WO2018225445A1 - コイル内蔵セラミック基板 - Google Patents

コイル内蔵セラミック基板 Download PDF

Info

Publication number
WO2018225445A1
WO2018225445A1 PCT/JP2018/018092 JP2018018092W WO2018225445A1 WO 2018225445 A1 WO2018225445 A1 WO 2018225445A1 JP 2018018092 W JP2018018092 W JP 2018018092W WO 2018225445 A1 WO2018225445 A1 WO 2018225445A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
coil
ceramic
ceramic layer
coil pattern
Prior art date
Application number
PCT/JP2018/018092
Other languages
English (en)
French (fr)
Inventor
足立登志郎
中庭正貴
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201890000503.0U priority Critical patent/CN210519104U/zh
Priority to JP2019523411A priority patent/JP6569844B2/ja
Publication of WO2018225445A1 publication Critical patent/WO2018225445A1/ja
Priority to US16/575,565 priority patent/US11508513B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to a coil-embedded ceramic substrate having a plurality of ceramic layers on which a multi-winding coil pattern is formed.
  • a ceramic substrate with a built-in coil having a structure in which a plurality of ceramic layers on which a multi-winding coil pattern is formed is laminated is known.
  • Patent Document 1 describes one such ceramic substrate with a built-in coil, and in particular, FIG. 9 shows a plurality of ceramic layers on which a multi-turn coil pattern is formed.
  • a mother substrate having a size capable of manufacturing a plurality of coil-embedded ceramic substrates at once is manufactured, and along the linear break grooves formed on the mother substrate.
  • a method for efficiently manufacturing a plurality of ceramic-embedded ceramic substrates by dividing the mother substrate is known.
  • FIG. 8 is a plan view showing an example of a multi-turn coil pattern 120 formed on a ceramic layer 110 constituting a conventional coil-embedded ceramic substrate. Since the shape of the coil pattern 120 shown in FIG. 8 is not point-symmetric with respect to the center C10 of the ceramic layer 110, the internal stress of the ceramic layer may be locally different.
  • This invention solves the said subject and aims at providing the ceramic substrate with a built-in coil which has a highly accurate linear side.
  • the coil-embedded ceramic substrate of the present invention comprises: A ceramic substrate with a built-in coil having a plurality of ceramic layers on which a multi-turn coil pattern is formed, At least one of the plurality of ceramic layers is formed with a dummy pattern that is not electrically connected to the multiple winding coil pattern and the multiple winding coil pattern,
  • the multi-turn coil pattern is formed in a circular shape around the center of the ceramic layer while extending parallel to the side of the ceramic layer,
  • the dummy pattern is formed in parallel with the side of the ceramic layer on an extension in the extending direction of a part of the multiple winding coil pattern. It is characterized by that.
  • the dummy pattern is It may be arranged at a position substantially symmetrical with a part of the multiple winding coil pattern with respect to a line passing through the center of the ceramic layer and parallel to a predetermined side of the ceramic layer.
  • the dummy pattern is You may arrange
  • the dummy pattern is the lead pattern with respect to the center of the ceramic layer. And may be arranged at substantially point-symmetrical positions.
  • the dummy pattern may be formed on the outermost ceramic layer in the stacking direction among the plurality of ceramic layers on which the multiple winding coil pattern is formed.
  • a gap is formed between at least one set of the two ceramic layers of a plurality of sets, When viewed in the stacking direction, the gap may be formed inside the outer peripheral edge of the multiple winding coil pattern.
  • the gap When viewed in the stacking direction, the gap may be formed in at least a part of a region where the dummy pattern is formed.
  • the ceramic layer on which the multiple winding coil pattern is formed may be a magnetic layer.
  • At least one of the plurality of ceramic layers has a multi-turn coil pattern formed around the center of the ceramic layer while extending parallel to the side of the ceramic layer, A dummy pattern is formed, and the dummy pattern is formed in parallel with the side of the ceramic layer on an extension of a part of the multiple winding coil pattern in the extending direction.
  • the pattern including the multi-turn coil pattern and the dummy pattern has a shape that approaches a direction that is substantially point-symmetric with respect to the center of the ceramic layer as compared with the configuration in which the dummy pattern is not provided. It is alleviated that the internal stresses of the layers are locally different.
  • FIG. 3 is a plan view showing each ceramic layer constituting a coil-embedded ceramic substrate, and (a) to (g) are views of each ceramic layer as viewed from above in the stacking direction.
  • FIG. 2 is a plan view showing each ceramic layer constituting a coil-embedded ceramic substrate, wherein (a) to (e) are views of each ceramic layer as viewed from above in the stacking direction, and (f) and (g) are It is the figure which looked at each ceramic layer from the lamination direction lower side It is an enlarged top view of the ceramic layer located in the uppermost layer among the several ceramic layers in which the coil pattern is formed.
  • FIG. 5 is a cross-sectional view in a region surrounded by a dotted line in FIG. 4 when the coil-embedded ceramic substrate is cut along a line parallel to the line 60 shown in FIG. 4. It is a top view which shows a mother board
  • the coil-embedded ceramic substrate in one embodiment has a plurality of ceramic layers on which a multi-turn coil pattern is formed.
  • FIG. 1A is a perspective view of a coil-embedded ceramic substrate 100 according to an embodiment as viewed from above
  • FIG. 1B is a perspective view of the coil-embedded ceramic substrate 100 as viewed from below.
  • FIGS. 3F and 3G illustrate the ceramic layers 10m and 10n from the lower side in the stacking direction.
  • FIG. 2A to 2G are views of the ceramic layers 10a to 10g as viewed from the upper side in the stacking direction.
  • 3A to 3E are views of the ceramic layers 10h to 10l as viewed from the upper side in the stacking direction.
  • FIGS. 3F and 3G illustrate the ceramic layers 10m and 10n from the lower side in the stacking direction.
  • the coil-embedded ceramic substrate 100 has a substantially rectangular parallelepiped shape.
  • the thickness T is 0.5 mm or less, and the width W and the depth D are 2.0 mm to 10.0 mm.
  • the external dimensions of the coil-embedded ceramic substrate 100 are not limited to the dimensions described above.
  • the coil-embedded ceramic substrate 100 has a structure in which ceramic layers 10a to 10n shown in FIGS. 2 and 3 are laminated in this order.
  • the ceramic layer 10m is laminated so that a surface on which a first distribution electrode 41 and a second distribution electrode 42 to be described later are formed is on the lower side in the lamination direction.
  • the ceramic layer 10n is laminated so that a surface on which a first surface electrode 43, a second surface electrode 44, a third surface electrode 45, and a fourth surface electrode 46, which will be described later, are formed is on the lower side in the laminating direction.
  • a first surface electrode 43, a second surface electrode 44, a third surface electrode 45, and a fourth surface electrode 46 which will be described later, are formed is on the lower side in the laminating direction.
  • Each of the ceramic layers 10a to 10n is a magnetic layer formed of a magnetic ceramic.
  • multiple winding coil patterns 20e, 20f, and 20h to 20k are formed on the ceramic layers 10e, 10f, and 10h to 10k, respectively. In the present embodiment, it is formed as a triple-winding coil pattern. In the following description, the multiple winding coil pattern is also simply referred to as a coil pattern.
  • the material used for the coil pattern 20 (20e, 20f, 20h to 20k), and for example, a material mainly composed of silver or copper can be used.
  • a coil having a winding axis in the stacking direction is formed by these coil patterns 20e, 20f, 20h to 20k, and via-hole conductors to be described later.
  • a first distribution electrode 41 and a second distribution electrode 42 are formed on the ceramic layer 10m.
  • a first surface electrode 43, a second surface electrode 44, a third surface electrode 45, and a fourth surface electrode 46 are formed on the ceramic layer 10n.
  • dummy surface electrodes 47a to 47d for increasing the mounting strength are provided in the vicinity of the center of the ceramic layer 10n. These dummy surface electrodes 47a to 47d are not electrically connected to the first surface electrode 43, the second surface electrode 44, the third surface electrode 45, and the fourth surface electrode 46, and may be omitted. Is possible.
