WO2019212007A1 - イオン伝導体および蓄電デバイス - Google Patents
イオン伝導体および蓄電デバイス Download PDFInfo
- Publication number
- WO2019212007A1 WO2019212007A1 PCT/JP2019/017195 JP2019017195W WO2019212007A1 WO 2019212007 A1 WO2019212007 A1 WO 2019212007A1 JP 2019017195 W JP2019017195 W JP 2019017195W WO 2019212007 A1 WO2019212007 A1 WO 2019212007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- ion conductor
- conductor
- oxide
- powder
- Prior art date
Links
- 239000010416 ion conductor Substances 0.000 title claims abstract description 194
- 238000003860 storage Methods 0.000 title claims description 11
- 230000005611 electricity Effects 0.000 title claims description 6
- 150000004678 hydrides Chemical class 0.000 claims abstract description 64
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 191
- 229910001416 lithium ion Inorganic materials 0.000 claims description 191
- 239000007784 solid electrolyte Substances 0.000 claims description 32
- 150000001875 compounds Chemical class 0.000 claims description 8
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 claims description 3
- 239000000843 powder Substances 0.000 abstract description 74
- 239000002245 particle Substances 0.000 abstract description 16
- 238000000465 moulding Methods 0.000 abstract description 11
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052744 lithium Inorganic materials 0.000 abstract description 10
- 238000007740 vapor deposition Methods 0.000 abstract description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 6
- 238000010304 firing Methods 0.000 abstract description 5
- 238000011156 evaluation Methods 0.000 description 28
- 239000007787 solid Substances 0.000 description 19
- 239000002131 composite material Substances 0.000 description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000002223 garnet Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000002228 NASICON Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005464 sample preparation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910009511 Li1.5Al0.5Ge1.5(PO4)3 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/06—Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
- C01B6/10—Monoborane; Diborane; Addition complexes thereof
- C01B6/13—Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
- C01B6/15—Metal borohydrides; Addition complexes thereof
- C01B6/19—Preparation from other compounds of boron
- C01B6/21—Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the technology disclosed in this specification relates to an ionic conductor.
- all-solid battery an all-solid lithium ion secondary battery in which the battery elements are all solid.
- all solid batteries are safe because there is no risk of leakage or ignition of the organic electrolyte, Since the exterior can be simplified, the energy density per unit mass or unit volume can be improved.
- an oxide-based lithium ion conductor or a sulfide-based lithium ion conductor is used as the solid electrolyte used for the solid electrolyte layer and electrodes constituting the all solid state battery. Since the oxide-based lithium ion conductor is relatively hard in the powder state, the adhesion between the particles is low and the lithium ion conductivity is low in the state of a compact (compact) obtained by pressing the powder. . Lithium ion conductivity can be increased by sintering and vapor deposition using powders of oxide-based lithium ion conductors, but it is difficult to increase the size of the battery compared to the case where powders are pressed. In addition, the manufacturing process becomes complicated.
- the sulfide-based lithium ion conductor is relatively soft in a powder state, the adhesion between particles is high and the lithium ion conductivity is high in the state of a molded body obtained by pressure-molding the powder.
- the sulfide-based lithium ion conductor reacts with moisture in the atmosphere to generate hydrogen sulfide gas, it may not be preferable in terms of safety.
- the ionic conductor obtained by mixing the oxide-based lithium ion conductor and the sulfide-based lithium ion conductor as described above is reduced in the content of the sulfide-based lithium ion conductor, but is also sulfide-based lithium. Since it contains an ionic conductor, there is room for improvement in safety.
- Such problems are not limited to ion conductors used for solid electrolyte layers and electrodes of all-solid-state lithium ion secondary batteries, but are common problems for ion conductors having lithium ion conductivity in general.
- the ionic conductor disclosed in the present specification further includes a complex hydride in the ionic conductor including the oxide-based lithium ion conductor.
- Oxide-based lithium ion conductors can be made relatively high in lithium ion conductivity by sintering and vapor deposition using powder, but the powder is relatively hard, so the powder was pressed. In the state of the compact, the adhesion between the particles is low and the lithium ion conductivity is relatively low.
- the complex hydride has a relatively low lithium ion conductivity, but is relatively soft in a powder state. Therefore, it is easy to increase the adhesion between particles by pressurizing the powder.
- this ionic conductor contains an oxide-based lithium ion conductor and a complex hydride, there is no need to use a sulfide-based ion conductor that may generate toxic gases, and without firing or vapor deposition.
- the adhesiveness between the particles can be increased by merely pressing the powder, and high lithium ion conductivity can be exhibited.
- the ion conductor may have a lithium ion conductivity at 25 ° C. of 1.0 ⁇ 10 ⁇ 5 S / cm or more. According to this ion conductor, higher lithium ion conductivity can be exhibited at room temperature.
- the said ion conductor WHEREIN The content rate of the said oxide type lithium ion conductor in the said ion conductor is good also as a structure which is 85 vol% or less. According to the present ion conductor, the adhesion between the particles can be effectively increased by simply pressing the powder, and a very high lithium ion conductivity can be exhibited.
- the said ion conductor WHEREIN The content rate of the said oxide type lithium ion conductor in the said ion conductor is good also as a structure which is 30 vol% or more. According to the present ion conductor, it is possible to suppress the capacity deterioration of the electricity storage device manufactured using the present ion conductor.
- the complex hydride may include LiBH 4 and X (where X is one or more compounds selected from LiCl, LiBr, LiI, and LiNH 2). .
- X is one or more compounds selected from LiCl, LiBr, LiI, and LiNH 2).
- the complex hydride may be a compound having a croso structure represented by Li 2 (B n H n ) (where n is an integer of 5 or more and 12 or less). Good. According to the present ion conductor, the adhesion between the particles can be effectively increased by simply pressing the powder, and a very high lithium ion conductivity can be exhibited.
