WO2019208557A1 - 溶銑の脱りん方法 - Google Patents
溶銑の脱りん方法 Download PDFInfo
- Publication number
- WO2019208557A1 WO2019208557A1 PCT/JP2019/017185 JP2019017185W WO2019208557A1 WO 2019208557 A1 WO2019208557 A1 WO 2019208557A1 JP 2019017185 W JP2019017185 W JP 2019017185W WO 2019208557 A1 WO2019208557 A1 WO 2019208557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot metal
- gas
- blowing
- dephosphorization
- blowing lance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
- C21C1/025—Agents used for dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/32—Blowing from above
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
- C21C7/0645—Agents used for dephosphorising or desulfurising
Definitions
- the present invention relates to a hot metal dephosphorization method using a converter.
- This application has priority based on Japanese Patent Application No. 2018-082767 filed in Japan on April 24, 2018 and Japanese Patent Application No. 2019-004338 filed in Japan on January 15, 2019. Insist and incorporate these content here.
- the dephosphorization blowing is performed at a hot metal stage at a relatively low temperature of about 1300 to 1400 ° C.
- a converter is often used, and a top-bottom blown converter is particularly suitable.
- steel is refined by blowing bottom blowing gas from the bottom of the converter while blowing oxygen from the top blowing lance at the top of the converter. Oxygen blown into the hot metal from the top lance acts as an oxidant necessary for dephosphorization and has less heat loss than a solid oxidation source.
- the oxidation reaction rate of phosphorus can be improved.
- decarburization blowing After dephosphorization blowing, the slag with high phosphorus concentration is separated from the hot metal, and for the purpose of removing the remaining phosphorus and decarburization, new refining material is added to the hot metal and the top of the converter is blown.
- Decarburization blowing is performed by blowing oxygen from the lance at high speed and blowing bottom blowing gas from the bottom of the converter. The decarburization reaction in this decarburization blowing proceeds as the oxygen supply rate increases. Therefore, in order to improve production efficiency, it is preferable to increase the rate of decarburization reaction by increasing the oxygen supply rate.
- the reaction rate is governed by the mass transfer rate of phosphorus, either or both of the metal side and the slag side. Therefore, it is preferable to make the blowing time as long as possible by reducing the oxygen supply rate and suppressing slag foaming described later.
- MURC Multi-Refining Converter
- the top lance of the converter is provided with a nozzle having a predetermined number of nozzle holes at the tip, and oxygen is blown from the nozzle toward the molten iron surface in the converter.
- the upper blow lance has an upper limit and a lower limit of the acid feed rate depending on the tuyere shape (nozzle diameter and number of nozzle holes).
- the MURC method it is necessary to control the acid feed rate with a single top blowing lance attached to the converter.
- decarburization blowing after dephosphorization blowing carbon contained in a large amount in the molten iron is burned in a short time for decarburization, so blowing at a high acid feed rate is required.
- top blowing lances designed to achieve such high-speed acid delivery the upper limit of the acid delivery rate is set to a level that enables high-speed acid delivery in decarburization blowing, so that the acid delivery rate is inevitably.
- the lower limit of the speed is also a high value.
- the present invention has been made in view of the above circumstances, and in a hot metal dephosphorization method using a converter, a hot metal dephosphorization method capable of stably and economically suppressing slag forming.
- the purpose is to provide.
- the present inventors diligently studied a method for solving the above-mentioned problem, and by supplying a mixed gas of oxygen gas and inert gas from the top blowing lance to the hot metal, the slag forming was suppressed and the oxygen supply rate was reduced. I found out that I can do it.
- the summary of the hot metal dephosphorization method is as follows.
- a hot metal dephosphorization method comprising the step of starting to spray a mixed gas of oxygen gas and inert gas onto the hot metal.
- ⁇ TOP 0.137 ⁇ cos ⁇ ⁇ (Q I ⁇ M I + Q O2 ⁇ M O2 ) ⁇ (Q I + Q O2 ) 2 / (Wm ⁇ ⁇ 2 ⁇ D 3 ⁇ H) (1) here, ⁇ is the nozzle inclination angle (°) of the upper blowing lance, Q I is a flow rate (Nm 3 / s) of the inert gas contained in the mixed gas, M I is the molecular weight of the inert gas contained in the mixed gas, Q O2 is the flow rate of the oxygen gas (Nm 3 / s) contained in the mixed gas, M O2 is the molecular weight of the oxygen gas contained in the mixed gas, Wm is the weight (t) of the hot metal,
- the slag forming during dephosphorization blowing is suppressed and the phosphorus concentration is sufficiently reduced without causing an increase in cost.
