WO2019187538A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2019187538A1
WO2019187538A1 PCT/JP2019/001803 JP2019001803W WO2019187538A1 WO 2019187538 A1 WO2019187538 A1 WO 2019187538A1 JP 2019001803 W JP2019001803 W JP 2019001803W WO 2019187538 A1 WO2019187538 A1 WO 2019187538A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
lithium composite
particles
oxide particles
positive electrode
Prior art date
Application number
PCT/JP2019/001803
Other languages
English (en)
French (fr)
Inventor
堂上 和範
裕貴 渡邉
晋也 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980005022.8A priority Critical patent/CN111201649B/zh
Priority to JP2020509712A priority patent/JP7209303B2/ja
Priority to US16/981,753 priority patent/US11742481B2/en
Priority to EP19776687.6A priority patent/EP3780176B1/en
Publication of WO2019187538A1 publication Critical patent/WO2019187538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technology of a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and charging and discharging by moving lithium ions and the like between the positive electrode and the negative electrode Batteries are widely used.
  • Patent Document 1 discloses that a lithium composite oxide composed of secondary particles having a relatively large particle size, in which primary particles having a small particle size are aggregated, and a primary particle having a small particle size are aggregated.
  • a positive electrode active material including a lithium composite oxide composed of secondary particles having a small particle size is disclosed.
  • an object of the present disclosure is to provide a nonaqueous electrolyte secondary battery capable of suppressing the amount of gas generated when stored at a high temperature while being charged to a high voltage.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode includes lithium composite oxide particles A and B that include Ni and Mn, and the lithium composite oxide.
  • the product particle A is composed of secondary particles a2 in which primary particles a1 are aggregated, includes at least one of zirconium and boron, and the lithium composite oxide particle B has a larger particle size than the primary particles a1.
  • the primary particles b1 and the primary particles b1 are aggregated and are composed of at least one of secondary particles b2 having a particle size smaller than the secondary particles a2, and the content ratio of the lithium composite oxide particles A and B Is characterized by having a mass ratio in the range of 8: 2 to 4: 6.
  • a nonaqueous electrolyte secondary battery that can suppress the amount of gas generated when stored at a high temperature while being charged to a high voltage.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode includes lithium composite oxide particles A and B that include Ni and Mn, and the lithium composite oxide.
  • the product particle A is composed of secondary particles a2 in which primary particles a1 are aggregated, includes at least one of zirconium and boron, and the lithium composite oxide particle B has a larger particle size than the primary particles a1.
  • the primary particles b1 and the primary particles b1 are aggregated and are composed of at least one of secondary particles b2 having a particle size smaller than the secondary particles a2, and the content ratio of the lithium composite oxide particles A and B Is in the range of 8: 2 to 4: 6 by mass ratio.
  • the reason why the amount of gas generation is suppressed when this nonaqueous electrolyte secondary battery is stored at a high temperature (for example, stored at 60 ° C.) while being charged to a high voltage (for example, 4.3 V) is not sufficiently clear. Is estimated as follows.
  • Gas generation during high temperature storage is considered to be one of the causes of metal elution from lithium composite oxide. And if it preserve
  • the nonaqueous electrolyte secondary battery according to one embodiment of the present disclosure by adding zirconium or boron to the lithium composite oxide particles, the crystal structure is stabilized and the electrochemical activity on the particle surface is stabilized. Therefore, it is assumed that the metal elution amount is suppressed.
  • the amount of metal elution from the lithium composite oxide is a lithium composite composed of secondary particles a2 having relatively large particle diameters in which primary particles a1 having relatively small particle diameters compared to lithium composite oxide particles B are aggregated. Since there are more oxide particles A than lithium composite oxide particles B, it is necessary to add at least zirconium or boron to the lithium composite oxide particles A. However, since only the lithium composite oxide particles A to which zirconium or boron is added cannot sufficiently suppress the amount of gas generated when stored at a high temperature in a state of being charged to a high voltage, it is relatively in comparison with the lithium composite oxide A.
  • lithium composite oxide particles B composed of primary particles b1 having a large particle diameter and secondary particles b2 having a relatively small particle diameter obtained by agglomerating the primary particles b1 are mixed with each other to effectively reduce the amount of gas generated. Suppressed.
  • the mixing ratio of the lithium composite oxide particles A and B in the present embodiment ensures a high filling property at the positive electrode and contributes to an improvement in battery capacity.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery which is an example of an embodiment.
  • a non-aqueous electrolyte secondary battery 10 shown in FIG. 1 includes a wound electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13, a non-aqueous electrolyte, and an electrode body 14 above and below, respectively. Insulating plates 18 and 19 disposed, and a battery case 15 that accommodates the members are provided.
  • the battery case 15 includes a bottomed cylindrical case body 16 and a sealing body 17 that closes an opening of the case body 16.
  • the wound electrode body 14 other forms of electrode bodies such as a stacked electrode body in which positive and negative electrodes are alternately stacked via separators may be applied.
  • the battery case 15 include metal cases such as a cylindrical shape, a square shape, a coin shape, and a button shape, and a resin case (laminated battery) formed by laminating a resin sheet.
  • the case body 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the case main body 16 and the sealing body 17 to ensure the sealing inside the battery.
  • the case main body 16 includes, for example, an overhanging portion 22 that supports the sealing body 17 in which a part of the side surface portion protrudes inward.
  • the overhang portion 22 is preferably formed in an annular shape along the circumferential direction of the case body 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member which comprises the sealing body 17 has disk shape or a ring shape, for example, and each member except the insulating member 25 is electrically connected mutually.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at the center, and an insulating member 25 is interposed between the peripheral edges.
  • the lower valve body 24 When the internal pressure of the non-aqueous electrolyte secondary battery 10 rises due to heat generation due to an internal short circuit or the like, the lower valve body 24 is deformed and broken, for example, so as to push the upper valve body 26 toward the cap 27, so The current path between the bodies 26 is interrupted. When the internal pressure further increases, the upper valve body 26 is broken and the gas is discharged from the opening of the cap 27.
  • the positive electrode lead 20 attached to the positive electrode 11 extends through the through hole of the insulating plate 18 to the sealing body 17 side, and the negative electrode lead 21 attached to the negative electrode 12 is insulated.
  • the case 19 extends to the bottom side of the case body 16 through the outside of the plate 19.
  • the positive electrode lead 20 is connected to the lower surface of the filter 23 which is the bottom plate of the sealing body 17 by welding or the like, and the cap 27 which is the top plate of the sealing body 17 electrically connected to the filter 23 serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the case main body 16 by welding or the like, and the case main body 16 serves as a negative electrode terminal.
  • the positive electrode 11 includes, for example, a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode active material layer includes a positive electrode active material. Further, the positive electrode active material layer may bind the positive electrode active materials to ensure the mechanical strength of the positive electrode active material layer, or may increase the binding property between the positive electrode active material layer and the positive electrode current collector. In view of being able to do so, it is preferable to include a binder. In addition, the positive electrode active material layer preferably includes a conductive material in that the conductivity of the layer can be improved.
  • the positive electrode active material includes lithium composite oxide particles A containing Ni and Mn and lithium composite oxide particles B containing Ni and Mn.