- the power storage device disclosed in the present specification includes a solid electrolyte layer, a positive electrode, and a negative electrode, and at least one of the solid electrolyte layer, the positive electrode, and the negative electrode includes the ionic conductor. According to this power storage device, at least one lithium ion conductivity of the solid electrolyte layer, the positive electrode, and the negative electrode can be improved, and as a result, the electrical performance of the power storage device can be improved.
- the technology disclosed in this specification can be realized in various forms, for example, in the form of an ion conductor, an electricity storage device including the ion conductor, a manufacturing method thereof, and the like. Is possible.
- FIG. 1 is an explanatory view schematically showing a cross-sectional configuration of an all-solid lithium ion secondary battery (hereinafter referred to as “all-solid battery”) 102 in the present embodiment.
- FIG. 1 shows XYZ axes orthogonal to each other for specifying the direction.
- the positive Z-axis direction is referred to as the upward direction
- the negative Z-axis direction is referred to as the downward direction.
- the all-solid-state battery 102 includes a battery main body 110, a positive electrode side current collecting member 154 disposed on one side (upper side) of the battery main body 110, and a negative electrode side current collector disposed on the other side (lower side) of the battery main body 110.
- the positive electrode side current collecting member 154 and the negative electrode side current collecting member 156 are substantially flat plate members having conductivity, such as stainless steel, Ni (nickel), Ti (titanium), Fe (iron), Cu (copper). , Al (aluminum), a conductive metal material selected from these alloys, a carbon material, or the like.
- the positive electrode side current collecting member 154 and the negative electrode side current collecting member 156 are collectively referred to as a current collecting member.
- the battery body 110 is a lithium ion secondary battery body in which all battery elements are made of solid.
- the battery elements are all composed of solid means that the skeletons of all battery elements are composed of solids, for example, a form in which the skeleton is impregnated with a liquid. It is not excluded.
- the battery body 110 includes a positive electrode 114, a negative electrode 116, and a solid electrolyte layer 112 disposed between the positive electrode 114 and the negative electrode 116.
- the positive electrode 114 and the negative electrode 116 are collectively referred to as electrodes.
- the battery body 110 corresponds to an electricity storage device in the claims.
- the solid electrolyte layer 112 is a substantially flat plate-like member and includes a lithium ion conductor 202 that is a solid electrolyte. More specifically, the solid electrolyte layer 112 is a molded body (a green compact) in which a powder of the lithium ion conductor 202 is pressure-molded. The configuration of the lithium ion conductor 202 included in the solid electrolyte layer 112 will be described in detail later.
- the positive electrode 114 is a substantially flat plate-like member and includes a positive electrode active material 214.
- a positive electrode active material 214 for example, S (sulfur), TiS 2, LiCoO 2, LiMn 2 O 4, LiFePO 4 or the like is used.
- the positive electrode 114 includes a lithium ion conductor 204 that is a solid electrolyte as a lithium ion conduction aid.
- the positive electrode 114 may further contain an electron conduction auxiliary agent (for example, conductive carbon, Ni (nickel), Pt (platinum), Ag (silver)).
- the negative electrode 116 is a substantially flat plate-like member and includes a negative electrode active material 216.
- a negative electrode active material 216 for example, Li metal, Li—Al alloy, Li 4 Ti 5 O 12 , carbon, Si (silicon), SiO, or the like is used.
- the negative electrode 116 includes a lithium ion conductor 206 that is a solid electrolyte as a lithium ion conduction aid.
- the negative electrode 116 may further contain an electron conduction aid (for example, conductive carbon, Ni, Pt, Ag).
- A-2. Configuration of lithium ion conductor Next, the configuration of the lithium ion conductor 202 included in the solid electrolyte layer 112 will be described. Note that the configuration of the lithium ion conductor 204 included in the positive electrode 114 and the configuration of the lithium ion conductor 206 included in the negative electrode 116 are the same as the configuration of the lithium ion conductor 202 included in the solid electrolyte layer 112, and thus description thereof is omitted. To do.
- the lithium ion conductor 202 included in the solid electrolyte layer 112 includes an oxide-based lithium ion conductor and a complex hydride.
- Oxide-based lithium ion conductors can be made relatively high in lithium ion conductivity by sintering and vapor deposition using powder, but the powder is relatively hard, so the powder was pressed. In the state of the compact, the adhesion between the particles is low and the lithium ion conductivity is relatively low.
- the complex hydride has a relatively low lithium ion conductivity, but is relatively soft in a powder state. Therefore, it is easy to increase the adhesion between particles by pressurizing the powder.
- the lithium ion conductor 202 in the present embodiment includes an oxide-based lithium ion conductor and a complex hydride, the use of a sulfide-based ion conductor that may generate a toxic gas, Without vapor deposition, the adhesion between particles can be increased only by pressure molding the powder, and high lithium ion conductivity can be exhibited.
- the oxide-based lithium ion conductor included in the lithium ion conductor 202 includes an ion conductor having a garnet structure or a garnet structure, an ion conductor having a NASICON structure, and an ion having a perovskite structure. It may be at least one of the conductors.
- the lithium ion conductor 202 includes at least one of Li, La, Zr, Mg, and A (A is at least one element selected from the group consisting of Ca, Sr, and Ba).
- an oxide-based lithium ion conductor having a garnet-type structure or a garnet-type similar structure hereinafter referred to as “LLZ oxide-based lithium ion conductor” and a complex hydride. Since the LLZ oxide-based lithium ion conductor is harder than other oxide-based lithium ion conductors, it is difficult to improve the adhesion between particles only by pressure molding the powder. Therefore, by mixing a relatively soft material such as a complex hydride with the LLZ oxide-based lithium ion conductor, the adhesion between the particles can be increased simply by pressure molding the powder. Conductivity can be demonstrated. That is, when a complex hydride is mixed, the LLZ oxide-based lithium ion conductor has a remarkable effect that the lithium ion conductivity can be further increased as compared with other oxide-based lithium ion conductors. .