- Dephosphorization can be performed.
- the upper and lower limits of the gas supply rate are determined by the tuyere shape (nozzle diameter and number of nozzle holes) of the top blowing lance of the converter.
- the upper limit of the gas supply rate is set so that high-speed oxygen feed in decarburization blowing can be realized.
- the lower limit of the gas supply rate becomes a high value. If the supply rate of oxygen blown from the top lance to the hot metal is operated below the lower limit of the supply rate determined by the tuyere shape, oxygen gas is not sufficiently supplied to the hot metal. As a result, there are safety problems due to poor dephosphorization or flashback. Therefore, if the oxygen supply rate in decarburization blowing is increased in order to improve production efficiency, the oxygen supply rate in dephosphorization blowing is inevitably increased.
- the lower limit value is set for the supply speed of the gas blown from the top blowing lance to the hot metal.
- the minimum value of the oxygen supply rate that is possible on the equipment is the lower limit value of the gas supply rate.
- this oxygen supply rate is higher than the upper limit of the preferable oxygen supply rate in the dephosphorization blowing, the supplied oxygen reacts with Fe in the hot metal to produce excessive FeO.
- the FeO concentration in the slag is high, a large amount of CO bubbles are generated due to the reaction with C in the molten iron, so slag forming occurs at an early timing of blowing.
- the FeO concentration in the slag also contributes to the progress of the dephosphorization reaction, but when the FeO concentration is excessive, slopping occurs and the blowing is interrupted.
- the dephosphorization reaction has an adverse effect.
- FIG. 1 is a longitudinal sectional view showing a schematic configuration of a converter 1 according to the present embodiment.
- the mixed gas after the oxygen gas and the inert gas are mixed using the top blowing lance 3 is sprayed toward the liquid level of the hot metal 2 in the converter 1.
- By mixing oxygen gas and inert gas it is possible to spray oxygen onto the hot metal 2 at a low supply rate without falling below the lower limit set value of the gas supply rate of the upper blowing lance 3. That is, by blowing a gas in which oxygen gas and inert gas are mixed from the upper blowing lance 3, it is possible to reduce the oxygen supply rate, suppress the generation of FeO, and suppress slag forming.
- the slag forming is promoted as the temperature is high, and the dephosphorization reaction is promoted as the temperature is low. Focusing on the temperature of the hot metal or slag when only oxygen gas is blown into the hot metal 2, heat is generated by the oxidation reaction between oxygen and each hot metal component, so that slag forming is promoted and dephosphorization reaction is suppressed. .
- the inert gas does not react with the hot metal, it works as a cooling gas for the hot metal 2 and the slag. Accordingly, blowing after mixing oxygen gas and inert gas in advance is more effective in both suppressing slag foaming and promoting dephosphorization reaction than in blowing only oxygen gas.
- the inert gas is, for example, N 2 gas.
- N 2 gas is less expensive than other inert gases, and can exhibit the above-described effects at low cost. Further, the same effect can be exhibited even when Ar gas, CO 2 gas, or H 2 O gas is used instead of N 2 gas.
- dephosphorization blowing at the beginning of blowing, oxygen gas is blown from the upper blowing lance 3 and then, at a predetermined timing, switching to blowing of a mixed gas of oxygen gas and inert gas is performed.
- Decarburization proceeds even during dephosphorization, and the carbon concentration in the hot metal 2 gradually decreases.
- the carbon concentration in the molten iron needs to be 3.0% by mass or more. If oxygen gas is continuously supplied at a high supply rate until the carbon concentration in the hot metal 2 becomes 3.0 mass% or less, slapping occurs.
- the timing for starting the spraying of the mixed gas is preferably when the carbon concentration in the molten iron 2 is 3.0% by mass or more and 3.8% by mass or less. Furthermore, the lower limit value of the carbon concentration is more preferably 3.1% by mass.