  • the lithium composite oxide particle A is composed of secondary particles a2 in which primary particles a1 are aggregated, and includes at least one of zirconium and boron.
  • a zirconium compound such as a zirconium-containing oxide is formed on the particle surface (primary particle a1 or secondary particle a2) of the lithium composite oxide A.
  • any form such as a case where it is attached as a boron compound such as a boron-containing oxide.
  • the lithium composite oxide particles B are smaller than the secondary particles a2 of the lithium composite oxide particles A, and the primary particles b1 having a larger particle size than the primary particles a1 of the lithium composite oxide particles A and the primary particles b1 aggregate. It is comprised from at least any one among the secondary particles b2 which have a particle size.
  • the lithium composite oxide particles B preferably contain at least one of zirconium and boron from the viewpoint of suppressing the amount of metal elution from the lithium composite oxide B.
  • the particle diameter of the primary particle b1 of the lithium composite oxide particle B is not particularly limited as long as it is larger than the particle diameter of the primary particle a1 of the lithium composite oxide particle A.
  • charging to a high voltage is possible.
  • it is preferably in the range of 3.0 ⁇ m to 5.0 ⁇ m.
  • the particle size of the primary particles a1 of the lithium composite oxide particles A is, for example, a point that effectively suppresses the amount of gas generated when stored at a high temperature while being charged to a high voltage, or battery capacity and charge / discharge cycle characteristics.
  • improving the thickness it is preferably in the range of 0.3 ⁇ m to 0.9 ⁇ m.
  • the particle size of the primary particles is an average particle size measured by the following method.
  • the positive electrode 11 is embedded in a resin, a cross section of the positive electrode 11 is produced by cross section polisher (CP) processing, and the cross section of the positive electrode active material layer in this cross section is photographed by SEM.
  • CP cross section polisher
  • lithium composite oxide particle powder is embedded in a resin, and a cross section of the lithium composite oxide particle is produced by cross-section polisher (CP) processing or the like, and this cross section is photographed by SEM.
  • 20 primary particles are randomly selected from the cross-sectional SEM image. The grain boundaries of the 20 primary particles selected are observed, the outer shape of the primary particles is specified, the major axis of each of the 20 primary particles is determined, and the average value thereof is taken as the primary particle size.
  • the secondary particle b2 has a particle size smaller than that of the secondary particle a2 of the lithium composite oxide particle A.
  • the point of effectively suppressing the amount of gas generated when stored at a high temperature while being charged to a high voltage, or the point of improving the battery capacity and charge / discharge cycle characteristics, etc. preferably in the range of 8.0 ⁇ m to 17.5 ⁇ m.
  • the particle size of the secondary particles a2 of the lithium composite oxide particles A is, for example, a point that effectively suppresses the amount of gas generated when stored at a high temperature while being charged to a high voltage, or the battery capacity and charge / discharge cycle.
  • the range of 3.0 ⁇ m to 6.0 ⁇ m is preferable in terms of improving the characteristics.
  • the particle size of the secondary particles is an average particle size measured by the following method.
  • 20 secondary particles are randomly selected from the cross-sectional SEM image, the grain boundaries of the 20 selected secondary particles are observed, and the external shape of the secondary particles is specified.
  • the major axis of each of the secondary particles is obtained, and the average value thereof is defined as the particle size of the secondary particles.
  • the volume average particle size of the lithium composite oxide particles A is preferably 10 to 18 ⁇ m, for example, and the volume average particle size of the lithium composite oxide particles B is preferably in the range of 4 ⁇ m to 7 ⁇ m, for example.
  • the volume average particle diameter can be measured by a laser diffraction method using, for example, Microtrack Bell Co., Ltd. MT3000II.
  • the secondary particles a2 of the lithium composite oxide particles A are preferably composed of, for example, 1000 to 500,000 primary particles a1 per secondary particle. If the number of primary particles a1 per secondary particle is too small, for example, the secondary particles a2 may be miniaturized and the charge / discharge cycle characteristics may deteriorate. If the number of primary particles a1 per secondary particle is too large, the surface area becomes too large, and the metal elution suppression effect due to the addition of zirconium or boron may not be sufficiently obtained.
  • the secondary particles b2 may be composed of, for example, 2 to 20 primary particles b1 per secondary particle. preferable. If the number of primary particles b1 per secondary particle is too large, the surface area becomes large, and the metal elution amount from the lithium composite oxide particles B may increase.
  • the content ratio of the lithium composite oxide particles A and the lithium composite oxide particles B is not particularly limited as long as the mass ratio is in the range of 8: 2 to 4: 6, but is charged to a high voltage. From the standpoint of improving battery capacity or charge / discharge cycle characteristics while effectively suppressing the amount of gas generated when stored at a high temperature, it is preferably in the range of 7: 3 to 5: 5.
  • the Ni content of the lithium composite oxide particles B is preferably higher than the Ni content of the lithium composite oxide particles A.
  • the higher the Ni content the more the battery capacity can be improved.
  • the amount of metal elution during high-temperature storage increases and the amount of gas generated increases.
  • the lithium composite oxide particles B are less likely to elute metals than the lithium composite oxide particles A. Therefore, by making the Ni content of the lithium composite oxide particles B higher than the Ni content of the lithium composite oxide particles A, while suppressing the amount of gas generated when stored at a high temperature while being charged to a high voltage, the battery The capacity can be improved.
  • the Ni content of the lithium composite oxide particles B is preferably in the range of 40 mol% to 65 mol% with respect to the total number of moles of metal elements excluding lithium, and the lithium composite oxide particles A The Ni content is preferably in the range of 35 mol% to 60 mol% with respect to the total number of moles of metal elements excluding lithium.
  • the zirconium content and boron content in the lithium composite oxide particles A are, for example, in the range of 0.1 mol% to 2.0 mol% in terms of suppressing metal elution from the lithium composite oxide particles A. It is preferable. Further, when the lithium composite oxide particle B contains zirconium or boron, the zirconium content and the boron content in the lithium composite oxide particle B are in terms of suppressing metal elution from the lithium composite oxide particle B. For example, it is preferably in the range of 0.1 mol% to 1.0 mol%.
  • the lithium composite oxide particles A and B may contain other elements in addition to Ni, Mn, zirconium (Zr), and boron (B).
  • other elements in addition to Ni, Mn, zirconium (Zr), and boron (B).
  • cobalt (Co) aluminum (Al), tungsten (W ), Silicon (Si), magnesium (Mg), phosphorus (P), titanium (Ti), molybdenum (Mo), scandium (Sc), yttrium (Y), iron (Fe), copper (Cu), zinc (Zn ), Chromium (Cr), lead (Pb), and the like.
  • Mn contained in the lithium composite oxide particles A and B is eluted, and the eluted Mn is deposited on the negative electrode. It is possible to suppress the amount of Mn eluted from the composite oxide particles A and B and to suppress the amount of Mn deposited on the negative electrode. Specifically, when it is stored for 14 days in an environment of 60 ° C. while being charged to a battery voltage of 4.3 V, it can be in the range of 20 ⁇ g to 60 ⁇ g per 1 g of the negative electrode. If the amount of Mn is in the above range, it is beneficial in that the capacity deterioration after high temperature storage can be suppressed.