  • via hole conductors VH1 and VH2 are formed in the ceramic layer 10e.
  • via hole conductors VH3 and VH4 are formed in the ceramic layer 10f.
  • via-hole conductors VH5 and VH6 are formed in the ceramic layer 10g.
  • via hole conductors VH7 and VH8 are formed in the ceramic layer 10h.
  • via hole conductors VH9 and VH10 are formed in the ceramic layer 10i.
  • via hole conductors VH11 and VH12 are formed in the ceramic layer 10j.
  • via hole conductors VH13 and VH14 are formed in the ceramic layer 10k.
  • via-hole conductors VH15 and VH16 are formed in the ceramic layer 10l.
  • via-hole conductors VH17 and VH18 are formed in the ceramic layer 10m.
  • via-hole conductors VH19, VH20, VH21, and VH22 are formed in the ceramic layer 10n.
  • the material used for the via-hole conductors VH1 to VH22 there is no particular limitation on the material used for the via-hole conductors VH1 to VH22, and for example, a material mainly composed of silver or copper can be used.
  • the second distribution electrode 42 is electrically connected through the conductors VH1, VH3, VH5, VH7, VH9, VH11, VH13, VH15, and VH17.
  • the other end of the coil pattern 20e is electrically connected to one end on the outermost peripheral side of the coil pattern 20f formed in the ceramic layer 10f via the via-hole conductor VH2.
  • the other end of the coil pattern 20f located on the innermost peripheral side is the innermost part of the coil pattern 20h formed in the ceramic layer 10h via the via hole conductor VH4 and the via hole conductor VH6 formed in the ceramic layer 10g. It is electrically connected to one end on the circumferential side.
  • the other end of the coil pattern 20h located on the outermost peripheral side is electrically connected to one end on the outermost peripheral side of the coil pattern 20i formed in the ceramic layer 10i via the via-hole conductor VH8.
  • the other end of the coil pattern 20i located on the innermost peripheral side is electrically connected to one end on the innermost peripheral side of the coil pattern 20j formed in the ceramic layer 10j via the via-hole conductor VH10.
  • the other end of the coil pattern 20j located on the outermost peripheral side is electrically connected to one end on the outermost peripheral side of the coil pattern 20k formed in the ceramic layer 10k via the via-hole conductor VH12.
  • the other end of the coil pattern 20k located on the innermost peripheral side is connected to the ceramic layer via the via-hole conductor VH14, the via-hole conductor VH16 formed in the ceramic layer 10l, and the via-hole conductor VH18 formed in the ceramic layer 10m. It is electrically connected to the first distribution electrode 41 formed at 10 m.
  • the first distribution electrode 41 is electrically connected to the first surface electrode 43 via the via-hole conductor VH19 formed in the ceramic layer 10n and to the second surface electrode 44 via the via-hole conductor VH20.
  • the second distribution electrode 42 is electrically connected to the third surface electrode 45 via the via-hole conductor VH21 formed in the ceramic layer 10n and to the fourth surface electrode 46 via the via-hole conductor VH22.
  • one end of the coil formed on the coil-embedded ceramic substrate 100 is electrically connected to the first surface electrode 43 and the second surface electrode 44, and the other end is connected to the third surface electrode 45 and the fourth surface electrode.
  • the surface electrode 46 is electrically connected.
  • FIG. 4 shows the ceramic layer 10e shown in FIG. 2 (e), that is, the ceramic layer located on the outermost side in the stacking direction, more specifically, the uppermost layer among the plurality of ceramic layers on which the coil pattern is formed. It is an enlarged plan view of 10e.
  • the ceramic layer 10 e has a rectangular shape and includes a first side 11, a second side 12, a third side 13, and a fourth side 14.
  • the coil pattern 20e extends in parallel with the first side 11, the second side 12, the third side 13, and the fourth side 14 of the ceramic layer 10e, and extends in the center of the ceramic layer 10e. It is formed in a circular shape around C1. As described above, in the present embodiment, the coil pattern 20e is formed in a triple winding.
  • the coil pattern 20e includes a lead pattern 20e1 drawn from the innermost circumferential position of the coil pattern formed in a circular shape to the center of the ceramic layer 10e.
  • the lead pattern 20e1 is electrically connected to the via hole conductor VH1.
  • two dummy patterns 51 and 52 are formed in the ceramic layer 10e for the reason described later.
  • the dummy patterns 51 and 52 are not electrically connected to the coil pattern 20e and other signal lines.
  • the dummy patterns 51 and 52 are each formed in parallel with the side of the ceramic layer 10e on the extension of a part of the coil pattern 20e in the extending direction.
  • the dummy pattern 51 is formed in such a manner as to compensate for a region in which the circular shape of the innermost pattern 20e2 of the coil pattern 20e is interrupted, and on the second side edge on the extension of the innermost pattern 20e2. 12 and the fourth side 14 are formed in parallel.
  • the dummy pattern 52 is formed in parallel with the first side 11 and the third side 13 on the extension of the lead pattern 20e1 of the coil pattern 20e.
  • the “dummy pattern is formed in parallel to the side of the ceramic layer on the extension of a part of the extending direction of the multiple winding coil pattern”. Then, the following two aspects are included. First, as in the case of the dummy pattern 51, when the innermost pattern 20e2 changes its direction in the middle and extends as the lead pattern 20e1 toward the center of the ceramic layer 10e, the direction does not change. If a dummy pattern is formed, a dummy pattern is formed at a position that should exist.
  • the extraction pattern 20e1 ends at the center C1 of the ceramic layer 10e as in the dummy pattern 52, the extraction pattern 20e1 ends at the center C1 of the ceramic layer 10e shown in FIG. Instead, a dummy pattern is formed at a position that should exist if it extends to the vicinity of the innermost peripheral pattern 20e2.
  • the dummy patterns 51 and 52 include a coil pattern 20e and a pattern including the dummy patterns 51 and 52 that pass through the center C1 of the ceramic layer 10e, and the second side edge 12 and the fourth side edge 14 of the ceramic layer 10e. It can also be said that they are arranged at positions that are substantially line symmetric with respect to the parallel line 60.
  • the positions that are substantially line symmetric include the coil pattern 20e and the dummy patterns 51 and 52, as compared with the position before the dummy patterns 51 and 52 are arranged, by arranging the dummy patterns 51 and 52. This is a position where the pattern approaches a line-symmetric shape with respect to the line 60 described above.
  • the shape of the pattern including the coil pattern 20e and the dummy patterns 51 and 52 is substantially point-symmetric with respect to the center C1 of the ceramic layer 10e. Yes.
  • the dummy patterns 51 and 52 pass through the center C1 of the ceramic layer 10e and are parallel to the second side 12 and the fourth side 14 of the ceramic layer 10e. It can also be said that they are arranged substantially symmetrically with a part.
  • the dummy pattern 51 is substantially point-symmetric with respect to the center C1 of the ceramic layer 10e, the pattern including the innermost pattern 20e2 and the dummy pattern 51 of the coil pattern 20e. It is arranged in such a position.
  • the positions that are substantially point-symmetric are that the innermost pattern 20e2 and the dummy pattern of the coil pattern 20e are compared with the position before the dummy pattern 51 is arranged by arranging the dummy pattern 51. This is a position where the pattern including 51 approaches a point-symmetric shape with respect to the center C1 of the ceramic layer 10e.
  • the dummy pattern 51 is arranged at a position substantially point-symmetric with a part of the innermost pattern 20e2 of the coil pattern 20e with respect to the center C1 of the ceramic layer 10e. Has been.
  • the innermost pattern 20 e 2 of the coil pattern 20 includes a first side 11, a second side 12, a third side 13, and a fourth side.
  • a pattern at a position close to 14 is included.
  • the pattern near the second side 12 is continuously connected to the lead pattern 20e1 drawn to the center C1 of the ceramic layer 10e, the first side 11 and the second side Compared with the pattern at a position close to the side edge 12 and the third side edge 13, the length is substantially half.
