WO2019225055A1 - 樹脂組成物、研磨パッド、及び研磨パッドの製造方法 - Google Patents

樹脂組成物、研磨パッド、及び研磨パッドの製造方法 Download PDF

Info

Publication number
WO2019225055A1
WO2019225055A1 PCT/JP2019/001706 JP2019001706W WO2019225055A1 WO 2019225055 A1 WO2019225055 A1 WO 2019225055A1 JP 2019001706 W JP2019001706 W JP 2019001706W WO 2019225055 A1 WO2019225055 A1 WO 2019225055A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
acrylate
meth
urethane
Prior art date
Application number
PCT/JP2019/001706
Other languages
English (en)
French (fr)
Inventor
隆仁 石内
高橋 信行
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020521010A priority Critical patent/JP7110337B2/ja
Priority to EP19807552.5A priority patent/EP3798244B8/en
Priority to US16/977,719 priority patent/US11873399B2/en
Priority to CN201980017799.6A priority patent/CN111819211B/zh
Publication of WO2019225055A1 publication Critical patent/WO2019225055A1/ja
Priority to US18/163,045 priority patent/US20230187558A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • C08L67/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present disclosure relates to a resin composition, a polishing pad, and a method for manufacturing the polishing pad.
  • a polishing sheet which is a kind of polishing pad, is made of a nonwoven fabric or a woven fabric manufactured from synthetic fibers and synthetic rubber, or a polyester film, and a polyurethane solution is applied to the upper surface thereof. It is manufactured by forming a porous layer having, and grinding and removing the skin layer as necessary.
  • Such a polishing sheet has already been widely used as a polishing pad used in rough polishing to finish polishing for surface precision polishing of electronic parts such as liquid crystal glass, glass disk, photomask silicon wafer, CCD, and cover glass. Yes.
  • the quality required by users has increased, and there has been a demand for polishing pads that can perform polishing with higher accuracy.
  • CMP chemical mechanical polishing
  • a polishing pad using a porous soft polyurethane foam excellent in abrasion resistance is known.
  • this type of polishing pad has a high flexibility of the polishing layer and is easily compressed and deformed. Therefore, an over-polishing phenomenon called “end sagging” occurs in which the polishing layer follows the shape of the end of the object to be polished during polishing, and the end of the object to be polished is larger than the central part.
  • the fine holes present on the surface of the polishing layer are partially blocked by friction during the polishing process, causing problems such as generation of polishing scratches on the surface to be polished and a decrease in polishing rate over time.
  • Patent Document 1 describes a polishing cloth in which a nonwoven fabric in which a polyester fiber is mixed with a heat-sealing yarn is impregnated with a resin.
  • urethane resin is used as the resin for impregnation, and is cured after impregnation.
  • Patent Document 2 describes that in a polishing pad formed of foamed polyurethane, the connection between bubbles is suppressed and each bubble is formed separately.
  • a material having extremely high hardness such as diamond is used as an abrasive grain.
  • the present disclosure provides a resin composition for easily obtaining a polishing pad having hardness suitable for chemical mechanical polishing and having pores of a desired size, and uses this resin composition.
  • a polishing pad and a method for manufacturing the polishing pad are provided.
  • the present invention includes the following aspects.
  • the urethane (meth) acrylate (A) is represented by the following general formula:
  • R 1 is H or CH 3
  • R 2 is a divalent hydrocarbon group that may include an ether bond, and a hydrogen atom may be substituted with a substituent
  • 3 is a divalent hydrocarbon group
  • R 4 is a structural unit derived from a polyester polyol having a weight average molecular weight of 2,000 to 8,000, and n, which is the number of repeating units, is included in the resin composition.
  • the urethane (meth) acrylate (A) is an average number-based average value and is a real number of 1.00 or more
  • the mass ratio A: B of the content of the urethane (meth) acrylate (A) and the content of the unsaturated resin (B) is 64:36 to 96: 4
  • the content of the hollow body (D) with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 0.7 to The resin composition which is 9.0 mass parts.
  • the hollow body (D) is the resin composition according to [1], which is a resin balloon.
  • the content of the ethylenically unsaturated compound (C) is 40 to 200 parts by mass with respect to a total of 100 parts by mass of the urethane (meth) acrylate (A) and the unsaturated resin (B) [1]. Or the resin composition as described in [2].
  • the polyester polyol represented by R 4 in the general formula is the resin composition according to any one of [1] to [6], which is a condensate of an aliphatic glycol and an aliphatic dibasic acid.
  • the content of the inorganic filler with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 10 to 200 parts by mass.
  • a polishing pad comprising a cured product of the resin composition according to any one of [1] to [10].
  • a method for producing a polishing pad comprising: a step of molding and curing the resin composition according to any one of [10]; and a step of shaving the surface of the cured resin composition.
  • a resin composition for easily obtaining a polishing pad having hardness suitable for chemical mechanical polishing and having pores of a desired size, a polishing pad using the resin composition, and A method of manufacturing a polishing pad can be provided.
  • ethylenically unsaturated bond means a double bond formed between carbon atoms excluding carbon atoms forming an aromatic ring.
  • weight average molecular weight and number average molecular weight are standard polystyrene conversion values measured by size exclusion chromatography (SEC), for example, gel permeation chromatography (GPC).
  • Median diameter means a particle diameter that is 50% cumulative in a volume-based particle size distribution determined by a laser diffraction / scattering method.
  • (Meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acrylic or methacrylic.
  • the resin composition according to one embodiment has urethane (meth) acrylate (A), an unsaturated resin (B) composed of at least one of a vinyl ester resin and an unsaturated polyester, and an ethylenically unsaturated bond. And an ethylenically unsaturated compound (C) excluding urethane (meth) acrylate (A) and unsaturated resin (B), and a hollow body (D).
  • the blending ratio of the urethane (meth) acrylate (A) and the unsaturated resin (B) and the content of the hollow body (D) will be described later in sections 1-3 and 1-5, respectively.
  • each component contained in the resin composition of this embodiment is demonstrated.
  • R 1 is H or CH 3
  • R 2 is a divalent hydrocarbon group that may include an ether bond, and a hydrogen atom may be substituted with a substituent
  • 3 is a divalent hydrocarbon group
  • R 4 is a structural unit derived from a polyester polyol having a weight average molecular weight of 2,000 to 8,000
  • n which is the number of repeating units, is contained in the resin composition. It is an average value based on the number of the entire urethane (meth) acrylate (A), and is a real number of 1.00 or more.
  • R 1 is H or CH 3 , preferably H.
  • R 2 is a divalent hydrocarbon group which may contain an ether bond, and a hydrogen atom may be substituted with a substituent.
  • the hydrocarbon group as R 2 include an alkylene group, a cycloalkylene group, and an arylene group, and these hydrocarbon groups may have a branch.
  • R 2 is an alkylene group having 2 to 6 carbon atoms or a hydrogen atom of an alkylene group having 2 to 6 carbon atoms, for example, a substituent such as a phenyl group, a phenoxy group, or a (meth) acryloyloxy group. It is preferable that it is substituted.
  • R 2 is particularly preferably an ethylene group.
  • R 1 and R 2 are structures derived from a hydroxyl group-containing (meth) acrylate CH 2 ⁇ C (R 1 ) C (O) OR 2 OH.
  • Hydroxyl group-containing (meth) acrylate CH 2 ⁇ C (R 1 ) C (O) OR 2 OH includes 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2- Examples thereof include hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, phenoxyhydroxypropyl acrylate, phenoxyhydroxypropyl methacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, dipropylene glycol monoacrylate, and dipropylene glycol monomethacrylate.
  • hydroxyl group-containing (meth) acrylates may be used alone or in combination of two or more.
  • the hydroxyl group-containing (meth) acrylate is preferably 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, or 2-hydroxybutyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, or 2-hydroxybutyl acrylate is more preferable, and 2-hydroxyethyl acrylate is more preferable.
  • R 3 is a divalent hydrocarbon group.
  • the number of carbon atoms contained in R 3 is preferably 5-15.
  • the hydrocarbon group as R 3 is preferably a cycloalkylene group or an arylene group. In these groups, a hydrogen atom may be substituted with an alkyl group.
  • R 3 is a structure derived from the diisocyanate compound OCN—R 3 —NCO.
  • the diisocyanate compound OCN—R 3 —NCO include isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, and hydrogenated xylylene diisocyanate. These diisocyanate compounds may be used alone or in combination of two or more.
  • the diisocyanate compound is preferably isophorone diisocyanate, tolylene diisocyanate, xylylene diisocyanate, or hydrogenated xylylene diisocyanate, and more preferably isophorone diisocyanate.
  • R 4 is a structural unit derived from a polyester polyol HO—R 4 —OH having a weight average molecular weight of 2,000 to 8,000.
  • Polyester polyol HO—R 4 —OH is, for example, a condensate obtained by a condensation reaction of glycol and dibasic acid.
  • the glycol is preferably aliphatic, more preferably has a hydroxyl group at both ends of a linear hydrocarbon, and more preferably has no unsaturated bond. Examples of the glycol include ethylene glycol, propylene glycol, dipropylene glycol, hexanediol and the like, and ethylene glycol is particularly preferable.
  • the dibasic acid is preferably aliphatic, more preferably aliphatic having no branched or cyclic structure.
  • examples of the dibasic acid include oxalic acid, fumaric acid, succinic acid, adipic acid, sebacic acid and the like, and adipic acid is particularly preferable.
  • Both the aliphatic glycol and the aliphatic dibasic acid can increase the elongation rate of the urethane (meth) acrylate (A) and improve the toughness of the obtained molded product.
  • the lower limit of the weight average molecular weight of the polyester polyol is 2,000. Thereby, the elongation rate of urethane (meth) acrylate (A) can be enlarged and the toughness of the molded article obtained can be improved. From this viewpoint, the weight average molecular weight of the polyester polyol is preferably 3,000 or more, and more preferably 4,000 or more.
  • the upper limit of the weight average molecular weight of the polyester polyol is 8,000. Thereby, a sufficiently strong molded product can be obtained. From this viewpoint, the weight average molecular weight of the polyester polyol is preferably 7,000 or less, and more preferably 6,000 or less. In addition, a weight average molecular weight is a polystyrene conversion value by size exclusion chromatography as above-mentioned.
  • n is the number of repeating structural units in square brackets in the above general formula, and n is a real number of 1.00 or more.
  • the value of n is calculated
  • MnA M 1 + nM 2 .
  • M 2 is a value based on the number average molecular weight of the polyester polyol.
  • n is a number-based average value for the entire urethane (meth) acrylate (A) and is not limited to an integer.
  • n is preferably 6.00 or less. If the value of n is 6.00 or less, the viscosity increase of urethane (meth) acrylate (A) can be suppressed and favorable workability
  • operativity can be ensured. From this viewpoint, the value of n is more preferably 5.00 or less, and further preferably 4.00 or less.
  • urethane (meth) acrylate (A) for example, a diisocyanate compound OCN—R 3 —NCO and a polyester polyol HO—R 4 —OH are reacted to synthesize a molecule having an isocyanate group at both ends.
  • a method of reacting a molecule with a hydroxyl group-containing (meth) acrylate CH 2 ⁇ C (R 1 ) C (O) OR 2 OH In the step of synthesizing the molecule having isocyanato groups at both ends, the diisocyanate compound is preferably added in excess with respect to the polyester polyol, that is, the molar ratio of NCO group / OH group exceeds 1.
  • the vinyl ester resin is preferably an epoxy (meth) acrylate obtained by esterifying an epoxy resin and an ⁇ , ⁇ -unsaturated monocarboxylic acid.