  • the content of the lithium composite oxide particles A and B is preferably in the range of 50% by mass to 100% by mass, for example, in the range of 80% by mass to 98% by mass with respect to the total amount of the positive electrode active material. It is more preferable.
  • the positive electrode active material may include positive electrode active material particles other than lithium composite oxide particles A and B, and examples thereof include Ni-free composite oxide particles such as LiCoO 2 and LiMn 2 O 4. It is done.
  • the content of the positive electrode active material is, for example, preferably from 70% by mass to 99% by mass, and more preferably from 80% by mass to 98% by mass with respect to the total amount of the positive electrode active material layer.
  • a method for producing lithium composite oxide particles includes: a raw material mixing step of mixing a Ni, Mn-containing composite oxide and a lithium compound to obtain a raw material mixture; firing the raw material mixture; and a lithium composite oxide containing Ni and Mn And a firing step for obtaining particles.
  • a zirconium compound or a boron compound is added when the Ni, Mn-containing composite oxide and the lithium compound are mixed in the raw material mixing step.
  • zirconium or boron is included in the lithium composite oxide particles B.
  • the particle size of the primary particles and secondary particles is controlled by controlling the mixing ratio of each raw material in the raw material mixing step, for example.
  • the mixing ratio of the Ni, Mn-containing composite oxide and the lithium compound is 1.0: The ratio is preferably in the range of 1.0 to 1.0: 1.2.
  • the mixing ratio of the Ni and Mn-containing composite oxide and the lithium compound is 1.0: The ratio is preferably in the range of 1.0 to 1.0: 1.3.
  • the particle size of the primary particles and secondary particles can be controlled, for example, by adjusting the firing temperature in the firing step.
  • the firing temperature is preferably in the range of 700 ° C. to 1100 ° C.
  • the firing time at this time is preferably 1 hour to 48 hours.
  • the firing temperature is preferably in the range of 800 ° C. to 1100 ° C.
  • the firing temperature at this time is preferably 1 to 48 hours.
  • Examples of the conductive material contained in the positive electrode active material layer include carbon powder such as carbon black, acetylene black, ketjen black, and graphite. These may be used singly or in combination of two or more.
  • binder contained in the positive electrode active material layer examples include a fluorine-based polymer and a rubber-based polymer.
  • fluorine-based polymer examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and modified products thereof.
  • PVDF polyvinylidene fluoride
  • rubber-based polymer examples include ethylene-propylene-isoprene copolymer. Examples thereof include ethylene and propylene-butadiene copolymers. These may be used alone or in combination of two or more.
  • the positive electrode 11 of this embodiment forms, for example, a positive electrode active material layer by applying and drying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like on a positive electrode current collector, It is obtained by rolling the positive electrode mixture layer.
  • the negative electrode 12 includes, for example, a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • a negative electrode current collector a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode active material layer includes, for example, a negative electrode active material, a binder, a thickener, and the like.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium ions.
  • metallic lithium lithium-aluminum alloy, lithium-lead alloy, lithium-silicon alloy, lithium- Examples thereof include lithium alloys such as tin alloys, carbon materials such as graphite, fluorinated graphite, coke, and organic fired bodies, and metal oxides such as SnO 2 , SnO, and TiO 2 . These may be used alone or in combination of two or more.
  • a fluorine-based polymer, a rubber-based polymer or the like can be used as in the case of the positive electrode, but a styrene-butadiene copolymer (SBR) or a modified product thereof may be used. .
  • SBR styrene-butadiene copolymer
  • thickener examples include carboxymethyl cellulose (CMC) and polyethylene oxide (PEO). These may be used alone or in combination of two or more.
  • CMC carboxymethyl cellulose
  • PEO polyethylene oxide
  • the negative electrode 12 of the present embodiment forms, for example, a negative electrode active material layer by applying and drying a negative electrode mixture slurry containing a negative electrode active material, a binder, a thickener, etc. on a negative electrode current collector, It is obtained by rolling the negative electrode active material layer.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixture of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP ), Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • MP methyl propionate
  • Chain carboxylic acid esters such as ethyl propionate and ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B Borates such as 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 0 or more ⁇ and the like.
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoints of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • a porous sheet having ion permeability and insulating properties is used.
  • the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what applied materials, such as an aramid resin and a ceramic, to the surface of a separator may be used.
  • Example 1 [Preparation of Lithium Composite Oxide Particle A] After mixing Ni 0.55 Co 0.20 Mn 0.25 O 2 and LiOH so that the molar ratio of Li to the total amount of Ni, Co, and Mn is 1.1: 1.0, ZrO 2 was added and mixed so that Zr was 0.3 mol% with respect to this mixture, and calcined in an oxygen atmosphere at 930 ° C. for 10 hours to obtain lithium composite oxide particles A.
  • the lithium composite oxide particles A were embedded in a resin, a cross section of the particles was produced by cross section polisher (CP) processing, and this cross section was observed by SEM.
  • the lithium composite oxide particle A was composed of secondary particles a2 in which 2000 or more primary particles a1 were aggregated.
  • the average particle diameter of the primary particles a1 of the lithium composite oxide particles A was 0.4 ⁇ m, and the average particle diameter of the secondary particles a2 was 15 ⁇ m.
  • the lithium composite oxide particles B were embedded in the resin, and a cross section of the particles was produced by cross section polisher (CP) processing, and this cross section was observed by SEM.
  • the lithium composite oxide particles B were composed of primary particles b1 and secondary particles b2 in which about 1 to 20 primary particles b1 were aggregated.
  • the average particle diameter of the primary particles b1 of the lithium composite oxide B was 3.5 ⁇ m, and the average particle diameter of the secondary particles b2 was 5.0 ⁇ m.
  • Lithium composite oxide particles A and lithium composite oxide particles B were mixed at a mass ratio of 50:50, and this was used as a positive electrode active material.
  • the positive electrode active material, acetylene black as a conductive material, and polyvinylidene fluoride as a binder are mixed at a mass ratio of 100: 1: 1, and N-methyl-2-pyrrolidone is added.
  • a positive electrode mixture slurry was prepared.
  • the positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled using a rolling roller, whereby a positive electrode active material is formed on both surfaces of the positive electrode current collector.
  • a positive electrode having a layer formed thereon was produced.
  • Non-aqueous electrolyte secondary battery After attaching the positive electrode tab to the positive electrode and attaching the negative electrode tab to the negative electrode, a separator was disposed between the positive electrode and the negative electrode, and these were spirally wound to produce a spiral electrode body.
  • a non-aqueous electrolyte secondary battery was produced by enclosing the electrode body together with the non-aqueous electrolyte in an outer package in which an aluminum foil was laminated with a resin.
  • Example 2 The same as Example 1 except that a mixture in which the lithium composite oxide particles A and the lithium composite oxide particles B of Example 1 were mixed at a mass ratio of 60:40 was used as the positive electrode active material.
  • a non-aqueous electrolyte secondary battery was prepared.
