is provided on the first main surface 21 side of the second conductor pattern portion 62a. .
  • the second conductor pattern portion 62a has a shape that rises toward the second main surface 22 side.
  • the direction of the magnetic flux ⁇ 2 is changed to the stacking direction D1 in the second magnetic portion 52 as shown by the arrow in FIG. 7B. It is possible to approach the stacking direction D1 from the orthogonal direction D2. That is, the component in the stacking direction D1 can be increased. As a result, the communication performance of the antenna element 1a can be improved.
  • the second conductor pattern portion 72 does not have a raised shape.
  • the direction of the magnetic flux in the second magnetic part is closer to the direction D2 perpendicular to the stacking direction D1 than in the case of the second embodiment. For this reason, the component in the stacking direction D1 is small, and it is not easy to improve the communication performance of the antenna element.
  • the antenna element 1a according to the second embodiment has a shape in which the second conductor pattern portion 62a is raised on the second main surface 22 side, so that the second conductor pattern portion is not raised.
  • the communication performance of the antenna element 1a can be improved.
  • the antenna element 1a according to the second embodiment is manufactured by the first to seventh steps.
  • the first to third steps are performed. More specifically, in the first step, a plurality of nonmagnetic layers S3 to S9 (see FIGS. 5 and 6) and magnetic layers S2 and S10 (see FIGS. 5 and 6) are prepared. In the second step, a plurality of terminal electrodes T1 to T6 (see FIG. 5) are formed on the back surface of the magnetic layer S2. In the third step, the second conductor pattern portion 62a is provided on the back surface of the nonmagnetic layer S3, the third conductor pattern portion 63 is provided on the back surface of the nonmagnetic layers S4 to S9, and the first conductor pattern portion is provided on the back surface of the magnetic layer S10. 61 is provided.
  • the auxiliary film 701 is provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10, and the auxiliary film is formed on the second conductor pattern portion 62a on the back surface of the nonmagnetic layer S3.
  • the auxiliary film formed on the second conductor pattern portion 62a is, for example, a carbon film, like the auxiliary film 701 formed on the first conductor pattern portion 61.
  • the auxiliary film formed on the second conductor pattern portion 62a has a line width thinner than the line width ⁇ 12 of the second conductor pattern portion 62a.
  • the fifth step is performed as in the first embodiment. More specifically, in the fifth step, the magnetic layer S2, the nonmagnetic layer S3, the nonmagnetic layer S4, the nonmagnetic layer S5, the nonmagnetic layer S6, the nonmagnetic layer S7, the nonmagnetic layer S8, the nonmagnetic layer S9, the magnetic layer The layers S10 are stacked in this order.
  • the auxiliary film 701 is provided in the first conductor pattern portion 61 by pressing from the stacking direction D1 in a state where the magnetic layer and the nonmagnetic layer are stacked.
  • the portion is positioned closer to the magnetic layer S10 than the remaining portion.
  • the portion of the second conductor pattern portion 62a where the auxiliary film is provided is positioned closer to the magnetic layer S2 than the remaining portion.
  • the laminated body is sintered to form the first insulating pattern portion 71 having a gap as in the first embodiment. Furthermore, in the second embodiment, the second insulating pattern portion 72 having a line width ⁇ 22 that is thinner than the line width ⁇ 12 of the second conductor pattern portion 62a is formed. At this time, the auxiliary film formed on the second conductor pattern portion 62a on the back surface of the nonmagnetic layer S3 burns to form a gap as the second insulating pattern portion 72 at the position where the auxiliary film exists.
  • the second conductor pattern portion 62a positioned between the first nonmagnetic portion 41 and the second magnetic portion 52 has the second conductor pattern portion 62a.
  • a second insulating pattern portion 72 having a line width ⁇ 22 narrower than the line width ⁇ 12 of the second conductor pattern portion 62a is provided on the first main surface 21 side.
  • the second insulating pattern portion 72 may be formed of an insulating paste having a relative dielectric constant smaller than that of the first nonmagnetic portion 41 instead of the gap.
  • the second insulating pattern portion 72 is formed by providing an insulating paste on the first main surface 21 side of the second conductor pattern portion 62a.
  • the antenna element according to the modified example has the same effect as the antenna element 1a according to the second embodiment.
  • the antenna element 1 b according to the third embodiment includes a plurality of (seven in the illustrated example) third insulating pattern portions 73.
  • the antenna element 1 according to the first embodiment see FIG. 1A). Is different.
  • the same components as those of the antenna element 1 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the antenna element 1b according to the third embodiment includes a coil conductor 3b as shown in FIG. 8 instead of the coil conductor 3 of the first embodiment.
  • the coil conductor 3b includes a first conductor pattern portion 61, a second conductor pattern portion 62, a plurality (seven in the illustrated example) of third conductor pattern portions 63b, and a first insulating pattern portion 71, and a plurality of coil conductors 3b. It further includes third insulating pattern portions 73 (seven in the illustrated example).
  • description is abbreviate
  • Each of the plurality of third conductor pattern portions 63b is located in the first nonmagnetic portion 41, like the third conductor pattern portion 63 of the first embodiment.
  • Each of the plurality of third insulating pattern portions 73 has a one-to-one correspondence with the plurality of third conductor pattern portions 63b and is provided on the second main surface 22 side of the corresponding third conductor pattern portion 63b.
  • Each third insulating pattern portion 73 has a line width narrower than the line width of the corresponding third conductor pattern portion 63b.
  • Each third insulating pattern portion 73 overlaps with the corresponding third conductor pattern portion 63b in plan view from the stacking direction D1. That is, the third insulating pattern portion 73 having a line width narrower than the line width of the third conductor pattern portion 63b is arranged along the third conductor pattern portion 63b.
  • the third insulating pattern portion 73 corresponds to the third insulating portion in the present invention.
  • the line width of the third insulating pattern portion 73 is narrower than the line width of the third conductor pattern portion 63b, and the thickness of the third insulating pattern portion 73 is thinner than the thickness of the third conductor pattern portion 63b.
  • the dimensions of the third insulating pattern portion 73 and the third conductor pattern portion 63b are not limited to the above.
  • the third conductor pattern portion 63b is raised to the first main surface 21 (mounting surface) side. become.
  • the third conductor pattern portion 63b has a shape as shown in FIG. That is, the third conductor pattern portion 63b is convex. Or as for the 3rd conductor pattern part 63b, the center part has protruded to the 1st magnetic part 51 side rather than both ends. Alternatively, the center of gravity of the third conductor pattern portion 63b is located on the first magnetic portion 51 side in the stacking direction D1. That is, the center of gravity of the third conductor pattern portion 63b is located closer to the first major surface 21 in the stacking direction D1 than the flat third conductor pattern portion. Note that the third conductor pattern portion 63b may not protrude steeply and may protrude smoothly.
  • the third conductor pattern portion 63b After the third insulating pattern portion 73 is provided on the third conductor pattern portion 63b, the stacked body of the first nonmagnetic portion 41, the first magnetic portion 51, and the second magnetic portion 52 is pushed from the stacking direction D1.
  • the third conductor pattern portion 63b has a shape in which the center portion projects from the both end portions toward the first main surface 21 side when pressed from the stacking direction D1.
  • the second conductor pattern portion 62 having no insulating pattern portion such as the second insulating pattern portion 72 does not have the shape like the third conductor pattern portion 63b but has a flat shape.
  • each third conductor pattern portion 63b is pressed against the first main surface 21 by pressing.
  • the shape rises to the side.
  • the thickness of the third insulating pattern portion 73 aligned with the plurality of third conductor pattern portions 63b is accumulated in the stacking direction D1 depending on the degree of rise of the plurality of third conductor pattern portions 63b.
  • the rising degree of the one conductor pattern portion 61 can be increased.
  • the third conductor pattern portions 63b are moved to the first main surface 21 side by the pressing process. Become a raised shape.
  • the degree of swell of the first conductor pattern part 61 aligned with the plurality of third conductor pattern parts 63b in the stacking direction D1 can be increased by the degree of swell of the plurality of third conductor pattern parts 63b.
  • the direction of the magnetic flux ⁇ 1 (see FIG. 4A) in the first magnetic portion 51 can be made closer to the stacking direction D1.
  • each third insulating pattern portion 73 is a void pattern portion having a void pattern.
  • the relative dielectric constant of each third insulating pattern portion 73 is smaller than that of the first nonmagnetic portion 41. Therefore, the relative dielectric constant between the two third conductor pattern portions 63b adjacent in the stacking direction D1 can be made closer to 1 compared to the case where the third insulating pattern portion 73 is not provided.
  • the stray capacitance between the two third conductor pattern portions 63b adjacent in the stacking direction D1 and the distance between the third conductor pattern portion 63b and the second conductor pattern portion 62 closest to the second conductor pattern portion 62 are as follows. The stray capacitance can be reduced. As a result, the Q value of the antenna element 1b can be improved.
  • the stress generated inside the first nonmagnetic portion 41 due to the difference in linear expansion coefficient between the first nonmagnetic portion 41 and the first magnetic portion 51 is generated. Can be relaxed.
  • the stress generated inside the first nonmagnetic portion 41 due to the difference in linear expansion coefficient between the first nonmagnetic portion 41 and the second magnetic portion 52 can be relaxed. Thereby, generation
  • the antenna element 1b according to Embodiment 3 is manufactured through the first to seventh steps.
  • the first to third steps are performed. More specifically, in the first step, a plurality of nonmagnetic layers S3 to S9 (see FIGS. 5 and 6) and magnetic layers S2 and S10 (see FIGS. 5 and 6) are prepared. In the second step, a plurality of terminal electrodes T1 to T6 (see FIG. 5) are formed on the back surface of the magnetic layer S2. In the third step, the second conductor pattern portion 62 is provided on the back surface of the nonmagnetic layer S3, the third conductor pattern portion 63b is provided on the back surface of the nonmagnetic layers S4 to S9, and the second surface is formed on the back surface (main surface) of the magnetic layer S10. One conductor pattern portion 61 is provided.
  • an auxiliary film 701 (see FIG. 12) is provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10, and the third conductor pattern portion 63b on the back surface of the nonmagnetic layers S4 to S9.
  • An auxiliary film 703 (see FIGS. 11 and 12) is provided thereon.
  • the auxiliary film 703 provided on the third conductor pattern portion 63b is, for example, a carbon film, like the auxiliary film 701 provided on the first conductor pattern portion 61.
  • the auxiliary film 703 provided on the third conductor pattern portion 63b has a line width thinner than that of the third conductor pattern portion 63b.
  • the fifth step is performed as in the first embodiment. More specifically, in the fifth step, the magnetic layer S2, the nonmagnetic layer S3, the nonmagnetic layer S4, the nonmagnetic layer S5, the nonmagnetic layer S6, the nonmagnetic layer S7, the nonmagnetic layer S8, the nonmagnetic layer S9, the magnetic layer The layers S10 are stacked in this order.
  • the auxiliary film 701 is provided in the first conductor pattern portion 61 by pressing from the stacking direction D1 in a state where the magnetic layer and the nonmagnetic layer are stacked.
  • the portion is positioned closer to the magnetic layer S10 than the remaining portion.
  • the portion of the third conductor pattern portion 63b where the auxiliary film 703 is provided is positioned closer to the magnetic layer S10 than the remaining portion.
  • the laminated body is sintered to form the first insulating pattern portion 71 having a gap as in the first embodiment. Furthermore, in the third embodiment, the third insulating pattern portion 73 having a line width thinner than the line width of the third conductor pattern portion 63b is formed. At this time, the auxiliary film 703 formed on the third conductor pattern portion 63b on the back surface of the nonmagnetic layers S4 to S9 burns, so that a gap as the third insulating pattern portion 73 is formed at the position where the auxiliary film 703 exists. Form.
  • the third conductor pattern portion 63b located in the first nonmagnetic portion 41 has a line width smaller than that of the third conductor pattern portion 63b.
  • a third insulating pattern portion 73 is provided.
  • the stray capacitance between the second conductor pattern portion 62 and the third conductor pattern portion 63b can be reduced.
  • the Q value of the antenna element 1b can be improved.
  • the third insulating pattern portion 73 when the third insulating pattern portion 73 is a gap, a line between the nonmagnetic portion (for example, the first nonmagnetic portion 41) and the magnetic portion (for example, the first magnetic portion 51).
  • the stress generated inside the nonmagnetic portion due to the difference in expansion coefficient can be relaxed.
  • cracks in the direction D2 perpendicular to the stacking direction D1 are generated between the conductor patterns (between the first conductor pattern portion 61 and the third conductor pattern portion 63b and between the two third conductor pattern portions 63b). Can be reduced.
  • the coil conductor 3b may include only one third conductor pattern portion 63b.
  • the coil conductor 3b only needs to include at least one third conductor pattern portion 63b.
  • the coil conductor 3b may include only one third insulating pattern portion 73.
  • the coil conductor 3 b only needs to include at least one third insulating pattern portion 73.
  • each of the plurality of third insulating pattern portions 73 may be formed of an insulating paste having a relative dielectric constant smaller than that of the first nonmagnetic portion 41 instead of a gap.
  • an insulating paste is provided on the second main surface 22 side of each of the plurality of third conductor pattern portions 63b, whereby a plurality of third insulating pattern portions 73 are formed.
  • the antenna element 1 c according to the fourth embodiment is the antenna element 1 according to the first embodiment (FIG. 1A) in that a third magnetic part 53 is provided between the first nonmagnetic parts 41. Different from reference).
  • the same components as those of the antenna element 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the antenna element 1c according to the fourth embodiment includes a multilayer body 2c as illustrated in FIG. 9 instead of the multilayer body 2 according to the first embodiment.
  • the stacked body 2 c further includes a third magnetic part 53.
  • description is abbreviate
  • FIG. 1A the laminated body 2 (refer FIG. 1A) of Embodiment 1.
  • the third magnetic part 53 is provided so as to divide the first nonmagnetic part 41 into two parts in the stacking direction D1.
  • the third magnetic part 53 is provided in the middle of the first nonmagnetic part 41.
  • the third magnetic part 53 is composed of at least one magnetic layer including the magnetic layer S6a (see FIG. 11).
  • the magnetic layer S6a constituting the third magnetic part 53 is a sintered body such as magnetic ferrite of low temperature co-fired ceramics, for example.
  • the two nonmagnetic parts 411 and 412 can be thinned. Accordingly, the tensile stress received by the first nonmagnetic portion 41 from the first magnetic portion 51 and the second magnetic portion 52 (the difference in linear expansion coefficient between the first nonmagnetic portion 41 and the first magnetic portion 51 and the second magnetic portion 52). (Stress in a direction perpendicular to the stacking direction D1). As a result, occurrence of cracks in the stacking direction D1 in the first magnetic part 51 and the second magnetic part 52 can be reduced.
  • the stacked body 2c further includes a second nonmagnetic portion 42.
  • the second nonmagnetic portion 42 is closer to the first major surface 21 than the first magnetic portion 51 in the stacking direction D1.
  • the second nonmagnetic portion 42 is composed of a nonmagnetic layer S11 (see FIG. 12).
  • the nonmagnetic layer S11 constituting the second nonmagnetic portion 42 is a sintered body such as nonmagnetic ferrite of low temperature co-fired ceramics, for example.
  • the stacked body 2 c further includes a third nonmagnetic portion 43.
  • the third nonmagnetic portion 43 is closer to the second major surface 22 than the second magnetic portion 52 in the stacking direction D1.
  • the third nonmagnetic portion 43 is composed of a nonmagnetic layer S1 (see FIG. 11).
  • the nonmagnetic layer S1 constituting the third nonmagnetic portion 43 is, for example, a sintered body such as nonmagnetic ferrite of low temperature co-fired ceramics.
  • both ends in the lamination direction D1 are nonmagnetic portions.
  • the mechanical strength can be increased by making both ends of the laminate 2c non-magnetic parts.
  • the antenna element 1c according to Embodiment 4 is manufactured through the first to eighth steps.
  • a plurality of nonmagnetic layers S1, S3 to S5, S7 to S9 and S11 (see FIGS. 11 and 12) and magnetic layers S2 and S10 (see FIGS. 11 and 12) are prepared. Further, in the first step of the fourth embodiment, a magnetic layer S6a (see FIG. 11) is prepared instead of the nonmagnetic layer S6 of the first embodiment.
  • a plurality of terminal electrodes T1 to T6 are formed on the back surface of the nonmagnetic layer S1, and a plurality of conductors 23 to 28 (see FIG. 11) are formed on the back surface of the magnetic layer S2. .
  • the third and fourth steps are performed. More specifically, in the third step, as in the first embodiment, the second conductor pattern portion 62 is provided on the back surface of the nonmagnetic layer S3, and the second magnetic pattern portions S4, S5, S7 to S9 and the back surface of the magnetic layer S6a are formed on the back surface. The three conductor pattern part 63 is provided, and the first conductor pattern part 61 is provided on the back surface of the magnetic layer S10. In the fourth step, the auxiliary film 701 is provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10.
  • a position mark 705 (see FIG. 12) is formed on the surface of the nonmagnetic layer S11, and a conductor 704 (see FIG. 12) is formed on the back surface of the nonmagnetic layer S11.
  • nonmagnetic layer S1, magnetic layer S2, nonmagnetic layer S3, nonmagnetic layer S4, nonmagnetic layer S5, magnetic layer S6a, nonmagnetic layer S7, nonmagnetic layer S8, nonmagnetic layer S9, magnetic layer S10 and nonmagnetic layer S11 are stacked in this order.
  • the seventh step and the eighth step are performed in the same manner as the sixth step and the seventh step of the first embodiment. More specifically, in the seventh step, the portion where the auxiliary film 701 is provided in the first conductor pattern portion 61 is pressed from the stacking direction D1 in a state where the magnetic layer and the nonmagnetic layer are stacked. Rather than the magnetic layer S10. In the eighth step, the laminated body is sintered to form the first insulating pattern portion 71 having a void.
  • the third magnetic part 53 is provided so as to divide the first nonmagnetic part 41 into at least two parts. Therefore, since the thickness per one of the 1st nonmagnetic part 41 divided
  • the second nonmagnetic portion 42 having higher strength than the first magnetic portion 51 is closer to the first main surface 21 than the first magnetic portion 51 (provided outside).
  • strength is higher than the 2nd magnetic part 52 is nearer to the 2nd main surface 22 than the 2nd magnetic part 52 (it is provided in the outer side).
  • the stacked body 2c may include a plurality of third magnetic parts 53.
  • the plurality of third magnetic parts 53 are provided so as to divide the first nonmagnetic part 41 into two or more.
  • the antenna element according to the above-described modification also has the same effect as the antenna element 1c according to the fourth embodiment.
  • the antenna element 1 d according to the fifth embodiment is provided with the third insulating pattern portion 73 on the third conductor pattern portion 63 d and the third nonmagnetic portion 41 between the third nonmagnetic portions 41. It differs from the antenna element 1 (refer FIG. 1A) which concerns on Embodiment 1 by the point by which the magnetic part 53 is provided.
  • the same components as those of the antenna element 1 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the antenna element 1d according to the fifth embodiment includes a multilayer body 2d and a coil conductor 3d as shown in FIG. 10 instead of the multilayer body 2 and the coil conductor 3 of the first embodiment.
  • the laminated body 2d further includes a third magnetic part 53.
  • description is abbreviate
  • the third magnetic part 53 is provided so as to divide the first nonmagnetic part 41 into two parts in the stacking direction D1.
  • the third magnetic part 53 is provided in the middle of the first nonmagnetic part 41.
  • the third magnetic part 53 is composed of at least one magnetic layer including the magnetic layer S6a (see FIG. 11).
  • the magnetic layer S6a constituting the third magnetic part 53 is a sintered body such as magnetic ferrite of low temperature co-fired ceramics, for example.