  • the epoxy resin examples include diglycidyl ethers of bisphenol such as bisphenol A, bisphenol AD, and bisphenol F, and high molecular weight homologues thereof, phenol novolac polyglycidyl ether, cresol novolac polyglycidyl ether, and the like.
  • a product obtained by reacting a phenol compound such as bisphenol A, bisphenol AD, bisphenol F, bisphenol S or the like with these glycidyl ethers or an aliphatic epoxy resin may be used.
  • it is preferable to use a bisphenol A type epoxy resin because a vinyl ester resin capable of providing a cured product having excellent mechanical strength and chemical resistance can be obtained.
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acid include acrylic acid and methacrylic acid.
  • acrylic acid As the ⁇ , ⁇ -unsaturated monocarboxylic acid, crotonic acid, tiglic acid, cinnamic acid and the like can also be used.
  • (meth) acrylic acid because a vinyl ester resin capable of providing a cured product having excellent mechanical strength and chemical resistance can be obtained.
  • a catalyst can be used as needed.
  • the catalyst include tertiary amines such as benzyldimethylamine, triethylamine, N, N-dimethylaniline, triethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol, and quaternary ammonium such as trimethylbenzylammonium chloride.
  • metal salts such as salts and lithium chloride.
  • the weight average molecular weight of the vinyl ester resin is preferably 1,000 to 6,000, more preferably 1,000 to 5,000, and still more preferably 1,000 to 4,000.
  • a weight average molecular weight is a polystyrene conversion value by size exclusion chromatography as above-mentioned.
  • the unsaturated polyester resin is obtained by polycondensation of a polyhydric alcohol, an unsaturated polybasic acid, and, if necessary, a saturated polybasic acid, and the type thereof is not particularly limited.
  • An unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond
  • a saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond. Only one type of unsaturated polyester resin may be used, or two or more types may be used.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, hydrogenated bisphenol A, bisphenol A, and glycerin. .
  • propylene glycol and hydrogenated bisphenol A are preferable.
  • a polyhydric alcohol may be used independently and may use 2 or more types together.
  • Examples of the unsaturated polybasic acid include maleic acid, maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like.
  • An unsaturated polybasic acid may be used independently and may use 2 or more types together. Among these, maleic anhydride and fumaric acid are preferable.
  • Saturated polybasic acids include, for example, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, het acid, succinic acid, adipic acid, sebacic acid, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, endomethylenetetrahydrophthalic anhydride An acid etc. are mentioned. Of these, phthalic acid is preferred. Saturated polybasic acids may be used alone or in combination of two or more.
  • the weight average molecular weight of the unsaturated polyester resin is preferably 6,000 to 35,000, more preferably 6,000 to 20,000, and still more preferably 8,000 to 15,000.
  • a weight average molecular weight is a polystyrene conversion value by size exclusion chromatography as above-mentioned.
  • the degree of unsaturation of the unsaturated polyester resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%. When the degree of unsaturation is in the above range, the moldability of the resin composition is better.
  • the mass ratio A: B of the content of urethane (meth) acrylate (A) and the content of unsaturated resin (B) contained in the resin composition is 64:36 or more (that is, A / B is 64 / 36 or more), preferably 68:32 or more (that is, A / B is 68/32 or more), more preferably 70:30 or more (that is, A / B is 70/30 or more).
  • the cured product of the resin composition is hard.
  • the hardness of the resin composition after hardening becomes high, so that there is little content of urethane (meth) acrylate (A) with respect to content of unsaturated resin (B).
  • the mass ratio A: B of the content of urethane (meth) acrylate (A) and the content of unsaturated resin (B) is 96: 4 or less (ie A / B is 96/4 or less), preferably 94: 6 or less (that is, A / B is 94/6 or less), more preferably 90:10 or less (that is, A / B is 90/10 or less). It is.
  • Examples of the ethylenically unsaturated compound (C) include aromatic monomers such as styrene, vinyl toluene and divinylbenzene, 2-hydroxyethyl methacrylate, polyalkylene oxide diacrylate, triethylene glycol di (meth) acrylate, and tetraethylene.
  • aromatic monomers such as styrene, vinyl toluene and divinylbenzene, 2-hydroxyethyl methacrylate, polyalkylene oxide diacrylate, triethylene glycol di (meth) acrylate, and tetraethylene.
  • Examples thereof include acrylate monomers such as glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate and methyl methacrylate, and oligomers in which a plurality of the above monomers are bonded.
  • styrene and methyl methacrylate are preferable from the viewpoint of reactivity with the urethane (meth) acrylate (A) and the unsaturated resin (B), and styrene is particularly preferable.
  • the said compound may be used independently and 2 or more types may be used together.
  • the content of the ethylenically unsaturated compound (C) is preferably 40 parts by mass or more with respect to 100 parts by mass in total of the urethane (meth) acrylate (A) and the unsaturated resin (B). Thereby, it can be set as the viscosity which is easy to handle a resin composition. From this viewpoint, the content of the ethylenically unsaturated compound (C) is more preferably 50 parts by mass or more, and further preferably 60 parts by mass or more.
  • the content of the ethylenically unsaturated compound (C) is preferably 200 parts by mass or less with respect to 100 parts by mass in total of the urethane (meth) acrylate (A) and the unsaturated resin (B). Thereby, the mechanical strength of the resin composition after hardening can be made high. From this viewpoint, the content of the ethylenically unsaturated compound (C) is more preferably 150 parts by mass or less, and further preferably 120 parts by mass or less.
  • Hollow body (D) is a particle having a cavity inside. After curing the resin composition to be described later, the surface of the cured product is shaved and surfaced to scrape the surface of the hollow body (D), and the surface of the cured product (for example, a polishing pad) is derived from the hollow body (D). A pore is formed.
  • the pores derived from the hollow body (D) present on the surface of the polishing layer are abrasive grains contained in the abrasive (hereinafter also referred to as “abrasive particles”). Play a role to hold.
  • the size of the hollow body (D) is preferably 50 ⁇ m or more in median diameter. Thereby, the abrasive particles can be reliably held in the pores. From this viewpoint, the median diameter of the hollow body (D) is more preferably 60 ⁇ m or more, and further preferably 70 ⁇ m or more.
  • the size of the hollow body (D) is preferably 200 ⁇ m or less in terms of median diameter. Thereby, the amount of abrasive grains held in one pore can be limited, and a decrease in polishing performance can be suppressed. From this viewpoint, the median diameter of the hollow body (D) is more preferably 150 ⁇ m or less, and further preferably 120 ⁇ m or less.
  • the size distribution of the hollow body (D) is narrow, the size distribution of the pores formed in the polishing pad produced using the resin composition is also narrowed. If the size distribution of the pores is narrow, the amount of abrasive grains held in the pores can be aligned, that is, the amount of abrasive grains squeezed from the surface of the polishing pad can be aligned, and the object to be polished The load applied to is distributed more evenly. From this viewpoint, the standard deviation of the number-based particle diameter of the hollow body (D) is preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and even more preferably 8.0 ⁇ m or less. .
  • the standard deviation of the number-based particle diameter of the hollow body (D) was obtained, for example, by measuring the particle diameter of a predetermined number or more of the hollow bodies (D) with a visual observation device such as a microscope. Calculated based on a predetermined number of particle size values.
  • the predetermined number is preferably 30 or more from a statistical viewpoint.
  • the size and distribution of the hollow body (D) are not limited to the above, and can be appropriately designed according to the type of abrasive used, the specifications for the polishing process, and the like.
  • the shape of the hollow body (D) is generally spherical, but can be appropriately selected according to the type of abrasive used, the specifications for the polishing process, and the like.
  • Examples of the material of the hollow body (D) include glass balloons, silica balloons, alumina balloons, ceramic balloons, shirasu balloons, resin balloons, etc. Among these, resin balloons are preferable.
  • Examples of the resin that forms the resin balloon include thermosetting resins such as phenol resin, epoxy resin, and urea resin, and thermoplastic resins such as polystyrene, polyvinylidene chloride, and acrylonitrile resin.
  • the content of the hollow body (D) with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 0. .7 parts by mass or more.
  • the content of the hollow body (D) is preferably 1.0 part by mass or more, and more preferably 2.0 parts by mass or more.
  • the content of the hollow body (D) with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 9.0. It is below mass parts. Thereby, in the polishing pad produced using the resin composition, sufficient hardness can be ensured.
  • the content of the hollow body (D) is preferably 7.0 parts by mass or less, and more preferably 5.0 parts by mass or less.
  • the resin composition includes an inorganic filler other than the hollow body (D), a curing agent, a curing accelerator, a low shrinkage agent, a release agent, a thickener, Additives such as colorants and polymerization inhibitors may be included as necessary, and the types of additives are not limited to these. These additives can be contained in a range not impeding the effects of the present invention according to the respective purposes.
  • the specific additive amount the total content of (A) urethane (meth) acrylate, (B) unsaturated resin, and (C) ethylenically unsaturated compound in the resin composition is 25.
  • the range is preferably 0% by mass or more, more preferably 35.0% by mass or more, and further preferably 45.0% by mass or more.
  • the inorganic filler is selected depending on required functions such as a function of adjusting the viscosity of the resin composition to a viscosity suitable for handling and a function of improving the moldability of the resin composition.
  • Examples of the inorganic filler include aluminum hydroxide, barium sulfate, talc, kaolin, calcium sulfate, calcium carbonate, magnesium oxide, magnesium hydroxide, calcium hydroxide, and calcium oxide.
  • calcium carbonate, aluminum hydroxide, and talc are preferable because they are inexpensive, and calcium carbonate or aluminum hydroxide is more preferable.
  • said material may be used independently and 2 or more types may be used together.
  • the median diameter of the inorganic filler is preferably from 1 to 100 ⁇ m, more preferably from 1 to 60 ⁇ m, more preferably from 1 to 50 ⁇ m, from the viewpoint of the viscosity of the resin composition when forming a cured product of the resin composition. More preferably. As the median diameter of the inorganic filler is larger, the aggregation of particles can be suppressed. Therefore, the median diameter of the inorganic filler is preferably 1 ⁇ m or more. On the other hand, as the median diameter of the inorganic filler is smaller, the moldability of the resin composition is improved. Therefore, the median diameter of the inorganic filler is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the shape of the inorganic filler may be spherical or flat, but is preferably spherical.
  • the inorganic filler is a spherical particle, the specific surface area is small, so that the viscosity of the resin composition when forming a cured product of the resin composition can be effectively reduced. If the viscosity of the resin composition is low, when the resin composition is molded using a mold, the resin composition can be sufficiently filled in the mold.
  • the content of the inorganic filler with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 10 parts by mass or more. It is preferably 20 parts by mass or more, and more preferably 30 parts by mass or more.