- an ionic conductor having a garnet structure or a garnet-like structure for example, an ionic conductor containing at least Li, Zr, La, and O can be used. More specifically, for example, Li 7 La 3 Zr 2 O 12 (hereinafter referred to as “LLZ”), or LLZ obtained by elemental substitution of Mg (magnesium) and Sr (strontium) (hereinafter referred to as “LLZ-MgSr”)) Can do.
- LLZ Li 7 La 3 Zr 2 O 12
- LLZ-MgSr LLZ obtained by elemental substitution of Mg (magnesium) and Sr (strontium)
- an ionic conductor having a NASICON type structure for example, an ionic conductor containing at least Li and M (M is at least one of Ti, Zr, and Ge), P and O can be used.
- M is at least one of Ti, Zr, and Ge
- P and O can be used.
- LAGP Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter referred to as “LAGP”)) or the like can be used.
- an ionic conductor having a perovskite structure for example, an ionic conductor containing at least Li, Ti, La, and O can be used. More specifically, for example, La 2/3 -xLi 3 xTiO. 3 (hereinafter referred to as “LLT”) or the like.
- LLT La 2/3 -xLi 3 xTiO. 3
- the complex hydride contained in the lithium ion conductor 202 may include LiBH 4 and X (where X is one or more compounds selected from LiCl, LiBr, LiI, and LiNH 2 ).
- the complex hydride contained in the lithium ion conductor 202 may be a compound having a croso structure represented by the chemical formula Li 2 (B n H n ) (where n is an integer of 5 or more and 12 or less). Good. Note that a complex hydride having a croso structure is preferable because hydrate formation is rate-limiting in the atmosphere and there is no risk of ignition.
- the complex hydride contained in the lithium ion conductor 202 is more preferably a compound having a croso structure represented by the chemical formula Li 2 (B n H n ) (where n is an integer of 6 or more and 12 or less). .
- the complex hydride contained in the lithium ion conductor 202 may be a compound having a nido structure represented by the chemical formula Li (B n H n + 3 ) (where n is an integer of 5 or more and 11 or less). .
- complex hydrides which are contained in the lithium ion conductor 202
- other complex hydrides for example, LiBH 4, LiNH 2, LiBH 4 ⁇ 3KI, LiBH 4 ⁇ PI 2, LiBH 4 ⁇ P 2 S 5, Li 2 AlH 6 , Li (NH 2 ) 2 I, Li 2 NH, LiGd (BH 4 ) 3 Cl, or the like may be used.
- the lithium ion conductor 202 may include a plurality of types of the complex hydrides described above.
- the content of the oxide-based lithium ion conductor in the lithium ion conductor 202 is preferably 85 vol% or less. With such a configuration, it is possible to effectively improve the adhesion between the particles simply by pressure-molding the powder of the lithium ion conductor 202 and to exhibit a very high lithium ion conductivity.
- the lithium ion conductor 202 includes LLZ-MgSr as an oxide-based lithium ion conductor and 3LiBH 4 .LiI as a complex hydride
- the content of the oxide-based lithium ion conductor is 85 vol. If it is at most%, the lithium ion conductivity at 25 ° C. will be at least 1.2 ⁇ 10 ⁇ 5 S / cm.
- the lithium ion conductor 202 includes LLZ-MgSr as an oxide-based lithium ion conductor and Li 2 (B 12 H 12 ) as a complex hydride
- the lithium ion conductivity at 25 ° C. is 1.7 ⁇ 10 ⁇ 5 S / cm or more.
- the content ratio of the oxide-based lithium ion conductor in the lithium ion conductor 202 is more preferably 20 vol% or more and 85 vol% or less, and further preferably 30 vol% or more and 75 vol% or less.
- the content ratio of the oxide-based lithium ion conductor in the lithium ion conductor 202 is preferably 30 vol% or more and 85 vol% or less. With such a configuration, capacity deterioration of the all-solid-state battery 102 manufactured using the lithium ion conductor 202 can be suppressed. In order to effectively suppress the capacity deterioration of the all-solid-state battery 102, the content ratio of the oxide-based lithium ion conductor in the lithium ion conductor 202 is more preferably 40 vol% or more and 75 vol% or less.
- the lithium ion conductor 202 includes an oxide-based lithium ion conductor (eg, LLZ-MgSr) or a complex hydride (eg, 3LiBH 4 .LiI, a complex hydride having a croso structure, or a complex hydride having a nido structure as described above. Etc.) can be confirmed by analyzing the lithium ion conductor 202 with an X-ray diffractometer (XRD).
- XRD X-ray diffractometer
- the volume ratio (vol%) of the oxide type lithium ion conductor and the complex hydride in the lithium ion conductor 202 can be specified as follows. That is, the object (for example, the solid electrolyte layer 112 composed of the lithium ion conductor 202) is cut to expose the cut surface, and the cut surface is polished to obtain a polished surface.
- an element of an oxide-based lithium ion conductor for example, In the case of LLZ-MgSr, the distribution of elements of La and Zr
- complex hydrides for example, the elements contained in X in the case of complex hydrides containing LiBH 4 and X described above
- the area ratio between the oxide-based lithium ion conductor and the complex hydride is identified by image analysis of the contrast of the image, and this is regarded as the volume ratio between the oxide-based lithium ion conductor and the complex hydride. To specify the volume ratio of the two.
- the solid electrolyte layer 112 is produced. Specifically, oxide-based lithium ion conductor powder and complex hydride powder are prepared, and both prepared powders are mixed at a predetermined ratio to obtain a composite powder. The obtained composite powder is pressure-molded at a predetermined pressure. Thereby, the solid electrolyte layer 112 comprised from the lithium ion conductor 202 containing an oxide type lithium ion conductor and a complex hydride is produced.
- the positive electrode 114 and the negative electrode 116 are produced.