  • the third magnetic part 53 is provided in the middle of the first nonmagnetic part 41, the two nonmagnetic parts 411 and 412 can be thinned. Thereby, the tensile stress (stress in the direction orthogonal to the stacking direction D1) that the first magnetic part 51 and the second magnetic part 52 receive from the first nonmagnetic part 41 can be reduced. As a result, occurrence of cracks in the stacking direction D1 in the first magnetic part 51 and the second magnetic part 52 can be reduced.
  • the stacked body 2d further includes a second nonmagnetic portion 42.
  • the second nonmagnetic portion 42 is closer to the first major surface 21 than the first magnetic portion 51 in the stacking direction D1.
  • the second nonmagnetic portion 42 is composed of a nonmagnetic layer S11 (see FIG. 12).
  • the nonmagnetic layer S11 constituting the second nonmagnetic portion 42 is a sintered body such as nonmagnetic ferrite of low temperature co-fired ceramics, for example.
  • the stacked body 2 d further includes a third nonmagnetic portion 43.
  • the third nonmagnetic portion 43 is closer to the second major surface 22 than the second magnetic portion 52 in the stacking direction D1.
  • the third nonmagnetic portion 43 is composed of a nonmagnetic layer S1 (see FIG. 11).
  • the nonmagnetic layer S1 constituting the third nonmagnetic portion 43 is, for example, a sintered body such as nonmagnetic ferrite of low temperature co-fired ceramics.
  • both ends in the lamination direction D1 are nonmagnetic portions.
  • the magnetic part is more fragile than the nonmagnetic part, the mechanical strength can be increased by making both ends of the laminate 2d nonmagnetic parts.
  • the coil conductor 3d includes a first conductor pattern portion 61, a second conductor pattern portion 62, a plurality (seven in the illustrated example) of third conductor pattern portions 63d, and a first insulating pattern portion 71. A plurality of (seven in the illustrated example) third insulating pattern portions 73 are further included.
  • description is abbreviate
  • a part of the plurality of third conductor pattern portions 63d is located in the first nonmagnetic portion 41, like the third conductor pattern portion 63 of the first embodiment.
  • the remainder of the plurality of third conductor pattern portions 63 d is provided at the boundary between the first nonmagnetic portion 41 and the third magnetic portion 53.
  • Each of the plurality of third insulating pattern portions 73 has a one-to-one correspondence with the plurality of third conductor pattern portions 63d, and is provided on the second main surface 22 side of the corresponding third conductor pattern portion 63d.
  • Each third insulating pattern portion 73 has a line width thinner than the line width of the corresponding third conductor pattern portion 63d.
  • Each third insulating pattern portion 73 overlaps with the corresponding third conductor pattern portion 63d in plan view from the stacking direction D1. That is, the third insulating pattern portion 73 having a line width narrower than the line width of the third conductor pattern portion 63d is disposed along the third conductor pattern portion 63d.
  • the line width of the third insulating pattern portion 73 is narrower than the line width of the third conductor pattern portion 63d, and the thickness of the third insulating pattern portion 73 is thinner than the thickness of the third conductor pattern portion 63d.
  • the dimensions of the third insulating pattern portion 73 and the third conductor pattern portion 63d are not limited to the above.
  • the third conductor pattern portion 63d is raised to the first main surface 21 (mounting surface) side. become.
  • the third conductor pattern portion 63d has a shape as shown in FIG. That is, the third conductor pattern portion 63d is convex. Or as for the 3rd conductor pattern part 63d, the center part has protruded to the 1st magnetic part 51 side rather than both ends. Alternatively, the center of gravity of the third conductor pattern portion 63d is positioned on the first magnetic portion 51 side in the stacking direction D1. That is, the center of gravity of the third conductor pattern portion 63d is located closer to the first main surface 21 in the stacking direction D1 than the flat third conductor pattern portion. Note that the third conductor pattern portion 63d may not protrude steeply and may protrude smoothly.
  • the third conductor pattern portion 73 is provided on the third conductor pattern portion 63d, the stacked body of the first nonmagnetic portion 41, the first magnetic portion 51, and the second magnetic portion 52 is pushed from the stacking direction D1.
  • the center portion of the third conductor pattern portion 63d protrudes toward the first main surface 21 side from both ends.
  • the second conductor pattern portion 62 having no insulating pattern portion such as the second insulating pattern portion 72 does not have the shape like the third conductor pattern portion 63d but has a flat shape.
  • the thickness of the third insulating pattern portion 73 is accumulated.
  • the rising degree of the conductor pattern portion 61 can be increased.
  • the direction of the magnetic flux ⁇ 1 (see FIG. 4A) in the first magnetic portion 51 can be made closer to the stacking direction D1.
  • the thickness of the third insulating pattern portion 73 is accumulated.
  • the rising degree of the conductor pattern portion 61 can be increased. If the rising degree of the 1st conductor pattern part 61 becomes large, the direction of the magnetic flux in the 1st magnetic part 51 can be brought closer to the lamination direction D1.
  • each third insulating pattern portion 73 is a void pattern portion having a void pattern.
  • the relative dielectric constant of each third insulating pattern portion 73 is smaller than that of the first nonmagnetic portion 41. Therefore, compared with the case where the third insulating pattern portion 73 is not provided, the stray capacitance between the two third conductor pattern portions 63d adjacent in the stacking direction D1 and the third closest to the second conductor pattern portion 62 are provided. The stray capacitance between the insulating pattern portion 73 and the second conductor pattern portion 62 can be reduced. As a result, the Q value of the antenna element 1d can be improved.
  • the stress generated inside the first nonmagnetic portion 41 due to the difference in linear expansion coefficient between the first nonmagnetic portion 41 and the first magnetic portion 51 is generated. Can be relaxed.
  • the stress generated inside the first nonmagnetic portion 41 due to the difference in linear expansion coefficient between the first nonmagnetic portion 41 and the second magnetic portion 52 can be relaxed. Thereby, generation
  • the antenna element 1d according to Embodiment 5 is manufactured through the first to eighth steps.
  • the plurality of substrate layers shown in FIGS. 11 and 12 are nonmagnetic layers S1, S3 to S5, S7 to S9, S11 and magnetic layers S2, S6a, and S10.
  • the dashed-dotted line in FIG.11 and FIG.12 has shown the main connection relations by an interlayer connection conductor.
  • the magnetic layer S6a in FIG. 11 and the nonmagnetic layer S7 in FIG. 12 are electrically connected by an interlayer connection conductor.
  • a plurality of nonmagnetic layers S1, S3 to S5, S7 to S9, S11 and a plurality of magnetic layers S2, S6a, S10 are prepared.
  • the nonmagnetic layers S1, S3 to S5, S7 to S9, and S11 are, for example, sintered bodies such as nonmagnetic ferrite of low temperature co-fired ceramics.
  • the magnetic layers S2, S6a, and S10 are, for example, sintered bodies such as magnetic ferrite of low temperature co-fired ceramics.
  • a plurality of terminal electrodes T1 to T6 are formed on the back surface of the nonmagnetic layer S1.
  • Each of the plurality of terminal electrodes T1 to T6 is a substantially rectangular conductor pattern.
  • a plurality of conductors 23 to 28 are formed on the back surface of the magnetic layer S2.
  • the plurality of conductors 23 to 28 are conductor patterns having a shape (substantially rectangular) similar to the terminal electrodes T1 to T6, respectively.
  • the terminal electrodes T1 to T6 and the conductors 23 to 28 are conductor patterns mainly composed of Ag, for example.
  • a frame-like insulating film (not shown) that covers the outer edge portions of the terminal electrodes T1 to T6 is formed on the back surface of the nonmagnetic layer S1. More specifically, after the terminal electrodes T1 to T6 are formed on the back surface of the nonmagnetic layer S1, a nonmagnetic (nonmagnetic ferrite) paste printed in a frame shape so as to cover the outer edges of the terminal electrodes T1 to T6 is fired. Then, it is formed as an insulating film.
  • the second conductor pattern portion 62 is provided on the back surface of the nonmagnetic layer S3, and the third conductor pattern portion 63d is formed on the back surface of the nonmagnetic layers S4 to S5, S7 to S9 and the magnetic layer S6a.
  • the first conductor pattern portion 61 is provided on the back surface of S10. More specifically, the second conductor pattern portion 62 having about one turn is formed on the back surface of the nonmagnetic layer S3. On the back surface of the nonmagnetic layer S4, the third conductor pattern portion 63d having about one turn is formed. A third conductor pattern portion 63d having about one turn is formed on the back surface of the nonmagnetic layer S5.
  • a third conductor pattern portion 63d having about one turn is formed on the back surface of the magnetic layer S6a.
  • a third conductor pattern portion 63d having about one turn is formed on the back surface of the nonmagnetic layer S7.
  • the third conductor pattern portion 63d having about one turn is formed on the back surface of the nonmagnetic layer S9.
  • the first conductor pattern portion 61 having about one turn is formed on the back surface of the magnetic layer S10.
  • an auxiliary film 701 having about one turn is provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10, and the third layer on the back surface of the nonmagnetic layers S4, S5, S7 to S9 and the magnetic layer S6a.
  • An auxiliary film 703 having about one turn is provided on the conductor pattern portion 63d.
  • position marks 705 are formed on the surface of the nonmagnetic layer S11.
  • a conductor 704 is formed on the back surface of the nonmagnetic layer S11.
  • the position mark 705 is a rectangular conductor pattern.
  • the conductor 704 is a conductor pattern having a shape (substantially rectangular) similar to the position mark 705.
  • the position mark 705 and the conductor 704 are conductor patterns mainly composed of Ag, for example.
  • nonmagnetic layer S1, magnetic layer S2, nonmagnetic layer S3, nonmagnetic layer S4, nonmagnetic layer S5, magnetic layer S6a, nonmagnetic layer S7, nonmagnetic layer S8, nonmagnetic layer S9, magnetic layer S10 and nonmagnetic layer S11 are stacked in this order.
  • the nonmagnetic layer S1 is the lowermost layer and the nonmagnetic layer S11 is the uppermost layer.
  • the nonmagnetic layer S9 is laminated on the magnetic layer S10 so as to cover the back surface on which the first conductor pattern portion 61 and the auxiliary film 701 are provided.
  • the magnetic layer and the nonmagnetic layer are stacked and pressed from the stacking direction D1, so that the portion of the first conductor pattern portion 61 where the auxiliary film 701 is provided is more magnetic than the remaining portion of the magnetic layer S10. Position on the side.
  • the laminated body is sintered to form the first insulating pattern portion 71 having a line width ⁇ 21 (see FIG. 1B) narrower than the line width ⁇ 11 (see FIG. 1B) of the first conductor pattern portion 61.
  • the auxiliary film 701 provided on the first conductor pattern portion 61 on the back surface of the magnetic layer S10 burns to form a gap as the first insulating pattern portion 71 at the position where the auxiliary film 701 is present.
  • the third magnetic part 53 is provided so as to divide the first nonmagnetic part 41 into at least two parts. Therefore, since the thickness per one of the 1st nonmagnetic part 41 divided
  • the second nonmagnetic portion 42 having higher strength than the first magnetic portion 51 is closer to the first main surface 21 than the first magnetic portion 51 (provided outside).
  • strength is higher than the 2nd magnetic part 52 is nearer to the 2nd main surface 22 than the 2nd magnetic part 52 (it is provided in the outer side).
  • the stacked body 2d may include a plurality of third magnetic parts 53.
  • the plurality of third magnetic parts 53 are provided so as to divide the first nonmagnetic part 41 into two or more.
  • the coil conductor 3d may include only one third conductor pattern portion 63d.
  • the coil conductor 3d only needs to include at least one third conductor pattern portion 63d.
  • the coil conductor 3d may include only one third insulating pattern portion 73.
  • the coil conductor 3 d only needs to include at least one third insulating pattern portion 73.
  • each of the plurality of third insulating pattern portions 73 may be formed of an insulating paste having a relative dielectric constant smaller than that of the first nonmagnetic portion 41 instead of a gap.
  • an insulating paste is provided on the second main surface 22 side of each of the plurality of third conductor pattern portions 63d, whereby a plurality of third insulating pattern portions 73 are formed.
  • the antenna element according to the modified example has the same effects as the antenna element 1d according to the fifth embodiment.
  • the first insulating pattern portion 71, the second insulating pattern portion 72, and the third insulating pattern portion 73 are shown as the insulating portions.
  • these insulating portions are not necessarily coil conductors. It does not have to be a pattern formed along the entire circumference. These insulating portions may be formed only on a part of the circumference of the coil conductor, or may be formed while the pattern is interrupted.
  • the antenna element (1; 1a; 1b; 1c; 1d) includes a laminate (2; 2c; 2d) and a coil conductor (3; 3a; 3b; 3d).
  • the laminate (2; 2c; 2d) includes a first nonmagnetic portion (41) and a first magnetic portion (51).
  • the first magnetic part (51) is stacked with the first nonmagnetic part (41).
  • the coil conductors (3; 3a; 3b; 3d) are provided in the laminate (2; 2c; 2d).
  • the winding axis of the coil conductor (3; 3a; 3b; 3d) is parallel to the stacking direction (D1) of the stacked body (2; 2c; 2d).
  • the laminate (2; 2c; 2d) has a first main surface (21) and a second main surface (22).
  • the second main surface (22) is a mounting surface facing the first main surface (21) in the stacking direction (D1).
  • the first magnetic part (51) is closer to the first main surface (21) than the first nonmagnetic part (41) in the stacking direction (D1).
  • the coil conductor (3; 3a; 3b; 3d) includes a first conductor pattern part (61) and a first insulating part (first insulating pattern part 71).
  • the first conductor pattern portion (61) is located between the first nonmagnetic portion (41) and the first magnetic portion (51) in the stacking direction (D1).
  • the first insulating portion is provided on the second main surface (22) side of the first conductor pattern portion (61), and has a width (line width) smaller than the line width ( ⁇ 11) of the first conductor pattern portion (61). ⁇ 21).
  • the first insulating portion overlaps the first conductor pattern portion (61) in plan view from the stacking direction (D1).
  • the magnetic loss is reduced as compared with the case where the coil conductor (3; 3a; 3b; 3d) is covered with the magnetic part. Can be suppressed.
  • the first conductor pattern portion (61) is formed to be raised toward the first main surface (21). Therefore, the direction of the magnetic flux ( ⁇ 1) can be made closer to the stacking direction (D1) than the direction (D2) perpendicular to the stacking direction (D1).
  • the side surface on the first main surface (21) side of the first conductor pattern portion (61) is protruded larger than the side surface on the second main surface (22) side of the first conductor pattern portion (61). Therefore, the direction of the magnetic flux ( ⁇ 1) can be easily brought close to the stacking direction (D1). As a result, the communication performance of the antenna elements (1; 1a; 1b; 1c; 1d) can be improved.
  • the magnetic loss is suppressed and the communication performance of the antenna element (1; 1a; 1b; 1c; 1d) Can be improved.
  • the first insulating portion (first insulating pattern portion 71) is a gap.
  • the antenna element (1; 1a; 1b; 1c; 1d) when there is another conductor around the first conductor pattern portion (61), the first conductor pattern portion (61) Since the air gap is located between the first conductor pattern portion (61) and the other conductor, the stray capacitance generated between the first conductor pattern portion and the other conductor can be reduced.
  • the laminate (2) further includes a second magnetic part (52).
  • the second magnetic part (52) is closer to the second main surface (22) than the first nonmagnetic part (41).
  • the coil conductor (3a) further includes a second conductor pattern portion (62a) and a second insulating portion (second insulating pattern portion 72).
  • the second conductor pattern portion (62a) is located between the first nonmagnetic portion (41) and the second magnetic portion (52) in the stacking direction (D1).
  • the second insulating portion is provided on the first main surface (21) side of the second conductor pattern portion (62a), and has a width (line width) smaller than the line width ( ⁇ 12) of the second conductor pattern portion (62a). ⁇ 22).
  • the second insulating portion overlaps the second conductor pattern portion (62a) in plan view from the stacking direction (D1).
  • the second conductor pattern portion (62a) can be raised to the second main surface (22) side, the direction of the magnetic flux ( ⁇ 2) is changed. , It can be closer to the stacking direction (D1) than the direction (D2) orthogonal to the stacking direction (D1). As a result, the communication performance of the antenna element (1a) can be further improved.
  • the coil conductor (3b; 3d) includes at least one third conductor pattern portion (63b; 63d). And at least one third insulating portion (third insulating pattern portion 73).
  • the third conductor pattern portion (63b; 63d) is located in the first nonmagnetic portion (41).
  • the third insulating portion is provided on the second main surface (22) side of the third conductor pattern portion (63b; 63d) and has a width narrower than the line width of the third conductor pattern portion (63b; 63d). .
  • the third insulating portion overlaps the third conductor pattern portion (63b; 63d) in plan view from the stacking direction (D1).
  • the antenna element (1b; 1d) when the third insulating portion is a gap, the second conductor pattern portion (62) and the third conductor pattern portion (63b; 63d) Since the stray capacitance can be reduced, the Q value of the antenna element (1b; 1d) can be improved.
  • the antenna element (1b; 1d) when the third insulating portion is a gap, the nonmagnetic portion (for example, the first nonmagnetic portion (41)) and the magnetic portion (for example, the first portion)
  • the stress generated in the non-magnetic part can be relaxed by the difference in linear expansion coefficient from the magnetic part (51)). Accordingly, between the conductor patterns (between the first conductor pattern portion (61) and the third conductor pattern portion (63b; 63d), between the third conductor pattern portions (63b; 63d)), the stacking direction (D1) and Can reduce the occurrence of cracks in the orthogonal direction (D2).
  • the stacked body (2c; 2d) further includes a third magnetic part (53).
  • the third magnetic part (53) is provided so as to divide the first nonmagnetic part (41) into at least two parts in the stacking direction (D1).
  • the antenna element (1c; 1d) since the thickness of the first nonmagnetic portion (41) divided into two can be reduced, the first magnetic portion The tensile stress received by the magnetic part such as (51) can be reduced. As a result, it is possible to reduce the occurrence of cracks in the lamination direction (D1) of the magnetic part.
  • the multilayer body (2d) includes the second magnetic part (52) and the second nonmagnetic part (42). And a third nonmagnetic portion (43).
  • the second magnetic part (52) is closer to the second main surface (22) than the first nonmagnetic part (41).
  • the second nonmagnetic portion (42) is closer to the first main surface (21) than the first magnetic portion (51) in the stacking direction (D1).
  • the third nonmagnetic portion (43) is closer to the second main surface (22) than the second magnetic portion (52) in the stacking direction (D1).
  • the strength of the antenna element (1d) can be increased.
  • the manufacturing method of the antenna element (1; 1a; 1b; 1c; 1d) according to the seventh aspect includes a step of preparing a nonmagnetic layer constituting the nonmagnetic portion and a magnetic layer constituting the magnetic portion.
  • the manufacturing method further includes a step of providing the first conductor pattern portion (61) on the main surface of the magnetic layer.
  • the manufacturing method further includes the step of providing an auxiliary film (701) having a line width narrower than the line width ( ⁇ 11) of the first conductor pattern portion (61) on the first conductor pattern portion (61).
  • the manufacturing method further includes a step of laminating a nonmagnetic layer on the magnetic layer so as to cover the main surface provided with the first conductor pattern portion (61) and the auxiliary film (701).
  • the magnetic layer and the nonmagnetic layer are stacked and pressed from the stacking direction (D1), and the portion of the first conductor pattern portion (61) where the auxiliary film (701) is provided is left as the rest.
  • the method further includes a step of being positioned closer to the magnetic layer than the portion.
  • the laminated body is sintered, and the first insulating portion (first insulating pattern portion 71) having a width (line width ⁇ 21) smaller than the line width ( ⁇ 11) of the first conductor pattern portion (61).
  • the method further includes the step of forming.
  • the first conductor pattern portion (61 ) can be raised to the magnetic layer side, so that the direction of the magnetic flux ( ⁇ 1) can be closer to the stacking direction (D1) than the direction (D2) perpendicular to the stacking direction (D1).
  • the side surface on the magnetic layer side of the first conductor pattern portion (61) can protrude larger than the side surface on the nonmagnetic layer side of the first conductor pattern portion (61), so the direction of the magnetic flux ( ⁇ 1) Can be easily brought close to the stacking direction (D1).
  • the communication performance of the antenna elements (1; 1a; 1b; 1c; 1d) can be improved.
  • the manufacturing method of the antenna element (1; 1a; 1b; 1c; 1d) according to the seventh aspect the magnetic loss is suppressed and the antenna element (1; 1a; 1b; 1c; 1d) An antenna element that improves the communication performance can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