  • the dummy pattern 51 is provided in parallel with the second side 12 on the extended line of the pattern located near the second side 12 in the innermost pattern 20e2. By arranging the dummy pattern 51 at such a position, the innermost pattern 20e2 of the coil pattern 20e and the pattern including the dummy pattern 51 are substantially point-symmetric with respect to the center C1 of the ceramic layer 10e. Has a shape.
  • the lead pattern 20e1 is arranged in such a manner as to be drawn from the innermost peripheral position of the annularly formed coil pattern 20e to the center C1 of the ceramic layer 10e.
  • the dummy pattern 52 is substantially point-symmetric with a part of the lead pattern 20e1 with respect to the center C1 of the ceramic layer 10e, that is, on the extension line of the lead pattern 20e1, and the coil pattern and the center C1 of the ceramic layer 10e. It is arranged in an area between the innermost pattern 20e2 of 20e.
  • a gap 30 is provided in the ceramic layer 10g located between the ceramic layer 10f and the ceramic layer 10h where the coil pattern 20 is formed (see FIG. 2G).
  • the gap 30 is provided in a region where the coil pattern 20 is formed when viewed in the stacking direction.
  • FIG. 5 shows a region corresponding to a region 70 surrounded by a dotted line in FIG. 4 when the ceramic-embedded ceramic substrate 100 is cut along a center line, more specifically, a line parallel to the line 60 shown in FIG. FIG.
  • the coil patterns adjacent to each other in the stacking direction are formed not at positions that completely overlap in the stacking direction but at shifted positions.
  • the gap 30 is inside the outer peripheral edge T1 of the coil pattern 20 (20e, 20f, 20h to 20k) when viewed in the stacking direction, and the inner peripheral edge of the coil pattern 20 It is provided outside T2.
  • the dummy pattern 51 is provided on the extended line of the pattern located near the second side 12 in the innermost pattern 20e2. Accordingly, the gap 30 is also formed in a region where the dummy pattern 51 is formed when viewed in the stacking direction.
  • the gap 30 is formed on the inner side of the outer peripheral edge of the coil pattern 20 when viewed in the stacking direction, the generation of cracks from the end of the gap due to thermal shock is suppressed during the ceramic layer manufacturing process. Can do. Thereby, the highly reliable ceramic substrate 100 with a built-in coil can be obtained.
  • the gap 30 is provided not only in the region where the coil pattern 20 is provided but also in the region where the dummy pattern 51 is formed when viewed in the stacking direction, the dummy pattern 51 and the ceramic layer The stress generated in the middle can be relaxed, and the deterioration of the magnetic properties can be suppressed.
  • the coil-embedded ceramic substrate 100 having the above structure and features can be manufactured, for example, by the following method.
  • a ceramic green sheet made of magnetic ferrite or the like for forming the ceramic layers 10a to 10n is prepared.
  • the ceramic green sheet is a mother sheet having a size capable of collectively manufacturing a plurality of ceramic-embedded ceramic substrates.
  • holes for forming via-hole conductors are formed in the ceramic green sheet, and the formed holes are filled with a conductive paste. Further, on the main surface of the ceramic green sheet, coil patterns 20e, 20f, 20h to 20k, dummy patterns 51 and 52, a first distribution electrode 41, a second distribution electrode 42, a first surface electrode 43, A conductive paste for forming the second surface electrode 44, the third surface electrode 45, and the fourth surface electrode 46 is applied in a predetermined shape.
  • a material that disappears by firing is applied in a predetermined shape to the main surface of the ceramic green sheet for forming the ceramic layer 10g.
  • a material that disappears upon firing for example, a carbon paste can be used.
  • ceramic green sheets are laminated in a predetermined order, and are pressed and integrated to obtain an unfired mother laminate.
  • a break groove for dividing the green laminate is divided into individual element portions.
  • An element part is a part which finally becomes one ceramic substrate with a built-in coil.
  • the unfired mother laminate is fired with a predetermined profile to obtain a mother substrate 80 as shown in FIG.
  • the mother substrate 80 is divided into a plurality of element parts along the break grooves 81 formed in the mother substrate 80. For example, as shown in FIG. 7, the separation is performed by dividing the mother substrate 80 along the break groove 81 using a cutter 90.
  • a part of the coil pattern 20e formed in a circular shape while extending in parallel with the respective sides 11 to 14 of the ceramic layer 10e is extended in the extending direction.
  • Dummy patterns 51 and 52 are formed on the top.
  • the dummy patterns 51 and 52 are the second side where the coil pattern 20e and the pattern including the dummy patterns 51 and 52 pass through the center C1 of the ceramic layer 10e and are predetermined sides of the ceramic layer 10e. 12 and the line 60 parallel to the fourth side 14 are arranged at positions that are substantially line symmetric.
  • the dummy patterns 51 and 52 are part of the coil pattern 20e with respect to a line 60 that passes through the center C1 of the ceramic layer 10e and is parallel to the second side 12 and the fourth side 14 of the ceramic layer 10e. It can also be said that they are arranged at substantially line symmetrical positions. As a result, it is possible to relieve that the internal stress of the ceramic layer 10e is locally different. Therefore, in order to manufacture the plurality of coil-embedded ceramic substrates 100 in a lump, the mother substrate 80 is moved along the linear break grooves 81. When dividing, it is possible to divide in a straight line with high accuracy without distortion.
  • the thickness T of the substrate is as thin as 0.5 mm or less, it may be difficult to divide the mother substrate 80 along the break grooves 81 in a straight line, but the coil-embedded ceramic substrate 100 according to the present embodiment. According to this, it is possible to divide in a straight line with high accuracy.
  • the dummy pattern 51 is positioned so that the innermost pattern 20e2 of the coil pattern 20e and the pattern including the dummy pattern 51 are substantially point-symmetric with respect to the center C1 of the ceramic layer 10e. Has been placed. As a result, it is possible to relieve local differences in the internal stress of the ceramic layer 10e. Therefore, when dividing the mother substrate 80 along the linear break groove 81, it is accurately divided linearly without distortion. can do.
  • the dummy pattern 52 is substantially point-symmetric with respect to the lead pattern 20e1 drawn from the innermost circumferential position of the coil pattern 20e to the center C1 of the ceramic layer 10e with respect to the center C1 of the ceramic layer 10e. Is arranged. As a result, it is possible to relieve local differences in the internal stress of the ceramic layer 10e. Therefore, when dividing the mother substrate 80 along the linear break groove 81, it is accurately divided linearly without distortion. can do.
  • the dummy patterns 51 and 52 are formed on the outermost ceramic layer 10e in the stacking direction among the plurality of ceramic layers 10e, 10f, and 10h to 10k on which the coil pattern 20 is formed. That is, the dummy patterns 51 and 52 are formed on the ceramic layer 10e that greatly affects the linearity at the time of division depending on the shape of the coil pattern 20 when the mother substrate 80 is divided along the linear break grooves 81. Therefore, it can be divided more accurately.
  • the dummy pattern is described as being formed on the outermost ceramic layer in the stacking direction among the plurality of ceramic layers on which the coil pattern is formed, but any ceramic layer on which the coil pattern is formed is described. Can be formed. Further, the ceramic layer on which the coil pattern and the dummy pattern are formed is not limited to one layer.
  • the arrangement position of the air gap 30 is not limited to the layer between the ceramic layer 10f and the ceramic layer 10h, and may be an arbitrary layer between two ceramic layers adjacent in the stacking direction. Moreover, the space
  • gap 30 may be provided between the two ceramic layers in multiple sets, when two ceramic layers 10 adjacent in the lamination direction are made into one set.
  • the shape of the multi-turn coil pattern formed on the ceramic layer is not limited to the shape shown in FIG. Therefore, the multiple winding coil pattern is not limited to the triple winding coil pattern.
  • the number of ceramic layers constituting the coil-embedded ceramic substrate and the number of ceramic layers on which the multi-turn coil pattern is formed are arbitrary.
  • the plurality of ceramic layers constituting the coil built-in ceramic substrate are not limited to the magnetic layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