- the positive electrode 114 is manufactured by mixing the powder of the positive electrode active material 214, the above-described composite powder, and, if necessary, the powder of the electron conduction auxiliary agent at a predetermined ratio, pulverizing the powder, and molding the powder.
- the negative electrode 116 is produced by mixing the powder of the negative electrode active material 216, the above-described composite powder, and, if necessary, the powder of the electron conduction assistant, pulverizing the powder, and then molding the powder.
- the positive electrode side current collecting member 154, the positive electrode 114, the solid electrolyte layer 112, the negative electrode 116, and the negative electrode side current collecting member 156 are laminated in this order and are integrated by pressing. Through the above steps, the all-solid battery 102 having the above-described configuration is manufactured.
- FIG. 2 and FIG. 3 show the performance evaluation of a lithium ion conductor containing LLZ-MgSr as an oxide-based lithium ion conductor and 3LiBH 4 .LiI as a complex hydride (hereinafter referred to as “first performance evaluation”). It is explanatory drawing which shows the result of ").
- each sample has a composition of a lithium ion conductor, more specifically, a content ratio (vol%) of an oxide-based lithium ion conductor (LLZ-MgSr) and a complex hydride (3LiBH 4 .LiI).
- the lithium ion conductor of the sample S1 is only complex hydrides 3LiBH 4 ⁇ LiI are composed of, does not contain an oxide-based lithium ion conductor.
- the lithium ion conductor of sample S8 is composed only of the oxide-based lithium ion conductor LLZ-MgSr and does not contain a complex hydride.
- subjected to each plot of the graph of FIG. 3 has shown the sample number shown by FIG.
- each sample has a composition of a lithium ion conductor, more specifically, a content ratio (vol%) of an oxide-based lithium ion conductor (LLZ-MgSr) and a complex hydride (Li 2 B 12 H 12 ).
- LZ-MgSr oxide-based lithium ion conductor
- Li 2 B 12 H 12 complex hydride
- the lithium ion conductor of sample S18 is composed only of the oxide-based lithium ion conductor LLZ-MgSr and does not contain a complex hydride (that is, the same sample as sample S8 in FIG. 2). . Further, the numbers given to the plots in the graph of FIG. 5 indicate the sample numbers shown in FIG.
- the sample preparation method and evaluation method in the first performance evaluation and the second performance evaluation are as follows.
- a binder was added to the calcined powder, and the mixture was pulverized and mixed with a ball mill in an organic solvent for 15 hours. After pulverization and mixing, the slurry is dried, put into a 12 mm diameter mold, press-formed to a thickness of about 1.5 mm, and then using a cold isostatic press (CIP). A compact was obtained by applying a hydrostatic pressure of 5 t / cm 2 .
- This molded body was covered with a calcined powder having the same composition as the molded body and fired at 1100 ° C. for 4 hours in a reducing atmosphere to obtain a sintered body.
- the sintered body had a lithium ion conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm.
- the sintered body was pulverized in a glove box in an argon atmosphere to obtain LLZ-MgSr powder.
- the LLZ-MgSr powder produced by the above method and a separately prepared complex hydride 3LiBH 4 ⁇ LiI powder were mixed in a volume ratio determined for each sample, with a total amount of 2 g, and planetary type
- a composite powder of LLZ-MgSr and 3LiBH 4 ⁇ LiI was obtained.
- sample S1 3LiBH 4 .LiI powder was used instead of this composite powder
- sample S8 LLZ-MgSr powder was used instead of this composite powder.
- a composite powder produced by the above-described method (however, 3LiBH 4 .LiI powder in sample S1, LLZ-MgSr powder in sample S8, and so on) is put into a mold having a diameter of 10 mm, and at a pressure of 500 MPa. Pressure molding was performed. The prepared molded product of lithium ion conductor was pressure-fixed to a pressure equivalent to 50 MPa using a pressure jig, and the lithium ion conductivity at room temperature was measured.
- the LLZ-MgSr powder produced in the same manner as in the first performance evaluation described above and the Li 2 B 12 H 12 powder produced by the method described above were determined for each sample with a total amount of 2 g.
- the mixture of LLZ-MgSr and Li 2 B 12 H 12 was mixed by pulverization and mixing at 200 rpm for 3 hours using 96.5 g of a 45 cc zirconia pot and a 4 mm diameter ball in a planetary ball mill.
- a composite powder was obtained.
- sample S11 Li 2 B 12 H 12 powder was used instead of this composite powder
- sample S18 LLZ-MgSr powder was used instead of this composite powder.
- a composite powder produced by the above-described method (however, Li 2 B 12 H 12 powder in sample S11, LLZ-MgSr powder in sample S18, and so on) is put into a mold having a diameter of 10 mm, and 360 MPa Pressure molding was performed with pressure.
- the prepared molded product of lithium ion conductor was pressure-fixed to a pressure equivalent to 50 MPa using a pressure jig, and the lithium ion conductivity at room temperature was measured.
- the lithium ion conductivity of sample S8 composed of only the oxide-based lithium ion conductor LLZ-MgSr was a low value of 2.0 ⁇ 10 ⁇ 8 S / cm. .
- the lithium ion conductivities of the samples S2 to S7 containing the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride 3LiBH 4 .LiI are all 3.6 ⁇ 10 ⁇ 6 S / cm or more, The lithium ion conductivity of sample S8 composed only of LLZ-MgSr was exceeded.
- the lithium ion conductor containing the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride 3LiBH 4 ⁇ LiI can be obtained by simply forming the powder between the particles without firing or vapor deposition. It was confirmed that the adhesion can be enhanced and high lithium ion conductivity can be exhibited.
- the lithium ion conductivity is 1.0 ⁇ 10 ⁇ 5 S / The value was higher than cm. From this result, in the lithium ion conductor containing the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride 3LiBH 4 .LiI, if the content ratio of LLZ-MgSr is 85 vol% or less, higher lithium ion conductivity It was confirmed that the rate could be demonstrated.