  • the content of the inorganic filler with respect to a total of 100 parts by mass of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C) is 200 parts by mass or less. It is preferably 100 parts by mass or less, and more preferably 80 parts by mass or less.
  • curing agent examples include peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxy ketal, alkyl perester, and percarbonate.
  • peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxy ketal, alkyl perester, and percarbonate.
  • peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxy ketal, alkyl perester, and percarbonate.
  • t-butyl peroxy octoate benzoyl peroxide
  • 1,1-di-t-butyl peroxy-3,3,5-trimethylcyclohexane 1,1-di-t-butyl peroxy-3,3,5-trimethylcyclohexane
  • the addition amount of the curing agent is 0.5 to 2.0 with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C).
  • the amount is preferably part by mass, more preferably 0.6 to 1.5 parts by mass.
  • curing accelerator examples include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate, and metals such as vanadium acetyl acetate, cobalt acetyl acetate, and iron acetylacetonate.
  • metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate
  • metals such as vanadium acetyl acetate, cobalt acetyl acetate, and iron acetylacetonate.
  • N, N-substituted anilines such as chelate, aniline, N, N-dimethylaniline, N, N-diethylaniline, N, N-bis (hydroxyethyl) aniline, m-toluidine, p-toluidine, N-ethyl-m N, N-, such as toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl) -p-toluidine Substituted-p-toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- 4- (N, N-substituted amino) benzaldehyde such as N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, tri
  • a thermoplastic resin is preferable, and examples thereof include polystyrene, polyethylene, polymethyl methacrylate, polyvinyl acetate, saturated polyester, and polycaprolactone.
  • Low shrinkage agents may be used alone or in combination of two or more.
  • the addition amount of the low shrinkage agent is 10 to 20 parts by mass with respect to 100 parts by mass in total of the urethane (meth) acrylate (A), the unsaturated resin (B), and the ethylenically unsaturated compound (C). Preferably there is.
  • the releasing agent examples include stearic acid, oleic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, stearic acid amide, oleic acid amide, silicone oil, synthetic wax and the like.
  • a mold release agent may be used independently and may use 2 or more types together.
  • the release agent is added in an amount of 3.0 to 8 with respect to 100 parts by mass in total of urethane (meth) acrylate (A), unsaturated resin (B), and ethylenically unsaturated compound (C).
  • the amount is preferably 0 part by mass, and more preferably 3.5 to 7.0 parts by mass.
  • Thickeners are compounds other than inorganic fillers that exhibit a thickening effect, and are exemplified by isocyanate compounds.
  • a thickener may be used independently and may use 2 or more types together.
  • the colorant is used when it is necessary to color the molded product, and various inorganic pigments or organic pigments can be used.
  • the amount of the colorant used can be appropriately adjusted depending on the degree of coloring of the desired molded product.
  • polymerization inhibitor examples include hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, t-butylhydroquinone, catechol, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol. However, it is not limited to this.
  • the resin composition preferably does not contain inorganic fibers.
  • the inorganic fiber include glass fiber, carbon fiber, and metal fiber.
  • the object to be polished may be damaged by polishing.
  • does not contain inorganic fibers means that the content of inorganic fibers in the resin composition and its cured product is 0.1% by mass or less, and is mixed together with other components such as impurities. It is not intended to exclude what you do.
  • the resin composition comprises a urethane (meth) acrylate (A), an unsaturated resin (B), an ethylenically unsaturated compound (C), a hollow body (D), and an additive as necessary.
  • A urethane
  • B unsaturated resin
  • C ethylenically unsaturated compound
  • D hollow body
  • an additive as necessary.
  • the mixing method include kneading, and the kneading method is not particularly limited.
  • a disper, a planetary mixer, a kneader, or the like can be used.
  • the kneading temperature is preferably 5 to 40 ° C, more preferably 10 to 30 ° C.
  • urethane (meth) acrylate (A), unsaturated resin (B), and ethylenically unsaturated compound (C) are mixed and then other components are mixed, each component is sufficiently dispersed Alternatively, it is preferable because a uniformly mixed resin composition is easily obtained. At least a part of the ethylenically unsaturated compound (C) may be preliminarily mixed with the urethane (meth) acrylate (A) or the unsaturated resin (B) as a solvent, a dispersion medium or the like.
  • a polishing pad can be manufactured by the process of shape
  • the molding and curing steps of the resin composition are not particularly limited.
  • a method of opening a mold and pouring the resin composition into the mold, reducing the pressure inside the mold, or as represented by injection molding There is a method of injecting a resin composition from the outside into a closed mold by applying pressure from the outside of the mold and through a hole provided in the mold such as a spool.
  • the conditions for curing the resin composition in the mold can be appropriately set depending on the material used. Examples of preferable conditions include a temperature of 10 to 40 ° C. and a curing time of 1 to 60 minutes. Examples of other preferable conditions include curing at a temperature of 10 to 40 ° C. and a curing time of 1 to 4 hours, and further curing at a temperature of 60 to 150 ° C. and a curing time of 1 to 4 hours.
  • the outer wall of the hollow body (D) on the surface of the cured product of the resin composition is scraped, and the pores derived from the cavities of the hollow body (D) have pores of the resin composition. It is formed on the surface of the cured product, that is, it can be surfaced.
  • a planar polishing machine can be used for this step.
  • the hardness of the polishing pad is 10 or more in terms of Barcol hardness, deformation of the polishing pad can be suppressed and polishing sagging at the end of the workpiece can be suppressed.
  • the Barcol hardness of the polishing pad is preferably 15 or more, and more preferably 20 or more. If the hardness of the polishing pad is 40 or less in terms of Barcol hardness, it is possible to suppress a local load on the surface of the object to be polished due to variations in the size of the abrasive grains in polishing by the CMP method. From this viewpoint, the Barcol hardness of the polishing pad is preferably 33 or less, and more preferably 30 or less.
  • the number of pores on the surface of the polishing pad is 13 / mm 2 or more, the load applied to the surface of the object to be polished can be dispersed, and the formation of scratches on the surface of the object to be polished can be suppressed.
  • the number of pores on the surface of the polishing pad is preferably 30 / mm 2 or more, and more preferably 45 / mm 2 or more. If the number of pores on the surface of the polishing pad is 100 / mm 2 or less, the polishing pad can ensure sufficient hardness. From this viewpoint, the number of pores on the surface of the polishing pad is preferably 80 pieces / mm 2 or less, and more preferably 70 pieces / mm 2 or less.
  • the number of pores on the surface of the polishing pad is, for example, counted by counting the number of pores existing in a predetermined area with a visual observation device such as a microscope, and calculating the number of pores. It is calculated by dividing by the area of the range to be counted.
  • Urethane (meth) acrylate (A)> In a 1 L four-necked flask equipped with a stirrer, reflux condenser, gas inlet tube and thermometer, 660 g (0.30 mol) of polyester polyol, 227 g (2.17 mol) of styrene (Asahi Kasei Co., Ltd.), hydroquinone 0.17 g was charged and the mixture was heated to 80 ° C.
  • the polyester polyol used here is a polymer obtained from a condensation reaction of adipic acid and ethylene glycol, and has a number average molecular weight of 2,200 and a weight average molecular weight of 5,000.
  • urethane acrylate (A-1) A urethane acrylate (A-1) solution having a solid content of 50% by mass was obtained.
  • the number average molecular weight of the urethane acrylate (A-1) was 4,000, and the weight average molecular weight was 20,000.
  • the obtained unsaturated polyester resin (B-2) had an unsaturation degree of 100 mol% and a weight average molecular weight of 12,000.
  • Inorganic filler Calcium carbonate ("R heavy coal” made by Maruo calcium, median diameter 20 ⁇ m)
  • Polymerization inhibitor Hydroquinone Curing agent: 328E (manufactured by Kayaku Akzo Corporation) Curing accelerator: 8% by mass cobalt octylate (manufactured by Nippon Chemical Industry Co., Ltd.)
  • urethane acrylate (A-1), bisphenol A type vinyl ester resin (B-1), and 0.015 parts by mass of hydroquinone as a polymerization inhibitor were dissolved in styrene.
  • the amount of each component added is as shown in Table 1.
  • the content of styrene (C-1) includes styrene as a solvent of added urethane acrylate (A-1) and bisphenol A type vinyl ester resin (B-1). The same applies to the examples and comparative examples.
  • Example 7 was the same as Example 1 except that unsaturated polyester resin (B-2) was used instead of bisphenol A type vinyl ester resin (B-1) as unsaturated resin (B). Each component was mixed in an amount of 1 to prepare a resin composition.
  • Comparative Examples 1 to 5> the resin was used in the same manner as in Example 1 except that the bisphenol A type vinyl ester resin (B-1) was not added, using the same components as in Example 1 in the amounts shown in Table 1. A composition was prepared.
  • resin compositions were prepared in the same manner as in Example 1 in the amounts shown in Table 1.
  • Comparative Example 5 a resin composition was prepared in the same manner as in Example 1, except that the urethane acrylate (A-1) was not added, using the same components as in Example 1 in the amounts shown in Table 1. did.
  • the method for producing the sample for evaluation is the same in Examples 1 to 7 and Comparative Examples 1 to 5.
  • the resin composition was cast into a 300 ⁇ 300 ⁇ 2 mm mold and cured. Curing was performed at 20 ° C. for 2 hours and then at 120 ° C. for 2 hours.
  • a surface polishing machine manufactured by Maruto Co., Ltd.
  • the surface of the molded body (cured product) is roughened by cutting a thickness of about 50 ⁇ m from the surface of the molded body (cured product) to hold the abrasive particles.
  • Table 1 shows the evaluation results of the polishing pads prepared in Examples 1 to 7 and Comparative Examples 1 to 5. As can be seen from Table 1, each of the polishing pads in Examples 1 to 7 has an appropriate hardness, and the size of the pores existing on the surface substantially corresponds to the size of the added hollow body (D). You can see that it is kept.
  • Comparative Example 1 in which the unsaturated resin (B) was not added to the resin composition, the hardness as a polishing pad was insufficient for precision polishing.
  • Resin composition in Comparative Example 2 in which the content of urethane acrylate (A-1) is small relative to the content of bisphenol A type vinyl ester resin (B-1) and Comparative Example 5 in which no urethane acrylate (A-1) is used Polishing pads made from the materials were very hard and not suitable for chemical mechanical polishing.
  • Comparative Example 3 where the amount of the hollow body (D) added in the resin composition was small, the number of pores was insufficient.
  • Comparative Example 4 in which the amount of the hollow body (D) added in the resin composition was excessive, the hardness was insufficient for precision polishing.
  • urethane (meth) acrylate (A) represented by the above general formula, unsaturated resin (B) composed of at least one of vinyl ester resin and unsaturated polyester resin, and ethylenically unsaturated bond Containing an ethylenically unsaturated compound (C) excluding urethane (meth) acrylate (A) and unsaturated resin (B), and hollow body (D), and urethane (meth) acrylate (A)
  • the mass ratio A: B of the content of the unsaturated resin (B) to the content of the unsaturated resin (B) is 64:36 to 96: 4, and the urethane (meth) acrylate (A), the unsaturated resin (B),
  • the resin composition in which the content of the hollow body (D) is 0.7 to 9.0 parts by mass with respect to 100 parts by mass in total with the ethylenically unsaturated compound (C)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