磁性損を抑制し、かつ、アンテナ素子の通信性能を向上させることができる。アンテナ素子(1)は、積層体(2)と、コイル導体(3)とを備える。積層体(2)は、互いに積層する第1非磁性部(41)と第1磁性部(51)とを含む。第1磁性部(51)は、第1非磁性部(41)に比べて第1主面(21)に近接する。コイル導体(3)は、第1導体パターン部(61)と、第1絶縁パターン部(71)とを含む。第1導体パターン部(61)は、第1非磁性部(41)と第1磁性部(51)との間に位置する。第1絶縁パターン部(71)は、第1導体パターン部(61)の第2主面(22)側に設けられており、第1導体パターン部(61)の線幅(δ11)よりも細い線幅(δ21)を有する。第1絶縁パターン部(71)は、積層体(2)の積層方向(D1)からの平面視で、第1導体パターン部(61)と重なる。

Description

アンテナ素子及びアンテナ素子の製造方法
 本発明は、一般にアンテナ素子及びアンテナ素子の製造方法に関し、より詳細には、非磁性部と磁性部とを含む積層体内にコイル導体が設けられているアンテナ素子及びアンテナ素子の製造方法に関する。
 従来、アンテナコイル(コイル導体)を備えるアンテナ装置(アンテナ素子)が知られている(例えば、特許文献1参照)。
 特許文献1に記載されたアンテナ装置では、複数の磁性体層(磁性層)が積層されており、アンテナコイルが、複数の磁性体層の表面に形成された複数の配線パターン(導体パターン部)を備える。特許文献1に記載されたアンテナコイルは、コイル巻回軸を磁性体層の積層方向に一致させて磁性体層に形成されている。
国際公開第2015/008704号
 ところで、特許文献1に記載されたアンテナ装置のような従来のアンテナ素子では、コイル導体が磁性部に覆われていると磁性損が大きくなるという問題があった。この問題を解消しようとする場合、例えば、コイル導体を磁性部で覆わず、コイル導体を磁性部から離れた位置に設けることが考えられる。しかし、コイル導体が磁性部から離れると、磁束を効率的に放射させにくくなり、アンテナ素子の通信性能が低下するという問題が生じうる。
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、磁性損を抑制し、かつ、アンテナ素子の通信性能を向上させることができるアンテナ素子及びアンテナ素子の製造方法を提供することにある。
 本発明の一態様に係るアンテナ素子は、積層体と、コイル導体とを備える。前記積層体は、第1非磁性部と第1磁性部とを含む。前記第1磁性部は、前記第1非磁性部と積層する。前記コイル導体は、前記積層体内に設けられている。前記コイル導体の巻回軸は、前記積層体の積層方向に平行である。前記積層体は、第1主面と、第2主面とを有する。前記第2主面は、前記積層方向において前記第1主面に対向し、実装面である。前記第1磁性部は、前記積層方向において前記第1非磁性部に比べて前記第1主面に近接する。前記コイル導体は、第1導体パターン部と、第1絶縁部とを含む。前記第1導体パターン部は、前記積層方向において前記第1非磁性部と前記第1磁性部との間に位置する。前記第1絶縁部は、前記第1導体パターン部の前記第2主面側に設けられており、前記第1導体パターン部の線幅よりも細い幅を有する。前記第1絶縁部は、前記積層方向からの平面視で、前記第1導体パターン部と重なる。
 本発明の一態様に係るアンテナ素子の製造方法は、非磁性部を構成する非磁性層と、磁性部を構成する磁性層とを準備する工程を有する。前記アンテナ素子の製造方法は、前記磁性層の主面に第1導体パターン部を設ける工程を更に有する。前記アンテナ素子の製造方法は、前記第1導体パターン部上に、前記第1導体パターン部の線幅よりも細い幅を有する補助膜を設ける工程を更に有する。前記アンテナ素子の製造方法は、前記第1導体パターン部及び前記補助膜が設けられた前記主面を覆うように前記磁性層に前記非磁性層を積層する工程を更に有する。前記アンテナ素子の製造方法は、前記磁性層と前記非磁性層とを積層させた状態で積層方向から押して、前記第1導体パターン部のうち前記補助膜が設けられている部分を残りの部分よりも前記磁性層側に位置させる工程を更に有する。前記アンテナ素子の製造方法は、積層体を焼結して、前記第1導体パターン部の前記線幅よりも細い幅を有する第1絶縁部を形成する工程を更に有する。
 本発明の上記態様に係るアンテナ素子によれば、磁性損を抑制し、かつ、アンテナ素子の通信性能を向上させることができる。
 本発明の上記態様に係るアンテナ素子の製造方法によれば、磁性損を抑制し、かつ、アンテナ素子の通信性能を向上させるアンテナ素子を製造することができる。
図1Aは、実施形態1に係るアンテナ素子の断面図である。図1Bは、同上のアンテナ素子の要部の拡大図である。 図2は、同上のアンテナ素子の斜視図である。 図3は、同上のアンテナ素子の正面図である。 図4Aは、同上のアンテナ素子の磁束を示す概略図である。図4Bは、比較例のアンテナ素子の磁束を示す概略図である。 図5は、同上のアンテナ素子を構成する複数の基材層の一部の平面図である。 図6は、同上のアンテナ素子を構成する複数の基材層の残りの平面図である。 図7Aは、実施形態2に係るアンテナ素子の断面図である。図7Bは、同上のアンテナ素子の要部の拡大図である。 図8は、実施形態3に係るアンテナ素子の断面図である。 図9は、実施形態4に係るアンテナ素子の断面図である。 図10は、実施形態5に係るアンテナ素子の断面図である。 図11は、同上のアンテナ素子を構成する複数の基材層の一部の平面図である。 図12は、同上のアンテナ素子を構成する複数の基材層の残りの平面図である。
 以下、実施形態1~5に係るアンテナ素子及びアンテナ素子の製造方法について、図面を参照して説明する。下記の実施形態等では、既に説明した実施形態と異なる点を重点的に説明する。特に、同様の構成による同様の作用効果については、全ての実施形態等で逐一説明せず、一部あるいは全部省略する。下記の実施形態等において説明する各図は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。なお、図1A、図1B、図7A、図7B、図8~図10は、いずれも断面図であるが、構造をわかりやすくするため、構成の一部をドットパターンで示す。図1Aは、図3のX-X線断面図である。
 各実施形態に係る「アンテナ素子」は、「無線伝送システム」に用いられるアンテナ素子である。ここで、「無線伝送システム」は、伝送相手(外部機器のアンテナ)と、磁界結合による無線伝送を行うシステムである。「伝送」は、信号の送受信と電力の送受信との両方の意味を含む。また、「無線伝送システム」は、近距離無線通信システムと無線給電システムとの両方の意味を含む。アンテナ素子は磁界結合による無線伝送を行うため、アンテナ素子の電流経路の長さつまり後述のコイル導体の線路長は、無線伝送で使用する周波数における波長λに比べて十分に小さく、λ/10以下である。したがって、無線伝送の使用周波数帯においては電磁波の放射効率は低い。なお、ここでいう波長λは、コイル導体が設けられている基材の誘電性及び透磁性による波長短縮効果を考慮した実効的な波長である。コイル導体の両端は、給電回路に接続され、アンテナの電流経路つまりコイル導体には、ほぼ一様な大きさの電流が流れる。
 また、各実施形態に係る「アンテナ素子」が用いられる近距離無線通信としては、例えばNFC(Near Field Communication)がある。近距離無線通信で使用される周波数帯は、例えばHF帯であり、特に13.56MHz及びその近傍の周波数帯である。
 また、各実施形態に係る「アンテナ素子」に用いられる無線給電の方式としては、例えば、電磁誘導方式及び磁界共鳴方式のような磁界結合方式がある。電磁誘導方式の無線給電規格としては、例えばWPC(Wireless Power Consortium)の策定する規格「Qi(登録商標)」がある。電磁誘導方式で使用される周波数帯は、例えば110kHz以上205kHz以下の範囲及び上記範囲の近傍の周波数帯に含まれている。磁界共鳴方式の無線給電規格としては、例えば、AirFuel(登録商標) Allianceの策定する規格「AirFuel Resonant」がある。磁界共鳴方式で使用される周波数帯は、例えば6.78MHz帯又は100kHz帯である。
 (実施形態1)
 (1)実施形態1の概要
 まず、実施形態1の概要について、図1A及び図1Bを参照して説明する。
 実施形態1に係るアンテナ素子1は、積層体2と、コイル導体3とを備える。アンテナ素子1では、積層体2は、第1非磁性部41と、第1非磁性部41と積層する第1磁性部51とを含む。コイル導体3は、積層体2内に設けられており、巻回軸が積層体2の積層方向D1に平行である。ここで、本明細書における「平行」とは、必ずしも厳密に「平行」であることのみを意味するのではなく、所定方向に対して0°~±15°の角度をなしていてもよい。すなわち、実質的に平行であればよい。コイル導体3の巻回軸は、例えば、積層方向D1に対して0°~±15°の角度をなしていてもよい。
 積層体2は、第1主面21と、第2主面22とを有する。第2主面22は、積層方向D1において第1主面21に対向し、実装面である。第1磁性部51は、積層方向D1において第1非磁性部41に比べて第1主面21に近接する。
 上記のようなアンテナ素子1において、コイル導体3は、第1導体パターン部61と、第1絶縁パターン部71とを含む。第1導体パターン部61は、積層方向D1において第1非磁性部41と第1磁性部51との間に位置する。第1絶縁パターン部71は、第1導体パターン部61の第2主面22側に設けられており、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する。そして、第1絶縁パターン部71は、積層方向D1からの平面視で、第1導体パターン部61と重なる。
 本明細書において、「導体パターン部が積層方向D1において非磁性部と磁性部との間に位置する」とは、導体パターン部が積層方向D1において非磁性部と磁性部との両方に接していることをいう。
 上記より、アンテナ素子1では、第1磁性部51と第1非磁性部41との間にコイル導体3の第1導体パターン部61が設けられている。これにより、コイル導体3が磁性部に覆われている場合に比べて、磁性損を抑制することができる。
 また、アンテナ素子1では、第1非磁性部41と第1磁性部51との間に位置する第1導体パターン部61において、第1導体パターン部61の第2主面22側に、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する第1絶縁パターン部71が設けられている。これにより、押圧等の工程を経て、第1導体パターン部61を第1主面21側に盛り上がった形状にすることができるので、磁束の方向を、積層方向D1と直交する方向D2よりも積層方向D1に近づけることができる。特に、第1導体パターン部61の第1主面21側の側面のほうが、第1導体パターン部61の第2主面22側の側面よりも大きく突出させることができるので、磁束の方向を積層方向D1に容易に近づけることができる。その結果、アンテナ素子1の通信性能を向上させることができる。
 これにより、磁性損を抑制し、かつ、アンテナ素子1の通信性能を向上させることができる。
 (2)実施形態1の詳細
 次に、実施形態1の詳細について説明する。
 (2.1)アンテナ素子の全体構成
 実施形態1に係るアンテナ素子1は、図1A、図2及び図3に示すように、積層体2と、コイル導体3とを備える。アンテナ素子1は、図2に示すように、例えば直方体状に形成されている。アンテナ素子1の寸法は、例えば、縦6mm程度、幅3mm程度、高さ1mm程度である。なお、アンテナ素子1は、上記の寸法には限定されない。
 (2.2)アンテナ素子の各構成要素
 次に、実施形態1に係るアンテナ素子1の各構成要素について、図面を参照して説明する。
 (2.2.1)積層体
 積層体2は、図1Aに示すように、第1非磁性部41と、第1非磁性部41と積層する第1磁性部51とを含む。積層体2は、第2磁性部52を更に含む。
 積層体2は、第1主面21と、第2主面22とを有する。第2主面22は、積層体2の積層方向D1において第1主面21に対向し、実装面である。
 (2.2.2)第1非磁性部
 第1非磁性部41は、複数の非磁性層S3~S9(図5及び図6参照)を積層して構成されている。第1非磁性部41は、積層方向D1において第1磁性部51と第2磁性部52とに挟まれている。第1非磁性部41を構成する複数の非磁性層S3~S9は、例えば低温同時焼成セラミックス(LTCC)の非磁性体フェライト等の焼結体である。
 (2.2.3)第1磁性部
 第1磁性部51は、積層方向D1において第1非磁性部41に比べて第1主面21に近接する。より詳細には、第1磁性部51は、第1非磁性部41の放射面側に配置されている。第1磁性部51は、磁性層S10(図6参照)を含む少なくとも1つの磁性層で構成されている。第1磁性部51を構成する磁性層S10は、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体である。なお、「第1磁性部51が積層方向D1において第1非磁性部41に比べて第1主面21に近接する」とは、図1Aに示すように第1磁性部51の主面が第1主面21となっている場合と、第1磁性部51の主面が第1主面21と異なっている場合との両方を含む。
 (2.2.4)第2磁性部
 第2磁性部52は、積層方向D1において第1非磁性部41に比べて第2主面22に近接する。より詳細には、第2磁性部52は、第1非磁性部41の実装面側に配置されている。第2磁性部52は、磁性層S2(図5参照)を含む少なくとも1つの磁性層で構成されている。第2磁性部52を構成する磁性層S2は、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体である。なお、「第2磁性部52が積層方向D1において第1非磁性部41に比べて第2主面22に近接する」とは、図1Aに示すように第2磁性部52の主面が第2主面22となっている場合と、第2磁性部52の主面が第2主面22と異なっている場合との両方を含む。
 (2.2.5)コイル導体
 コイル導体3は、図1Aに示すように、積層体2内に設けられている。コイル導体3の巻回軸は、積層体2の積層方向D1に平行である。より詳細には、コイル導体3は、第1非磁性部41、第1非磁性部41と第1磁性部51との境界、又は第1非磁性部41と第2磁性部52との境界に設けられている。
 コイル導体3は、第1導体パターン部61と、第2導体パターン部62と、複数(図示例では6つ)の第3導体パターン部63と、第1絶縁パターン部71とを含む。
 (2.2.6)第1導体パターン部
 第1導体パターン部61は、積層方向D1において第1非磁性部41と第1磁性部51との間に位置する。より詳細には、第1導体パターン部61は、コイル導体3のうち第1主面21(放射面)に最も近接する部分であり、第1非磁性部41と第1磁性部51との境界に設けられている。第1導体パターン部61は、例えばAgを主成分とする導体パターン部である。
 (2.2.7)第2導体パターン部
 第2導体パターン部62は、積層方向D1において第1非磁性部41と第2磁性部52との間に位置する。より詳細には、第2導体パターン部62は、コイル導体3のうち第2主面22(実装面)に最も近接する部分であり、第1非磁性部41と第2磁性部52との境界に設けられている。第2導体パターン部62は、例えばAgを主成分とする導体パターン部である。