- dephosphorization blowing is performed by adding a refining material to hot metal from the furnace port of a converter and supplying oxygen from an upper blowing lance.
- the refining agent 4 is added from the furnace port of the converter 1 to the hot metal 2 and only the mixed gas of oxygen gas and inert gas is supplied from the top blowing lance 3.
- the refining agent 4 is basically supplied only from the furnace port of the converter 1 and is not supplied from other places such as the top blowing lance 3. That is, only the mixed gas is sprayed from the top blowing lance 3 toward the hot metal 2.
- the refining agent 4 may be added from the top blowing lance 3 in addition to the furnace port.
- ⁇ TOP 0.137 ⁇ cos ⁇ ⁇ Q 3 ⁇ M / (Wm ⁇ ⁇ 2 ⁇ D 3 ⁇ H) (1) '
- ⁇ is the nozzle inclination angle (°) of the top blowing lance
- Q is the top blowing gas flow rate (Nm 3 / s)
- M is the gas molecular weight
- Wm is the hot metal weight (t)
- ⁇ is the nozzle hole of the top blowing lance.
- the number ( ⁇ ) is the outlet diameter (m) of the nozzle of the upper blowing lance
- H is the lance gap (distance between the nozzle of the upper blowing lance and the stationary liquid surface) (m).
- ⁇ TOP 0.137 ⁇ cos ⁇ ⁇ (Q I ⁇ M I + Q O2 ⁇ M O2 ) ⁇ (Q I + Q O2 ) 2 / (Wm ⁇ ⁇ 2 ⁇ D 3 ⁇ H) (1) here, ⁇ is the nozzle inclination angle (°) of the top blowing lance 3, Q I is the flow rate of inert gas (Nm 3 / s) contained in the mixed gas, M I is the molecular weight of the inert gas contained in the mixed gas, Q O2 is the flow rate of oxygen gas (Nm 3 / s) contained in the mixed gas, M O2 is the molecular weight of oxygen gas contained in the mixed gas, Wm is the weight (t) of the hot metal, ⁇ is the number of nozzle holes ( ⁇ ) in the top blowing lance 3, D is the outlet diameter (m) of the nozzle of the top blowing lance 3, H is the distance (m) between the nozzle of the top blowing lance 3 and the stationary liquid surface of the hot
- the reason for the suppression of slopping is 140 (W / t) or less, and the generation of gas accompanying the progress of decarburization reaction by suppressing the scattering of granular iron into the slag and the stirring of the slag / metal interface. Is estimated to be suppressed.
- the flow rate of each gas is a flow rate value per ton of hot metal obtained by individually measuring the gas supplied to the upper blowing lance 3 with an orifice gas flow meter.
- N I / N O2 is smaller than 0.03, the amount of inert gas is small and the oxygen supply rate cannot be lowered sufficiently, so that slag forming cannot be suppressed.
- N I / N O2 when the oxygen supply rate is low, so that the rate of formation of FeO in the slag is slow, and the progress of the dephosphorylation reaction shown in the formula (A) is slow.
- this invention is adapted when the charging basicity of slag is 3.0 or less.
- the basicity of charging is defined as “the total amount of CaO contained in the auxiliary raw material supplied into the converter” as a molecule, and “the amount of SiO 2 contained in the auxiliary raw material supplied into the converter”.
- the hot metal extracted from the blast furnace and desulfurized by the KR (Kanbara Reactor) method was used.
- the KR method is a method in which an impeller is rotated in a hot metal ladle, a desulfurizing agent is dispersed in the hot metal, and a desulfurization reaction is caused at the interface between the dispersed particles and the hot metal and the interface between the hot metal bath surface and the floating desulfurizing agent. .
- This hot metal was charged into an upper bottom blowing converter (converter 1 shown in FIG. 1).
- the carbon concentration in the hot metal 2 in the converter 1 was 4.3% by mass.
- the shapes of the nozzles provided at the tip of the upper blowing lance 3 are all the same, and the lower limit of the gas supply rate is 98 Nm 3 / hr ⁇ t.
- the bottom blowing conditions are all the same. More specifically, the nozzle inclination angle ⁇ (°) of the upper blowing lance 3 is 18 °, the nozzle hole number ⁇ ( ⁇ ) of the upper blowing lance 3 is 5, and the nozzle outlet diameter of the upper blowing lance 3 is 5.