- the lithium ion conductivity is 1.0 ⁇ 10 It was an extremely high value of ⁇ 4 S / cm or more. From this result, in the lithium ion conductor containing the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride 3LiBH 4 .LiI, if the content ratio of LLZ-MgSr is 30 vol% or more and 75 vol% or less, It was confirmed that high lithium ion conductivity can be exhibited.
- the lithium ion conductor containing the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride Li 2 B 12 H 12 can be obtained by simply pressing the powder without firing or vapor deposition. It was confirmed that the adhesion between them can be increased and high lithium ion conductivity can be exhibited.
- the lithium ion conductivity is 1.0 ⁇ 10 ⁇ 5 S / The value was higher than cm. From this result, in the lithium ion conductor including the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride Li 2 B 12 H 12 , if the content ratio of LLZ-MgSr is 85 vol% or less, higher lithium It was confirmed that ionic conductivity can be exhibited.
- the lithium ion conductivity is 3.0 ⁇ 10 It was an extremely high value of ⁇ 5 S / cm or more. From this result, in the lithium ion conductor including the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride Li 2 B 12 H 12 , the content ratio of LLZ-MgSr is 30 vol% or more and 75 vol% or less. It was confirmed that extremely high lithium ion conductivity can be exhibited.
- FIG. 6 is an explanatory diagram showing a third performance evaluation result for a lithium ion conductor including LLZ-MgSr as an oxide-based lithium ion conductor and Li 2 B 12 H 12 as a complex hydride. is there.
- each sample has a composition of a lithium ion conductor, more specifically, a content ratio (vol%) of an oxide-based lithium ion conductor (LLZ-MgSr) and a complex hydride (Li 2 B 12 H 12 ).
- LZ-MgSr oxide-based lithium ion conductor
- Li 2 B 12 H 12 complex hydride
- the sample preparation method and evaluation method in the third performance evaluation are as follows. That is, similarly to the second performance evaluation described above, a composite powder of LLZ-MgSr and Li 2 B 12 H 12 blended at a volume ratio determined for each sample was obtained. As described above, in sample S21, Li 2 B 12 H 12 powder was used in place of this composite powder. Using this composite powder (however, in sample S21, Li 2 B 12 H 12 powder, the same applies hereinafter), pressure molding was performed to produce a solid electrolyte layer in the same manner as the second performance evaluation described above.
- the positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2 and the volume ratios LLZ-MgSr and Li 2 B 12 H 12 determined for each sample described above are provided on one surface of the solid electrolyte layer.
- a battery was fabricated by depositing and repressurizing the mixture with the composite powder and attaching an In—Li foil to the other surface of the solid electrolyte layer.
- a charge / discharge test was performed in a state where the battery manufactured as described above was pressurized.
- the charge / discharge conditions were current density: 64 ⁇ A / cm 2 , cut-off voltage: 3.6 V (during charging) and 2.4 V (during discharge).
- the capacity retention ratio at the 10th charge / discharge cycle was determined.
- the capacity retention rate was a low value of less than 70%.
- the content ratio of the complex hydride Li 2 B 12 H 12 is relatively high, the complex hydride Li 2 B 12 H 12 and the positive electrode active material react with each other as the cycle is repeated, so that a high resistance material is formed. It is considered that the battery capacity degradation was relatively large.
- the capacity retention rate was a high value of 80% or more.
- the content of the complex hydride Li 2 B 12 H 12 is relatively low, it is considered that capacity degradation due to the high-resistance material as described above is generated is suppressed. From this result, in the lithium ion conductor including the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride Li 2 B 12 H 12 , the content ratio of LLZ-MgSr is 30 vol% or more and 85 vol% or less.
- the battery capacity deterioration could be suppressed.
- the capacity retention rate is 85% or more, which is extremely high. It was a high value. From this result, in the lithium ion conductor including the oxide-based lithium ion conductor LLZ-MgSr and the complex hydride Li 2 B 12 H 12 , if the content ratio of LLZ-MgSr is 40 vol% or more and 75 vol% or less. It was confirmed that the capacity deterioration of the battery can be effectively suppressed.
- the configuration of the all solid state battery 102 in the above embodiment is merely an example, and various changes can be made.
- the lithium ion conductor containing the oxide-based lithium ion conductor and the complex hydride is included in all of the solid electrolyte layer 112, the positive electrode 114, and the negative electrode 116.
- An ionic conductor may be included in at least one of the solid electrolyte layer 112, the positive electrode 114, and the negative electrode 116.