 (2.2.8)第3導体パターン部
 複数の第3導体パターン部63の各々は、第1非磁性部41内に位置する。つまり、各第3導体パターン部63は、第1非磁性部41で覆われている。第3導体パターン部63は、例えばAgを主成分とする導体パターン部である。
 複数の第3導体パターン部63のうち第1導体パターン部61と隣接する第3導体パターン部63は、層間接続導体によって第1導体パターン部61と電気的に接続されている。上記層間接続導体は、第1非磁性部41に設けられている。より詳細には、上記層間接続導体は、第1非磁性部41を構成する非磁性層S9(図6参照)を貫通するように設けられている。
 複数の第3導体パターン部63のうち第2導体パターン部62と隣接する第3導体パターン部63は、層間接続導体によって第2導体パターン部62と電気的に接続されている。上記層間接続導体は、第1非磁性部41に設けられている。より詳細には、上記層間接続導体は、第1非磁性部41を構成する非磁性層S3(図5参照)を貫通するように設けられている。
 (2.2.9)第1絶縁パターン部
 第1絶縁パターン部71は、第1導体パターン部61の第2主面22側に設けられており、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する。第1絶縁パターン部71は、積層方向D1からの平面視で、第1導体パターン部61と重なる。つまり、第1導体パターン部61の線幅δ11よりも狭い線幅δ21を有する第1絶縁パターン部71が第1導体パターン部61に沿って配置されている。ここで、本明細書における「絶縁パターン部」は、本発明における「絶縁部」に対応する。第1絶縁パターン部71は、本発明における第1絶縁部に対応する。
 第1絶縁パターン部71の線幅δ21は第1導体パターン部61の線幅δ11よりも細く、第1絶縁パターン部71の厚さは第1導体パターン部61の厚さよりも薄い。なお、第1絶縁パターン部71及び第1導体パターン部61の寸法の大小関係は上記に限定されない。
 第1導体パターン部61の第2主面22側に第1絶縁パターン部71が設けられていることによって、後述する製造の工程を経て、第1導体パターン部61は、第1主面21(放射面)側に盛り上がった形状になる。
 ここで、第1導体パターン部61は、図1Bに示すような形状である。つまり、第1導体パターン部61は、凸状である。あるいは、第1導体パターン部61は、両端部よりも中央部が第1磁性部51側に突出している。あるいは、積層方向D1において、第1導体パターン部61の重心O1が第1磁性部51側に位置している。つまり、第1導体パターン部61の重心O1は、平らな第1導体バターン部に比べて、積層方向D1において第1主面21側に位置している。なお、第1導体パターン部61は、急峻に突出していなくてもよく、滑らかに突出していてもよい。
 第1導体パターン部61上において第1絶縁パターン部71が形成される位置に補助膜701(図6参照)が設けられた後、第1非磁性部41と第1磁性部51と第2磁性部52との積層体を積層方向D1から押した場合、第1導体パターン部61は、積層方向D1から押されることによって、両端部よりも中央部が第1主面21側に突出した形状になる。さらに、上記積層体を積層方向D1から押した状態で焼結すると、補助膜701が燃えて、第1絶縁パターン部71が形成される。一方、第1絶縁パターン部71のような絶縁パターン部がない第2導体パターン部62及び複数の第3導体パターン部63は、第1導体パターン部61のような形状にはならず、平らな形状になる。
 ところで、第1絶縁パターン部71は空隙である。すなわち、第1絶縁パターン部71は、空隙のパターンを有する空隙パターン部である。
 (2.3)磁束の流れ
 次に、磁束の流れについて、図4A及び図4Bを参照して説明する。
 図4Aに示すように、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する第1絶縁パターン部71が第1導体パターン部61の第2主面22側に設けられている。これにより、上述したように、第1導体パターン部61は、第1主面21側に盛り上がった形状になる。
 第1導体パターン部61が第1主面21側に盛り上がった形状になっていることにより、図4Aの矢印で示すように、第1磁性部51において、磁束φ1の方向を、積層方向D1と直交する方向D2から積層方向D1に近づけることができる。つまり、磁束φ1について、積層方向D1の成分を大きくすることができる。その結果、アンテナ素子1の通信性能を向上させることができる。
 一方、第1絶縁パターン部71が設けられていない比較例の場合、図4Bに示すように、第1非磁性部92と第1磁性部93との間に位置する第1導体パターン部91は盛り上がった形状になっていない。第1磁性部93における磁束φ10の方向は、実施形態1の場合に比べて、積層方向D1と直交する方向D2に近い。このため、積層方向D1の成分が小さく、アンテナ素子の通信性能を向上させることが容易でない。
 すなわち、実施形態1に係るアンテナ素子1は、第1導体パターン部61を第1主面21側に盛り上がった形状にすることにより、第1導体パターン部91が盛り上がっていない比較例に比べて、アンテナ素子1の通信性能を向上させることができる。
 (2.4)アンテナ素子の製造方法
 次に、実施形態1に係るアンテナ素子1の製造方法について、図5及び図6を参照して説明する。実施形態1に係るアンテナ素子1は、第1工程から第7工程により製造される。図5及び図6に示されている複数の基材層は、非磁性層S3~S9及び磁性層S2,S10である。なお、図5及び図6中における一点鎖線は、層間接続導体による主要な接続関係を示している。図5の非磁性層S6と図6の非磁性層S7とは層間接続導体で電気的に接続されている。
 第1工程では、第1非磁性部41を構成する複数の非磁性層S3~S9と、第2磁性部52を構成する磁性層S2と、第1磁性部51を構成する磁性層S10とを準備する。非磁性層S3~S9は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体(グリーンシート)である。磁性層S2,S10は、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体(グリーンシート)である。
 第2工程では、磁性層S2の裏面に、複数の端子電極T1~T6を形成する。複数の端子電極のT1~T6の各々は略矩形の導体パターンである。端子電極T1~T6の材料は、例えばAgを主成分とする導体である。
 なお、磁性層S2の裏面に、端子電極T1~T6の外縁部を覆う枠状の絶縁膜(図示せず)を形成する。より詳細には、磁性層S2の裏面に端子電極T1~T6を形成した後、端子電極T1~T6の外縁部を覆うように枠状に印刷した非磁性体(非磁性フェライト)ペーストを焼成して、絶縁膜として形成する。
 第3工程では、非磁性層S3の裏面に第2導体パターン部62を設け、非磁性層S4~S9の裏面に第3導体パターン部63を設け、磁性層S10の裏面(主面)に第1導体パターン部61を設ける。より詳細には、非磁性層S3の裏面に、約1ターンの第2導体パターン部62を形成する。非磁性層S4~S9の各々の裏面に、約1ターンの第3導体パターン部63を形成する。磁性層S10の裏面に、約1ターンの第1導体パターン部61を形成する。第1導体パターン部61、第2導体パターン部62、及び各第3導体パターン部63の各々の材料は、例えばAgを主成分とする導体である。
 第4工程では、磁性層S10の裏面における第1導体パターン部61上に、補助膜701を設ける。補助膜701は、例えばカーボン膜であり、第1導体パターン部61の線幅δ11(図1B参照)よりも細い線幅δ21(図1B参照)を有する。
 第5工程では、磁性層S2、非磁性層S3、非磁性層S4、非磁性層S5、非磁性層S6、非磁性層S7、非磁性層S8、非磁性層S9、磁性層S10の順に積層する。積層体において、磁性層S2が最下層であり、磁性層S10が最上層である。より詳細には、第5工程では、第1導体パターン部61及び補助膜701が設けられた裏面を覆うように磁性層S10に非磁性層S9を積層する。
 第6工程では、磁性層と非磁性層とを積層させた状態で積層方向D1から押圧して、第1導体パターン部61のうち補助膜701が設けられている部分を残りの部分よりも磁性層S10側に位置させる。
 第7工程では、積層体を焼結して、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する第1絶縁パターン部71を形成する。このとき、磁性層S10の裏面における第1導体パターン部61上に設けられた補助膜701が燃えることによって、補助膜701が存在した位置に、第1絶縁パターン部71としての空隙を形成する。
 なお、積層体2には、非磁性層S3~S9以外の層であって導体パターン部が設けられていない非磁性層が含まれていてもよい。また、積層体2には、磁性層S2,S10以外の層であって導体パターン部が設けられていない磁性層が含まれていてもよい。これらの非磁性層及び磁性層についての図示及び説明は省略する。
 (3)効果
 実施形態1に係るアンテナ素子1では、第1磁性部51と第1非磁性部41との間(第1磁性部51と第1非磁性部41との境界)にコイル導体3の第1導体パターン部61が設けられている。これにより、コイル導体3が磁性部に覆われている場合に比べて、磁性損を抑制することができる。
 また、実施形態1に係るアンテナ素子1では、第1非磁性部41と第1磁性部51との間に位置する第1導体パターン部61において、第1導体パターン部61の第2主面22側に、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する第1絶縁パターン部71が設けられている。これにより、押圧等の工程を経て、第1導体パターン部61を第1主面21側に盛り上がった形状にすることができるので、磁束の方向を、積層方向D1と直交する方向D2よりも積層方向D1に近づけることができる。特に、第1導体パターン部61の第1主面21側の側面のほうが、第1導体パターン部61の第2主面22側の側面よりも大きく突出させることができるので、磁束の方向を積層方向D1に容易に近づけることができる。その結果、アンテナ素子1の通信性能を向上させることができる。
 上記より、実施形態1に係るアンテナ素子1によれば、磁性損を抑制し、かつ、アンテナ素子1の通信性能を向上させることができる。
 実施形態1に係るアンテナ素子1では、第1絶縁パターン部71は、他の導体(第3導体パターン部63等)との間に配置される空隙である。ここで、第1導体パターン部61の周囲に他の導体が存在する場合には、第1導体パターン部61と他の導体との間に浮遊容量が発生する。しかし、第1導体パターン部61と他の導体との間に空隙が位置すると、第1導体パターン部61と他の導体との間に空隙がない(第1導体パターン部61と他の導体との間の全てが第1非磁性部41である)ときよりも、第1導体パターン部61と他の導体との間に発生する浮遊容量が低くなる。すなわち、第1絶縁パターン部71が空隙であるから、第1非磁性部41に比べて第1絶縁パターン部71の比誘電率は小さい。したがって、第1絶縁パターン部71が設けられていない場合(第1導体パターン部61と他の導体との間の全てが第1非磁性部41である場合)に比べて、第1導体パターン部61と他の導体との間に発生する浮遊容量を低減させることができる。その結果、アンテナ素子1のQ値を向上させることができる。
 実施形態1に係るアンテナ素子1の製造方法では、第1磁性部51を構成する磁性層S10と第1非磁性部41を構成する非磁性層S9との間(磁性層S10と非磁性層S9との境界)にコイル導体3の第1導体パターン部61が設けられているアンテナ素子1を製造する。これにより、アンテナ素子1において、コイル導体3が磁性部に覆われている場合に比べて、磁性損を抑制することができる。
 また、実施形態1に係るアンテナ素子1の製造方法では、非磁性層S9と磁性層S10との間に位置する第1導体パターン部61において、第1導体パターン部61の非磁性層S9側に、第1導体パターン部61の線幅δ11よりも細い線幅δ21を有する補助膜701から第1絶縁パターン部71を形成する。これにより、アンテナ素子1において、第1導体パターン部61を磁性層S10側に盛り上がった形状にすることができるので、磁束φ1の方向を、積層方向D1と直交する方向(例えば方向D2)よりも積層方向D1に近づけることができる。特に、第1導体パターン部61の磁性層S10側の側面のほうが、第1導体パターン部61の非磁性層S9側の側面よりも大きく突出させることができるので、磁束φ1の方向を積層方向D1に容易に近づけることができる。その結果、アンテナ素子1の通信性能を向上させることができる。
 上記より、実施形態1に係るアンテナ素子1の製造方法によれば、磁性損を抑制し、かつ、アンテナ素子1の通信性能を向上させるアンテナ素子1を製造することができる。
 (4)変形例
 以下、実施形態1の変形例について説明する。
 実施形態1の変形例として、第1絶縁パターン部71は、空隙でなく、第1非磁性部41より比誘電率の小さい絶縁ペーストで形成されてもよい。本変形例の場合、第1導体パターン部61の第2主面22側に、絶縁ペーストが設けられることにより、第1絶縁パターン部71が形成される。
 また、実施形態1の変形例として、コイル導体3は、1つだけの第3導体パターン部63を含んでもよい。要するに、コイル導体3は、少なくとも1つの第3導体パターン部63を含んでいればよい。
 上記の各変形例に係るアンテナ素子においても、実施形態1に係るアンテナ素子1と同様の効果を奏する。
 (実施形態2)
 実施形態2に係るアンテナ素子1aは、図7A及び図7Bに示すように、第2導体パターン部62a上に第2絶縁パターン部72が設けられている点で、実施形態1に係るアンテナ素子1(図1A及び図1B参照)と相違する。なお、実施形態2に係るアンテナ素子1aに関し、実施形態1に係るアンテナ素子1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態2に係るアンテナ素子1aは、実施形態1のコイル導体3に代えて図7Aに示すようなコイル導体3aを備える。実施形態2に係るアンテナ素子1aでは、実施形態1と同様、第1非磁性部41の第2主面22(実装面)側に第2磁性部52が配置されている。
 コイル導体3aは、実施形態1の第2導体パターン部62に代えて第2導体パターン部62aを含む。また、コイル導体3aは、第2絶縁パターン部72を更に含む。なお、実施形態2のコイル導体3aに関し、実施形態1のコイル導体3(図1A参照)と同様の構成及び機能については説明を省略する。
 第2導体パターン部62aは、実施形態1の第2導体パターン部62と同様、積層方向D1において第1非磁性部41と第2磁性部52との間に位置する。
 第2絶縁パターン部72は、第2導体パターン部62aの第1主面21側に設けられており、第2導体パターン部62の線幅δ12よりも細い線幅δ22を有する。第2絶縁パターン部72は、積層方向D1からの平面視で第2導体パターン部62aと重なる。つまり、第2導体パターン部62aの線幅δ12よりも狭い線幅δ22を有する第2絶縁パターン部72が第2導体パターン部62aに沿って配置されている。第2絶縁パターン部72は、本発明における第2絶縁部に対応する。