化学的機械的研磨に適した硬さを有し、所望のサイズの細孔を有する研磨パッドを容易に得るための樹脂組成物、この樹脂組成物を用いた研磨パッド及び研磨パッドの製造方法を提供すること。ウレタン(メタ)アクリレート(A)と、ビニルエステル樹脂及び不飽和ポリエステル樹脂のうち少なくとも1つからなる不飽和樹脂(B)と、エチレン性不飽和結合を有し、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)を除くエチレン性不飽和化合物(C)と、中空体(D)と、を含有し、ウレタン(メタ)アクリレート(A)の含有量と不飽和樹脂(B)の含有量との質量比A:Bが、64:36~96:4であり、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する中空体(D)の含有量が0.7~9.0質量部である樹脂組成物。

Description

樹脂組成物、研磨パッド、及び研磨パッドの製造方法
 本開示は、樹脂組成物、研磨パッド、及び研磨パッドの製造方法に関する。
 研磨パッドの1種である研磨シートは、合成繊維及び合成ゴム等から製造された不織布若しくは編織布、又はポリエステルフィルム等を基材とし、その上面にポリウレタン溶液を塗布し、湿式凝固法により連続気孔を有する多孔層を形成し、必要に応じてその表皮層を研削、及び除去することにより製造されている。このような研磨シートは、既に液晶ガラス、ガラスディスク、フォトマスクシリコンウエハ、CCD、及びカバーグラス等の電子部品の表面精密研磨のための粗研磨から仕上げ研磨で用いられる研磨パッドとして広く使用されている。近年、精密研磨面の測定機器の発達とあいまって、ユーザーからの要求品質が高くなり、より精度の高い研磨ができる研磨パッドが求められている。
 従来、磁気ディスク基板、光学レンズ、及び半導体ウエハ等の精密部品の平坦化処理には、化学的機械的研磨(CMP;chemical mechanical polishing)法が採用されている。CMP法では、通常、砥粒(研磨粒子)をアルカリ溶液又は酸溶液に分散させたスラリ(研磨液)を被研磨物の加工面と研磨パッドとの間に供給する。研磨中、被研磨物は、スラリ中の砥粒による機械的研磨作用と、アルカリ溶液又は酸溶液による化学的研磨作用とによって平坦化される。
 このようなCMP法において、特に仕上げ研磨に使用される研磨パッドとしては、耐摩耗性に優れた多孔質の軟質ポリウレタン発泡体を研磨層に使用したものが知られている。しかし、このタイプの研磨パッドは、研磨層の柔軟性が高く圧縮変形しやすい。そのため、研磨層が研磨中に被研磨物の端部の形状に追従し、被研磨物の端部が中央部より大きく研磨される、いわゆる「端部ダレ」という過研磨現象が発生する。また、研磨層の表面に存在する微細孔が研磨の過程で摩擦により一部閉塞して、被研磨面での研磨傷の発生、経時的な研磨レートの低下といった問題が生じる。
 端部ダレを防ぐための技術として、研磨パッドの研磨層の硬度を高くすることが検討されている。例えば特許文献1では、ポリエステル繊維に熱融着糸を混合した不織布に樹脂を含浸させた研磨布が記載されている。ここでは、含浸させるための樹脂としてウレタン樹脂が用いられ、含浸後に硬化されている。特許文献2では、発泡ポリウレタンにより形成された研磨パッドにおいて、気泡間の連結が抑制され、それぞれの気泡が分離して形成されることが記載されている。
特開2006-35322号公報 特開2012-714号公報
 CMP法による研磨においては、砥粒としてダイヤモンド等の非常に硬度が高い材料が用いられている。また、通常、砥粒のサイズ及び形状にはばらつきがある。このような砥粒の性質に起因して、研磨パッドが硬すぎると、一部の大きな砥粒又は鋭利な砥粒にかかる力を研磨パッドが吸収することはできず、被研磨物表面に局所的に過大な負荷がかかり、被研磨物表面が傷つくおそれがある。そのため、研磨パッドは、上記の端部ダレを抑制するために十分な硬さだけでなく、砥粒にかかる過大な力を吸収できる程度の柔軟性も有することが望ましい。
 さらに、研磨パッド内の細孔の大きさ及び分布が研磨精度に大きく影響することが判明しており、これらを制御する技術の開発は重要である。
 しかし、特許文献1の研磨布では、製造工程において細孔の大きさ及びその分布を制御することは困難である。また、特許文献2の研磨パッドの製造方法では、それぞれの気泡のサイズ及びそのばらつきまで制御することは難しく、研磨パッドに含まれる気泡のサイズにばらつきが生じることは避け難い。
 本開示は、上記課題に鑑みて、化学的機械的研磨に適した硬さを有し、所望のサイズの細孔を有する研磨パッドを容易に得るための樹脂組成物、この樹脂組成物を用いた研磨パッド及び研磨パッドの製造方法を提供する。
 本発明は以下の態様を含む。
[1]
 ウレタン(メタ)アクリレート(A)と、
 ビニルエステル樹脂及び不飽和ポリエステル樹脂のうち少なくとも1つからなる不飽和樹脂(B)と、
 エチレン性不飽和結合を有し、前記ウレタン(メタ)アクリレート(A)及び前記不飽和樹脂(B)を除くエチレン性不飽和化合物(C)と、
 中空体(D)と、
を含有する樹脂組成物であって、
 前記ウレタン(メタ)アクリレート(A)は、下記一般式で表され、
Figure JPOXMLDOC01-appb-C000002
 該一般式において、Rは、H又はCHであり、Rは、エーテル結合を含んでもよい2価の炭化水素基であって、水素原子が置換基で置換されていてもよく、Rは2価の炭化水素基であり、Rは、重量平均分子量が2,000~8,000のポリエステルポリオール由来の構造単位であり、繰り返し単位数であるnは、前記樹脂組成物に含まれる前記ウレタン(メタ)アクリレート(A)全体の数基準の平均値であって、1.00以上の実数であり、
 前記ウレタン(メタ)アクリレート(A)の含有量と前記不飽和樹脂(B)の含有量との質量比A:Bが、64:36~96:4であり、
 前記ウレタン(メタ)アクリレート(A)と、前記不飽和樹脂(B)と、前記エチレン性不飽和化合物(C)との合計100質量部に対する前記中空体(D)の含有量が0.7~9.0質量部である樹脂組成物。
[2]
 前記中空体(D)は、樹脂バルーンである[1]に記載の樹脂組成物。
[3]
 前記ウレタン(メタ)アクリレート(A)と前記不飽和樹脂(B)との合計100質量部に対して、前記エチレン性不飽和化合物(C)の含有量は40~200質量部である[1]又は[2]に記載の樹脂組成物。
[4]
 前記一般式におけるnの値は、1.00~6.00である[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 前記一般式におけるRは、炭素原子数2~6のアルキレン基である[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 前記一般式におけるRは、炭素原子数5~15のシクロアルキレン基又はアリーレン基である[1]~[5]のいずれかに記載の樹脂組成物。
[7]
 前記一般式のRにおけるポリエステルポリオールは、脂肪族グリコールと脂肪族二塩基酸との縮合物である[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記不飽和樹脂(B)は、エポキシ(メタ)アクリレートである[1]~[7]のいずれかに記載の樹脂組成物。
[9]
 前記中空体(D)を除く無機充填材を含む[1]~[8]のいずれかに記載の樹脂組成物。
[10]
 前記ウレタン(メタ)アクリレート(A)と、前記不飽和樹脂(B)と、前記エチレン性不飽和化合物(C)との合計100質量部に対する前記無機充填材の含有量は10~200質量部である[9]に記載の樹脂組成物。
[11]
 前記樹脂組成物は、研磨パッド用樹脂組成物である[1]~[10]のいずれかに記載の樹脂組成物。
[12]
 [1]~[10]のいずれかに記載の樹脂組成物の硬化物を含む研磨パッド。
[13]
 [1]~[10]のいずれかに記載の樹脂組成物を成形して硬化させる工程と、硬化した前記樹脂組成物の表面を削る工程と、を含む研磨パッドの製造方法。
 本開示によれば、化学的機械的研磨に適した硬さを有し、所望のサイズの細孔を有する研磨パッドを容易に得るための樹脂組成物、この樹脂組成物を用いた研磨パッド及び研磨パッドの製造方法を提供することができる。
 以下、本発明の樹脂組成物、研磨パッド、及び研磨パッドの製造方法について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。
 以下の説明において、「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く炭素原子間で形成される二重結合を意味する。
 「重量平均分子量」及び「数平均分子量」は、サイズ排除クロマトグラフィー(SEC:size exclusion chromatography)、例えば、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。
 「メジアン径」とは、レーザ回折・散乱法によって求めた体積基準の粒径分布における累積50%となる粒子径を意味する。
 「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
<1.樹脂組成物>
 一実施形態にかかる樹脂組成物は、ウレタン(メタ)アクリレート(A)と、ビニルエステル樹脂及び不飽和ポリエステルのうち少なくとも1つからなる不飽和樹脂(B)と、エチレン性不飽和結合を有し、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)を除くエチレン性不飽和化合物(C)と、中空体(D)と、を含む。ウレタン(メタ)アクリレート(A)と不飽和樹脂(B)との配合比率、中空体(D)の含有量については、1-3項及び1-5項にてそれぞれ後述する。以下、本実施形態の樹脂組成物に含まれる各成分について説明する。
<1-1.ウレタン(メタ)アクリレート(A)>
 ウレタン(メタ)アクリレート(A)は、下記一般式で表される。
Figure JPOXMLDOC01-appb-C000003
 上記一般式において、Rは、H又はCHであり、Rは、エーテル結合を含んでもよい2価の炭化水素基であって、水素原子が置換基で置換されていてもよく、Rは2価の炭化水素基であり、Rは、重量平均分子量が2,000~8,000のポリエステルポリオール由来の構造単位であり、繰り返し単位数であるnは、樹脂組成物に含まれるウレタン(メタ)アクリレート(A)全体の数基準の平均値であって、1.00以上の実数である。
 上記一般式中、Rは、H又はCHであり、Hが好ましい。
 上記一般式中、Rは、エーテル結合を含んでもよい2価の炭化水素基であり、水素原子が置換基で置換されていてもよい。Rとしての炭化水素基は、例えば、アルキレン基、シクロアルキレン基、及びアリーレン基が挙げられ、これらの炭化水素基は分岐を有していてもよい。Rは、炭素原子数が2~6のアルキレン基、又は炭素原子数が2~6のアルキレン基の水素原子が、例えば、フェニル基、フェノキシ基、(メタ)アクリロイルオキシ基等の置換基で置換されているものであることが好ましい。Rは、エチレン基であることが特に好ましい。
 R及びRは水酸基含有(メタ)アクリレートCH=C(R)C(O)OROH由来の構造である。水酸基含有(メタ)アクリレートCH=C(R)C(O)OROHとしては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、フェノキシヒドロキシプロピルアクリレート、フェノキシヒドロキシプロピルメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、ジプロピレングリコールモノアクリレート、ジプロピレングリコールモノメタクリレート等が挙げられる。これらの水酸基含有(メタ)アクリレートは、単独で使用してもよいし、2種以上を併用してもよい。水酸基含有(メタ)アクリレートは、好ましくは、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、又は2-ヒドロキシブチルメタクリレートであり、より好ましくは、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、又は2-ヒドロキシブチルアクリレートであり、さらに好ましくは2-ヒドロキシエチルアクリレートである。