- the technology disclosed in the present specification is not limited to the solid electrolyte layer and the electrodes constituting the all solid state battery 102, and constitutes another power storage device (for example, a lithium air battery, a lithium flow battery, a solid capacitor, etc.). It can also be applied to solid electrolyte layers and electrodes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
A-1.全固体電池102の構成:
(全体構成)
図1は、本実施形態における全固体リチウムイオン二次電池(以下、「全固体電池」という)102の断面構成を概略的に示す説明図である。図1には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向という。
電池本体110は、電池要素がすべて固体で構成されたリチウムイオン二次電池本体である。なお、本明細書において、電池要素がすべて固体で構成されているとは、すべての電池要素の骨格が固体で構成されていることを意味し、例えば該骨格中に液体が含浸した形態等を排除するものではない。電池本体110は、正極114と、負極116と、正極114と負極116との間に配置された固体電解質層112とを備える。以下の説明では、正極114と負極116とを、まとめて電極ともいう。電池本体110は、特許請求の範囲における蓄電デバイスに相当する。
固体電解質層112は、略平板形状の部材であり、固体電解質であるリチウムイオン伝導体202を含んでいる。より詳細には、固体電解質層112は、リチウムイオン伝導体202の粉末が加圧成形された成形体(圧粉体)である。固体電解質層112に含まれるリチウムイオン伝導体202の構成については、後に詳述する。
正極114は、略平板形状の部材であり、正極活物質214を含んでいる。正極活物質214としては、例えば、S(硫黄)、TiS2、LiCoO2、LiMn2O4、LiFePO4等が用いられる。また、正極114は、リチウムイオン伝導助剤としての固体電解質であるリチウムイオン伝導体204を含んでいる。正極114は、さらに電子伝導助剤(例えば、導電性カーボン、Ni(ニッケル)、Pt(白金)、Ag(銀))を含んでいてもよい。
負極116は、略平板形状の部材であり、負極活物質216を含んでいる。負極活物質216としては、例えば、Li金属、Li-Al合金、Li4Ti5O12、カーボン、Si(ケイ素)、SiO等が用いられる。また、負極116は、リチウムイオン伝導助剤としての固体電解質であるリチウムイオン伝導体206を含んでいる。負極116は、さらに電子伝導助剤(例えば、導電性カーボン、Ni、Pt、Ag)を含んでいてもよい。
次に、固体電解質層112に含まれるリチウムイオン伝導体202の構成について説明する。なお、正極114に含まれるリチウムイオン伝導体204および負極116に含まれるリチウムイオン伝導体206の構成は、固体電解質層112に含まれるリチウムイオン伝導体202の構成と同様であるため、説明を省略する。
次に、本実施形態の全固体電池102の製造方法の一例を説明する。はじめに、固体電解質層112を作製する。具体的には、酸化物系リチウムイオン伝導体の粉末と錯体水素化物の粉末とを準備し、準備された両粉末を所定の割合で混合して複合粉末を得る。得られた複合粉末を所定の圧力で加圧成型する。これにより、酸化物系リチウムイオン伝導体と錯体水素化物とを含むリチウムイオン伝導体202から構成された固体電解質層112が作製される。
全固体電池102の各層(固体電解質層112、正極114、負極116)に含まれるリチウムイオン伝導体202、204、206について、リチウムイオン伝導性に関する性能評価を行った。図2および図3は、酸化物系リチウムイオン伝導体としてのLLZ-MgSrと、錯体水素化物としての3LiBH4・LiIとを含むリチウムイオン伝導体についての性能評価(以下、「第1の性能評価」という)の結果を示す説明図である。また、図4および図5は、酸化物系リチウムイオン伝導体としてのLLZ-MgSrと、錯体水素化物としてのLi2B12H12とを含むリチウムイオン伝導体についての性能評価(以下、「第2の性能評価」という)の結果を示す説明図である。
組成:Li6.95Mg0.15La2.75Sr0.25Zr2.0O12(LLZ-MgSr)となるように、Li2CO3、MgO、La(OH)3、SrCO3、ZrO2を秤量した。その際、焼成時のLiの揮発を考慮し、元素換算で15mol%程度過剰になるように、Li2CO3をさらに加えた。この原料をジルコニアボールとともにナイロンポットに投入し、有機溶媒中で15時間、ボールミルで粉砕混合を行った。粉砕混合後、スラリーを乾燥させ、1100℃で10時間、MgO板上にて仮焼成を行った。仮焼成後の粉末にバインダーを加え、有機溶剤中で15時間、ボールミルで粉砕混合を行った。粉砕混合後、スラリーを乾燥させ、直径12mmの金型に投入し、厚さが1.5mm程度となるようにプレス成形した後、冷間静水等方圧プレス機(CIP)を用いて1.5t/cm2の静水圧を印加することにより、成形体を得た。この成形体を成形体と同じ組成の仮焼粉末で覆い、還元雰囲気において1100℃で4時間焼成することにより焼結体を得た。なお、焼結体のリチウムイオン伝導率は、1.0×10-3S/cmであった。この焼結体をアルゴン雰囲気のグローブボックス内で粉砕し、LLZ-MgSrの粉末を得た。
錯体水素化物Li2B12H12・4H2Oを250℃で20時間、真空加熱乾燥を行うことにより、結晶水脱水を行った。その後、アルゴン雰囲気において、0.5g分取し、遊星型ボールミルで45ccのジルコニアポットとジルコニアボールを用いて、400rpmで5時間、粉砕処理を行った。ボールミル処理後の粉末を160℃で12時間、真空乾燥を行うことにより、Li2B12H12粉末を得た。
図2および図3に示すように、酸化物系リチウムイオン伝導体LLZ-MgSrのみから構成されたサンプルS8のリチウムイオン伝導率は、2.0×10-8S/cmと低い値であった。一方、酸化物系リチウムイオン伝導体LLZ-MgSrと錯体水素化物3LiBH4・LiIとを含むサンプルS2~S7のリチウムイオン伝導率は、いずれも3.6×10-6S/cm以上であり、LLZ-MgSrのみから構成されたサンプルS8のリチウムイオン伝導率を上回った。この結果から、酸化物系リチウムイオン伝導体LLZ-MgSrと錯体水素化物3LiBH4・LiIとを含むリチウムイオン伝導体は、焼成や蒸着を行うことなく、粉末を加圧成形するだけで粒子間の密着性を高めることができ、高いリチウムイオン伝導率を発揮することができることが確認された。
図4および図5に示すように、酸化物系リチウムイオン伝導体LLZ-MgSrのみから構成されたサンプルS18のリチウムイオン伝導率は、2.0×10-8S/cmと低い値であった。一方、酸化物系リチウムイオン伝導体LLZ-MgSrと錯体水素化物Li2B12H12とを含むサンプルS12~S17のリチウムイオン伝導率は、いずれも1.6×10-6S/cm以上であり、LLZ-MgSrのみから構成されたサンプルS18のリチウムイオン伝導率を上回った。この結果から、酸化物系リチウムイオン伝導体LLZ-MgSrと錯体水素化物Li2B12H12とを含むリチウムイオン伝導体は、焼成や蒸着を行うことなく、粉末を加圧成形するだけで粒子間の密着性を高めることができ、高いリチウムイオン伝導率を発揮することができることが確認された。
本明細書で開示される技術は、上記実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
Claims (7)
- 酸化物系リチウムイオン伝導体を含むイオン伝導体において、さらに、
錯体水素化物を含む、
ことを特徴とするイオン伝導体。 - 請求項1に記載のイオン伝導体において、
25℃におけるリチウムイオン伝導率が1.0×10-5S/cm以上である、
ことを特徴とするイオン伝導体。 - 請求項1または請求項2に記載のイオン伝導体において、