  • Example 3 The same as Example 1 except that a mixture in which the lithium composite oxide particles A and the lithium composite oxide particles B of Example 1 were mixed at a mass ratio of 70:30 was used as the positive electrode active material. A non-aqueous electrolyte secondary battery was prepared.
  • Example 4 After mixing Ni 0.55 Co 0.20 Mn 0.25 O 2 and LiOH so that the molar ratio of Li to the total amount of Ni, Co, and Mn is 1.1: 1.0, ZrO 2 and B 2 O 3 are added to and mixed with ZrO 2 and B 2 O 3 so that Zr is 0.5 mol% and B is 1.0 mol%, and the mixture is baked at 930 ° C. for 10 hours. As a result, lithium composite oxide particles A were obtained.
  • the lithium composite oxide particle A of Example 4 was embedded in a resin, a cross section of the particle was produced by cross section polisher (CP) processing, and this cross section was observed by SEM.
  • the lithium composite oxide particle A of Example 4 was composed of secondary particles a2 in which 2000 or more primary particles a1 were aggregated.
  • the average particle diameter of the primary particles a1 of the lithium composite oxide particles A of Example 4 was 0.4 ⁇ m, and the average particle diameter of the secondary particles a2 was 15.0 ⁇ m.
  • Example 5 Except for using as the positive electrode active material a mixture in which the lithium composite oxide particles A of Example 4 and the lithium composite oxide particles B of Example 1 were mixed at a mass ratio of 70:30. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1.
  • the lithium composite oxide particle A of Comparative Example 1 was embedded in a resin, a cross section of the particle was produced by cross section polisher (CP) processing, and this cross section was observed by SEM.
  • the lithium composite oxide particle A of Comparative Example 1 was composed of secondary particles a2 in which 2000 or more primary particles a1 were aggregated.
  • the average particle diameter of the primary particle a1 of the lithium composite oxide particle A of Comparative Example 1 was 0.4 ⁇ m
  • the average particle diameter of the secondary particle a2 was 15 ⁇ m.
  • a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only the lithium composite oxide particles A of Comparative Example 1 were used as the positive electrode active material.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only the lithium composite oxide particles A of Example 1 were used as the positive electrode active material.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that only the lithium composite oxide particles A of Example 4 were used as the positive electrode active material.
  • the lithium composite oxide particles B composed of the secondary particles b2 having a particle size smaller than the secondary particles a2 of the composite oxide particles A are in a mass ratio of 8: 2 to 4: 6.
  • the mixed mixture was used as the positive electrode active material.
  • the gas when stored at a high temperature while being charged to 4.3 V as compared with Comparative Examples 1 to 5 was used. The generation amount was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、正極、負極、非水電解質を含み、前記正極は、Ni及びMnを含む、リチウム複合酸化物粒子A及びBを含み、前記リチウム複合酸化物粒子Aは、一次粒子a1が凝集した二次粒子a2から構成され、ジルコニウム及びホウ素のうち少なくともいずれか一方を含み、前記リチウム複合酸化物粒子Bは、前記一次粒子a1より大きな粒径を有する一次粒子b1、及び前記一次粒子b1が凝集し、前記二次粒子a2より小さな粒径を有する二次粒子b2のうち少なくともいずれか一方から構成され、前記リチウム複合酸化物粒子AとBの含有割合は、質量比で、8:2~4:6の範囲である。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池の技術に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極と、負極と、非水電解質とを備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 従来、電池特性を改善するために、非水電解質二次電池の正極に用いられる正極活物質として、粒径の異なるリチウム複合酸化物を用いることが知られている。例えば、特許文献1には、小さな粒径の一次粒子が凝集した、相対的に大きな粒径の二次粒子から構成されるリチウム複合酸化物と、小さな粒径の一次粒子が凝集した、相対的に小さな粒径の二次粒子から構成されるリチウム複合酸化物とを含む正極活物質が開示されている。
特開2003-221236号公報
 ところで、電池のエネルギー密度を上げるには、充電電圧を上げることが有効であるが、従来の粒径の異なるリチウム複合酸化物を正極活物質として用いた非水電解質二次電池では、高い電圧(例えば4.3V)まで充電した状態で、高温保存されると、電池内で発生するガス量が増加するという問題が生じる。
 そこで、本開示は、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を抑制することが可能な非水電解質二次電池を提供することを目的とする。
 本開示の一態様に係る非水電解質二次電池は、正極、負極、非水電解質を含み、前記正極は、Ni及びMnを含む、リチウム複合酸化物粒子A及びBを含み、前記リチウム複合酸化物粒子Aは、一次粒子a1が凝集した二次粒子a2から構成され、ジルコニウム及びホウ素のうち少なくともいずれか一方を含み、前記リチウム複合酸化物粒子Bは、前記一次粒子a1より大きな粒径を有する一次粒子b1、及び前記一次粒子b1が凝集し、前記二次粒子a2より小さな粒径を有する二次粒子b2のうち少なくともいずれか一方から構成され、前記リチウム複合酸化物粒子AとBの含有割合は、質量比で、8:2~4:6の範囲であることを特徴とする。
 本開示の一態様によれば、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を抑制することが可能な非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。