- the charging basicity was set to 1.0 to 2.0.
- “the sum of the mass of CaO contained in the secondary raw material supplied into the converter” is a molecule
- “the total amount of SiO 2 contained in the secondary raw material supplied into the converter” it is a numerical value of the ratio is calculated the sum of the "hot metal and Si contained in the scrap SiO 2 mass in the case of the oxidized to the total SiO 2" as the denominator.
- N O2 unit of flow rate N I of the inert gas [Nm 3 / hr ⁇ t] denotes the gas flow rate in standard conditions per molten iron 1t, 1 hour.
- ⁇ TOP is the stirring power density by the above-mentioned top blowing (1).
- the lance gap H (the distance between the nozzle of the top blowing lance and the stationary liquid surface) is appropriately changed for each example so that the stirring power density becomes the value shown in Table 1.
- No. 7 is a comparative example in which only oxygen gas was sprayed onto the hot metal without mixing nitrogen gas from the top blowing lance.
- the blowing time shown in Table 1 is the time of dephosphorization blowing, and the phosphorus concentration in the steel after dephosphorization blowing is the steel obtained by analyzing the metal sample collected after dephosphorization blowing with an emission spectroscopic analyzer. Medium phosphorus concentration.
- the “carbon concentration at the start of spraying the mixed gas” in Table 1 is the carbon concentration in the hot metal 2 and was determined by a combustion method using an infrared absorption device manufactured by LECO Japan.
- Example No. in Table 1 Nos. 1 to 6 and 9 to 13 are comparative example Nos. Compared with 7 and 8, the phosphorus concentration in the steel after dephosphorization blowing (hereinafter, after dephosphorization blowing [% P]) became lower. This is because when the gas is supplied to the hot metal 2 in the converter 1 using the top blowing lance 3, the supplied gas is changed from oxygen gas to oxygen gas when the carbon concentration in the hot metal is 3.0% by mass or more. By switching to a mixed gas with inert gas and spraying, the supply flow rate of oxygen gas is reduced, slopping from the furnace port of the converter 1 due to slag forming is suppressed, and dephosphorization blowing time is compared Example No. This is presumed to be longer than 7 and 8.
- No. 2 is No.2. Compared with 1, there was almost no difference in the blowing time and [% P] after dephosphorization blowing.
- No. 3 is No.3. Compared with 2, blowing time was short and [% P] was high after dephosphorization blowing. From this result, even if the timing of switching the blowing gas from oxygen gas to mixed gas is so fast that the carbon concentration in the hot metal exceeds 3.8% by mass, the dephosphorization effect is the same as in the case of 3.8% by mass. Conceivable.
- No. No. 4 is No.4. Compared with 3, blowing time was long, and [% P] was low after dephosphorization blowing. This is presumed to be because the generation of gas accompanying the progress of the decarburization reaction is suppressed and the timing of the occurrence of slopping is delayed by setting the TOP to 140 (W / t) or less.