前記イオン伝導体における前記酸化物系リチウムイオン伝導体の含有割合は、85vol%以下である、
ことを特徴とするイオン伝導体。 - 請求項3に記載のイオン伝導体において、
前記イオン伝導体における前記酸化物系リチウムイオン伝導体の含有割合は、30vol%以上である、
ことを特徴とするイオン伝導体。 - 請求項1から請求項4までのいずれか一項に記載のイオン伝導体において、
前記錯体水素化物は、LiBH4とX(ただし、Xは、LiCl、LiBr、LiIおよびLiNH2の中から選択される一種以上の化合物)とを含む、
ことを特徴とするイオン伝導体。 - 請求項1から請求項4までのいずれか一項に記載のイオン伝導体において、
前記錯体水素化物は、化学式Li2(BnHn)(ただし、nは5以上、12以下の整数)で表されるクロソ構造を有する化合物である、
ことを特徴とするイオン伝導体。 - 固体電解質層と、正極と、負極と、を備える蓄電デバイスにおいて、
前記固体電解質層と、前記正極と、前記負極との少なくとも1つは、請求項1から請求項6までのいずれか一項に記載のイオン伝導体を含む、
ことを特徴とする蓄電デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/042,742 US12087905B2 (en) | 2018-05-02 | 2019-04-23 | Ionic conductor and electricity storage device |
KR1020207029803A KR102433699B1 (ko) | 2018-05-02 | 2019-04-23 | 이온 전도체 및 축전 디바이스 |
CN201980029812.XA CN112088409B (zh) | 2018-05-02 | 2019-04-23 | 离子传导体和蓄电设备 |
EP19797047.8A EP3790026A4 (en) | 2018-05-02 | 2019-04-23 | ION CONDUCTOR AND ELECTRICITY STORAGE DEVICE |
JP2019551724A JP6682707B2 (ja) | 2018-05-02 | 2019-04-23 | イオン伝導体および蓄電デバイス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088495 | 2018-05-02 | ||
JP2018-088495 | 2018-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019212007A1 true WO2019212007A1 (ja) | 2019-11-07 |
Family
ID=68386260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017195 WO2019212007A1 (ja) | 2018-05-02 | 2019-04-23 | イオン伝導体および蓄電デバイス |
Country Status (6)
Country | Link |
---|---|
US (1) | US12087905B2 (ja) |
EP (1) | EP3790026A4 (ja) |
JP (1) | JP6682707B2 (ja) |
KR (1) | KR102433699B1 (ja) |
CN (1) | CN112088409B (ja) |
WO (1) | WO2019212007A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020024881A (ja) * | 2018-08-08 | 2020-02-13 | Jx金属株式会社 | 複合固体電解質及び全固体リチウムイオン電池 |
JP2020064832A (ja) * | 2018-10-19 | 2020-04-23 | 三菱瓦斯化学株式会社 | 固体電解質材料およびその成形体 |
IT202000023566A1 (it) * | 2020-10-07 | 2021-01-07 | Novac S R L | Nuovo sistema di energy storage e relativo metodo per la fabbricazione |
CN113471517A (zh) * | 2020-03-31 | 2021-10-01 | 本田技研工业株式会社 | 全固态电池及其制造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102231062B1 (ko) * | 2018-03-09 | 2021-03-23 | 주식회사 엘지화학 | 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지 |
CN113991171B (zh) * | 2021-10-22 | 2023-03-24 | 浙江大学 | 一种石榴石型多元复合固态电解质及其制备方法和应用 |
CN114421002A (zh) * | 2022-01-04 | 2022-04-29 | 浙江大学 | 石榴石氧化物/配位硼氮氢化物复合的固态电解质及其制备方法和应用 |
WO2024145524A1 (en) * | 2022-12-28 | 2024-07-04 | Unigrid, Inc. | Electrolytes, electrolyte materials, and manufacturing thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150171463A1 (en) | 2013-12-12 | 2015-06-18 | Ut-Battelle, Llc | High conducting oxide - sulfide composite lithium superionic conductor |
JP2017004910A (ja) * | 2015-06-16 | 2017-01-05 | 株式会社日立製作所 | リチウムイオン二次電池 |
WO2017018217A1 (ja) * | 2015-07-29 | 2017-02-02 | セントラル硝子株式会社 | ガーネット型酸化物焼結体及びその製造方法 |
JP2018032621A (ja) * | 2016-08-23 | 2018-03-01 | パナソニックIpマネジメント株式会社 | 電極材料、および、電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4201839A (en) * | 1978-11-01 | 1980-05-06 | Exxon Research And Engineering Co. | Cell containing an alkali metal anode, a solid cathode, and a closoborane and/or closocarborane electrolyte |
KR101946011B1 (ko) * | 2011-09-22 | 2019-02-11 | 삼성전자주식회사 | 리튬 이차 전지용 전해질 및 이를 채용한 리튬 전지 |
JP6149730B2 (ja) * | 2011-12-27 | 2017-06-21 | 日本ゼオン株式会社 | 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池 |
DE112014006557T5 (de) * | 2014-04-02 | 2016-12-15 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Beschichten von Metall auf ein Elektrodenmaterial einer Lithiumsekundärbatterie zur Aufbringung mit atmosphärischem Plasma |
CN107112065B (zh) | 2014-12-22 | 2019-07-23 | 三菱瓦斯化学株式会社 | 离子导体及其制造方法 |
JP6576685B2 (ja) * | 2015-05-19 | 2019-09-18 | 日本特殊陶業株式会社 | リチウム二次電池及びリチウム二次電池の充電方法 |