 上記一般式中、Rは2価の炭化水素基である。Rに含まれる炭素原子の数は5~15であることが好ましい。Rとしての炭化水素基は、シクロアルキレン基又はアリーレン基であることが好ましい。これらの基は、水素原子がアルキル基で置換されていてもよい。
 Rは、ジイソシアネート化合物OCN-R-NCO由来の構造である。ジイソシアネート化合物OCN-R-NCOとしては、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート等が挙げられる。これらのジイソシアネート化合物は、単独で使用してもよいし、2種以上を併用してもよい。ジイソシアネート化合物は、好ましくは、イソホロンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、又は水添キシリレンジイソシアネートであり、より好ましくは、イソホロンジイソシアネートである。
 上記一般式中、Rは、重量平均分子量が2,000~8,000のポリエステルポリオールHO-R-OH由来の構造単位である。ポリエステルポリオールHO-R-OHは、例えば、グリコールと二塩基酸との縮合反応によって得られる縮合物である。グリコールは、脂肪族であることが好ましく、直鎖状炭化水素の両末端に水酸基を有するものがより好ましく、その中でも不飽和結合を有さないものがさらに好ましい。グリコールとして、例えば、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ヘキサンジオール等が挙げられ、エチレングリコールが特に好ましい。二塩基酸は、脂肪族であることが好ましく、分岐及び環状構造を有さない脂肪族であることがより好ましい。二塩基酸としては、シュウ酸、フマル酸、コハク酸、アジピン酸、セバシン酸等が挙げられ、アジピン酸が特に好ましい。脂肪族グリコール及び脂肪族二塩基酸のいずれも、ウレタン(メタ)アクリレート(A)の伸び率を大きくして、得られる成形品の靭性を向上させることができる。
 ポリエステルポリオールの重量平均分子量の下限は、2,000である。これにより、ウレタン(メタ)アクリレート(A)の伸び率を大きくして、得られる成形品の靭性を向上させることができる。この観点から、ポリエステルポリオールの重量平均分子量は3,000以上であることが好ましく、4,000以上であることがより好ましい。
 ポリエステルポリオールの重量平均分子量の上限は、8,000である。これにより、十分な強度の成形品を得ることができる。この観点から、ポリエステルポリオールの重量平均分子量は7,000以下であることが好ましく、6,000以下であることがより好ましい。なお、重量平均分子量は、上述したとおり、サイズ排除クロマトグラフィーによるポリスチレン換算値である。
 上記一般式中、nは、上記一般式における角括弧内の構成単位の繰り返し数で、nは1.00以上の実数である。nの値は、樹脂組成物に含まれるウレタン(メタ)アクリレート(A)の数平均分子量MnAに基づき、例えば次のように求められる。上記一般式における角括弧外の部分の分子量をM、角括弧内の構成単位の分子量をMとすると、MnA=M+nMからnの値が求められる。なお、ここでMはポリエステルポリオールの数平均分子量に基づく値である。なお、nは、数平均分子量に基づくことからわかるように、nはウレタン(メタ)アクリレート(A)全体の数基準の平均値であって、整数に限られない。
 nの値は6.00以下であることが好ましい。nの値が6.00以下であれば、ウレタン(メタ)アクリレート(A)の粘度上昇を抑制し、良好な作業性を確保することができる。この観点からnの値は5.00以下であることがより好ましく、4.00以下であることがさらに好ましい。
 ウレタン(メタ)アクリレート(A)の製造方法として、例えば、ジイソシアネート化合物OCN-R-NCOと、ポリエステルポリオールHO-R-OHとを反応させ両末端にイソシアナト基を有する分子を合成し、この分子に水酸基含有(メタ)アクリレートCH=C(R)C(O)OROHを反応させる方法などがある。両末端にイソシアナト基を有する分子を合成する工程においては、ジイソシアネート化合物はポリエステルポリオールに対して過剰に、すなわちNCO基/OH基のモル比が1を超えるように添加されることが好ましい。
<1-2.不飽和樹脂(B)>
 不飽和樹脂(B)は、ビニルエステル樹脂及び不飽和ポリエステルのうち少なくとも1つからなる。すなわち、不飽和樹脂(B)は、ビニルエステル樹脂からなるもの、不飽和ポリエステルからなるもの、ビニルエステル樹脂及び不飽和ポリエステルからなるもののいずれかである。
[1-2-1.ビニルエステル樹脂]
 ビニルエステル樹脂は、エポキシ樹脂とα,β-不飽和モノカルボン酸とをエステル化させることで得られるエポキシ(メタ)アクリレートであることが好ましい。
 エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールF等のビスフェノールのジグリシジルエーテル並びにその高分子量同族体、フェノールノボラック型ポリグリシジルエーテル、クレゾールノボラック型ポリグリシジルエーテル等が挙げられる。合成過程で、ビスフェノールA、ビスフェノールAD、ビスフェノールF、ビスフェノールS等のフェノール化合物を、これらのグリシジルエーテルと反応させて得られたもの、又は脂肪族エポキシ樹脂を用いてもよい。これらの中でも、ビスフェノールA型エポキシ樹脂を用いると、機械的強度及び耐薬品性に優れる硬化物を提供することができるビニルエステル樹脂が得られるため好ましい。
 α,β-不飽和モノカルボン酸としては、例えば、アクリル酸、メタクリル酸等が挙げられる。α,β-不飽和モノカルボン酸として、クロトン酸、チグリン酸、桂皮酸等を用いることもできる。これらの中でも、(メタ)アクリル酸を用いると、機械的強度及び耐薬品性に優れる硬化物を提供することができるビニルエステル樹脂が得られるため好ましい。
 エポキシ(メタ)アクリレートの好ましい合成例として、ビスフェノールAのジグリシジルエーテルと、α,β-不飽和モノカルボン酸とを、カルボキシ基/エポキシ基=1.05~0.95の比率で、80℃~140℃にてエステル化する方法がある。さらに、必要に応じて、触媒を用いることができる。触媒としては、例えば、ベンジルジメチルアミン、トリエチルアミン、N,N-ジメチルアニリン、トリエチレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩、塩化リチウム等の金属塩等が挙げられる。
 ビニルエステル樹脂の重量平均分子量は、1,000~6,000であることが好ましく、より好ましくは1,000~5,000であり、さらに好ましくは1,000~4,000である。ビニルエステル樹脂の重量平均分子量が1,000~6,000であれば、樹脂組成物の成形性がより一層良好となる。なお、重量平均分子量は、上述したとおり、サイズ排除クロマトグラフィーによるポリスチレン換算値である。
[1-2-2.不飽和ポリエステル樹脂]
 不飽和ポリエステル樹脂は、多価アルコールと不飽和多塩基酸と、必要に応じて飽和多塩基酸とを重縮合させて得られるものであり、その種類は特に限定されない。不飽和多塩基酸とは、エチレン性不飽和結合を有する多塩基酸であり、飽和多塩基酸とは、エチレン性不飽和結合を有さない多塩基酸である。不飽和ポリエステル樹脂は、1種のみであってもよいし、2種以上であってもよい。
 多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水素化ビスフェノールA、ビスフェノールA、グリセリン等が挙げられる。これらの中でも、プロピレングリコール及び水素化ビスフェノールAが好ましい。多価アルコールは、単独で使用してもよいし、2種以上を併用してもよい。
 不飽和多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等が挙げられる。不飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、無水マレイン酸及びフマル酸が好ましい。
 飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、コハク酸、アジピン酸、セバシン酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸等が挙げられる。中でも好ましくはフタル酸である。飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
 不飽和ポリエステル樹脂の重量平均分子量は、6,000~35,000であることが好ましく、より好ましくは6,000~20,000であり、さらに好ましくは8,000~15,000である。重量平均分子量が6,000~35,000であれば、樹脂組成物の成形性がより一層良好となる。なお、重量平均分子量は、上述したとおり、サイズ排除クロマトグラフィーによるポリスチレン換算値である。
 不飽和ポリエステル樹脂の不飽和度は50~100モル%であることが好ましく、より好ましくは60~100モル%であり、さらに好ましくは70~100モル%である。不飽和度が上記範囲であると、樹脂組成物の成形性がより良好である。不飽和ポリエステル樹脂の不飽和度は、原料として用いた不飽和多塩基酸及び飽和多塩基酸のモル数を用いて、以下の式により算出可能である。
 不飽和度(モル%)={(不飽和多塩基酸のモル数)/(不飽和多塩基酸のモル数+飽和多塩基酸のモル数)}×100
<1-3.ウレタン(メタ)アクリレート(A)と不飽和樹脂(B)との配合比>
 研磨パッドが、砥粒にかかる過大な力を吸収するために、樹脂組成物の硬化物は硬すぎないことが望ましい。この点について、不飽和樹脂(B)の含有量に対してウレタン(メタ)アクリレート(A)の含有量が多いほど、硬化後の樹脂組成物の硬度が低くなる。そのため、樹脂組成物に含まれる、ウレタン(メタ)アクリレート(A)の含有量と不飽和樹脂(B)の含有量との質量比A:Bは64:36以上(すなわちA/Bが64/36以上)であり、好ましくは68:32以上(すなわちA/Bが68/32以上)であり、より好ましくは70:30以上(すなわちA/Bが70/30以上)である。
 被研磨物において端部ダレを抑制することができる研磨パッドを得るためには、樹脂組成物の硬化物は硬い方がよい。この点について、不飽和樹脂(B)の含有量に対してウレタン(メタ)アクリレート(A)の含有量が少ないほど、硬化後の樹脂組成物の硬度が高くなる。樹脂組成物の硬化物に十分な硬度を与えるために、ウレタン(メタ)アクリレート(A)の含有量と不飽和樹脂(B)の含有量との質量比A:Bは96:4以下(すなわちA/Bが96/4以下)であり、好ましくは94:6以下(すなわちA/Bが94/6以下)であり、より好ましくは90:10以下(すなわちA/Bが90/10以下)である。
<1-4.エチレン性不飽和化合物(C)>
 エチレン性不飽和化合物(C)としては、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)のうち少なくとも1つと共重合可能なエチレン性不飽和結合を有するものであれば、特に制限されることなく使用でき、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)の両方と共重合可能であることが好ましい。
 エチレン性不飽和化合物(C)としては、例えば、スチレン、ビニルトルエン、ジビニルベンゼンなどの芳香族モノマー、2-ヒドロキシエチルメタクリレート、ポリアルキレンオキサイドのジアクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、メタクリル酸メチルなどのアクリレートモノマー、及び上記モノマーが複数個結合したオリゴマー等が挙げられる。これらの中でも、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)との反応性の観点から、スチレン及びメタクリル酸メチルが好ましく、特にスチレンが好ましい。エチレン性不飽和化合物(C)としては、上記化合物を単独で使用してもよいし、2種以上を併用してもよい。
 エチレン性不飽和化合物(C)の含有量は、ウレタン(メタ)アクリレート(A)と不飽和樹脂(B)との合計100質量部に対して40質量部以上であることが好ましい。これにより、樹脂組成物を取り扱いやすい粘度とすることができる。この観点から、エチレン性不飽和化合物(C)の含有量は50質量部以上であることがより好ましく、60質量部以上であることがさらに好ましい。