多重巻きコイルパターンが形成されている複数のセラミック層を有するコイル内蔵セラミック基板において、複数のセラミック層のうちの少なくとも一つのセラミック層10eには、多重巻きコイルパターン20eと、多重巻きコイルパターン20eとは電気的に接続されていないダミーパターン51、52が形成されている。多重巻きコイルパターン20eは、セラミック層10eの側辺11~14と平行に延伸しながら周回状に形成されている。ダミーパターン51、52は、多重巻きコイルパターン20eの一部の延伸方向の延長上に、セラミック層10eの側辺と平行に形成されている。

Description

コイル内蔵セラミック基板
 本発明は、多重巻きコイルパターンが形成されている複数のセラミック層を有するコイル内蔵セラミック基板に関する。
 従来、多重巻きコイルパターンが形成されているセラミック層が複数積層された構造を有するコイル内蔵セラミック基板が知られている。
 特許文献1には、そのようなコイル内蔵セラミック基板の一つが記載されており、特に、図9には、多重巻きコイルパターンが形成された複数のセラミック層が示されている。
国際公開第2017/038505号公報
 ここで、上述したようなコイル内蔵セラミック基板の製造方法として、複数のコイル内蔵セラミック基板を一括で製造可能な大きさのマザー基板を作製し、マザー基板に形成された直線状のブレイク溝に沿ってマザー基板を分割することによって、複数のコイル内蔵セラミック基板を効率よく製造する方法が知られている。
 図8は、従来のコイル内蔵セラミック基板を構成するセラミック層110に形成されている多重巻きコイルパターン120の一例を示す平面図である。図8に示すコイルパターン120の形状は、セラミック層110の中心C10に対して点対称とはなっていないため、セラミック層の内部応力は局所的に異なる場合がある。
 このため、コイル内蔵セラミック基板の上述した製造工程において、マザー基板をブレイク溝に沿って分割したときに、直線状に分割されず、製造されたコイル内蔵セラミック基板の側辺に歪みが生じる場合があった。
 本発明は、上記課題を解決するものであり、精度の良い直線状の側辺を有するコイル内蔵セラミック基板を提供することを目的とする。
 本発明のコイル内蔵セラミック基板は、
 多重巻きコイルパターンが形成されている複数のセラミック層を有するコイル内蔵セラミック基板であって、
 複数の前記セラミック層のうちの少なくとも一層には、前記多重巻きコイルパターンと、前記多重巻きコイルパターンとは電気的に接続されていないダミーパターンが形成されており、
 前記多重巻きコイルパターンは、前記セラミック層の側辺と平行に延伸しながら前記セラミック層の中心の周りを周回状に形成されており、
 前記ダミーパターンは、前記多重巻きコイルパターンの一部の延伸方向の延長上に、前記セラミック層の側辺と平行に形成されている、
ことを特徴とする。
 前記ダミーパターンは、
 前記セラミック層の中心を通り、かつ、前記セラミック層の所定の側辺と平行な線に対して、前記多重巻きコイルパターンの一部と略線対称の位置に配置されていてもよい。
 前記ダミーパターンは、
 前記セラミック層の中心に対して、前記多重巻きコイルパターンのうちの最内周のパターンの一部と略点対称の位置に配置されていてもよい。
 前記多重巻きコイルパターンのうちの最内周の位置から前記セラミック層の中心へと引き出されている引出パターンが存在する場合において、前記ダミーパターンは、前記セラミック層の中心に対して、前記引出パターンと略点対称の位置に配置されていてもよい。
 前記ダミーパターンは、前記多重巻きコイルパターンが形成されている複数の前記セラミック層のうち、積層方向における最も外側のセラミック層に形成されていてもよい。
 積層方向に隣り合う2つの前記セラミック層を1組としたときに、複数組のうちの少なくとも1組の前記2つのセラミック層の間に空隙が形成されており、
 積層方向に見た場合に、前記空隙は、前記多重巻きコイルパターンの外周縁よりも内側に形成されていてもよい。
 積層方向に見た場合に、前記空隙は、前記ダミーパターンが形成されている領域の少なくとも一部にも形成されていてもよい。
 前記多重巻きコイルパターンが形成されているセラミック層は磁性体層であってもよい。
 本発明によれば、複数の前記セラミック層のうちの少なくとも一層には、セラミック層の側辺と平行に延伸しながらセラミック層の中心の周りを周回状に形成されている多重巻きコイルパターンと、ダミーパターンが形成されており、ダミーパターンは、多重巻きコイルパターンの一部の延伸方向の延長上に、セラミック層の側辺と平行に形成されている。これにより、多重巻きコイルパターンとダミーパターンを含むパターンは、ダミーパターンが設けられていない場合の構成と比べて、セラミック層の中心に対して略点対称となる方向に近づく形状となるので、セラミック層の内部応力が局所的に異なることが緩和される。これにより、複数のコイル内蔵セラミック基板を包含するマザー基板をカットして個々のコイル内蔵セラミック基板に分割する際に、分割ラインに沿って直線状に精度良く分割することができる。その結果、側辺が直線状で、形状精度の高いコイル内蔵セラミック基板を得ることが可能になる。
(a)は、一実施の形態におけるコイル内蔵セラミック基板を上側から見た斜視図であり、(b)は下側から見た斜視図である。 コイル内蔵セラミック基板を構成する各セラミック層を示す平面図であって、(a)~(g)は、各セラミック層を積層方向上側から見た図である。 コイル内蔵セラミック基板を構成する各セラミック層を示す平面図であって、(a)~(e)は、各セラミック層を積層方向上側から見た図であり、(f)および(g)は、各セラミック層を積層方向下側から見た図である コイルパターンが形成されている複数のセラミック層のうち、最上層に位置するセラミック層の拡大平面図である。 コイル内蔵セラミック基板を図4に示す線60と平行な線で切断した際に、図4の点線で囲まれた位置の領域内の断面図である。 マザー基板を示す平面図である。 カッターを用いてマザー基板を分割する様子を示す図である。 従来のコイル内蔵セラミック基板を構成するセラミック層に形成されている多重巻きコイルパターンの一例を示す平面図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに具体的に説明する。
 一実施の形態におけるコイル内蔵セラミック基板は、多重巻きコイルパターンが形成されている複数のセラミック層を有する。
 図1(a)は、一実施の形態におけるコイル内蔵セラミック基板100を上側から見た斜視図であり、図1(b)は、コイル内蔵セラミック基板100を下側から見た斜視図である。
 図2および図3は、コイル内蔵セラミック基板100を構成する各セラミック層10a~10nを示す平面図である。図2の(a)~(g)は、セラミック層10a~10gを、積層方向上側から見た図である。図3の(a)~(e)は、セラミック層10h~10lを、積層方向上側から見た図であり、(f)および(g)は、セラミック層10mおよび10nを、積層方向下側から見た図である。