- the present invention can be applied as a method for dephosphorizing hot metal in a converter.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本願は、2018年4月24日に日本国に出願された特願2018-082767号と、2019年1月15日に日本国に出願された特願2019-004338号と、に基づき優先権を主張し、これらの内容をここに援用する。
2[P]+5(FeO)+3(CaO)=(3CaO・P2O5)+5Fe ・・・(A)
ΕTOP=0.137・cosθ・(QI・MI+QO2・MO2)・(QI+QO2)2/(Wm・Λ2・D3・H) ・・・(1)
ここで、
θは、前記上吹きランスのノズル傾斜角(°)、
QIは、前記混合ガスに含まれる前記不活性ガスの流量(Nm3/s)、
MIは、前記混合ガスに含まれる前記不活性ガスの分子量、
QO2は、前記混合ガスに含まれる前記酸素ガスの流量(Nm3/s)、
MO2は、前記混合ガスに含まれる前記酸素ガスの分子量、
Wmは、前記溶銑の重量(t)、
Λは、前記上吹きランスのノズル孔数(-)、
Dは、前記上吹きランスのノズルの出口径(m)、
Hは、前記上吹きランスの前記ノズルと前記溶銑の静止液面との距離(m)、
である。
また、本発明者らは、上吹きランス3から酸素と不活性ガスとの混合ガスを吹付け開始するタイミングについて鋭意検討した。その結果、溶銑2中の炭素濃度が3.8質量%よりも高いと、スロッピングを抑制して吹錬時間を延長するための効果に対し、吹付け開始するタイミングを変えても大きな差がないことを明らかにした。
精錬剤4は、基本的には転炉1の炉口のみから供給し、上吹きランス3等その他箇所からは供給しない。すなわち、上吹きランス3からは、混合ガスのみを溶銑2に向けて吹き付ける。ただし、必要に応じて、前記炉口に加えて上吹きランス3からも精錬剤4を添加してもよい。
ここで、
θは、上吹きランス3のノズル傾斜角(°)、
QIは、混合ガスに含まれる不活性ガスの流量(Nm3/s)、
MIは、混合ガスに含まれる不活性ガスの分子量、
QO2は、混合ガスに含まれる酸素ガスの流量(Nm3/s)、
MO2は、混合ガスに含まれる酸素ガスの分子量、
Wmは、溶銑の重量(t)、
Λは、上吹きランス3のノズル孔数(-)、
Dは、上吹きランス3のノズルの出口径(m)、
Hは、上吹きランス3の前記ノズルと、溶銑2の静止液面との距離(m)、
である。
なお、NI/NO2の下限値を、0.03に代えて0.05としてもよい。すなわち、NI/NO2=0.05~0.20としてもよい。
また、本発明は、スラグの装入塩基度が3.0以下の場合に適応することが好ましい。ここで、この装入塩基度とは、「転炉内へ供給する副原料中に含まれるCaO質量の合計」を分子とし、「転炉内へ供給する副原料中に含まれるSiO2質量の合計」と「溶銑およびスクラップ中に含まれているSiが全部SiO2に酸化されたとした場合のSiO2質量」との合計を分母として計算される比の数値である。
装入塩基度が3.0より大きい場合、スラグ中の固相割合が高くなり、その効果によりスロッピングが抑制される傾向があるためである。さらに言うと、2.0以下の場合が好ましい。
転炉底の羽口(図示せず)から底吹きガスとして窒素を主成分とするガスを所定の流量吹き込みながら、上吹きランス3から酸素ガスを99Nm3/hr・tの流量で溶銑2に吹き付け、脱りん吹錬を開始した。脱りん吹錬が進行し、溶銑中炭素濃度が表1の「混合ガス吹き付け開始時の炭素濃度」に至ったタイミングで、表1に示す各条件で酸素ガスと窒素ガスとの混合ガスに切り替え、混合ガスを溶銑に吹き付けて脱りん吹錬を継続した。その後、スロッピングが発生したタイミングで脱りん吹錬を終了とし、溶銑サンプルを採取した。溶銑サンプルは、発光分光分析装置を用いて各成分の定量分析を行った。
また、表1における「混合ガス吹付開始時の炭素濃度」は、溶銑2中の炭素濃度であり、LECOジャパン製の赤外線吸収装置を用いた燃焼法により求めた。
2 溶銑
3 上吹きランス
4 精錬剤
Claims (6)
- 上吹きランスを備える転炉内で溶銑を脱りんする方法であって、
前記転炉内の溶銑中の炭素濃度が3.0質量%以上の状態で、上吹きランスを用いて、前記溶銑に、酸素ガスと不活性ガスとの混合ガスの吹付けを開始する工程を有する
ことを特徴とする、溶銑の脱りん方法。 - 前記上吹きランスからは、前記混合ガスのみを前記溶銑に向けて吹き付ける
ことを特徴とする、請求項1に記載の溶銑の脱りん方法。 - 前記溶銑中の前記炭素濃度が3.0質量%以上、3.8質量%以下の状態で、前記混合ガスの吹付けを開始することを特徴とする、請求項1または請求項2に記載の溶銑の脱りん方法。
- 下記(1)式で規定される、上吹きランスから供給する混合ガスの撹拌動力密度ΕTOPを140W/t以下とすることを特徴とする請求項1~請求項3のいずれか1項に記載の溶銑の脱りん方法。
ΕTOP=0.137・cosθ・(QI・MI+QO2・MO2)・(QI+QO2)2/(Wm・Λ2・D3・H) ・・・(1)
ここで、
θは、前記上吹きランスのノズル傾斜角(°)、
QIは、前記混合ガスに含まれる前記不活性ガスの流量(Nm3/s)、
MIは、前記混合ガスに含まれる前記不活性ガスの分子量、
QO2は、前記混合ガスに含まれる前記酸素ガスの流量(Nm3/s)、
MO2は、前記混合ガスに含まれる前記酸素ガスの分子量、
Wmは、前記溶銑の重量(t)、
Λは、前記上吹きランスのノズル孔数(-)、