 エチレン性不飽和化合物(C)の含有量は、ウレタン(メタ)アクリレート(A)と不飽和樹脂(B)との合計100質量部に対して200質量部以下であることが好ましい。これにより、硬化後の樹脂組成物の機械的強度を高くすることができる。この観点から、エチレン性不飽和化合物(C)の含有量は150質量部以下であることがより好ましく、120質量部以下であることがさらに好ましい。
<1-5.中空体(D)>
 中空体(D)は内部に空洞を有する粒子である。後述する樹脂組成物の硬化後、この硬化物の表面を削り、面出しすることによって、中空体(D)の表面が削られ、硬化物(例えば研磨パッド)表面に中空体(D)由来の細孔が形成される。硬化物を研磨パッドの研磨層として使用した場合に、研磨層の表面に存在する中空体(D)由来の細孔は、研磨剤に含まれる砥粒(以下、「研磨粒子」ともいう。)を保持する役割を果たす。樹脂組成物に含まれる中空体(D)のサイズ及びその分布を適宜選択することで、樹脂組成物を用いて作製された研磨パッドの表面に存在する細孔のサイズ及びその分布を精密かつ容易に制御することができる。
 中空体(D)のサイズは、メジアン径で50μm以上であることが好ましい。これにより、研磨粒子を確実に細孔に保持することができる。この観点から、中空体(D)のメジアン径は60μm以上であることがより好ましく、70μm以上であることがさらに好ましい。
 中空体(D)のサイズは、メジアン径で200μm以下であることが好ましい。これにより、1つの細孔に保持される砥粒量を制限し、研磨性の低下を抑制することができる。この観点から、中空体(D)のメジアン径は150μm以下であることがより好ましく、120μm以下であることがさらに好ましい。
 中空体(D)のサイズの分布が狭ければ、樹脂組成物を用いて作製した研磨パッドに形成される細孔のサイズの分布も狭くなる。細孔のサイズの分布が狭ければ、そこに保持される砥粒が細孔に沈み込む量も揃えられ、すなわち、研磨パッドの表面からの砥粒の頭出し量も揃えられ、被研磨物にかかる負荷もより均一に分散する。この観点から、中空体(D)の個数基準の粒子径の標準偏差は20.0μm以下であることが好ましく、10.0μm以下であることがより好ましく、8.0μm以下であることがさらに好ましい。なお、中空体(D)の個数基準の粒子径の標準偏差は、例えば、顕微鏡等の視覚的観察装置によって、所定数以上の個数の中空体(D)の粒子径を測定し、得られた所定数の粒子径の値に基づき算出される。なお、所定数としては、統計的に考えて、30個以上が好ましい。
 ただし、中空体(D)のサイズ及びその分布は上記に限られず、用いられる研磨剤の種類、及び研磨工程のための仕様等に応じて適宜設計可能である。中空体(D)の形状は球状が一般的であるが、用いられる研磨剤の種類、及び研磨工程のための仕様等に応じて適宜選択可能である。
 中空体(D)の素材としては、例えば、ガラスバルーン、シリカバルーン、アルミナバルーン、セラミックバルーン、シラスバルーン、樹脂バルーン等が挙げられ、これらの中でも樹脂バルーンが好ましい。樹脂バルーンを形成する樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、尿素樹脂等の熱硬化性樹脂、及びポリスチレン、ポリ塩化ビニリデン、アクリロニトリル樹脂等の熱可塑性樹脂が挙げられる。
 被研磨物表面での傷の形成を抑えるためには、被研磨物表面にかかる負荷を分散させることが望ましい。そのためには、研磨粒子を保持するために十分な数の細孔を研磨パッド表面に形成させることが望ましい。樹脂組成物が含有する中空体(D)の添加量の増加に応じて、研磨パッド表面の細孔数は増加する。そのため、樹脂組成物において、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する中空体(D)の含有量は0.7質量部以上である。この観点から、中空体(D)の含有量は1.0質量部以上であることが好ましく、2.0質量部以上であることがより好ましい。
 樹脂組成物において、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する中空体(D)の含有量は9.0質量部以下である。これにより、樹脂組成物を用いて作製した研磨パッドにおいて、十分な硬度を確保することができる。この観点から、中空体(D)の含有量は7.0質量部以下であることが好ましく、5.0質量部以下であることがより好ましい。
<1-6.その他の成分>
 樹脂組成物は、上記の各成分(A)~(D)に加えて、中空体(D)以外の無機充填材、硬化剤、硬化促進剤、低収縮剤、離型剤、増粘剤、着色剤、重合禁止剤等の添加剤を必要に応じて含有してもよく、さらに添加剤の種類はこれらに限られない。これらの添加剤は、それぞれの目的に応じて本発明の効果を妨げない範囲で含有できる。具体的な添加剤の添加量は、樹脂組成物中の(A)ウレタン(メタ)アクリレートと、(B)不飽和樹脂と、(C)エチレン性不飽和化合物との含有量の合計が25.0質量%以上となる範囲であることが好ましく、35.0質量%以上となる範囲であることがより好ましく、45.0質量%以上となる範囲であることがさらに好ましい。
 無機充填材は、例えば樹脂組成物の粘度を取り扱いに適した粘度に調整する機能、及び樹脂組成物の成形性を向上させる機能等、必要とされる機能によって選択される。無機充填材としては、例えば、水酸化アルミニウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム等が挙げられる。これらの中でも、炭酸カルシウム、水酸化アルミニウム及びタルクが安価であるため好ましく、炭酸カルシウム又は水酸化アルミニウムがより好ましい。無機充填材としては、上記の材料を単独で使用してもよいし、2種以上を併用してもよい。
 無機充填材のメジアン径は、樹脂組成物の硬化物を形成する際における樹脂組成物の粘度の観点から、1~100μmであることが好ましく、1~60μmであることがより好ましく、1~50μmであることがさらに好ましい。無機充填材のメジアン径は、大きいほど粒子の凝集を抑制できる。そのため、無機充填材のメジアン径は1μm以上であることが好ましい。一方、無機充填材のメジアン径は、小さいほど樹脂組成物の成形性が向上する。そのため、無機充填材のメジアン径は100μm以下であることが好ましく、60μm以下であることがより好ましく、50μm以下であることがさらに好ましい。
 無機充填材の形状は、球状でもよく、扁平状などでもよいが、球状であることが好ましい。無機充填材が球状の粒子であると、比表面積が小さくなるため、樹脂組成物の硬化物を形成する際における樹脂組成物の粘度を効果的に下げることができる。樹脂組成物の粘度が低ければ、型を用いて樹脂組成物の成形を行う場合、型内に十分に樹脂組成物を充填することができる。
 無機充填材の含有量が多いほど、樹脂組成物の粘度は高くなり、他の成分との比重差に起因する中空体(D)の分離を抑制することができ、樹脂組成物の成形性が良好になる。この観点から、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する無機充填材の含有量は10質量部以上であることが好ましく、20質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 無機充填材の含有量が少ないほど、研磨粒子を保持する細孔の数をより増やすことができる。この観点から、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する無機充填材の含有量は200質量部以下であることが好ましく、100質量部以下であることがより好ましく、80質量部以下であることがさらに好ましい。
 硬化剤としては、例えばジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド、ジアルキルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、アルキルパーエステル、パーカーボネート等の過酸化物が挙げられる。これらの過酸化物の中でも、t-ブチルパーオキシオクトエート、ベンゾイルパーオキサイド、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、及びジ-t-ブチルパーオキサイドが好ましい。これらの硬化剤は、単独で使用してもよいし、2種以上を併用してもよい。硬化剤の添加量は、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対して、0.5~2.0質量部であることが好ましく、0.6~1.5質量部であることがより好ましい。
 硬化促進剤としては、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート、アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ビス(ヒドロキシエチル)アニリン等のN,N-置換アニリン、m-トルイジン、p-トルイジン、N-エチル-m-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン等のN,N-置換-p-トルイジン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド等の4-(N,N-置換アミノ)ベンズアルデヒド、トリエタノールアミン、ジエチレントリアミン、ピリジン、4-フェニルモルホリン、ピペリジン、ジエタノールアニリン等のアミンが挙げられ、これらの中でもオクチル酸コバルトが好ましい。これらの硬化促進剤は、単独で使用してもよいし、2種以上を併用してもよい。
 低収縮剤としては、熱可塑性樹脂が好ましく、例えば、ポリスチレン、ポリエチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、飽和ポリエステル、ポリカプロラクトン等が挙げられる。低収縮剤は、単独で使用してもよいし、2種以上を併用してもよい。低収縮剤の添加量は、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対して、10~20質量部であることが好ましい。
 離型剤としては、例えば、ステアリン酸、オレイン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸アミド、オレイン酸アミド、シリコーンオイル、合成ワックス等が挙げられる。離型剤は、単独で使用してもよいし、2種以上を併用してもよい。離型剤の添加量は、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対して、3.0~8.0質量部であることが好ましく、3.5~7.0質量部であることがより好ましい。
 増粘剤は増粘効果を示す無機充填材以外の化合物であり、イソシアネート化合物が例示される。増粘剤は、単独で使用してもよいし、2種以上を併用してもよい。
 着色剤は、成形品を着色する必要のある場合等に用いるものであり、各種の無機顔料又は有機顔料を使用することができる。着色剤は、所望の成形品の着色度合いによって適宜その使用量を調整できる。
 重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p-ベンゾキノン、ナフトキノン、t-ブチルハイドロキノン、カテコール、p-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノールなどが挙げられるが、これに限られない。
 樹脂組成物は、好ましくは無機繊維を含まない。無機繊維としては、例えば、ガラス繊維、炭素繊維、金属繊維等が挙げられる。樹脂組成物中に無機繊維が含まれていると、樹脂組成物の硬化物を研磨パッドとして使用した場合、被研磨物に研磨傷がつくおそれがある。
 なお、ここで「無機繊維を含まない」とは、樹脂組成物及びその硬化物中の無機繊維の含有量が0.1質量%以下であることを意味し、不純物等の他の成分と共に混入するものまでを排除することは意図されていない。
<2.樹脂組成物の製造方法>