 図1に示すように、コイル内蔵セラミック基板100は、略直方体の形状を有する。コイル内蔵セラミック基板100の外形寸法は、例えば、厚みTが0.5mm以下であり、幅Wおよび奥行Dは、2.0mm~10.0mmである。ただし、コイル内蔵セラミック基板100の外形寸法が上述した寸法に限定されることはない。
 コイル内蔵セラミック基板100は、図2および図3に示すセラミック層10a~10nがこの順に積層された構造を有する。ただし、セラミック層10mは、後述する第1分配電極41および第2分配電極42が形成されている面が積層方向下側となるように積層されている。また、セラミック層10nは、後述する第1表面電極43、第2表面電極44、第3表面電極45、および、第4表面電極46が形成されている面が積層方向下側となるように積層されている。
 各セラミック層10a~10nは、いずれも磁性体セラミックにより形成された磁性体層である。セラミック層10a~10nのうち、セラミック層10e、10f、10h~10kには、多重巻きコイルパターン20e、20f、20h~20kがそれぞれ形成されている。本実施形態では、三重巻きのコイルパターンとして形成されている。以下の説明では、多重巻きコイルパターンのことを、単にコイルパターンとも呼ぶ。
 コイルパターン20(20e、20f、20h~20k)に用いられる材料に特に制限はなく、例えば、銀や銅などを主成分とする材料を用いることができる。これらのコイルパターン20e、20f、20h~20k、および、後述するビアホール導体により、積層方向に巻回軸を有するコイルが形成されている。
 セラミック層10mには、第1分配電極41および第2分配電極42が形成されている。また、セラミック層10nには、第1表面電極43、第2表面電極44、第3表面電極45、および、第4表面電極46が形成されている。
 なお、セラミック層10nの中央近傍には、実装強度を高めるための4つのダミー表面電極47a~47dが設けられている。これらのダミー表面電極47a~47dは、第1表面電極43、第2表面電極44、第3表面電極45、および、第4表面電極46とは電気的に接続されておらず、省略することも可能である。
 図2(e)に示すように、セラミック層10eには、ビアホール導体VH1、VH2が形成されている。図2(f)に示すように、セラミック層10fには、ビアホール導体VH3、VH4が形成されている。図2(g)に示すように、セラミック層10gには、ビアホール導体VH5、VH6が形成されている。
 図3(a)に示すように、セラミック層10hには、ビアホール導体VH7、VH8が形成されている。図3(b)に示すように、セラミック層10iには、ビアホール導体VH9、VH10が形成されている。図3(c)に示すように、セラミック層10jには、ビアホール導体VH11、VH12が形成されている。図3(d)に示すように、セラミック層10kには、ビアホール導体VH13、VH14が形成されている。図3(e)に示すように、セラミック層10lには、ビアホール導体VH15、VH16が形成されている。図3(f)に示すように、セラミック層10mには、ビアホール導体VH17、VH18が形成されている。図3(g)に示すように、セラミック層10nには、ビアホール導体VH19、VH20、VH21およびVH22が形成されている。
 ビアホール導体VH1~VH22に用いられる材料に特に制限はなく、例えば、銀や銅などを主成分とする材料を用いることができる。
 コイルパターンが形成されているセラミック層のうちの最上層に位置するセラミック層10eに形成されているコイルパターン20eの一端、より具体的には、セラミック層10eの略中心に位置する一端は、ビアホール導体VH1、VH3、VH5、VH7、VH9、VH11、VH13、VH15、VH17を介して、第2分配電極42と電気的に接続されている。
 一方、コイルパターン20eの他端は、ビアホール導体VH2を介して、セラミック層10fに形成されているコイルパターン20fの最外周側の一端と電気的に接続されている。最内周側に位置するコイルパターン20fの他端は、ビアホール導体VH4、および、セラミック層10gに形成されているビアホール導体VH6を介して、セラミック層10hに形成されているコイルパターン20hの最内周側の一端と電気的に接続されている。
 最外周側に位置するコイルパターン20hの他端は、ビアホール導体VH8を介して、セラミック層10iに形成されているコイルパターン20iの最外周側の一端と電気的に接続されている。最内周側に位置するコイルパターン20iの他端は、ビアホール導体VH10を介して、セラミック層10jに形成されているコイルパターン20jの最内周側の一端と電気的に接続されている。
 最外周側に位置するコイルパターン20jの他端は、ビアホール導体VH12を介して、セラミック層10kに形成されているコイルパターン20kの最外周側の一端と電気的に接続されている。最内周側に位置するコイルパターン20kの他端は、ビアホール導体VH14、セラミック層10lに形成されているビアホール導体VH16、および、セラミック層10mに形成されているビアホール導体VH18を介して、セラミック層10mに形成されている第1分配電極41と電気的に接続されている。
 第1分配電極41は、セラミック層10nに形成されているビアホール導体VH19を介して第1表面電極43と、また、ビアホール導体VH20を介して第2表面電極44と電気的に接続されている。第2分配電極42は、セラミック層10nに形成されているビアホール導体VH21を介して第3表面電極45と、また、ビアホール導体VH22を介して第4表面電極46と電気的に接続されている。
 上述した構成により、コイル内蔵セラミック基板100に形成されているコイルの一端は第1表面電極43および第2表面電極44と電気的に接続されており、他端は第3表面電極45および第4表面電極46と電気的に接続されている。
 図4は、図2(e)に示すセラミック層10e、すなわち、コイルパターンが形成されている複数のセラミック層のうち、積層方向における最も外側、より具体的には、最上層に位置するセラミック層10eの拡大平面図である。
 図4に示すように、セラミック層10eは、矩形形状を有し、第1の側辺11、第2の側辺12、第3の側辺13、および、第4の側辺14を有する。
 コイルパターン20eは、セラミック層10eの第1の側辺11、第2の側辺12、第3の側辺13、および、第4の側辺14と平行に延伸しながら、セラミック層10eの中心C1の周りを周回状に形成されている。上述したように、本実施形態では、コイルパターン20eは、三重巻きに形成されている。
 コイルパターン20eには、周回状に形成されているコイルパターンの最内周の位置から、セラミック層10eの中心へと引き出されている引出パターン20e1が含まれる。引出パターン20e1は、ビアホール導体VH1と電気的に接続されている。