JP6735083B2 (ja) * | 2015-11-10 | 2020-08-05 | 日本特殊陶業株式会社 | イオン伝導体およびリチウム電池 |
JP6735425B2 (ja) | 2018-05-01 | 2020-08-05 | 日本特殊陶業株式会社 | イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス |
-
2019
- 2019-04-23 CN CN201980029812.XA patent/CN112088409B/zh active Active
- 2019-04-23 EP EP19797047.8A patent/EP3790026A4/en active Pending
- 2019-04-23 JP JP2019551724A patent/JP6682707B2/ja active Active
- 2019-04-23 WO PCT/JP2019/017195 patent/WO2019212007A1/ja unknown
- 2019-04-23 US US17/042,742 patent/US12087905B2/en active Active
- 2019-04-23 KR KR1020207029803A patent/KR102433699B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150171463A1 (en) | 2013-12-12 | 2015-06-18 | Ut-Battelle, Llc | High conducting oxide - sulfide composite lithium superionic conductor |
JP2017004910A (ja) * | 2015-06-16 | 2017-01-05 | 株式会社日立製作所 | リチウムイオン二次電池 |
WO2017018217A1 (ja) * | 2015-07-29 | 2017-02-02 | セントラル硝子株式会社 | ガーネット型酸化物焼結体及びその製造方法 |
JP2018032621A (ja) * | 2016-08-23 | 2018-03-01 | パナソニックIpマネジメント株式会社 | 電極材料、および、電池 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020024881A (ja) * | 2018-08-08 | 2020-02-13 | Jx金属株式会社 | 複合固体電解質及び全固体リチウムイオン電池 |
JP7045280B2 (ja) | 2018-08-08 | 2022-03-31 | Jx金属株式会社 | 複合固体電解質及び全固体リチウムイオン電池 |
JP2020064832A (ja) * | 2018-10-19 | 2020-04-23 | 三菱瓦斯化学株式会社 | 固体電解質材料およびその成形体 |
JP7172433B2 (ja) | 2018-10-19 | 2022-11-16 | 三菱瓦斯化学株式会社 | 固体電解質材料およびその成形体 |
CN113471517A (zh) * | 2020-03-31 | 2021-10-01 | 本田技研工业株式会社 | 全固态电池及其制造方法 |
JP2021163579A (ja) * | 2020-03-31 | 2021-10-11 | 本田技研工業株式会社 | 全固体電池及びその製造方法 |
US11817549B2 (en) | 2020-03-31 | 2023-11-14 | Honda Motor Co., Ltd. | All-solid-state battery and method for manufacturing same |
CN113471517B (zh) * | 2020-03-31 | 2024-09-20 | 本田技研工业株式会社 | 全固态电池及其制造方法 |
IT202000023566A1 (it) * | 2020-10-07 | 2021-01-07 | Novac S R L | Nuovo sistema di energy storage e relativo metodo per la fabbricazione |
WO2022074689A1 (en) * | 2020-10-07 | 2022-04-14 | Novac S.R.L. | Supercapacitor for energy storage systems and related manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6682707B2 (ja) | 2020-04-15 |
CN112088409A (zh) | 2020-12-15 |
EP3790026A4 (en) | 2022-01-19 |
KR20200135422A (ko) | 2020-12-02 |
KR102433699B1 (ko) | 2022-08-18 |
JPWO2019212007A1 (ja) | 2020-05-07 |
CN112088409B (zh) | 2023-11-03 |
US20210104776A1 (en) | 2021-04-08 |
US12087905B2 (en) | 2024-09-10 |
EP3790026A1 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019212007A1 (ja) | イオン伝導体および蓄電デバイス | |
CN112041272B (zh) | 离子传导性粉末、离子传导性成型体和蓄电设备 | |
JP6242620B2 (ja) | 全固体電池 | |
JP6735083B2 (ja) | イオン伝導体およびリチウム電池 | |
JP5970284B2 (ja) | 全固体電池 | |
CN111033859A (zh) | 固体电解质及全固体电池 | |
JP6682708B1 (ja) | イオン伝導体およびリチウム電池 | |
JP6442134B2 (ja) | 全固体電池、及び、全固体電池の製造方法 | |
CN112573574A (zh) | 一种通过调控锂空位含量制备石榴石型固态电解质的方法 | |
JP6063283B2 (ja) | 全固体電池、及び、全固体電池の製造方法 | |
JP2019091583A (ja) | リチウム二次電池 | |
JP6672485B2 (ja) | イオン伝導体、リチウム電池、および、イオン伝導体の製造方法 | |
JP7253956B2 (ja) | リチウムイオン伝導体の製造方法、リチウムイオン伝導体および蓄電デバイス | |
JP2018186016A (ja) | リチウム電池およびリチウム電池の製造方法 | |
JP7075006B2 (ja) | 固体電解質、及びその製造方法、並びに電池、及びその製造方法 | |
WO2020170463A1 (ja) | イオン伝導体、蓄電デバイス、および、イオン伝導体の製造方法 | |
JP7445504B2 (ja) | リチウムイオン伝導体、蓄電デバイス、および、リチウムイオン伝導体の製造方法 | |
WO2024047912A1 (ja) | 全固体リチウムイオン電池の評価方法 | |
JP2020145009A (ja) | イオン伝導体および蓄電デバイス | |
JP2019091582A (ja) | リチウム二次電池用の正極およびリチウム二次電池 | |
JP2020098703A (ja) | イオン伝導体および蓄電デバイス | |
JP2019102214A (ja) | リチウム蓄電デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019551724 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19797047 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207029803 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019797047 Country of ref document: EP Effective date: 20201202 |