 本開示の一態様に係る非水電解質二次電池は、正極、負極、非水電解質を含み、前記正極は、Ni及びMnを含む、リチウム複合酸化物粒子A及びBを含み、前記リチウム複合酸化物粒子Aは、一次粒子a1が凝集した二次粒子a2から構成され、ジルコニウム及びホウ素のうち少なくともいずれか一方を含み、前記リチウム複合酸化物粒子Bは、前記一次粒子a1より大きな粒径を有する一次粒子b1、及び前記一次粒子b1が凝集し、前記二次粒子a2より小さな粒径を有する二次粒子b2のうち少なくともいずれか一方から構成され、前記リチウム複合酸化物粒子AとBの含有割合は、質量比で、8:2~4:6の範囲である。この非水電解質二次電池を高い電圧(例えば、4.3V)まで充電した状態で高温保存(例えば、60℃保存)した場合において、ガス発生量が抑制される理由としては、十分に明らかでないが、以下のように推定される。
 高温保存時におけるガス発生は、リチウム複合酸化物からの金属溶出が原因の一つであると考えられている。そして、高い電圧まで充電した状態で高温保存すると、リチウム複合酸化物からの金属溶出量が増え、ガス発生量が増加する傾向にある。ここで、本開示の一態様に係る非水電解質二次電池のように、リチウム複合酸化物粒子にジルコニウムやホウ素を添加することで、結晶構造の安定化や粒子表面における電気化学活性の安定化等が図られるため、金属溶出量が抑えられると推察される。リチウム複合酸化物からの金属溶出量は、リチウム複合酸化物粒子Bに比べて相対的に粒径の小さい一次粒子a1が凝集した相対的に粒径の大きい二次粒子a2から構成されるリチウム複合酸化物粒子Aの方が、リチウム複合酸化物粒子Bより多いため、少なくともリチウム複合酸化物粒子Aにジルコニウムやホウ素を添加する必要がある。但し、ジルコニウムやホウ素を添加したリチウム複合酸化物粒子Aだけでは、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を十分に抑制できないので、リチウム複合酸化物Aと比較して相対的に粒径の大きい一次粒子b1や当該一次粒子b1が凝集した相対的に粒径の小さい二次粒子b2から構成されるリチウム複合酸化物粒子Bを適正量混合し、ガス発生量を効果的に抑制している。また、本実施形態におけるリチウム複合酸化物粒子AとBの混合比は、正極での高い充填性が確保され、電池容量の向上に寄与しているものと推察される。
 以下、実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。
 図1は、実施形態の一例である非水電解質二次電池の断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質と、電極体14の上下にそれぞれ配置された絶縁板18,19と、上記部材を収容する電池ケース15と、を備える。電池ケース15は、有底円筒形状のケース本体16と、ケース本体16の開口部を塞ぐ封口体17とにより構成される。なお、巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、電池ケース15としては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(ラミネート型電池)などが例示できる。
 ケース本体16は、例えば有底円筒形状の金属製容器である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で非水電解質二次電池10の内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。
 以下に、正極、負極、非水電解質、セパレータについて詳述する。
 [正極]
 正極11は、例えば、正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。
 正極活物質層は、正極活物質を含む。また、正極活物質層は、正極活物質同士を結着して正極活物質層の機械的強度を確保したり、正極活物質層と正極集電体との結着性を高めたりすることができる等の点で、結着材を含むことが好適である。また、正極活物質層は、当該層の導電性を向上させることができる等の点で、導電材を含むことが好適である。
 正極活物質は、Ni及びMnを含むリチウム複合酸化物粒子A及びNi及びMnを含むリチウム複合酸化物粒子Bを含む。
 リチウム複合酸化物粒子Aは、一次粒子a1が凝集した二次粒子a2から構成され、ジルコニウム及びホウ素のうち少なくともいずれか一方を含む。ジルコニウム及びホウ素は、リチウム複合酸化物粒子Aの結晶構造内に含まれている場合、リチウム複合酸化物Aの粒子表面(一次粒子a1や二次粒子a2)に、ジルコニウム含有酸化物等のジルコニウム化合物やホウ素含有酸化物等のホウ素化合物として付着している場合等のいずれの形態も含まれる。
 リチウム複合酸化物粒子Bは、リチウム複合酸化物粒子Aの一次粒子a1より大きな粒径を有する一次粒子b1、及び当該一次粒子b1が凝集し、リチウム複合酸化物粒子Aの二次粒子a2より小さな粒径を有する二次粒子b2のうち少なくともいずれか一方から構成されている。リチウム複合酸化物粒子Bは、リチウム複合酸化物Bからの金属溶出量を抑制する等の点で、ジルコニウム及びホウ素のうち少なくともいずれか一方を含むことが好ましい。
 リチウム複合酸化物粒子Bの一次粒子b1の粒径は、リチウム複合酸化物粒子Aの一次粒子a1の粒径より大きな粒径であれば特に制限されるものではないが、例えば、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を効果的に抑制する点、或いは電池容量や充放電サイクル特性を向上させる等の点で、3.0μm~5.0μmの範囲であることが好ましい。また、リチウム複合酸化物粒子Aの一次粒子a1の粒径は、例えば、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を効果的に抑制する点、或いは電池容量や充放電サイクル特性を向上させる等の点で、0.3μm~0.9μmの範囲であることが好ましい。ここで、一次粒子の粒径は、以下の方法により測定される平均粒径である。
 正極11を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工などにより正極11の断面を作製し、この断面における正極活物質層の断面をSEMにより撮影する。或いは、リチウム複合酸化物粒子の粉末を樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工などによりリチウム複合酸化物粒子の粒子断面を作製し、この断面をSEMにより撮影する。そして、上記の断面SEM画像から、ランダムに20個の一次粒子を選択する。選択した20個の一次粒子の粒界を観察し、一次粒子の外形を特定した上で、20個の一次粒子それぞれの長径を求め、それらの平均値を一次粒子の粒径とする。
 リチウム複合酸化物粒子Bが、一次粒子b1が凝集した二次粒子b2を含む場合、二次粒子b2の粒径は、リチウム複合酸化物粒子Aの二次粒子a2の粒径より小さい粒径であれば特に制限されるものではないが、例えば、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を効果的に抑制する点、或いは電池容量や充放電サイクル特性を向上させる等の点で、8.0μm~17.5μmの範囲であることが好ましい。また、リチウム複合酸化物粒子Aの二次粒子a2の粒径は、例えば、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を効果的に抑制する点、或いは電池容量や充放電サイクル特性を向上させる等の点で、3.0μm~6.0μmの範囲であることが好ましい。ここで、二次粒子の粒径は、以下の方法により測定される平均粒径である。
 具体的には、上記断面SEM画像から、ランダムに20個の二次粒子を選択し、選択した20個の二次粒子の粒界を観察し、二次粒子の外形を特定した上で、20個の二次粒子それぞれの長径を求め、それらの平均値を二次粒子の粒径とする。
 リチウム複合酸化物粒子Aの体積平均粒径は、例えば、10~18μmであることが好ましく、リチウム複合酸化物粒子Bの体積平均粒径は、例えば、4μm~7μmの範囲であることが好ましい。体積平均粒径は、例えば、マイクロトラック・ベル株式会社MT3000IIを用いて、レーザ回折法で測定することができる。
 リチウム複合酸化物粒子Aの二次粒子a2は、例えば、二次粒子1個当たり1000~500000個の一次粒子a1で構成されることが好ましい。二次粒子1個当たりの一次粒子a1の数が少なすぎると、例えば、二次粒子a2が微細化して、充放電サイクル特性が低下する場合がある。また、二次粒子1個当たりの一次粒子a1の数が多すぎると、表面積が大きくなり過ぎて、ジルコニウムやホウ素添加による金属溶出の抑制効果が十分に得られない場合がある。
 リチウム複合酸化物粒子Bが、一次粒子b1が凝集した二次粒子b2を含む場合、二次粒子b2は、例えば、二次粒子1個当たり2~20個の一次粒子b1で構成されることが好ましい。二次粒子1個当たりの一次粒子b1の数が多すぎると、表面積が大きくなり、リチウム複合酸化物粒子Bからの金属溶出量が増加する場合がある。
 リチウム複合酸化物粒子Aとリチウム複合酸化物粒子Bとの含有割合は、質量比で、8:2~4:6の範囲であれば特に制限されるものではないが、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を効果的に抑制しながら、電池容量又は充放電サイクル特性を向上させる等の点で、7:3~5:5の範囲であることが好ましい。
 リチウム複合酸化物粒子BのNi含有率は、リチウム複合酸化物粒子AのNi含有率より高いことが好ましい。一般的に、Ni含有率が高いほど、電池容量の向上を図ることが可能である一方、高温保存時における金属溶出量が高くなりガス発生量が増加する。しかし、既述したように、リチウム複合酸化物粒子Bの方が、リチウム複合酸化物粒子Aより、金属は溶出し難い。したがって、リチウム複合酸化物粒子BのNi含有率をリチウム複合酸化物粒子AのNi含有率より高くすることで、高い電圧まで充電した状態で高温保存した場合におけるガス発生量を抑制しながら、電池容量の向上を図ることが可能となる。具体的には、リチウム複合酸化物粒子BのNi含有率は、リチウムを除く金属元素の総モル数に対して40モル%~65モル%の範囲であることが好ましく、リチウム複合酸化物粒子AのNi含有率は、リチウムを除く金属元素の総モル数に対して35モル%~60モル%の範囲であることが好ましい。