 本実施形態におけるコイル内蔵セラミック基板100では、後述する理由から、セラミック層10eに、2つのダミーパターン51、52が形成されている。ダミーパターン51、52は、コイルパターン20eおよびその他の信号ラインとは電気的に接続されていない。
 ダミーパターン51、52はそれぞれ、コイルパターン20eの一部の延伸方向の延長上に、セラミック層10eの側辺と平行に形成されている。例えば、ダミーパターン51は、コイルパターン20eのうちの最内周のパターン20e2の周回形状が途切れている領域を補うような態様で、最内周のパターン20e2の延長上に、第2の側辺12および第4の側辺14と平行に形成されている。また、ダミーパターン52は、コイルパターン20eのうちの引出パターン20e1の延長上に、第1の側辺11および第3の側辺13と平行に形成されている。
 すなわち、本発明における「ダミーパターンは、多重巻きコイルパターンの一部の延伸方向の延長上に、セラミック層の側辺と平行に形成されている」という構成の具体的な態様として、本実施形態では、以下の二つの態様が含まれる。一つ目は、ダミーパターン51のように、最内周のパターン20e2が途中で向きを変え、引出パターン20e1として、セラミック層10eの中心に向かって延びているような場合において、向きを変えずに延びていたら存在するはずの位置にダミーパターンを形成した態様である。二つ目は、ダミーパターン52のように、引出パターン20e1がセラミック層10eの中心C1で終了しているような場合において、引出パターン20e1が、図4に示すセラミック層10eの中心C1で終了せずに、最内周のパターン20e2の近傍まで延びていたら存在するはずの位置にダミーパターンを形成した態様である。
 なお、ダミーパターン51、52のそれぞれの配置位置については、後ほどさらに詳しく説明する。
 ダミーパターン51、52は、コイルパターン20eとダミーパターン51、52を含むパターンが、セラミック層10eの中心C1を通り、かつ、セラミック層10eの第2の側辺12および第4の側辺14と平行な線60に対して、略線対称となるような位置に配置されているとも言える。
 なお、略線対称となるような位置とは、ダミーパターン51、52が配置されることにより、ダミーパターン51、52が配置される前と比べて、コイルパターン20eとダミーパターン51、52を含むパターンが上記の線60に対して線対称の形状に近づくような位置のことである。ダミーパターン51、52がそのような位置に配置されることにより、コイルパターン20e、および、ダミーパターン51、52を含むパターンの形状は、セラミック層10eの中心C1に対して略点対称となっている。
 また、ダミーパターン51、52は、セラミック層10eの中心C1を通り、かつ、セラミック層10eの第2の側辺12および第4の側辺14と平行な線60に対して、コイルパターン20eの一部と略線対称の位置に配置されているとも言える。
 2つのダミーパターン51、52のうち、ダミーパターン51は、コイルパターン20eのうちの最内周のパターン20e2とダミーパターン51を含むパターンが、セラミック層10eの中心C1に対して略点対称となるような位置に配置されている。
 なお、略点対称となるような位置とは、ダミーパターン51が配置されることにより、ダミーパターン51が配置される前と比べて、コイルパターン20eのうちの最内周のパターン20e2とダミーパターン51を含むパターンが、セラミック層10eの中心C1に対して点対称の形状に近づくような位置のことである。
 また、2つのダミーパターン51、52のうち、ダミーパターン51は、セラミック層10eの中心C1に対して、コイルパターン20eのうちの最内周のパターン20e2の一部と略点対称の位置に配置されている。
 図4に示すように、コイルパターン20のうちの最内周のパターン20e2には、第1の側辺11、第2の側辺12、第3の側辺13、および、第4の側辺14に近い位置のパターンが含まれている。このうち、第2の側辺12に近い位置のパターンは、セラミック層10eの中心C1へと引き出されている引出パターン20e1と連続的に接続されているため、第1の側辺11、第2の側辺12、および、第3の側辺13に近い位置のパターンと比べて、略半分の長さとなっている。
 ダミーパターン51は、最内周のパターン20e2のうち、第2の側辺12に近い位置のパターンの延長線上に、第2の側辺12と平行に設けられている。そのような位置にダミーパターン51が配置されていることにより、コイルパターン20eのうちの最内周のパターン20e2とダミーパターン51を含むパターンが、セラミック層10eの中心C1に対して略点対称の形状を有する。
 上述したように、引出パターン20e1は、環状に形成されているコイルパターン20eの最内周の位置から、セラミック層10eの中心C1へと引き出されるような態様で配置されている。ダミーパターン52は、セラミック層10eの中心C1に対して、引出パターン20e1の一部と略点対称の位置、すなわち、引出パターン20e1の延長線上であって、セラミック層10eの中心C1と、コイルパターン20eの最内周のパターン20e2との間の領域に配置されている。
 コイルパターン20が形成されているセラミック層10fとセラミック層10hとの間に位置するセラミック層10gには、空隙30が設けられている(図2(g)参照)。空隙30は、積層方向に見た場合に、コイルパターン20が形成されている領域内に設けられている。
 図5は、コイル内蔵セラミック基板100を、中心線、より具体的には、図4に示す線60と平行な線で切断した際に、図4の点線で囲まれた領域70に対応する領域の断面図である。なお、積層方向に隣り合うコイルパターンは、図5に示すように、積層方向において完全に重なり合う位置ではなく、ずれた位置に形成されている。
 図5に示すように、空隙30は、積層方向に見た場合の、コイルパターン20(20e、20f、20h~20k)の外周縁T1よりも内側であって、かつ、コイルパターン20の内周縁T2よりも外側に設けられている。
 上述したように、2つのダミーパターン51、52のうち、ダミーパターン51は、最内周のパターン20e2のうちの、第2の側辺12に近い位置のパターンの延長線上に設けられている。したがって、空隙30は、積層方向に見た場合に、ダミーパターン51が形成されている領域にも形成されている。
 ここで、各セラミック層10a~10nの製造工程では、焼成工程が必要となるが、空隙30が設けられていない場合、焼成した後の冷却時に、セラミック層とコイルパターンとの間に、熱収縮率の違いから応力が発生し、焼成後のコイル内蔵セラミック基板に応力歪が生じて透磁率が低下するなど、磁気特性が低下する可能性がある。しかしながら、空隙30が設けられていることにより、セラミック層とコイルパターンとの間に発生する応力が緩和され、磁気特性の低下を抑制することができる。
 特に、空隙30は、積層方向に見て、コイルパターン20の外周縁よりも内側に形成されているので、セラミック層の製造工程時に、熱衝撃による空隙端部からのクラックの発生を抑制することができる。これにより、信頼性の高いコイル内蔵セラミック基板100を得ることができる。