 第2絶縁パターン部72の線幅δ22は第2導体パターン部62aの線幅δ12よりも細く、第2絶縁パターン部72の厚さは第2導体パターン部62aの厚さよりも薄い。なお、第2絶縁パターン部72及び第2導体パターン部62aの寸法の大小関係は上記に限定されない。
 第2導体パターン部62aの第1主面21側に第2絶縁パターン部72が設けられていることによって、第2導体パターン部62aは、第2主面22(実装面)側に盛り上がった形状になる。
 ここで、第2導体パターン部62aは、図7Bに示すような形状である。つまり、第2導体パターン部62aは、凸状である。あるいは、第2導体パターン部62aは、両端部よりも中央部が第2磁性部52側に突出している。あるいは、積層方向D1において、第2導体パターン部62aの重心O2が第2磁性部52側に位置している。つまり、第2導体パターン部62aの重心O2は、平らな第2導体バターン部に比べて、積層方向D1において第2主面22側に位置している。なお、第2導体パターン部62aは、急峻に突出していなくてもよく、滑らかに突出していてもよい。
 第2導体パターン部62a上において第2絶縁パターン部72が形成される位置に補助膜が設けられた後、第1非磁性部41と第1磁性部51と第2磁性部52との積層体を積層方向D1から押した場合、第2導体パターン部62aは、積層方向D1から押されることによって、両端部よりも中央部が第2主面22側に突出した形状になる。さらに、上記積層体を積層方向D1から押した状態で焼結すると、補助膜が燃えて、第2絶縁パターン部72が形成される。一方、第2絶縁パターン部72のような絶縁パターン部がない複数の第3導体パターン部63は、第2導体パターン部62aのような形状にはならず、平らな形状になる。
 ところで、第2絶縁パターン部72は空隙である。すなわち、第2絶縁パターン部72は、空隙のパターンを有する空隙パターン部である。
 次に、磁束φ2の流れについて、図7Bを参照して説明する。
 図7Bに示すように、第2導体パターン部62aの線幅δ12よりも細い線幅δ22を有する第2絶縁パターン部72が第2導体パターン部62aの第1主面21側に設けられている。これにより、上述したように、第2導体パターン部62aは、第2主面22側に盛り上がった形状になる。
 第2導体パターン部62aが第2主面22側に盛り上がった形状になっていることにより、図7Bの矢印で示すように、第2磁性部52において、磁束φ2の方向を、積層方向D1と直交する方向D2から積層方向D1に近づけることができる。つまり、積層方向D1の成分を大きくすることができる。その結果、アンテナ素子1aの通信性能を向上させることができる。
 一方、第2絶縁パターン部72が設けられていない比較例の場合、第2導体パターン部は盛り上がった形状にならない。また、この比較例の場合、第2磁性部における磁束の方向は、実施形態2の場合に比べて、積層方向D1と直交する方向D2に近くなる。このため、積層方向D1の成分が小さく、アンテナ素子の通信性能を向上させることが容易でない。
 上述したように、実施形態2に係るアンテナ素子1aは、第2導体パターン部62aを第2主面22側に盛り上がった形状にすることにより、第2導体パターン部が盛り上がっていない比較例に比べて、アンテナ素子1aの通信性能を向上させることができる。
 次に、実施形態2に係るアンテナ素子1aの製造方法について説明する。実施形態2に係るアンテナ素子1aは、第1工程から第7工程により製造される。
 まず、実施形態1と同様、第1工程から第3工程を行う。より詳細には、第1工程では、複数の非磁性層S3~S9(図5及び図6参照)と、磁性層S2,S10(図5及び図6参照)とを準備する。第2工程では、磁性層S2の裏面に、複数の端子電極T1~T6(図5参照)を形成する。第3工程では、非磁性層S3の裏面に第2導体パターン部62aを設け、非磁性層S4~S9の裏面に第3導体パターン部63を設け、磁性層S10の裏面に第1導体パターン部61を設ける。
 実施形態2の第4工程では、磁性層S10の裏面における第1導体パターン部61上に補助膜701を設けると共に、非磁性層S3の裏面における第2導体パターン部62a上に補助膜を形成する。第2導体パターン部62a上に形成される補助膜は、第1導体パターン部61上に形成される補助膜701と同様、例えばカーボン膜である。第2導体パターン部62a上に形成される補助膜は、第2導体パターン部62aの線幅δ12よりも細い線幅を有する。
 その後、実施形態1と同様、第5工程を行う。より詳細には、第5工程では、磁性層S2、非磁性層S3、非磁性層S4、非磁性層S5、非磁性層S6、非磁性層S7、非磁性層S8、非磁性層S9、磁性層S10の順に積層する。
 実施形態2の第6工程では、実施形態1と同様、磁性層と非磁性層とを積層させた状態で積層方向D1から押して、第1導体パターン部61のうち補助膜701が設けられている部分を残りの部分よりも磁性層S10側に位置させる。さらに、実施形態2では、第2導体パターン部62aのうち補助膜が設けられている部分を残りの部分よりも磁性層S2側に位置させる。
 実施形態2の第7工程では、積層体を焼結して、実施形態1と同様、空隙の第1絶縁パターン部71を形成する。さらに、実施形態2では、第2導体パターン部62aの線幅δ12よりも細い線幅δ22を有する第2絶縁パターン部72を形成する。このとき、非磁性層S3の裏面における第2導体パターン部62a上に形成された補助膜が燃えることによって、補助膜が存在した位置に、第2絶縁パターン部72としての空隙を形成する。
 以上説明したように、実施形態2に係るアンテナ素子1aでは、第1非磁性部41と第2磁性部52との間に位置する第2導体パターン部62aにおいて、第2導体パターン部62aの第1主面21側に、第2導体パターン部62aの線幅δ12よりも細い線幅δ22を有する第2絶縁パターン部72が設けられている。これにより、第2導体パターン部62aを第2主面22側に盛り上がった形状にすることができるので、磁束φ2の方向を、積層方向D1と直交する方向(例えば方向D2)よりも積層方向D1に近づけることができる。その結果、アンテナ素子1aの通信性能を更に向上させることができる。
 なお、実施形態2の変形例として、第2絶縁パターン部72は、空隙でなく、第1非磁性部41より比誘電率の小さい絶縁ペーストで形成されてもよい。本変形例の場合、第2導体パターン部62aの第1主面21側に、絶縁ペーストが設けられることにより、第2絶縁パターン部72が形成される。
 上記の変形例に係るアンテナ素子においても、実施形態2に係るアンテナ素子1aと同様の効果を奏する。
 (実施形態3)
 実施形態3に係るアンテナ素子1bは、図8に示すように、複数(図示例では7つ)の第3絶縁パターン部73を備える点で、実施形態1に係るアンテナ素子1(図1A参照)と相違する。なお、実施形態3に係るアンテナ素子1bに関し、実施形態1に係るアンテナ素子1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態3に係るアンテナ素子1bは、実施形態1のコイル導体3に代えて図8に示すようなコイル導体3bを備える。
 コイル導体3bは、第1導体パターン部61と、第2導体パターン部62と、複数(図示例では7つ)の第3導体パターン部63bと、第1絶縁パターン部71とを備える共に、複数(図示例では7つ)の第3絶縁パターン部73を更に含む。なお、実施形態3のコイル導体3bに関し、実施形態1のコイル導体3(図1A参照)と同様の構成及び機能については説明を省略する。
 複数の第3導体パターン部63bの各々は、実施形態1の第3導体パターン部63と同様、第1非磁性部41内に位置する。
 複数の第3絶縁パターン部73の各々は、複数の第3導体パターン部63bと一対一に対応し、対応する第3導体パターン部63bの第2主面22側に設けられている。各第3絶縁パターン部73は、対応する第3導体パターン部63bの線幅よりも細い線幅を有する。各第3絶縁パターン部73は、積層方向D1からの平面視で、対応する第3導体パターン部63bと重なる。つまり、第3導体パターン部63bの線幅よりも狭い線幅を有する第3絶縁パターン部73が第3導体パターン部63bに沿って配置されている。第3絶縁パターン部73は、本発明における第3絶縁部に対応する。
 第3絶縁パターン部73の線幅は第3導体パターン部63bの線幅よりも細く、第3絶縁パターン部73の厚さは第3導体パターン部63bの厚さよりも薄い。なお、第3絶縁パターン部73及び第3導体パターン部63bの寸法は上記に限定されない。
 第3導体パターン部63bの第2主面22側に第3絶縁パターン部73が設けられていることによって、第3導体パターン部63bは、第1主面21(実装面)側に盛り上がった形状になる。
 ここで、第3導体パターン部63bは、図8に示すような形状である。つまり、第3導体パターン部63bは、凸状である。あるいは、第3導体パターン部63bは、両端部よりも中央部が第1磁性部51側に突出している。あるいは、積層方向D1において、第3導体パターン部63bの重心が第1磁性部51側に位置している。つまり、第3導体パターン部63bの重心は、平らな第3導体バターン部に比べて、積層方向D1において第1主面21側に位置している。なお、第3導体パターン部63bは、急峻に突出していなくてもよく、滑らかに突出していてもよい。
 第3導体パターン部63b上に第3絶縁パターン部73が設けられた後、第1非磁性部41と第1磁性部51と第2磁性部52との積層体を積層方向D1から押した状態で焼結した場合、第3導体パターン部63bは、積層方向D1から押されることによって、両端部よりも中央部が第1主面21側に突出した形状になる。一方、第2絶縁パターン部72のような絶縁パターン部がない第2導体パターン部62は、第3導体パターン部63bのような形状にはならず、平らな形状になる。
 実施形態3のように、複数の第3絶縁パターン部73が、対応する第3導体パターン部63b上に設けられていると、押圧によって、各第3導体パターン部63bは、第1主面21側に盛り上がった形状になる。この際に、複数の第3導体パターン部63bの盛り上がり度合いによって、積層方向D1において、複数の第3導体パターン部63bと並んでいる第3絶縁パターン部73の厚さが累積されるので、第1導体パターン部61の盛り上がり度合いを大きくすることができる。言い換えると、複数の第3絶縁パターン部73が、対応する第3導体パターン部63b上に設けられていると、押圧の工程によって、各第3導体パターン部63bは、第1主面21側に盛り上がった形状になる。この際に、複数の第3導体パターン部63bの盛り上がり度合いによって、積層方向D1において、複数の第3導体パターン部63bと並んでいる第1導体パターン部61の盛り上がり度合いを大きくすることができる。第1導体パターン部61の盛り上がり度合いが大きくなると、第1磁性部51における磁束φ1(図4A参照)の方向を、より積層方向D1に近づけることができる。
 ところで、複数の第3絶縁パターン部73は空隙である。すなわち、各第3絶縁パターン部73は、空隙のパターンを有する空隙パターン部である。
 複数の第3絶縁パターン部73が空隙であるから、第1非磁性部41に比べて、各第3絶縁パターン部73の比誘電率は小さい。したがって、第3絶縁パターン部73が設けられていない場合に比べて、積層方向D1において隣接する2つの第3導体パターン部63b間の比誘電率を1に近づけることができる。これにより、積層方向D1において隣接する2つの第3導体パターン部63b間の浮遊容量、及び、第2導体パターン部62に最も近い第3導体パターン部63bと第2導体パターン部62との間の浮遊容量を減少させることができる。その結果、アンテナ素子1bのQ値を向上させることができる。
 また、複数の第3絶縁パターン部73が空隙であることによって、第1非磁性部41と第1磁性部51との間の線膨張係数差により第1非磁性部41の内部に生じる応力を緩和することができる。また、第1非磁性部41と第2磁性部52との間の線膨張係数差により第1非磁性部41の内部に生じる応力を緩和することができる。これにより、積層方向D1と直交する方向(例えば方向D2)へのクラックの発生を低減させることができる。
 次に、実施形態3に係るアンテナ素子1bの製造方法について説明する。実施形態3に係るアンテナ素子1bは、第1工程から第7工程により製造される。
 まず、実施形態1と同様、第1工程から第3工程を行う。より詳細には、第1工程では、複数の非磁性層S3~S9(図5及び図6参照)と、磁性層S2,S10(図5及び図6参照)とを準備する。第2工程では、磁性層S2の裏面に、複数の端子電極T1~T6(図5参照)を形成する。第3工程では、非磁性層S3の裏面に第2導体パターン部62を設け、非磁性層S4~S9の裏面に第3導体パターン部63bを設け、磁性層S10の裏面(主面)に第1導体パターン部61を設ける。
 実施形態3の第4工程では、磁性層S10の裏面における第1導体パターン部61上に補助膜701(図12参照)を設けると共に、非磁性層S4~S9の裏面における第3導体パターン部63b上に補助膜703(図11及び図12参照)を設ける。第3導体パターン部63b上に設けられた補助膜703は、第1導体パターン部61上に設けられた補助膜701と同様、例えばカーボン膜である。第3導体パターン部63b上に設けられた補助膜703は、第3導体パターン部63bの線幅よりも細い線幅を有する。
 その後、実施形態1と同様、第5工程を行う。より詳細には、第5工程では、磁性層S2、非磁性層S3、非磁性層S4、非磁性層S5、非磁性層S6、非磁性層S7、非磁性層S8、非磁性層S9、磁性層S10の順に積層する。
 実施形態3の第6工程では、実施形態1と同様、磁性層と非磁性層とを積層させた状態で積層方向D1から押して、第1導体パターン部61のうち補助膜701が設けられている部分を残りの部分よりも磁性層S10側に位置させる。さらに、実施形態3では、第3導体パターン部63bのうち補助膜703が設けられている部分を残りの部分よりも磁性層S10側に位置させる。
 実施形態3の第7工程では、積層体を焼結して、実施形態1と同様、空隙の第1絶縁パターン部71を形成する。さらに、実施形態3では、第3導体パターン部63bの線幅よりも細い線幅を有する第3絶縁パターン部73を形成する。このとき、非磁性層S4~S9の裏面における第3導体パターン部63b上に形成された補助膜703が燃えることによって、補助膜703が存在した位置に、第3絶縁パターン部73としての空隙を形成する。
 以上説明したように、実施形態3に係るアンテナ素子1bでは、第1非磁性部41内に位置する第3導体パターン部63bに、第3導体パターン部63bの線幅よりも細い線幅を有する第3絶縁パターン部73が設けられている。これにより、積層方向D1において、第1絶縁パターン部71と第3絶縁パターン部73との厚さが累積されるので、第1導体パターン部61の盛り上がり度合いを大きくすることができる。その結果、磁束の方向を積層方向D1へ更に向けることができる。
 また、実施形態3に係るアンテナ素子1bでは、第3絶縁パターン部73が空隙である場合、第2導体パターン部62と第3導体パターン部63bとの間の浮遊容量を低減させることができるので、アンテナ素子1bのQ値を向上させることができる。
 さらに、実施形態3に係るアンテナ素子1bでは、第3絶縁パターン部73が空隙である場合、非磁性部(例えば第1非磁性部41)と磁性部(例えば第1磁性部51)との線膨張係数差により非磁性部の内部に生じる応力を緩和させることができる。これにより、導体パターン間(第1導体パターン部61と第3導体パターン部63bとの間、2つの第3導体パターン部63b間)において、積層方向D1とは直交する方向D2のクラックの発生を低減させることができる。