 リチウム複合酸化物粒子A中のジルコニウム含有率及びホウ素含有率は、リチウム複合酸化物粒子Aからの金属溶出を抑制する点で、例えば、0.1モル%~2.0モル%の範囲であることが好ましい。また、リチウム複合酸化物粒子Bにジルコニウムやホウ素が含まれる場合、リチウム複合酸化物粒子B中のジルコニウム含有率及びホウ素含有率は、リチウム複合酸化物粒子Bからの金属溶出を抑制する点で、例えば、0.1モル%~1.0モル%の範囲であることが好ましい。
 リチウム複合酸化物粒子A及びBは、Ni、Mn、ジルコニウム(Zr)、ホウ素(B)以外に他の元素を含んでいてもよく、例えば、コバルト(Co)、アルミニウム(Al)、タングステン(W)、ケイ素(Si)、マグネシウム(Mg)、リン(P)、チタン(Ti)、モリブデン(Mo)、スカンジウム(Sc)、イットリウム(Y)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、鉛(Pb)等が挙げられる。これらの中では、例えば、電池容量や充放電サイクル特性の向上等の点で、Co、Al、Wのうち少なくともいずれか1種の元素を含むことが好ましく、少なくともCoを含むことが好ましい。
 高い電圧まで充電した状態の電池を高温保存すると、例えば、リチウム複合酸化物粒子A及びBに含まれるMnが溶出して、溶出したMnが負極に堆積するが、本実施形態によれば、リチウム複合酸化物粒子A及びBからのMn溶出量を抑えて、負極上に堆積するMn量を抑えることが可能である。具体的には、電池電圧4.3Vまで充電した状態で、60℃の環境下で14日間保存した際に、負極1g当たり20μg~60μgの範囲とすることが可能である。上記範囲のMn量であれば、高温保存後の容量劣化を抑制できる点で有益である。
 リチウム複合酸化物粒子A及びBの含有量は、正極活物質の総量に対して、例えば、50質量%~100質量%の範囲であることが好ましく、80質量%~98質量%の範囲であることがより好ましい。なお、正極活物質は、リチウム複合酸化物粒子A及びB以外の正極活物質粒子を含んでいてもよく、例えば、LiCoOやLiMn等のNi非含有の複合酸化物粒子等が挙げられる。
 正極活物質の含有量は、正極活物質層の総量に対して、例えば、70質量%以上99質量%以下であることが好ましく、80質量%以上98質量%以下であることがより好ましい。
 リチウム複合酸化物粒子A及びBの製造方法の一例を説明する。
 リチウム複合酸化物粒子の製造方法は、Ni、Mn含有複合酸化物とリチウム化合物とを混合して原料混合物を得る原料混合工程と、原料混合物を焼成して、Ni及びMnを含むリチウム複合酸化物粒子を得る焼成工程と、を含む。
 リチウム複合酸化物粒子Aを製造する場合には、例えば、原料混合工程において、Ni、Mn含有複合酸化物とリチウム化合物とを混合する際に、ジルコニウム化合物やホウ素化合物が添加される。なお、リチウム複合酸化物粒子Bに、ジルコニウムやホウ素を含ませる場合も同様である。
 一次粒子や二次粒子の粒径の制御は、例えば、原料混合工程における、各原料の混合割合を制御することにより行われる。例えば、リチウム複合酸化物粒子Aを製造する場合、Ni、Mn含有複合酸化物とリチウム化合物との混合割合を、Ni、Mn含有複合酸化物中の金属元素:Liがモル比で1.0:1.0~1.0:1.2の範囲となる割合とすることが好ましい。また、リチウム複合酸化物粒子Bを製造する場合、Ni、Mn含有複合酸化物とリチウム化合物との混合割合を、Ni、Mn含有複合酸化物中の金属元素:Liがモル比で1.0:1.0~1.0:1.3の範囲となる割合とすることが好ましい。
 また、一次粒子や二次粒子の粒径の制御は、例えば、焼成工程における焼成温度を調整することによっても可能である。例えば、リチウム複合酸化物粒子Aを製造する場合には、焼成温度を700℃~1100℃の範囲とすることが好ましい。この際の焼成時間は○1時間~48時間が好ましい。また、例えば、リチウム複合酸化物粒子Bを製造する場合には、焼成温度を800℃~1100℃の範囲とすることが好ましい。この際の焼成温度は1時間~48時間が好ましい。
 正極活物質層に含まれる導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。
 正極活物質層に含まれる結着材としては、例えば、フッ素系高分子、ゴム系高分子等が挙げられる。フッ素系高分子としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、またはこれらの変性体等が挙げられ、ゴム系高分子としては、例えば、エチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 本実施形態の正極11は、例えば、正極集電体上に、正極活物質、導電材、結着材等を含む正極合材スラリーを塗布・乾燥することによって正極活物質層を形成し、当該正極合材層を圧延することにより得られる。
 [負極]
 負極12は、例えば、負極集電体と、負極集電体上に形成された負極活物質層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極活物質層は、例えば、負極活物質、結着材、増粘材等を含む。
 負極活物質は、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、金属リチウム、リチウム-アルミニウム合金、リチウム-鉛合金、リチウム-シリコン合金、リチウム-スズ合金等のリチウム合金、黒鉛、フッ化黒鉛、コークス、有機物焼成体等の炭素材料、SnO、SnO、TiO等の金属酸化物等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 結着材としては、例えば、正極の場合と同様にフッ素系高分子、ゴム系高分子等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いてもよい。
 増粘材としては、例えば、カルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等が挙げられる。これらは、1種単独でもよし、2種以上を組み合わせて用いてもよい。
 本実施形態の負極12は、例えば、負極集電体上に、負極活物質、結着材、増粘材等を含む負極合材スラリーを塗布・乾燥することによって負極活物質層を形成し、当該負極活物質層を圧延することにより得られる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO4、LiPF、LiAsF、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1>
 [リチウム複合酸化物粒子Aの作製]
 Ni0.55Co0.20Mn0.25と、LiOHとを、Liと、Ni,Co,Mnの総量とのモル比が1.1:1.0になるように混合した後、この混合物に対してZrが0.3モル%になるようにZrOを添加・混合して、酸素雰囲気中にて930℃で10時間焼成し、リチウム複合酸化物粒子Aを得た。
 リチウム複合酸化物粒子Aを樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により当該粒子の断面を作製し、この断面をSEMにより観察した。その結果、リチウム複合酸化物粒子Aは、一次粒子a1が2000個以上凝集した二次粒子a2から構成されていた。また、リチウム複合酸化物粒子Aの一次粒子a1の平均粒径は0.4μmであり、二次粒子a2の平均粒径は、15μmであった。
 [リチウム複合酸化物粒子Bの作製]
 Ni0.55Co0.20Al0.25と、LiOHとを、Liと、Ni,Co,Mnの総量とのモル比が1.15:1.0になるように混合した後、酸素雰囲気中にて1000℃で10時間焼成し、リチウム複合酸化物粒子Bを得た。
 リチウム複合酸化物粒子Bを樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により当該粒子の断面を作製し、この断面をSEMにより観察した。その結果、リチウム複合酸化物粒子Bは、一次粒子b1、及び一次粒子b1が1個~20個程度凝集した二次粒子b2から構成されていた。また、リチウム複合酸化物Bの一次粒子b1の平均粒径は3.5μmであり、二次粒子b2の平均粒径は、5.0μmであった。
 [正極の作製]
 リチウム複合酸化物粒子Aとリチウム複合酸化物粒子Bとを、質量比で50:50となるように混合し、これを正極活物質とした。当該正極活物質と、導電材としてのアセチレンブラックと、結着材としてのポリフッ化ビニリデンとを、質量比で100:1:1となるように混合した後、N-メチル-2-ピロリドンを加えて、正極合材スラリーを調製した。次いで、この正極合材スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラを用いて圧延することにより、正極集電体の両面に正極活物質層が形成された正極を作製した。
 [非水電解質の調製]
 モノフルオロエチレンカーボネート(FEC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)とを、15:45:40の体積比で混合した混合溶媒に、LiPFを1.3モル/Lの濃度となるように溶解させることにより非水電解質を調製した。
 [非水電解質二次電池の作製]
 正極に正極タブを取り付け、負極に負極タブを取り付けた後、正極と負極との間にセパレータを配置して、これらを渦巻き状に巻回して、渦巻状の電極体を作製した。当該電極体を上記非水電解質と共に、アルミニウム箔を樹脂でラミネートした外装体に封入することにより、非水電解質二次電池を作製した。
 <実施例2>
 正極活物質として、実施例1のリチウム複合酸化物粒子Aとリチウム複合酸化物粒子Bとを、質量比で60:40となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例3>
 正極活物質として、実施例1のリチウム複合酸化物粒子Aとリチウム複合酸化物粒子Bとを、質量比で70:30となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例4>