 樹脂組成物は、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)と、中空体(D)と、必要に応じて添加剤と、を混合することにより製造することができる。混合方法としては、例えば混練があり、混練方法としては特に制限はなく、例えば、ディスパー、プラネタリーミキサー、ニーダー等を用いることができる。混練温度は、好ましくは5℃~40℃であり、より好ましくは10~30℃である。
 樹脂組成物を製造する際の各成分を混合する順番については特に制限はない。例えば、ウレタン(メタ)アクリレート(A)、不飽和樹脂(B)、及びエチレン性不飽和化合物(C)の一部又は全部を混合してから他の成分を混合すると、各成分が十分に分散、あるいは均一に混合された樹脂組成物が得られやすいため好ましい。エチレン性不飽和化合物(C)の少なくとも一部が、溶媒、分散媒等としてウレタン(メタ)アクリレート(A)又は不飽和樹脂(B)と予め混合されていてもよい。
<3.研磨パッドの製造方法>
 研磨パッドは、樹脂組成物を成形して硬化させる工程、及び硬化した樹脂組成物の表面を削る工程により製造できる。
 樹脂組成物の成形及び硬化工程としては、特に制限されないが、例えば、金型を開き、金型内に樹脂組成物を注ぎ込む方法、金型内を減圧、あるいは射出成形に代表されるような、金型の外側から圧力をかけて、スプール等の金型に設けられた穴を通じて、閉じた金型内に外部から樹脂組成物を注入する方法等がある。金型内で樹脂組成物を硬化させる条件は、用いる材料によって適宜設定することができ、好ましい条件の一例としては、温度10~40℃、及び硬化時間1~60分である。別の好ましい条件の例としては、温度10~40℃、及び硬化時間1~4時間で硬化した後、温度60~150℃、及び硬化時間1~4時間でさらに硬化を行うことが挙げられる。
 硬化した樹脂組成物の表面を削る工程によって、樹脂組成物の硬化物の表面にある中空体(D)の外壁が削られ、中空体(D)の空洞に由来する細孔が樹脂組成物の硬化物の表面に形成される、すなわち面出しすることができる。この工程には平面研磨機を用いることができる。
 研磨パッドの硬さは、バーコル硬さで10以上であれば、研磨パッドの変形を抑制し、被研磨物端部の研磨ダレを抑えることができる。この観点から、研磨パッドのバーコル硬さは15以上であることが好ましく、20以上であることがより好ましい。研磨パッドの硬さは、バーコル硬さで40以下であれば、CMP法による研磨において、砥粒のサイズのばらつきによって被研磨物表面にかかる局所的な負荷を抑制することができる。この観点から、研磨パッドのバーコル硬さは33以下であることが好ましく、30以下であることがより好ましい。
 研磨パッド表面の細孔の数は、13個/mm以上であれば、被研磨物表面にかかる負荷を分散させ、被研磨物表面での傷の形成を抑えることができる。この観点から、研磨パッド表面の細孔の数は、30個/mm以上であることが好ましく、45個/mm以上であることがより好ましい。研磨パッド表面の細孔の数は、100個/mm以下であれば、研磨パッドは、十分な硬度を確保することができる。この観点から、研磨パッド表面の細孔の数は、80個/mm以下であることが好ましく、70個/mm以下であることがより好ましい。なお、研磨パッド表面の細孔の数は、例えば、顕微鏡等の視覚的観察装置により所定の面積の範囲に存在する細孔の数を数えて、数えられた細孔の数を、細孔を数える対象とした範囲の面積で割ることで求められる。
 以下、実施例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例に限定されない。
<1.重量平均分子量及び数平均分子量の測定方法>
 本実施例及び比較例において用いられるポリマーの重量平均分子量及び数平均分子量を、GPCにより測定し、標準ポリスチレン検量線を用いて求めた。測定装置及び条件は以下のとおりである。
 装置:昭和電工株式会社製Shodex(登録商標)GPC-101
 カラム:昭和電工株式会社製KF-805
 カラム温度:40℃
 試料:ポリマーの0.2質量%テトラヒドロフラン溶液
 流量:1mL/分
 溶離液:テトラヒドロフラン
 検出器:RI-71S
<2.各成分>
<2-1.ウレタン(メタ)アクリレート(A)>
 攪拌器、還流冷却管、気体導入管及び温度計を備えた1Lの4つ口フラスコに、ポリエステルポリオール660g(0.30モル)、スチレン(旭化成株式会社製)227g(2.17モル)、ハイドロキノン0.17gを仕込み、混合物を80℃まで昇温した。ここで用いたポリエステルポリオールは、アジピン酸とエチレングリコールとの縮合反応から得られたポリマーで、数平均分子量は2,200、重量平均分子量は5,000である。
 次いで、上記4つ口フラスコにイソホロンジイソシアネート88g(0.40モル)を1.5時間かけて滴下しながら攪拌し、末端にイソシアナト基を含有するプレポリマーを生成させた。さらに、2-ヒドロキシエチルアクリレート18g(0.16モル)を0.5時間かけて滴下した後、赤外吸収スペクトルでイソシアナト基の吸収ピークが消失するまで反応させて、ウレタンアクリレート(A-1)固形分50質量%のウレタンアクリレート(A-1)溶液を得た。ウレタンアクリレート(A-1)の数平均分子量は4,000、重量平均分子量は20,000であった。
 ここで、nの値を求める。ウレタンアクリレート(A-1)の合成に用いた原料から、ウレタン(メタ)アクリレート(A)を表す一般式における角括弧外の分子量Mは455となる。ポリエステルポリオールの数平均分子量は2,200であるので、角括弧内の分子量Mは2,422となる。上記のとおり、ウレタンアクリレートの数平均分子量MnAは4,000であり、MnA=M+nMより、n=1.46と算出される。
<2-2.不飽和樹脂(B)>
[2-2-1.ビニルエステル樹脂]
 昭和電工株式会社製リポキシ(登録商標)R-804を用いた。ビスフェノールA型ビニルエステル樹脂(B-1)をスチレン(旭化成株式会社製)に溶解させたもので、スチレン含有量40質量%である。
[2-2-2.不飽和ポリエステル樹脂]
 温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた4つ口フラスコに、フマル酸(川崎化成工業株式会社製)1.16kg(10モル)と、プロピレングリコール(旭硝子株式会社製)0.76kg(10モル)とを仕込んだ。そして、窒素ガス気流下で加熱撹拌しながら200℃まで昇温してエステル化反応を行ない、不飽和ポリエステル樹脂(B-2)を得た。
 得られた不飽和ポリエステル樹脂(B-2)は、不飽和度100モル%、重量平均分子量12,000であった。
<2-3.エチレン性不飽和化合物(C)>
 エチレン性不飽和化合物(C)としてはスチレン(C-1)を用い、ウレタン(メタ)アクリレート(A)の溶媒、及び不飽和樹脂(B)の溶媒として用いたものの他、必要に応じた量のスチレン(旭化成株式会社製)を添加した。
<2-4.中空体(D)>
 中空体(D)としては、樹脂バルーンを用い、メジアン径70μm(松本油脂製薬株式会社製MFL-100MCA)(樹脂バルーン(D-1)とする)、及びメジアン径120μm(日本フィライト株式会社製EMC-120)(樹脂バルーン(D-2)とする)のものを用いた。
<2-5.その他の成分>
 その他の成分としては、以下のものを用いた。
 無機充填材:炭酸カルシウム(丸尾カルシウム製「R重炭」、メジアン径20μm)
 重合禁止剤:ハイドロキノン
 硬化剤:328E(化薬アクゾ株式会社製)
 硬化促進剤:8質量%オクチル酸コバルト(日本化学産業株式会社製)
<3.樹脂組成物の作製>
<3-1.実施例1~6>
 実施例1~6については、ウレタンアクリレート(A-1)と、ビスフェノールA型ビニルエステル樹脂(B-1)と、重合禁止剤であるハイドロキノン0.015質量部とをスチレンに溶解させた。各成分の添加量は表1のとおりで、ウレタンアクリレート(A-1)、及びビスフェノールA型ビニルエステル樹脂(B-1)については固形分の量(すなわち、スチレンを除く量、このことは後述する比較例においても同様である。)である。スチレン(C-1)の含有量は、添加されたウレタンアクリレート(A-1)の溶媒、及びビスフェノールA型ビニルエステル樹脂(B-1)の溶媒としてのスチレンも含まれ、このことは、他の実施例及び比較例においても同様である。
 その後、得られた混合物に、さらに、表1に示すサイズの中空体(D)と、無機充填材と、硬化剤と、硬化促進剤とを表1に示される量で添加し、双腕式ニーダーを用いて30℃の温度条件下で混練し、実施例1~6の樹脂組成物を得た。
<3-2.実施例7>
 実施例7については、不飽和樹脂(B)として、ビスフェノールA型ビニルエステル樹脂(B-1)に替えて不飽和ポリエステル樹脂(B-2)を用いた以外は、実施例1と同様に表1の分量で各成分を混合して樹脂組成物を作製した。
<3-3.比較例1~5>
 比較例1については、ビスフェノールA型ビニルエステル樹脂(B-1)を添加しなかったこと以外は実施例1と同様の成分を表1に示される分量で用いて、実施例1と同様に樹脂組成物を作製した。比較例2~4については、表1に示される分量で実施例1と同様に樹脂組成物を作製した。比較例5については、ウレタンアクリレート(A-1)を添加しなかったこと以外は実施例1と同様の成分を表1に示される分量で用いて、実施例1と同様に樹脂組成物を作製した。
<4.樹脂組成物の評価方法>
<4-1.評価用サンプルの作製>
 樹脂組成物を用いて作製した研磨パッドを評価用サンプルとして、後述する各種評価を行った。評価用サンプルの作製方法は、実施例1~7及び比較例1~5で同様である。まず、樹脂組成物を、300×300×2mmの型に注型し、硬化させた。硬化は、20℃で2時間、その後120℃で2時間の条件で行った。平面研磨機(株式会社マルトー製)を用いて、この成形体(硬化物)の表面から厚さ50μm程度を切削することにより成形体(硬化物)の表面を荒らし、研磨粒子を保持する細孔を表面に形成させて、評価用の研磨パッドとした。
<4-2.バーコル硬さの測定>
 作製された研磨パッドの硬度をBarber Colman Company製GYZJ935を用いて10カ所測定し、それらの平均値をバーコル硬さとして算出した。
<4-3.細孔の評価>
 研磨パッド表面に存在する細孔の評価は、マイクロスコープ(株式会社キーエンス製VH-7000型)で研磨パッド表面を観察することによって行った。細孔の平均直径は、30個の細孔の直径を測定し、これらの平均値とした。また、30個の測定された直径の標準偏差を算出し、細孔のサイズのばらつきを評価した。細孔数は、観察された画像において1mm四方に存在する細孔の数をカウントすることにより測定した。
Figure JPOXMLDOC01-appb-T000004
<5.評価結果>
 実施例1~7及び比較例1~5で作製した研磨パッドの評価結果を表1に示す。表1からわかるように実施例1~7における研磨パッドは、いずれも適度な硬さを有し、表面に存在する細孔のサイズは、添加した中空体(D)のサイズにほぼ相当して保たれていることが分かる。
 一方、樹脂組成物に不飽和樹脂(B)が添加されていない比較例1では、研磨パッドとしての硬さが精密研磨のためには不十分であった。ビスフェノールA型ビニルエステル樹脂(B-1)の含有量に対するウレタンアクリレート(A-1)の含有量が少ない比較例2、及びウレタンアクリレート(A-1)が用いられていない比較例5における樹脂組成物を用いて作製された研磨パッドは非常に硬く、化学的機械的研磨に適していなかった。樹脂組成物における中空体(D)の添加量が少ない比較例3では、細孔の数は不十分であった。逆に、樹脂組成物における中空体(D)の添加量が過剰であった比較例4では、硬さが精密研磨のためには不十分であった。
 以上のことから、上記一般式で表されるウレタン(メタ)アクリレート(A)と、ビニルエステル樹脂及び不飽和ポリエステル樹脂のうち少なくとも1つからなる不飽和樹脂(B)と、エチレン性不飽和結合を有し、ウレタン(メタ)アクリレート(A)及び不飽和樹脂(B)を除くエチレン性不飽和化合物(C)と、中空体(D)と、を含有し、ウレタン(メタ)アクリレート(A)の含有量と不飽和樹脂(B)の含有量との質量比A:Bが、64:36~96:4であり、ウレタン(メタ)アクリレート(A)と、不飽和樹脂(B)と、エチレン性不飽和化合物(C)との合計100質量部に対する中空体(D)の含有量が0.7~9.0質量部である樹脂組成物によれば、化学的機械的研磨に適した硬さを有し、所望のサイズの細孔を有する研磨パッドを容易に得られることが分かる。