 なお、実施形態3の変形例として、コイル導体3bは、1つだけの第3導体パターン部63bを含んでもよい。要するに、コイル導体3bは、少なくとも1つの第3導体パターン部63bを含んでいればよい。
 また、実施形態3の変形例として、コイル導体3bは、1つだけの第3絶縁パターン部73を含んでもよい。要するに、コイル導体3bは、少なくとも1つの第3絶縁パターン部73を含んでいればよい。
 実施形態3の変形例として、複数の第3絶縁パターン部73の各々は、空隙でなく、第1非磁性部41より比誘電率の小さい絶縁ペーストで形成されてもよい。本変形例の場合、複数の第3導体パターン部63bの各々の第2主面22側に、絶縁ペーストが設けられることにより、複数の第3絶縁パターン部73が形成される。
 上記の各変形例に係るアンテナ素子においても、実施形態3に係るアンテナ素子1bと同様の効果を奏する。
 (実施形態4)
 実施形態4に係るアンテナ素子1cは、図9に示すように、第1非磁性部41の間に第3磁性部53が設けられている点で、実施形態1に係るアンテナ素子1(図1A参照)と相違する。なお、実施形態4に係るアンテナ素子1cに関し、実施形態1に係るアンテナ素子1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態4に係るアンテナ素子1cは、実施形態1の積層体2に代えて図9に示すような積層体2cを備える。
 積層体2cは、第3磁性部53を更に含む。なお、実施形態4の積層体2cに関し、実施形態1の積層体2(図1A参照)と同様の構成及び機能については説明を省略する。
 第3磁性部53は、第1非磁性部41を積層方向D1において2つに分割するように設けられている。第3磁性部53は、第1非磁性部41の中間に設けられている。第3磁性部53は、磁性層S6a(図11参照)を含む少なくとも1つの磁性層で構成されている。第3磁性部53を構成する磁性層S6aは、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体である。
 実施形態4のように、第1非磁性部41の中間に第3磁性部53が設けられていることにより、2つに分かれた非磁性部411,412を薄くすることができる。これにより、第1非磁性部41が第1磁性部51及び第2磁性部52から受ける引っ張り応力(第1非磁性部41と第1磁性部51及び第2磁性部52との線膨張係数差により生じる、積層方向D1と直交する方向の応力)を低減させることができる。その結果、第1磁性部51及び第2磁性部52における積層方向D1のクラックの発生を低減させることができる。
 また、積層体2cは、第2非磁性部42を更に含む。第2非磁性部42は、積層方向D1において第1磁性部51よりも第1主面21に近接する。第2非磁性部42は、非磁性層S11(図12参照)で構成されている。第2非磁性部42を構成する非磁性層S11は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体である。
 さらに、積層体2cは、第3非磁性部43を更に含む。第3非磁性部43は、積層方向D1において第2磁性部52よりも第2主面22に近接する。第3非磁性部43は、非磁性層S1(図11参照)で構成されている。第3非磁性部43を構成する非磁性層S1は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体である。
 上記より、積層体2cでは、積層方向D1の両端が非磁性部となる。一般的に、非磁性部に比べて磁性部のほうが脆いため、積層体2cの両端を非磁性部とすることによって、機械強度を高めることができる。
 次に、実施形態4に係るアンテナ素子1cの製造方法について説明する。実施形態4に係るアンテナ素子1cは、第1工程から第8工程により製造される。
 第1工程では、複数の非磁性層S1,S3~S5,S7~S9,S11(図11及び図12参照)と、磁性層S2,S10(図11及び図12参照)とを準備する。さらに、実施形態4の第1工程では、実施形態1の非磁性層S6に代えて、磁性層S6a(図11参照)を準備する。
 第2工程では、非磁性層S1の裏面に、複数の端子電極T1~T6(図11参照)を形成し、磁性層S2の裏面に、複数の導体23~28(図11参照)を形成する。
 実施形態1と同様、第3工程及び第4工程を行う。より詳細には、第3工程では、実施形態1と同様、非磁性層S3の裏面に第2導体パターン部62を設け、非磁性層S4,S5,S7~S9及び磁性層S6aの裏面に第3導体パターン部63を設け、磁性層S10の裏面に第1導体パターン部61を設ける。第4工程では、磁性層S10の裏面における第1導体パターン部61上に補助膜701を設ける。
 第5工程では、非磁性層S11の表面にポジションマーク705(図12参照)を形成し、非磁性層S11の裏面に導体704(図12参照)を形成する。
 第6工程では、非磁性層S1、磁性層S2、非磁性層S3、非磁性層S4、非磁性層S5、磁性層S6a、非磁性層S7、非磁性層S8、非磁性層S9、磁性層S10、非磁性層S11の順に積層する。
 その後、実施形態1の第6工程及び第7工程と同様、第7工程及び第8工程を行う。より詳細には、第7工程では、磁性層と非磁性層とを積層させた状態で積層方向D1から押して、第1導体パターン部61のうち補助膜701が設けられている部分を残りの部分よりも磁性層S10側に位置させる。第8工程では、積層体を焼結して、空隙の第1絶縁パターン部71を形成する。
 以上説明したように、実施形態4に係るアンテナ素子1cでは、第1非磁性部41を少なくとも2つに分断するように第3磁性部53が設けられている。これにより、2つに分断された第1非磁性部41の1つ当たりの厚さを薄くすることができるので、第1磁性部51等の磁性部が受ける引っ張り応力を低減させることができる。その結果、磁性部の積層方向D1のクラックの発生を低減させることができる。
 実施形態4に係るアンテナ素子1cでは、第1磁性部51よりも強度の高い第2非磁性部42が第1磁性部51よりも第1主面21に近接し(外側に設けられており)、かつ、第2磁性部52よりも強度の高い第3非磁性部43が第2磁性部52よりも第2主面22に近接している(外側に設けられている)。これにより、アンテナ素子1cの強度を高めることができる。
 なお、実施形態4の変形例として、積層体2cは、複数の第3磁性部53を含んでもよい。本変形例の場合、複数の第3磁性部53は、第1非磁性部41を2つ以上に分断するように設けられている。
 上記の変形例に係るアンテナ素子においても、実施形態4に係るアンテナ素子1cと同様の効果を奏する。
 (実施形態5)
 実施形態5に係るアンテナ素子1dは、図10に示すように、第3導体パターン部63d上に第3絶縁パターン部73が設けられており、かつ、第1非磁性部41の間に第3磁性部53が設けられている点で、実施形態1に係るアンテナ素子1(図1A参照)と相違する。なお、実施形態5に係るアンテナ素子1dに関し、実施形態1に係るアンテナ素子1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態5に係るアンテナ素子1dは、実施形態1の積層体2及びコイル導体3に代えて図10に示すような積層体2d及びコイル導体3dを備える。
 積層体2dは、第3磁性部53を更に含む。なお、実施形態5の積層体2dに関し、実施形態1の積層体2(図1A参照)と同様の構成及び機能については説明を省略する。
 第3磁性部53は、第1非磁性部41を積層方向D1において2つに分割するように設けられている。第3磁性部53は、第1非磁性部41の中間に設けられている。第3磁性部53は、磁性層S6a(図11参照)を含む少なくとも1つの磁性層で構成されている。第3磁性部53を構成する磁性層S6aは、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体である。
 実施形態5のように、第1非磁性部41の中間に第3磁性部53が設けられていることにより、2つに分かれた非磁性部411,412を薄くすることができる。これにより、第1磁性部51及び第2磁性部52が第1非磁性部41から受ける引っ張り応力(積層方向D1と直交する方向の応力)を低減させることができる。その結果、第1磁性部51及び第2磁性部52における積層方向D1のクラックの発生を低減させることができる。
 また、積層体2dは、第2非磁性部42を更に含む。第2非磁性部42は、積層方向D1において第1磁性部51よりも第1主面21に近接する。第2非磁性部42は、非磁性層S11(図12参照)で構成されている。第2非磁性部42を構成する非磁性層S11は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体である。
 さらに、積層体2dは、第3非磁性部43を更に含む。第3非磁性部43は、積層方向D1において第2磁性部52よりも第2主面22に近接する。第3非磁性部43は、非磁性層S1(図11参照)で構成されている。第3非磁性部43を構成する非磁性層S1は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体である。
 上記より、積層体2dでは、積層方向D1の両端が非磁性部となる。一般的に、非磁性部に比べて磁性部のほうが脆いため、積層体2dの両端を非磁性部とすることによって、機械強度を高めることができる。
 さらに、コイル導体3dは、第1導体パターン部61と、第2導体パターン部62と、複数(図示例では7つ)の第3導体パターン部63dと、第1絶縁パターン部71とを備えると共に、複数(図示例では7つ)の第3絶縁パターン部73を更に含む。なお、実施形態5のコイル導体3dに関し、実施形態1のコイル導体3(図1A参照)と同様の構成及び機能については説明を省略する。
 複数の第3導体パターン部63dの一部は、実施形態1の第3導体パターン部63と同様、第1非磁性部41内に位置する。一方、複数の第3導体パターン部63dの残りは、第1非磁性部41と第3磁性部53との境界に設けられている。
 複数の第3絶縁パターン部73の各々は、複数の第3導体パターン部63dと一対一に対応し、対応する第3導体パターン部63dの第2主面22側に設けられている。各第3絶縁パターン部73は、対応する第3導体パターン部63dの線幅よりも細い線幅を有する。各第3絶縁パターン部73は、積層方向D1からの平面視で、対応する第3導体パターン部63dと重なる。つまり、第3導体パターン部63dの線幅よりも狭い線幅を有する第3絶縁パターン部73が第3導体パターン部63dに沿って配置されている。
 第3絶縁パターン部73の線幅は第3導体パターン部63dの線幅よりも細く、第3絶縁パターン部73の厚さは第3導体パターン部63dの厚さよりも薄い。なお、第3絶縁パターン部73及び第3導体パターン部63dの寸法は上記に限定されない。
 第3導体パターン部63dの第2主面22側に第3絶縁パターン部73が設けられていることによって、第3導体パターン部63dは、第1主面21(実装面)側に盛り上がった形状になる。
 ここで、第3導体パターン部63dは、図10に示すような形状である。つまり、第3導体パターン部63dは、凸状である。あるいは、第3導体パターン部63dは、両端部よりも中央部が第1磁性部51側に突出している。あるいは、積層方向D1において、第3導体パターン部63dの重心が第1磁性部51側に位置している。つまり、第3導体パターン部63dの重心は、平らな第3導体バターン部に比べて、積層方向D1において第1主面21側に位置している。なお、第3導体パターン部63dは、急峻に突出していなくてもよく、滑らかに突出していてもよい。
 第3導体パターン部63d上に第3絶縁パターン部73が設けられた後、第1非磁性部41と第1磁性部51と第2磁性部52との積層体を積層方向D1から押した状態で焼結した場合、第3導体パターン部63dは、積層方向D1から押されることによって、両端部よりも中央部が第1主面21側に突出した形状になる。一方、第2絶縁パターン部72のような絶縁パターン部がない第2導体パターン部62は、第3導体パターン部63dのような形状にはならず、平らな形状になる。
 実施形態5のように、複数の第3絶縁パターン部73が、対応する第3導体パターン部63d上に設けられていると、第3絶縁パターン部73の厚さが累積されるので、第1導体パターン部61の盛り上がり度合いを大きくすることができる。第1導体パターン部61の盛り上がり度合いが大きくなると、第1磁性部51における磁束φ1(図4A参照)の方向を、より積層方向D1に近づけることができる。
 実施形態5のように、複数の第3絶縁パターン部73が、対応する第3導体パターン部63d上に設けられていると、第3絶縁パターン部73の厚さが累積されるので、第1導体パターン部61の盛り上がり度合いを大きくすることができる。第1導体パターン部61の盛り上がり度合いが大きくなると、第1磁性部51における磁束の方向を、より積層方向D1に近づけることができる。
 ところで、複数の第3絶縁パターン部73は空隙である。すなわち、各第3絶縁パターン部73は、空隙のパターンを有する空隙パターン部である。
 複数の第3絶縁パターン部73が空隙であるから、第1非磁性部41に比べて、各第3絶縁パターン部73の比誘電率は小さい。したがって、第3絶縁パターン部73が設けられていない場合に比べて、積層方向D1において隣接する2つの第3導体パターン部63d間の浮遊容量、及び、第2導体パターン部62に最も近い第3絶縁パターン部73と第2導体パターン部62との間の浮遊容量を減少させることができる。その結果、アンテナ素子1dのQ値を向上させることができる。
 また、複数の第3絶縁パターン部73が空隙であることによって、第1非磁性部41と第1磁性部51との間の線膨張係数差により第1非磁性部41の内部に生じる応力を緩和することができる。また、第1非磁性部41と第2磁性部52との間の線膨張係数差により第1非磁性部41の内部に生じる応力を緩和することができる。これにより、積層方向D1と直交する方向(例えば方向D2)へのクラックの発生を低減させることができる。
 次に、実施形態5に係るアンテナ素子1dの製造方法について、図11及び図12を参照して説明する。実施形態5に係るアンテナ素子1dは、第1工程から第8工程により製造される。図11及び図12に示されている複数の基材層は、非磁性層S1,S3~S5,S7~S9,S11及び磁性層S2,S6a,S10である。なお、図11及び図12中における一点鎖線は、層間接続導体による主要な接続関係を示している。図11の磁性層S6aと図12の非磁性層S7とは層間接続導体で電気的に接続されている。
 第1工程では、複数の非磁性層S1,S3~S5,S7~S9,S11及び複数の磁性層S2,S6a,S10を準備する。非磁性層S1,S3~S5,S7~S9,S11は、例えば低温同時焼成セラミックスの非磁性体フェライト等の焼結体である。磁性層S2,S6a,S10は、例えば低温同時焼成セラミックスの磁性体フェライト等の焼結体である。
 第2工程では、非磁性層S1の裏面に、複数の端子電極T1~T6を形成する。複数の端子電極のT1~T6の各々は略矩形の導体パターンである。磁性層S2の裏面に、複数の導体23~28を形成する。複数の導体23~28は、それぞれ端子電極T1~T6に類似した形状(略矩形)の導体パターンである。端子電極T1~T6及び導体23~28は、例えばAgを主成分とする導体パターンである。