 また、積層方向に見て、コイルパターン20が設けられている領域だけでなく、ダミーパターン51が形成されている領域にも空隙30が設けられていることにより、ダミーパターン51とセラミック層との間に発生する応力が緩和されて、磁気特性の低下を抑制することができる。
 以上のような構造および特徴を備えたコイル内蔵セラミック基板100は、例えば、次のような方法により製造することができる。
 まず、セラミック層10a~10nを形成するための、磁性フェライト等からなるセラミックグリーンシートを用意する。セラミックグリーンシートは、複数のコイル内蔵セラミック基板を一括で製造することができる大きさのマザーシートである。
 次に、セラミックグリーンシートに、必要に応じて、ビアホール導体を形成するための孔を形成し、形成した孔に導電性ペーストを充填する。また、セラミックグリーンシートの主面に、必要に応じて、コイルパターン20e、20f、20h~20k、ダミーパターン51、52、第1分配電極41、第2分配電極42、第1表面電極43、第2表面電極44、第3表面電極45、および、第4表面電極46を形成するための導電性ペーストを所定の形状に塗布する。
 また、空隙30を形成するために、セラミック層10gを形成するためのセラミックグリーンシートの主面に、焼成により消失する材料を所定の形状に塗布する。焼成により消失する材料としては、例えば、カーボンペーストを用いることができる。
 次に、セラミックグリーンシートを所定の順番に積層し、加圧して一体化させ、未焼成のマザー積層体を得る。この未焼成のマザー積層体に対して、個々の素子部に分割するためのブレイク溝を形成する。素子部とは、最終的に1個のコイル内蔵セラミック基板となる部分のことである。
 続いて、未焼成のマザー積層体を所定のプロファイルで焼成して、図6に示すようなマザー基板80を得る。最後に、マザー基板80に形成されているブレイク溝81に沿って、マザー基板80を複数の素子部に個片化する。個片化は、例えば、図7に示すように、カッター90を用いて、ブレイク溝81に沿ってマザー基板80を分割することにより行う。
 上述したように、本実施形態におけるコイル内蔵セラミック基板100では、セラミック層10eの各側辺11~14と平行に延伸しながら周回状に形成されているコイルパターン20eの一部の延伸方向の延長上に、ダミーパターン51、52が形成されている。特に、ダミーパターン51、52は、コイルパターン20eと当該ダミーパターン51、52を含むパターンが、セラミック層10eの中心C1を通り、かつ、セラミック層10eの所定の側辺である第2の側辺12および第4の側辺14と平行な線60に対して、略線対称となるような位置に配置されている。ダミーパターン51、52は、セラミック層10eの中心C1を通り、かつ、セラミック層10eの第2の側辺12および第4の側辺14と平行な線60に対して、コイルパターン20eの一部と略線対称の位置に配置されているとも言える。これにより、セラミック層10eの内部応力が局所的に異なることを緩和することができるので、複数のコイル内蔵セラミック基板100を一括で製造するため、マザー基板80を直線状のブレイク溝81に沿って分割する際に、歪みなく、直線状に精度良く分割することができる。
 特に、基板の厚みTが0.5mm以下と薄い場合には、マザー基板80をブレイク溝81に沿って直線状に分割するのが難しくなる場合があるが、本実施形態におけるコイル内蔵セラミック基板100によれば、直線状に精度良く分割することができる。
 上述したように、ダミーパターン51は、コイルパターン20eのうちの最内周のパターン20e2と当該ダミーパターン51を含むパターンが、セラミック層10eの中心C1に対して略点対称となるような位置に配置されている。これにより、セラミック層10eの内部応力が局所的に異なることを緩和することができるので、マザー基板80を直線状のブレイク溝81に沿って分割する際に、歪みなく、直線状に精度良く分割することができる。
 また、ダミーパターン52は、セラミック層10eの中心C1に対して、コイルパターン20eのうちの最内周の位置からセラミック層10eの中心C1へと引き出されている引出パターン20e1と略点対称の位置に配置されている。これにより、セラミック層10eの内部応力が局所的に異なることを緩和することができるので、マザー基板80を直線状のブレイク溝81に沿って分割する際に、歪みなく、直線状に精度良く分割することができる。
 ダミーパターン51、52は、コイルパターン20が形成されている複数のセラミック層10e、10f、10h~10kのうち、積層方向における最も外側のセラミック層10eに形成されている。すなわち、ダミーパターン51、52は、マザー基板80を直線状のブレイク溝81に沿って分割する際に、コイルパターン20の形状によって分割時の直線性に大きい影響を及ぼすセラミック層10eに形成されているので、より精度良く分割することができる。
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。
 例えば、ダミーパターンは、コイルパターンが形成されている複数のセラミック層のうち、積層方向における最も外側のセラミック層に形成されているものとして説明したが、コイルパターンが形成されている任意のセラミック層に形成することができる。また、コイルパターンとダミーパターンが形成されているセラミック層が1層に限定されることもない。
 空隙30の配置位置は、セラミック層10fとセラミック層10hの間の層に限定されることはなく、積層方向に隣り合う2つのセラミック層の間の任意の層とすることができる。また、空隙30は、積層方向に隣り合う2つのセラミック層10を1組としたときに、複数組における2つのセラミック層の間に設けられていてもよい。
 セラミック層に形成されている多重巻きコイルパターンの形状が図4に示すような形状に限定されることはない。したがって、多重巻きコイルパターンが三重巻きのコイルパターンに限定されることもない。
 コイル内蔵セラミック基板を構成するセラミック層の数、および、多重巻きコイルパターンが形成されているセラミック層の数は任意である。
 コイル内蔵セラミック基板を構成する複数のセラミック層が磁性体層に限定されることもない。
10(10a、10b、10c、10d、10e、10f、10g、10h、10i、10j、10k、10l、10m、10n) セラミック層
11  第1の側辺
12  第2の側辺
13  第3の側辺
14  第4の側辺
20(20e、20f、20h~20k) コイルパターン
20e1 コイルパターン20eの引出パターン
20e2 コイルパターン20eの最内周パターン
30  空隙
41  第1分配電極
42  第2分配電極
43  第1表面電極
44  第2表面電極
45  第3表面電極
46  第4表面電極
51  ダミーパターン
52  ダミーパターン
60  セラミック層の中心を通り、第2および第4の側辺と平行な線
80  マザー基板
81  ブレイク溝
90  カッター
100 コイル内蔵セラミック基板