Dは、前記上吹きランスのノズルの出口径(m)、
Hは、前記上吹きランスの前記ノズルと前記溶銑の静止液面との距離(m)、
である。 - 前記酸素ガスの流量NO2に対する前記不活性ガスの流量NIの比が、NI/NO2=0.03~0.20であることを特徴とする、請求項1~請求項4のいずれか一項に記載の溶銑の脱りん方法。
- 前記酸素ガスの流量NO2に対する前記不活性ガスの流量NIの比が、NI/NO2=0.05~0.20であることを特徴とする、請求項5に記載の溶銑の脱りん方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020515476A JP7001148B2 (ja) | 2018-04-24 | 2019-04-23 | 溶銑の脱りん方法 |
KR1020207012914A KR102412350B1 (ko) | 2018-04-24 | 2019-04-23 | 용선의 탈인 방법 |
CN201980005679.4A CN111344421A (zh) | 2018-04-24 | 2019-04-23 | 铁水的脱磷方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018082767 | 2018-04-24 | ||
JP2018-082767 | 2018-04-24 | ||
JP2019004338 | 2019-01-15 | ||
JP2019-004338 | 2019-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208557A1 true WO2019208557A1 (ja) | 2019-10-31 |
Family
ID=68295003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017185 WO2019208557A1 (ja) | 2018-04-24 | 2019-04-23 | 溶銑の脱りん方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7001148B2 (ja) |
KR (1) | KR102412350B1 (ja) |
CN (1) | CN111344421A (ja) |
TW (1) | TWI703219B (ja) |
WO (1) | WO2019208557A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4273273A4 (en) * | 2021-01-26 | 2024-07-10 | Jfe Steel Corp | METHOD FOR REFINING MOLTEN IRON |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11269524A (ja) * | 1998-03-19 | 1999-10-05 | Nippon Steel Corp | 溶銑予備処理方法 |
JP2005048238A (ja) * | 2003-07-29 | 2005-02-24 | Jfe Steel Kk | 溶銑の脱燐方法 |
JP2014221932A (ja) * | 2013-05-13 | 2014-11-27 | 株式会社神戸製鋼所 | 鉄歩留の高い溶銑脱りん方法 |
JP5761459B2 (ja) * | 2013-01-24 | 2015-08-12 | Jfeスチール株式会社 | 溶銑の予備処理方法 |
JP2016029212A (ja) * | 2014-07-23 | 2016-03-03 | Jfeスチール株式会社 | 溶銑の精錬方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5948925B2 (ja) | 1977-08-15 | 1984-11-29 | 新日本製鐵株式会社 | 転炉滓のフオ−ミング鎮静剤 |
JPS5671801A (en) | 1979-11-12 | 1981-06-15 | Nippon Columbia Co Ltd | Measuring device for record playing time |
JPH1150124A (ja) | 1997-08-04 | 1999-02-23 | Nkk Corp | 溶湯及び溶滓の収納容器内のフォーミングスラグの鎮静材 |
CN1252288C (zh) * | 2003-05-29 | 2006-04-19 | 宝山钢铁股份有限公司 | 转炉氧氮顶吹脱磷方法 |
JP4907411B2 (ja) | 2007-04-06 | 2012-03-28 | 新日本製鐵株式会社 | スラグの鎮静方法 |
CN103160637A (zh) * | 2013-02-26 | 2013-06-19 | 首钢总公司 | 转炉顶吹氧枪混吹氧气与氮气的低磷钢冶炼方法 |
BR112016001198B1 (pt) * | 2013-07-25 | 2020-10-13 | Jfe Steel Corporation | método para processo de desfosforização de ferro fundido |
CN104928439B (zh) * | 2015-07-08 | 2017-11-17 | 北京科技大学 | 一种利用co2在双联转炉中提高脱磷效率的方法 |