 なお、非磁性層S1の裏面に、端子電極T1~T6の外縁部を覆う枠状の絶縁膜(図示せず)を形成する。より詳細には、非磁性層S1の裏面に端子電極T1~T6を形成した後、端子電極T1~T6の外縁部を覆うように枠状に印刷した非磁性体(非磁性フェライト)ペーストを焼成して、絶縁膜として形成する。
 第3工程では、非磁性層S3の裏面に第2導体パターン部62を設け、非磁性層S4~S5,S7~S9及び磁性層S6aの裏面に第3導体パターン部63dを形成し、磁性層S10の裏面に第1導体パターン部61を設ける。より詳細には、非磁性層S3の裏面に、約1ターンの第2導体パターン部62を形成する。非磁性層S4の裏面に、約1ターンの第3導体パターン部63dを形成する。非磁性層S5の裏面に、約1ターンの第3導体パターン部63dを形成する。磁性層S6aの裏面に、約1ターンの第3導体パターン部63dを形成する。非磁性層S7の裏面に、約1ターンの第3導体パターン部63dを形成する。非磁性層S8の裏面に、約1ターンの第3導体パターン部63dを形成する。非磁性層S9の裏面に、約1ターンの第3導体パターン部63dを形成する。磁性層S10の裏面に、約1ターンの第1導体パターン部61を形成する。
 第4工程では、磁性層S10の裏面における第1導体パターン部61上に、約1ターンの補助膜701を設けると共に、非磁性層S4,S5,S7~S9及び磁性層S6aの裏面における第3導体パターン部63d上に、約1ターンの補助膜703を設ける。
 第5工程では、非磁性層S11の表面にポジションマーク705(製造時の位置決めを容易にするマーク)を形成する。非磁性層S11の裏面に導体704を形成する。ポジションマーク705は矩形の導体パターンである。導体704は、ポジションマーク705に類似した形状(略矩形)の導体パターンである。ポジションマーク705及び導体704は、例えばAgを主成分とする導体パターンである。
 第6工程では、非磁性層S1、磁性層S2、非磁性層S3、非磁性層S4、非磁性層S5、磁性層S6a、非磁性層S7、非磁性層S8、非磁性層S9、磁性層S10、非磁性層S11の順に積層する。積層体において、非磁性層S1が最下層であり、非磁性層S11が最上層である。より詳細には、より詳細には、第6工程では、第1導体パターン部61及び補助膜701が設けられた裏面を覆うように磁性層S10に非磁性層S9を積層する。
 第7工程では、磁性層と非磁性層とを積層させた状態で積層方向D1から押して、第1導体パターン部61のうち補助膜701が設けられている部分を残りの部分よりも磁性層S10側に位置させる。
 第8工程では、積層体を焼結して、第1導体パターン部61の線幅δ11(図1B参照)よりも細い線幅δ21(図1B参照)を有する第1絶縁パターン部71を形成する。このとき、磁性層S10の裏面における第1導体パターン部61上に設けられた補助膜701が燃えることによって、補助膜701が存在した位置に、第1絶縁パターン部71としての空隙を形成する。
 以上説明したように、実施形態5に係るアンテナ素子1dでは、第1非磁性部41を少なくとも2つに分断するように第3磁性部53が設けられている。これにより、2つに分断された第1非磁性部41の1つ当たりの厚さを薄くすることができるので、第1磁性部51等の磁性部が受ける引っ張り応力を低減させることができる。その結果、磁性部の積層方向D1のクラックの発生を低減させることができる。
 実施形態5に係るアンテナ素子1dでは、第1磁性部51よりも強度の高い第2非磁性部42が第1磁性部51よりも第1主面21に近接し(外側に設けられており)、かつ、第2磁性部52よりも強度の高い第3非磁性部43が第2磁性部52よりも第2主面22に近接している(外側に設けられている)。これにより、アンテナ素子1dの強度を高めることができる。
 なお、実施形態5の変形例として、積層体2dは、複数の第3磁性部53を含んでもよい。本変形例の場合、複数の第3磁性部53は、第1非磁性部41を2つ以上に分断するように設けられている。
 実施形態5の変形例として、コイル導体3dは、1つだけの第3導体パターン部63dを含んでもよい。要するに、コイル導体3dは、少なくとも1つの第3導体パターン部63dを含んでいればよい。
 また、実施形態5の変形例として、コイル導体3dは、1つだけの第3絶縁パターン部73を含んでもよい。要するに、コイル導体3dは、少なくとも1つの第3絶縁パターン部73を含んでいればよい。
 実施形態5の変形例として、複数の第3絶縁パターン部73の各々は、空隙でなく、第1非磁性部41より比誘電率の小さい絶縁ペーストで形成されてもよい。本変形例の場合、複数の第3導体パターン部63dの各々の第2主面22側に、絶縁ペーストが設けられることにより、複数の第3絶縁パターン部73が形成される。
 上記の変形例に係るアンテナ素子においても、実施形態5に係るアンテナ素子1dと同様の効果を奏する。
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 例えば、上述した各実施形態では、絶縁部として、第1絶縁パターン部71、第2絶縁パターン部72、及び第3絶縁パターン部73を示したが、これらの絶縁部は、必ずしもコイル導体のほぼ全周に沿って形成されたパターン状である必要はない。これらの絶縁部は、コイル導体の周の一部にのみ形成されていてもよく、又は、パターンが途切れながら形成されていてもよい。
 (態様)
 以上説明した実施形態及び変形例より以下の態様が開示されている。
 第1の態様に係るアンテナ素子(1;1a;1b;1c;1d)は、積層体(2;2c;2d)と、コイル導体(3;3a;3b;3d)とを備える。積層体(2;2c;2d)は、第1非磁性部(41)と、第1磁性部(51)とを含む。第1磁性部(51)は、第1非磁性部(41)と積層する。コイル導体(3;3a;3b;3d)は、積層体(2;2c;2d)内に設けられている。コイル導体(3;3a;3b;3d)の巻回軸は、積層体(2;2c;2d)の積層方向(D1)に平行である。積層体(2;2c;2d)は、第1主面(21)と、第2主面(22)とを有する。第2主面(22)は、積層方向(D1)において第1主面(21)に対向し、実装面である。第1磁性部(51)は、積層方向(D1)において第1非磁性部(41)に比べて第1主面(21)に近接する。コイル導体(3;3a;3b;3d)は、第1導体パターン部(61)と、第1絶縁部(第1絶縁パターン部71)とを含む。第1導体パターン部(61)は、積層方向(D1)において第1非磁性部(41)と第1磁性部(51)との間に位置する。第1絶縁部は、第1導体パターン部(61)の第2主面(22)側に設けられており、第1導体パターン部(61)の線幅(δ11)よりも細い幅(線幅δ21)を有する。第1絶縁部は、積層方向(D1)からの平面視で、第1導体パターン部(61)と重なる。
 第1の態様に係るアンテナ素子(1;1a;1b;1c;1d)によれば、コイル導体(3;3a;3b;3d)が磁性部に覆われている場合に比べて、磁性損を抑制することができる。
 また、第1の態様に係るアンテナ素子(1;1a;1b;1c;1d)によれば、第1導体パターン部(61)を第1主面(21)側に盛り上がった形状にすることができるので、磁束(φ1)の方向を、積層方向(D1)と直交する方向(D2)よりも積層方向(D1)に近づけることができる。特に、第1導体パターン部(61)の第1主面(21)側の側面のほうが、第1導体パターン部(61)の第2主面(22)側の側面よりも大きく突出させることができるので、磁束(φ1)の方向を積層方向(D1)に容易に近づけることができる。その結果、アンテナ素子(1;1a;1b;1c;1d)の通信性能を向上させることができる。
 上記より、第1の態様に係るアンテナ素子(1;1a;1b;1c;1d)によれば、磁性損を抑制し、かつ、アンテナ素子(1;1a;1b;1c;1d)の通信性能を向上させることができる。
 第2の態様に係るアンテナ素子(1;1a;1b;1c;1d)では、第1の態様において、第1絶縁部(第1絶縁パターン部71)は空隙である。
 第2の態様に係るアンテナ素子(1;1a;1b;1c;1d)によれば、第1導体パターン部(61)の周囲に他の導体が存在する場合、第1導体パターン部(61)と他の導体との間に空隙が位置するので、第1導体パターン部(61)と他の導体との間に発生する浮遊容量を低減させることができる。
 第3の態様に係るアンテナ素子(1a)では、第1又は2の態様において、積層体(2)は、第2磁性部(52)を更に含む。第2磁性部(52)は、第1非磁性部(41)に比べて第2主面(22)に近接する。コイル導体(3a)は、第2導体パターン部(62a)と、第2絶縁部(第2絶縁パターン部72)とを更に含む。第2導体パターン部(62a)は、積層方向(D1)において第1非磁性部(41)と第2磁性部(52)との間に位置する。第2絶縁部は、第2導体パターン部(62a)の第1主面(21)側に設けられており、第2導体パターン部(62a)の線幅(δ12)よりも細い幅(線幅δ22)を有する。第2絶縁部は、積層方向(D1)からの平面視で第2導体パターン部(62a)と重なる。
 第3の態様に係るアンテナ素子(1a)によれば、第2導体パターン部(62a)を第2主面(22)側に盛り上がった形状にすることができるので、磁束(φ2)の方向を、積層方向(D1)と直交する方向(D2)よりも積層方向(D1)に近づけることができる。その結果、アンテナ素子(1a)の通信性能を更に向上させることができる。
 第4の態様に係るアンテナ素子(1b;1d)では、第1~3の態様のいずれか1つにおいて、コイル導体(3b;3d)は、少なくとも1つの第3導体パターン部(63b;63d)と、少なくとも1つの第3絶縁部(第3絶縁パターン部73)とを更に含む。第3導体パターン部(63b;63d)は、第1非磁性部(41)内に位置する。第3絶縁部は、第3導体パターン部(63b;63d)の第2主面(22)側に設けられており、第3導体パターン部(63b;63d)の線幅よりも細い幅を有する。第3絶縁部は、積層方向(D1)からの平面視で第3導体パターン部(63b;63d)と重なる。
 第4の態様に係るアンテナ素子(1b;1d)によれば、積層方向(D1)において、第1絶縁部(第1絶縁パターン部71)と第3絶縁部(第3絶縁パターン部73)との厚さが累積されるので、第1導体パターン部(61)の盛り上がり度合いを大きくすることができる。その結果、磁束の方向を積層方向(D1)へ更に向けることができる。
 また、第4の態様に係るアンテナ素子(1b;1d)によれば、第3絶縁部が空隙である場合、第2導体パターン部(62)と第3導体パターン部(63b;63d)との間の浮遊容量を低減させることができるので、アンテナ素子(1b;1d)のQ値を向上させることができる。
 さらに、第4の態様に係るアンテナ素子(1b;1d)によれば、第3絶縁部が空隙である場合、非磁性部(例えば第1非磁性部(41))と磁性部(例えば第1磁性部(51))との線膨張係数差により非磁性部に生じる応力を緩和させることができる。これにより、導体パターン間(第1導体パターン部(61)と第3導体パターン部(63b;63d)との間、第3導体パターン部(63b;63d)間)において、積層方向(D1)とは直交する方向(D2)のクラックの発生を低減させることができる。
 第5の態様に係るアンテナ素子(1c;1d)では、第1~4の態様のいずれか1つにおいて、積層体(2c;2d)は、第3磁性部(53)を更に含む。第3磁性部(53)は、第1非磁性部(41)を積層方向(D1)において少なくとも2つに分割するように設けられている。
 第5の態様に係るアンテナ素子(1c;1d)によれば、2つに分断された第1非磁性部(41)の1つ当たりの厚さを薄くすることができるので、第1磁性部(51)等の磁性部が受ける引っ張り応力を低減させることができる。その結果、磁性部の積層方向(D1)のクラックの発生を低減させることができる。
 第6の態様に係るアンテナ素子(1d)では、第1~5の態様のいずれか1つにおいて、積層体(2d)は、第2磁性部(52)と、第2非磁性部(42)と、第3非磁性部(43)とを更に含む。第2磁性部(52)は、第1非磁性部(41)に比べて第2主面(22)に近接する。第2非磁性部(42)は、積層方向(D1)において第1磁性部(51)よりも第1主面(21)に近接する。第3非磁性部(43)は、積層方向(D1)において第2磁性部(52)よりも第2主面(22)に近接する。
 第6の態様に係るアンテナ素子(1d)によれば、アンテナ素子(1d)の強度を高めることができる。
 第7の態様に係るアンテナ素子(1;1a;1b;1c;1d)の製造方法は、非磁性部を構成する非磁性層と、磁性部を構成する磁性層とを準備する工程を有する。上記製造方法は、磁性層の主面に第1導体パターン部(61)を設ける工程を更に有する。上記製造方法は、第1導体パターン部(61)上に、第1導体パターン部(61)の線幅(δ11)よりも細い線幅を有する補助膜(701)を設ける工程を更に有する。上記製造方法は、第1導体パターン部(61)及び補助膜(701)が設けられた主面を覆うように磁性層に非磁性層を積層する工程を更に有する。上記製造方法は、磁性層と非磁性層とを積層させた状態で積層方向(D1)から押して、第1導体パターン部(61)のうち補助膜(701)が設けられている部分を残りの部分よりも磁性層側に位置させる工程を更に有する。上記製造方法は、積層体を焼結して、第1導体パターン部(61)の線幅(δ11)よりも細い幅(線幅δ21)を有する第1絶縁部(第1絶縁パターン部71)を形成する工程を更に有する。
 第7の態様に係るアンテナ素子(1;1a;1b;1c;1d)の製造方法によれば、アンテナ素子(1;1a;1b;1c;1d)において、コイル導体(3;3a;3b;3d)が磁性部に覆われている場合に比べて、磁性損を抑制することができる。
 また、第7の態様に係るアンテナ素子(1;1a;1b;1c;1d)の製造方法によれば、アンテナ素子(1;1a;1b;1c;1d)において、第1導体パターン部(61)を磁性層側に盛り上がった形状にすることができるので、磁束(φ1)の方向を、積層方向(D1)と直交する方向(D2)よりも積層方向(D1)に近づけることができる。特に、第1導体パターン部(61)の磁性層側の側面のほうが、第1導体パターン部(61)の非磁性層側の側面よりも大きく突出させることができるので、磁束(φ1)の方向を積層方向(D1)に容易に近づけることができる。その結果、アンテナ素子(1;1a;1b;1c;1d)の通信性能を向上させることができる。
 上記より、第7の態様に係るアンテナ素子(1;1a;1b;1c;1d)の製造方法によれば、磁性損を抑制し、かつ、アンテナ素子(1;1a;1b;1c;1d)の通信性能を向上させるアンテナ素子を製造することができる。
 1,1a,1b,1c,1d アンテナ素子
 2,2c,2d 積層体
 3,3a,3b,3d コイル導体
 21 第1主面
 22 第2主面
 41 第1非磁性部
 42 第2非磁性部
 43 第3非磁性部
 51 第1磁性部
 52 第2磁性部
 53 第3磁性部
 61 第1導体パターン部
 62,62a 第2導体パターン部
 63,63b,63d 第3導体パターン部
 71 第1絶縁パターン部(第1絶縁部)
 72 第2絶縁パターン部(第2絶縁部)
 73 第3絶縁パターン部(第3絶縁部)
 δ11,δ12,δ21,δ22 線幅