 Ni0.55Co0.20Mn0.25と、LiOHとを、Liと、Ni,Co,Mnの総量とのモル比が1.1:1.0になるように混合した後、この混合物に対してZrが0.5モル%、Bが1.0モル%になるようにZrO及びBを添加・混合して、酸素雰囲気中にて930℃で10時間焼成することにより、リチウム複合酸化物粒子Aを得た。
 実施例4のリチウム複合酸化物粒子Aを樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により当該粒子の断面を作製し、この断面をSEMにより観察した。その結果、実施例4のリチウム複合酸化物粒子Aは、一次粒子a1が2000個以上凝集した二次粒子a2から構成されていた。また、実施例4のリチウム複合酸化物粒子Aの一次粒子a1の平均粒径は0.4μmであり、二次粒子a2の平均粒径は、15.0μmであった。
 そして、正極活物質として、実施例4のリチウム複合酸化物粒子Aと実施例1のリチウム複合酸化物粒子Bとを、質量比で、50:50となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例5>
 正極活物質として、実施例4のリチウム複合酸化物粒子Aと実施例1のリチウム複合酸化物粒子Bとを、質量比で、70:30となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例1>
 Ni0.55Co0.20Mn0.25と、LiOHとを、Liと、Ni,Co,Mnの総量とのモル比が1.1:1.0になるように混合した後、酸素雰囲気中にて1000℃で10時間焼成し、リチウム複合酸化物粒子Aを得た。
 比較例1のリチウム複合酸化物粒子Aを樹脂中に埋め込み、クロスセクションポリッシャ(CP)加工により当該粒子の断面を作製し、この断面をSEMにより観察した。その結果、比較例1のリチウム複合酸化物粒子Aは、一次粒子a1が2000個以上凝集した二次粒子a2から構成されていた。また、比較例1のリチウム複合酸化物粒子Aの一次粒子a1の平均粒径は0.4μmであり、二次粒子a2の平均粒径は、15μmであった。
 正極活物質として、比較例1のリチウム複合酸化物粒子Aのみを用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例2>
 正極活物質として、実施例1のリチウム複合酸化物粒子Aのみを用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例3>
 正極活物質として、実施例4のリチウム複合酸化物粒子Aのみを用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例4>
 正極活物質として、比較例1のリチウム複合酸化物粒子Aと実施例1のリチウム複合酸化物粒子Bとを、質量比で、70:30となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例5>
 正極活物質として、比較例1のリチウム複合酸化物粒子Aと実施例1のリチウム複合酸化物粒子Bとを、質量比で、50:50となるように混合した混合物を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 [高温保存試験]
 環境温度25℃の下、各実施例及び比較例の電池を0.1Itの定電流で電圧が4.3Vになるまで定電流充電した後、0.1Itの定電流で電圧が2.5Vになるまで定電流放電した。さらに、環境温度25℃の下、各実施例及び比較例の電池を0.1Itの定電流で電圧が4.3Vになるまで定電流充電した後、60℃に設定した恒温槽に投入し、14日間保管した。その後、高温槽から各電池を取り出し、各電池内部で発生したガス量をガスクロマトグラフィー法により測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5は、ジルコニウムやホウ素を含むリチウム複合酸化物粒子Aと、リチウム複合酸化物粒子Aの一次粒子a1より小さい粒径を有する一次粒子b1や、当該一次粒子b1が凝集し、リチウム複合酸化物粒子Aの二次粒子a2より小さい粒径を有する二次粒子b2から構成されるリチウム複合酸化物粒子Bとを、質量比で、8:2~4:6の範囲となるように混合した混合物を正極活物質として用いたものであるが、このような実施例1~5は、比較例1~5と比較して、4.3Vまで充電した状態で、高温保存した際におけるガス発生量が抑えられた。
 10 非水電解質二次電池
 11 正極
 12 負極
 13 セパレータ
 14 電極体
 15 電池ケース
 16 ケース本体
 17 封口体
 18,19 絶縁板
 20 正極リード
 21 負極リード
 22 張り出し部
 23 フィルタ
 24 下弁体
 25 絶縁部材
 26 上弁体
 27 キャップ
 28 ガスケット

Claims (5)

  1.  正極、負極、非水電解質を含み、
     前記正極は、Ni及びMnを含む、リチウム複合酸化物粒子A及びBを含み、
     前記リチウム複合酸化物粒子Aは、一次粒子a1が凝集した二次粒子a2から構成され、ジルコニウム及びホウ素のうち少なくともいずれか一方を含み、
     前記リチウム複合酸化物粒子Bは、前記一次粒子a1より大きな粒径を有する一次粒子b1、及び前記一次粒子b1が凝集し、前記二次粒子a2より小さな粒径を有する二次粒子b2のうち少なくともいずれか一方から構成され、
     前記リチウム複合酸化物粒子AとBの含有割合は、質量比で、8:2~4:6の範囲である、非水電解質二次電池。
  2.  前記リチウム複合酸化物粒子Aより前記リチウム複合酸化物粒子Bの方が、Niの含有率が高い、請求項1に記載の非水電解質二次電池。
  3.  電池電圧4.3Vまで充電した状態で、60℃の環境下で14日間保存した際に、前記負極上に堆積するMn量は、前記負極1g当たり20μg~60μgの範囲である、請求項1又は2に記載の非水電解質二次電池。
  4.  前記リチウム複合酸化物粒子Aの前記一次粒子a1の平均粒径は、0.3μm~0.9μmの範囲であり、前記リチウム複合酸化物粒子Bの前記一次粒子b1の平均粒径は、3.0μm~5.0μmの範囲である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記リチウム複合酸化物粒子Aの前記二次粒子a2の平均粒径は、8.0μm~17.5μmの範囲であり、前記リチウム複合酸化物粒子Bの前記二次粒子b2の平均粒径は、3.0μm~6.0μmの範囲である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
PCT/JP2019/001803 2018-03-30 2019-01-22 非水電解質二次電池 WO2019187538A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980005022.8A CN111201649B (zh) 2018-03-30 2019-01-22 非水电解质二次电池
JP2020509712A JP7209303B2 (ja) 2018-03-30 2019-01-22 非水電解質二次電池
US16/981,753 US11742481B2 (en) 2018-03-30 2019-01-22 Nonaqueous electrolyte secondary battery
EP19776687.6A EP3780176B1 (en) 2018-03-30 2019-01-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068634 2018-03-30
JP2018068634 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187538A1 true WO2019187538A1 (ja) 2019-10-03

Family

ID=68059860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001803 WO2019187538A1 (ja) 2018-03-30 2019-01-22 非水電解質二次電池

Country Status (5)

Country Link
US (1) US11742481B2 (ja)
EP (1) EP3780176B1 (ja)
JP (1) JP7209303B2 (ja)
CN (1) CN111201649B (ja)
WO (1) WO2019187538A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816112A1 (en) * 2019-10-31 2021-05-05 Ecopro Bm Co., Ltd. Lithium complex oxide
JP2021150051A (ja) * 2020-03-17 2021-09-27 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2022063677A (ja) * 2020-10-12 2022-04-22 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
WO2022154603A1 (ko) * 2021-01-15 2022-07-21 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022265296A1 (ko) * 2021-06-17 2022-12-22 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357499B2 (ja) * 2019-09-26 2023-10-06 パナソニックホールディングス株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