JP6665884B2 (ja) | 2017-04-27 | 2020-03-13 | Jfeスチール株式会社 | 転炉製鋼方法 |
CN107151724B (zh) * | 2017-05-02 | 2019-03-29 | 北京科技大学 | 脱磷转炉煤气质能转换循环多元喷吹高效脱磷方法和装置 |
-
2019
- 2019-04-22 TW TW108113966A patent/TWI703219B/zh active
- 2019-04-23 CN CN201980005679.4A patent/CN111344421A/zh active Pending
- 2019-04-23 KR KR1020207012914A patent/KR102412350B1/ko active IP Right Grant
- 2019-04-23 JP JP2020515476A patent/JP7001148B2/ja active Active
- 2019-04-23 WO PCT/JP2019/017185 patent/WO2019208557A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11269524A (ja) * | 1998-03-19 | 1999-10-05 | Nippon Steel Corp | 溶銑予備処理方法 |
JP2005048238A (ja) * | 2003-07-29 | 2005-02-24 | Jfe Steel Kk | 溶銑の脱燐方法 |
JP5761459B2 (ja) * | 2013-01-24 | 2015-08-12 | Jfeスチール株式会社 | 溶銑の予備処理方法 |
JP2014221932A (ja) * | 2013-05-13 | 2014-11-27 | 株式会社神戸製鋼所 | 鉄歩留の高い溶銑脱りん方法 |
JP2016029212A (ja) * | 2014-07-23 | 2016-03-03 | Jfeスチール株式会社 | 溶銑の精錬方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7001148B2 (ja) | 2022-01-19 |
CN111344421A (zh) | 2020-06-26 |
KR20200062305A (ko) | 2020-06-03 |
TW201945549A (zh) | 2019-12-01 |
JPWO2019208557A1 (ja) | 2020-10-22 |
TWI703219B (zh) | 2020-09-01 |
KR102412350B1 (ko) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI685577B (zh) | 高錳鋼的冶煉方法 | |
CN109207672A (zh) | 一种超低磷钢生产过程中的排渣方法以及超低磷钢的生产方法 | |
JP4715384B2 (ja) | 溶銑の脱燐処理方法及び脱燐処理用上吹きランス | |
JP5135836B2 (ja) | 溶銑の脱燐処理方法 | |
JP5553167B2 (ja) | 溶銑の脱りん方法 | |
WO2019208557A1 (ja) | 溶銑の脱りん方法 | |
JPS6023163B2 (ja) | 鋼の製錬法 | |
JP5915568B2 (ja) | 転炉型精錬炉における溶銑の精錬方法 | |
JP2015042780A (ja) | 転炉における溶銑の脱燐処理方法 | |
JP2007270238A (ja) | 溶銑の脱燐処理方法 | |
JP4561067B2 (ja) | 酸素上吹き精錬方法 | |
JP4360270B2 (ja) | 溶鋼の精錬方法 | |
JP4419594B2 (ja) | 溶銑の精錬方法 | |
WO2020152945A1 (ja) | 低炭素フェロマンガンの製造方法 | |
JP2009299126A (ja) | 溶銑の脱硫方法 | |
JP4686880B2 (ja) | 溶銑の脱燐方法 | |
JP5304816B2 (ja) | 溶鋼の製造方法 | |
JP2019090078A (ja) | 吹き込み用浸漬ランス及び溶融鉄の精錬方法 | |
JP4025713B2 (ja) | 溶銑の脱燐精錬方法 | |
JP2002012907A (ja) | 金属溶解炉、製錬炉及び精錬炉並びに真空精錬炉の操業方法 | |
WO2024190908A1 (ja) | 溶鋼の製造方法およびアーク炉 | |
JP5282539B2 (ja) | 溶銑の脱燐方法 | |
JP4686873B2 (ja) | 溶銑の脱燐方法 | |
JP2024144220A (ja) | 製鋼炉の操業方法 | |
SU1604165A3 (ru) | Способ производства стали в конвертере |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19794047 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020515476 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207012914 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19794047 Country of ref document: EP Kind code of ref document: A1 |