Claims (7)

  1.  第1非磁性部と前記第1非磁性部と積層する第1磁性部とを含む積層体と、
     前記積層体内に設けられており、巻回軸が前記積層体の積層方向に平行であるコイル導体と、を備え、
     前記積層体は、
      第1主面と、
      前記積層方向において前記第1主面に対向し実装面である第2主面と、を有し、
     前記第1磁性部は、前記積層方向において前記第1非磁性部に比べて前記第1主面に近接し、
     前記コイル導体は、
      前記積層方向において前記第1非磁性部と前記第1磁性部との間に位置する第1導体パターン部と、
      前記第1導体パターン部の前記第2主面側に設けられており、前記第1導体パターン部の線幅よりも細い幅を有する第1絶縁部と、を含み、
     前記第1絶縁部は、前記積層方向からの平面視で、前記第1導体パターン部と重なる、
     アンテナ素子。
  2.  前記第1絶縁部は空隙である、
     請求項1に記載のアンテナ素子。
  3.  前記積層体は、
      前記第1非磁性部に比べて前記第2主面に近接する第2磁性部を更に含み、
     前記コイル導体は、
      前記積層方向において前記第1非磁性部と前記第2磁性部との間に位置する第2導体パターン部と、
      前記第2導体パターン部の前記第1主面側に設けられており、前記第2導体パターン部の線幅よりも細い幅を有する第2絶縁部と、を更に含み、
     前記第2絶縁部は、前記積層方向からの平面視で前記第2導体パターン部と重なる、
     請求項1又は2に記載のアンテナ素子。
  4.  前記コイル導体は、
      前記第1非磁性部内に位置する少なくとも1つの第3導体パターン部と、
      前記第3導体パターン部の前記第2主面側に設けられており、前記第3導体パターン部の線幅よりも細い幅を有する少なくとも1つの第3絶縁部と、を更に含み、
     前記第3絶縁部は、前記積層方向からの平面視で前記第3導体パターン部と重なる、
     請求項1~3のいずれか1項に記載のアンテナ素子。
  5.  前記積層体は、前記第1非磁性部を前記積層方向において少なくとも2つに分割するように設けられている第3磁性部を更に含む、
     請求項1~4のいずれか1項に記載のアンテナ素子。
  6.  前記積層体は、
      前記第1非磁性部に比べて前記第2主面に近接する第2磁性部と、
      前記積層方向において前記第1磁性部よりも前記第1主面に近接する第2非磁性部と、
      前記積層方向において前記第2磁性部よりも前記第2主面に近接する第3非磁性部と、を更に含む、
     請求項1~5のいずれか1項に記載のアンテナ素子。
  7.  非磁性部を構成する非磁性層と、磁性部を構成する磁性層とを準備する工程と、
     前記磁性層の主面に第1導体パターン部を設ける工程と、
     前記第1導体パターン部上に、前記第1導体パターン部の線幅よりも細い幅を有する補助膜を設ける工程と、
     前記第1導体パターン部及び前記補助膜が設けられた前記主面を覆うように前記磁性層に前記非磁性層を積層する工程と、
     前記磁性層と前記非磁性層とを積層させた状態で積層方向から押して、前記第1導体パターン部のうち前記補助膜が設けられている部分を残りの部分よりも前記磁性層側に位置させる工程と
     積層体を焼結して、前記第1導体パターン部の前記線幅よりも細い幅を有する第1絶縁部を形成する工程と、を有する、
     アンテナ素子の製造方法。
PCT/JP2019/020199 2018-05-31 2019-05-22 アンテナ素子及びアンテナ素子の製造方法 WO2019230511A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201990000282.1U CN211743416U (zh) 2018-05-31 2019-05-22 天线元件
JP2019557654A JP6677359B1 (ja) 2018-05-31 2019-05-22 アンテナ素子及びアンテナ素子の製造方法
US16/819,271 US20200220266A1 (en) 2018-05-31 2020-03-16 Antenna element and method for manufacturing antenna element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105324 2018-05-31
JP2018-105324 2018-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/819,271 Continuation US20200220266A1 (en) 2018-05-31 2020-03-16 Antenna element and method for manufacturing antenna element

Publications (1)

Publication Number Publication Date
WO2019230511A1 true WO2019230511A1 (ja) 2019-12-05

Family

ID=68698595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020199 WO2019230511A1 (ja) 2018-05-31 2019-05-22 アンテナ素子及びアンテナ素子の製造方法

Country Status (4)

Country Link
US (1) US20200220266A1 (ja)
JP (1) JP6677359B1 (ja)
CN (1) CN211743416U (ja)
WO (1) WO2019230511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125596A (ja) * 2020-02-06 2021-08-30 株式会社村田製作所 積層コイル部品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319223A (ja) * 2005-05-13 2006-11-24 Murata Mfg Co Ltd 積層コイル
JP2016018926A (ja) * 2014-07-09 2016-02-01 株式会社村田製作所 インピーダンス変換素子およびその製造方法
JP2018056513A (ja) * 2016-09-30 2018-04-05 株式会社村田製作所 電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319223A (ja) * 2005-05-13 2006-11-24 Murata Mfg Co Ltd 積層コイル
JP2016018926A (ja) * 2014-07-09 2016-02-01 株式会社村田製作所 インピーダンス変換素子およびその製造方法
JP2018056513A (ja) * 2016-09-30 2018-04-05 株式会社村田製作所 電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125596A (ja) * 2020-02-06 2021-08-30 株式会社村田製作所 積層コイル部品
JP7230837B2 (ja) 2020-02-06 2023-03-01 株式会社村田製作所 積層コイル部品

Also Published As

Publication number Publication date
US20200220266A1 (en) 2020-07-09
JP6677359B1 (ja) 2020-04-08
CN211743416U (zh) 2020-10-23
JPWO2019230511A1 (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
JP3686908B2 (ja) 積層型コイル部品及びその製造方法
JP5713148B2 (ja) 磁性体コア内蔵樹脂多層基板の製造方法
JP6500992B2 (ja) コイル内蔵部品
JP6460328B2 (ja) Lc複合部品
WO2017018134A1 (ja) 多層基板および電子機器
JP5621573B2 (ja) コイル内蔵基板
CN107437457B (zh) 一多层电感器及其制造方法
JP2014154896A (ja) アンテナ、アンテナ装置、及び携帯端末
JP2022177176A (ja) 積層型コイル部品
JP2006339617A (ja) 電子部品
JP2007200923A (ja) 積層コモンモードチョークコイル
JP2022064179A (ja) インダクタ部品
WO2019230511A1 (ja) アンテナ素子及びアンテナ素子の製造方法
WO2018212273A1 (ja) 積層型電子部品
WO2018225445A1 (ja) コイル内蔵セラミック基板
CN112544015B (zh) 波导管缝隙天线
JP2019054018A (ja) コイル部品
US20230230738A1 (en) Coil component
JP2003257744A (ja) 磁性素子及びその製造方法並びにそれを用いた電源モジュール
JP2002064016A (ja) 積層インダクタ
KR20070076722A (ko) 이종소재를 이용한 적층형 칩 커먼 모드 필터 및 그제조방법
JP2018026793A (ja) アンテナ素子
CN211907135U (zh) 层叠型线圈部件
JP6132027B2 (ja) 積層型インダクタ素子の製造方法、および積層型インダクタ素子
JP3189995U (ja) 積層型アンテナ素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019557654

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810323

Country of ref document: EP

Kind code of ref document: A1