EP4266412A1 (en) * 2021-01-13 2023-10-25 Ningde Amperex Technology Limited Positive electrode material, electrochemical apparatus and power utilization device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221236A (ja) 2001-11-22 2003-08-05 Hitachi Maxell Ltd リチウム含有複合酸化物およびそれを用いた非水二次電池
WO2005015663A1 (ja) * 2003-08-08 2005-02-17 Sanyo Electric Co.,Ltd. 非水電解質二次電池
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
WO2013018692A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池
US20130320256A1 (en) * 2012-04-18 2013-12-05 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
JP2016051504A (ja) * 2014-08-28 2016-04-11 日立金属株式会社 非水系二次電池用正極活物質、非水系二次電池用正極、非水系二次電池及び車載用非水系二次電池モジュール
WO2017056364A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
WO2017098714A1 (ja) * 2015-12-09 2017-06-15 ソニー株式会社 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
JP2005044722A (ja) * 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
KR101541347B1 (ko) 2012-07-09 2015-08-04 주식회사 엘지화학 양극 활물질 및 이를 포함하는 리튬 이차전지
JP2014063669A (ja) * 2012-09-21 2014-04-10 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質の製造方法
EP3041071B1 (en) * 2013-08-29 2018-10-03 LG Chem, Ltd. Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221236A (ja) 2001-11-22 2003-08-05 Hitachi Maxell Ltd リチウム含有複合酸化物およびそれを用いた非水二次電池
WO2005015663A1 (ja) * 2003-08-08 2005-02-17 Sanyo Electric Co.,Ltd. 非水電解質二次電池
JP2010086693A (ja) * 2008-09-30 2010-04-15 Hitachi Vehicle Energy Ltd リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
WO2013018692A1 (ja) * 2011-07-29 2013-02-07 三洋電機株式会社 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池
US20130320256A1 (en) * 2012-04-18 2013-12-05 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising the same
JP2016051504A (ja) * 2014-08-28 2016-04-11 日立金属株式会社 非水系二次電池用正極活物質、非水系二次電池用正極、非水系二次電池及び車載用非水系二次電池モジュール
WO2017056364A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
WO2017098714A1 (ja) * 2015-12-09 2017-06-15 ソニー株式会社 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780176A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816112A1 (en) * 2019-10-31 2021-05-05 Ecopro Bm Co., Ltd. Lithium complex oxide
JP2021070626A (ja) * 2019-10-31 2021-05-06 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. リチウム複合酸化物
JP7267248B2 (ja) 2019-10-31 2023-05-01 エコプロ ビーエム カンパニー リミテッド リチウム複合酸化物
US11996559B2 (en) 2019-10-31 2024-05-28 Ecopro Bm Co., Ltd. Lithium complex oxide
JP2021150051A (ja) * 2020-03-17 2021-09-27 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP7405655B2 (ja) 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 非水電解質二次電池用正極及び非水電解質二次電池
JP2022063677A (ja) * 2020-10-12 2022-04-22 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
JP7213215B2 (ja) 2020-10-12 2023-01-26 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
WO2022154603A1 (ko) * 2021-01-15 2022-07-21 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022265296A1 (ko) * 2021-06-17 2022-12-22 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 합재, 양극 및 리튬 이차 전지

Also Published As

Publication number Publication date
CN111201649A (zh) 2020-05-26
EP3780176A4 (en) 2021-05-26
US11742481B2 (en) 2023-08-29
JPWO2019187538A1 (ja) 2021-03-25
EP3780176B1 (en) 2024-06-19
US20210036321A1 (en) 2021-02-04
EP3780176A1 (en) 2021-02-17
JP7209303B2 (ja) 2023-01-20
CN111201649B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
JP7209303B2 (ja) 非水電解質二次電池
JP7162281B2 (ja) 非水電解質二次電池
JP7289058B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7522109B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2019026629A1 (ja) 非水電解質二次電池
JP7270155B2 (ja) 非水電解質二次電池
CN111033829A (zh) 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极及非水电解质二次电池
CN114467196B (zh) 非水电解质二次电池用正极活性物质、和非水电解质二次电池
WO2017169043A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
JP7232814B2 (ja) 非水電解質二次電池
CN112005410B (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2019193857A1 (ja) 非水電解質二次電池
WO2019044238A1 (ja) 非水電解質二次電池
WO2022044489A1 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
CN110402515B (zh) 非水电解质二次电池
CN111052490A (zh) 非水电解质二次电池
JP7574203B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
JP7570003B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
WO2023068221A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2020208918A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2022065096A1 (ja) リチウムニッケル複合酸化物の製造方法
WO2020218475A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP6987780B2 (ja) 非水電解質二次電池
CN111868968A (zh) 正极和二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509712

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019776687

Country of ref document: EP