Claims (13)

  1.  ウレタン(メタ)アクリレート(A)と、
     ビニルエステル樹脂及び不飽和ポリエステル樹脂のうち少なくとも1つからなる不飽和樹脂(B)と、
     エチレン性不飽和結合を有し、前記ウレタン(メタ)アクリレート(A)及び前記不飽和樹脂(B)を除くエチレン性不飽和化合物(C)と、
     中空体(D)と、
    を含有する樹脂組成物であって、
     前記ウレタン(メタ)アクリレート(A)は、下記一般式で表され、
    Figure JPOXMLDOC01-appb-C000001
     該一般式において、Rは、H又はCHであり、Rは、エーテル結合を含んでもよい2価の炭化水素基であって、水素原子が置換基で置換されていてもよく、Rは2価の炭化水素基であり、Rは、重量平均分子量が2,000~8,000のポリエステルポリオール由来の構造単位であり、繰り返し単位数であるnは、前記樹脂組成物に含まれる前記ウレタン(メタ)アクリレート(A)全体の数基準の平均値であって、1.00以上の実数であり、
     前記ウレタン(メタ)アクリレート(A)の含有量と前記不飽和樹脂(B)の含有量との質量比A:Bが、64:36~96:4であり、
     前記ウレタン(メタ)アクリレート(A)と、前記不飽和樹脂(B)と、前記エチレン性不飽和化合物(C)との合計100質量部に対する前記中空体(D)の含有量が0.7~9.0質量部である樹脂組成物。
  2.  前記中空体(D)は、樹脂バルーンである請求項1に記載の樹脂組成物。
  3.  前記ウレタン(メタ)アクリレート(A)と前記不飽和樹脂(B)との合計100質量部に対して、前記エチレン性不飽和化合物(C)の含有量は40~200質量部である請求項1又は2に記載の樹脂組成物。
  4.  前記一般式におけるnの値は、1.00~6.00である請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記一般式におけるRは、炭素原子数2~6のアルキレン基である請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記一般式におけるRは、炭素原子数5~15のシクロアルキレン基又はアリーレン基である請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記一般式のRにおけるポリエステルポリオールは、脂肪族グリコールと脂肪族二塩基酸との縮合物である請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記不飽和樹脂(B)は、エポキシ(メタ)アクリレートである請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記中空体(D)を除く無機充填材を含む請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  前記ウレタン(メタ)アクリレート(A)と、前記不飽和樹脂(B)と、前記エチレン性不飽和化合物(C)との合計100質量部に対する前記無機充填材の含有量は10~200質量部である請求項9に記載の樹脂組成物。
  11.  前記樹脂組成物は、研磨パッド用樹脂組成物である請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  請求項1~10のいずれか1項に記載の樹脂組成物の硬化物を含む研磨パッド。
  13.  請求項1~10のいずれか1項に記載の樹脂組成物を成形して硬化させる工程と、硬化した前記樹脂組成物の表面を削る工程と、を含む研磨パッドの製造方法。
PCT/JP2019/001706 2018-05-22 2019-01-21 樹脂組成物、研磨パッド、及び研磨パッドの製造方法 WO2019225055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020521010A JP7110337B2 (ja) 2018-05-22 2019-01-21 樹脂組成物、研磨パッド、及び研磨パッドの製造方法
EP19807552.5A EP3798244B8 (en) 2018-05-22 2019-01-21 Resin composition, polishing pad, and method for producing polishing pad
US16/977,719 US11873399B2 (en) 2018-05-22 2019-01-21 Resin composition, polishing pad, and method for producing polishing pad
CN201980017799.6A CN111819211B (zh) 2018-05-22 2019-01-21 树脂组合物、研磨垫、和研磨垫的制造方法
US18/163,045 US20230187558A1 (en) 2018-06-06 2023-02-01 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097985 2018-05-22
JP2018-097985 2018-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/111,810 Continuation US11594641B2 (en) 2018-06-06 2020-12-04 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019225055A1 true WO2019225055A1 (ja) 2019-11-28

Family

ID=68616623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001706 WO2019225055A1 (ja) 2018-05-22 2019-01-21 樹脂組成物、研磨パッド、及び研磨パッドの製造方法

Country Status (5)

Country Link
US (1) US11873399B2 (ja)
EP (1) EP3798244B8 (ja)
JP (1) JP7110337B2 (ja)
CN (1) CN111819211B (ja)
WO (1) WO2019225055A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062392A (ko) * 2019-11-21 2021-05-31 에스케이씨솔믹스 주식회사 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법
WO2022045018A1 (ja) * 2020-08-26 2022-03-03 株式会社トクヤマ 重合性官能基含有マイクロバルーン

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071017A1 (en) * 2019-09-11 2021-03-11 Applied Materials, Inc. Additive Manufacturing of Polishing Pads

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035322A (ja) 2004-07-22 2006-02-09 Nitta Haas Inc 研磨布
JP2011073085A (ja) * 2009-09-29 2011-04-14 Fujibo Holdings Inc 研磨パッド
JP2012000714A (ja) 2010-06-16 2012-01-05 Sumco Corp 研磨パッド、および半導体ウェーハの研磨方法
WO2013069441A1 (ja) * 2011-11-07 2013-05-16 昭和電工株式会社 圧力容器用樹脂組成物及び圧力容器
JP2015193059A (ja) * 2014-03-31 2015-11-05 富士紡ホールディングス株式会社 研磨パッド

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256721A (ja) * 1993-03-10 1994-09-13 Sekisui Chem Co Ltd 型内被覆成形用被覆樹脂組成物の製造方法
DE19902683C1 (de) * 1999-01-23 2000-11-02 Roehm Gmbh Hinterfütterter Sanitärartikel und Verfahren zu dessen Herstellung
JP2007204651A (ja) * 2006-02-03 2007-08-16 Kuraray Co Ltd 研磨パッドおよびその製造方法
JP2007246805A (ja) * 2006-03-17 2007-09-27 Kuraray Co Ltd 研磨パッドおよびその製造方法
JP5336730B2 (ja) * 2007-12-11 2013-11-06 昭和電工株式会社 繊維強化プラスチック用ラジカル重合性接着剤を用いて接着された接着構造体及びその製造方法
US8288453B2 (en) * 2008-06-26 2012-10-16 Ccp Composites Us Process to disperse organic microparticles/nanoparticles into non-aqueous resin medium
KR101183048B1 (ko) * 2010-08-13 2012-09-20 세원화성 주식회사 저비중 접착제 조성물 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035322A (ja) 2004-07-22 2006-02-09 Nitta Haas Inc 研磨布
JP2011073085A (ja) * 2009-09-29 2011-04-14 Fujibo Holdings Inc 研磨パッド
JP2012000714A (ja) 2010-06-16 2012-01-05 Sumco Corp 研磨パッド、および半導体ウェーハの研磨方法
WO2013069441A1 (ja) * 2011-11-07 2013-05-16 昭和電工株式会社 圧力容器用樹脂組成物及び圧力容器
JP2015193059A (ja) * 2014-03-31 2015-11-05 富士紡ホールディングス株式会社 研磨パッド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3798244A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062392A (ko) * 2019-11-21 2021-05-31 에스케이씨솔믹스 주식회사 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법
KR102293765B1 (ko) 2019-11-21 2021-08-26 에스케이씨솔믹스 주식회사 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법
WO2022045018A1 (ja) * 2020-08-26 2022-03-03 株式会社トクヤマ 重合性官能基含有マイクロバルーン

Also Published As

Publication number Publication date
US20210054192A1 (en) 2021-02-25
EP3798244B1 (en) 2024-03-06
CN111819211B (zh) 2023-01-24
EP3798244A1 (en) 2021-03-31
EP3798244A4 (en) 2022-03-23
EP3798244B8 (en) 2024-04-10
US11873399B2 (en) 2024-01-16
JP7110337B2 (ja) 2022-08-01
CN111819211A (zh) 2020-10-23
JPWO2019225055A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2019225055A1 (ja) 樹脂組成物、研磨パッド、及び研磨パッドの製造方法
TWI434885B (zh) 可固化之聚合物混凝土混合物
JP3650216B2 (ja) 成型法に用いられる樹脂製型の製造方法
JP7164522B2 (ja) ラジカル重合性樹脂組成物及び構造物修復材
US20180002562A1 (en) Low-temperature-curable cross-section repair material, and cross-section repairing method using the same
JP5336730B2 (ja) 繊維強化プラスチック用ラジカル重合性接着剤を用いて接着された接着構造体及びその製造方法
JP2018141104A (ja) 床材用活性エネルギー線硬化型樹脂組成物、被膜付き床材、被膜付き床材の製造方法および床材の汚染防止方法
TWI647274B (zh) 自由基聚合性樹脂組合物及土木建築材料
JP2017057297A (ja) 床材用エネルギー線硬化型樹脂組成物、被膜付き床材、被膜付き床材の製造方法および床材の防汚方法
EP3858805A1 (en) Structure repairing method
WO2020021774A1 (ja) 研磨パッド
JPH07330847A (ja) 硬化成形用不飽和ウレタン樹脂の改質剤、これを含有する硬化成形用不飽和ウレタン樹脂組成物及びその硬化成形方法
JP4315507B2 (ja) 耐熱性に優れる光硬化性樹脂組成物
JP6976157B2 (ja) 研磨パッド用研磨剤保持材、樹脂組成物、及び研磨パッド用研磨剤保持材の製造方法
JPH10279819A (ja) 光学的立体造形用樹脂組成物
JP4314838B2 (ja) 硬化性接着剤及びそれを用いた接着方法
TWI781571B (zh) 從可固化液體組成物製備之彈性材料
JP2003301020A (ja) 硬化性樹脂組成物及び接着剤
JPH06219800A (ja) 人造石および人造石用バインダー樹脂
JP3377592B2 (ja) 硬化成形用不飽和ウレタン樹脂の改質剤、これを含有する硬化成形用不飽和ウレタン樹脂組成物及びその硬化成形方法
CN112752775A (zh) 自由基聚合性树脂组合物及结构物修补材料
JPH09227640A (ja) 耐熱性に優れる光硬化性樹脂組成物
JP7437896B2 (ja) 熱硬化性樹脂組成物、成形材料、成形品、水廻り用樹脂材料、水廻り用成形材料および水廻り用製品
JP4462068B2 (ja) チクソトロピー性ラジカル重合型成形材料、その製造方法および成形品
JP4893023B2 (ja) 相互侵入高分子網目構造体の製造方法、相互侵入高分子網目構造体を用いた研磨パッド、および発泡ポリウレタン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019807552

Country of ref document: EP

Effective date: 20201222