Claims (8)

  1.  多重巻きコイルパターンが形成されている複数のセラミック層を有するコイル内蔵セラミック基板であって、
     複数の前記セラミック層のうちの少なくとも一層には、前記多重巻きコイルパターンと、前記多重巻きコイルパターンとは電気的に接続されていないダミーパターンが形成されており、
     前記多重巻きコイルパターンは、前記セラミック層の側辺と平行に延伸しながら前記セラミック層の中心の周りを周回状に形成されており、
     前記ダミーパターンは、同じセラミック層に形成されている前記多重巻きコイルパターンの一部の延伸方向の延長上に、当該セラミック層の側辺と平行に形成されている、
    ことを特徴とするコイル内蔵セラミック基板。
  2.  前記ダミーパターンは、
     前記セラミック層の中心を通り、かつ、前記セラミック層の所定の側辺と平行な線に対して、前記多重巻きコイルパターンの一部と略線対称の位置に配置されていることを特徴とする請求項1に記載のコイル内蔵セラミック基板。
  3.  前記ダミーパターンは、
     前記セラミック層の中心に対して、前記多重巻きコイルパターンのうちの最内周のパターンの一部と略点対称の位置に配置されていることを特徴とする請求項1または2に記載のコイル内蔵セラミック基板。
  4.  前記多重巻きコイルパターンのうちの最内周の位置から前記セラミック層の中心へと引き出されている引出パターンが存在する場合において、前記ダミーパターンは、前記セラミック層の中心に対して、前記引出パターンと略点対称の位置に配置されていることを特徴とする請求項1~3のいずれかに記載のコイル内蔵セラミック基板。
  5.  前記ダミーパターンは、前記多重巻きコイルパターンが形成されている複数の前記セラミック層のうち、積層方向における最も外側のセラミック層に形成されていることを特徴とする請求項1~4のいずれかに記載のコイル内蔵セラミック基板。
  6.  積層方向に隣り合う2つの前記セラミック層を1組としたときに、複数組のうちの少なくとも1組の前記2つのセラミック層の間に空隙が形成されており、
     積層方向に見た場合に、前記空隙は、前記多重巻きコイルパターンの外周縁よりも内側に形成されていることを特徴とする請求項1~5のいずれかに記載のコイル内蔵セラミック基板。
  7.  積層方向に見た場合に、前記空隙は、前記ダミーパターンが形成されている領域の少なくとも一部にも形成されていることを特徴とする請求項6に記載のコイル内蔵セラミック基板。
  8.  前記多重巻きコイルパターンが形成されているセラミック層は磁性体層であることを特徴とする請求項1~7のいずれかに記載のコイル内蔵セラミック基板。
PCT/JP2018/018092 2017-06-05 2018-05-10 コイル内蔵セラミック基板 WO2018225445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201890000503.0U CN210519104U (zh) 2017-06-05 2018-05-10 线圈内置陶瓷基板
JP2019523411A JP6569844B2 (ja) 2017-06-05 2018-05-10 コイル内蔵セラミック基板
US16/575,565 US11508513B2 (en) 2017-06-05 2019-09-19 Coil-embedded ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110871 2017-06-05
JP2017110871 2017-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/575,565 Continuation US11508513B2 (en) 2017-06-05 2019-09-19 Coil-embedded ceramic substrate

Publications (1)

Publication Number Publication Date
WO2018225445A1 true WO2018225445A1 (ja) 2018-12-13

Family

ID=64567188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018092 WO2018225445A1 (ja) 2017-06-05 2018-05-10 コイル内蔵セラミック基板

Country Status (4)

Country Link
US (1) US11508513B2 (ja)
JP (1) JP6569844B2 (ja)
CN (1) CN210519104U (ja)
WO (1) WO2018225445A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200135375A1 (en) * 2018-10-30 2020-04-30 Tdk Corporation Multilayer coil component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10903770B1 (en) 2020-01-14 2021-01-26 Adventech, Llc Enhanced reverse-winding induction motor designs, systems, and methods
CN112398457A (zh) * 2020-11-24 2021-02-23 广东广纳芯科技有限公司 声表面波滤波器及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099698A (ja) * 2007-10-16 2009-05-07 Panasonic Corp 積層型コイル部品
JP2012182285A (ja) * 2011-03-01 2012-09-20 Fdk Corp コイル部品
JP2016171209A (ja) * 2015-03-12 2016-09-23 株式会社村田製作所 Dc−dcコンバータモジュールおよび製造方法
JP2017059749A (ja) * 2015-09-18 2017-03-23 Tdk株式会社 積層コイル部品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663225B2 (en) * 2004-07-23 2010-02-16 Murata Manufacturing Co., Ltd. Method for manufacturing electronic components, mother substrate, and electronic component
JP4312766B2 (ja) * 2006-01-27 2009-08-12 シャープ株式会社 半導体装置
JP4908035B2 (ja) * 2006-03-30 2012-04-04 株式会社東芝 半導体集積回路
TWI379322B (en) * 2007-10-12 2012-12-11 Via Tech Inc Spiral inductor device
KR101133397B1 (ko) * 2010-04-05 2012-04-09 삼성전기주식회사 평면형 트랜스포머 및 이의 제조 방법
GB2513725B (en) * 2012-02-29 2016-01-13 Murata Manufacturing Co Multilayer inductor and power supply circuit module
KR20140084970A (ko) * 2012-12-27 2014-07-07 삼성전기주식회사 적층형 칩 인덕터
WO2015079773A1 (ja) * 2013-11-28 2015-06-04 株式会社村田製作所 電磁石、カメラレンズ駆動装置及び電磁石の製造方法
JP6507504B2 (ja) 2014-07-14 2019-05-08 株式会社村田製作所 インダクタ素子、及び、配線基板
KR101640909B1 (ko) * 2014-09-16 2016-07-20 주식회사 모다이노칩 회로 보호 소자 및 그 제조 방법
JP6500992B2 (ja) 2015-09-01 2019-04-17 株式会社村田製作所 コイル内蔵部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099698A (ja) * 2007-10-16 2009-05-07 Panasonic Corp 積層型コイル部品
JP2012182285A (ja) * 2011-03-01 2012-09-20 Fdk Corp コイル部品
JP2016171209A (ja) * 2015-03-12 2016-09-23 株式会社村田製作所 Dc−dcコンバータモジュールおよび製造方法
JP2017059749A (ja) * 2015-09-18 2017-03-23 Tdk株式会社 積層コイル部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200135375A1 (en) * 2018-10-30 2020-04-30 Tdk Corporation Multilayer coil component
US11810704B2 (en) * 2018-10-30 2023-11-07 Tdk Corporation Multilayer coil component

Also Published As

Publication number Publication date
US20200013538A1 (en) 2020-01-09
US11508513B2 (en) 2022-11-22
CN210519104U (zh) 2020-05-12
JP6569844B2 (ja) 2019-09-04
JPWO2018225445A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5482554B2 (ja) 積層型コイル
JP3686908B2 (ja) 積層型コイル部品及びその製造方法
JP5585740B1 (ja) 積層型インダクタ素子および通信装置
JP6524980B2 (ja) 積層コイル部品およびその製造方法
US9035718B2 (en) Directional coupler
JP5921074B2 (ja) 積層基板の製造方法
JP5807650B2 (ja) 積層コイル及びその製造方法
JP6569844B2 (ja) コイル内蔵セラミック基板
JP2015026760A (ja) 積層コイル
US20110163832A1 (en) Laminated electronic component
JP2012064683A (ja) 積層型コイル
JP2018174192A (ja) コモンモードチョークコイル
US9406438B2 (en) Stack-type inductor element and method of manufacturing the same
WO2012144103A1 (ja) 積層型インダクタ素子及び製造方法
JP5278476B2 (ja) 積層コンデンサ
JP2013045995A (ja) 積層インダクタ
JP6911369B2 (ja) 積層コイル部品の製造方法
JP2012182285A (ja) コイル部品
JP5321630B2 (ja) 積層コンデンサ
JP3189995U (ja) 積層型アンテナ素子
JP6562158B2 (ja) 積層トロイダルコイルおよびその製造方法
JP6132027B2 (ja) 積層型インダクタ素子の製造方法、および積層型インダクタ素子
JP2009239159A (ja) 積層型電子部品及びその製造方法
JP2013135109A (ja) コモンモードノイズフィルタ
JP2004303776A (ja) 積層型コモンモードチョークコイル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812800

Country of ref document: EP

Kind code of ref document: A1