WO2019186648A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019186648A1
WO2019186648A1 PCT/JP2018/012141 JP2018012141W WO2019186648A1 WO 2019186648 A1 WO2019186648 A1 WO 2019186648A1 JP 2018012141 W JP2018012141 W JP 2018012141W WO 2019186648 A1 WO2019186648 A1 WO 2019186648A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
temperature
outdoor
indoor
power source
Prior art date
Application number
PCT/JP2018/012141
Other languages
English (en)
French (fr)
Inventor
智之 ▲高▼木
俊哉 杉山
恵嗣 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/012141 priority Critical patent/WO2019186648A1/ja
Priority to JP2020510197A priority patent/JP7004801B2/ja
Priority to EP18911575.1A priority patent/EP3779298B1/en
Priority to CN201880091403.8A priority patent/CN111868446B/zh
Priority to AU2018417096A priority patent/AU2018417096B2/en
Priority to US16/982,098 priority patent/US11486600B2/en
Publication of WO2019186648A1 publication Critical patent/WO2019186648A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/33Responding to malfunctions or emergencies to fire, excessive heat or smoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to an air conditioner that performs temperature protection control of a motor.
  • the present invention has been made in view of the above, and in the case where a temperature abnormality occurs due to abnormal heat generation of the motor, even if the motor drive element is short-circuited, the current does not flow to the motor.
  • the purpose is to obtain an air conditioner that can be used.
  • an air conditioner includes an indoor unit and an outdoor unit.
  • the outdoor unit includes a motor, a first coil unit, and a first contact unit provided in a supply line of an AC power source that is a power source of the outdoor unit.
  • the first contact portion is electrically disconnected, and when a current flows through the first coil portion, the first contact portion is electrically connected to the first relay.
  • the outdoor unit is provided in a supply line of a PTC (Positive Temperature Coefficient) connected in parallel with the first contact portion and a relay driving power source that is a power source of the first relay, and is also provided in the motor.
  • the temperature protector is electrically connected when the temperature is lower than a certain temperature, and is electrically disconnected when the temperature of the motor exceeds a certain temperature.
  • the air conditioner according to the present invention has an effect that, when a temperature abnormality occurs due to abnormal heat generation of the motor, even if the motor drive element is short-circuited, no current flows through the motor. Play.
  • FIG. 1 is a schematic configuration diagram showing an example of an air conditioner according to a first embodiment of the present invention.
  • the flowchart of the process which detects the temperature abnormality of the winding of the DC motor which the outdoor unit shown in FIG. 1 stops, and stops a DC motor Schematic block diagram which shows an example of the air conditioner concerning Embodiment 2 of this invention.
  • the flowchart of the process which detects the temperature abnormality of the winding of the DC motor which the air conditioner shown in FIG. 4 detects, and stops a DC motor
  • FIG. 1 is a schematic configuration diagram illustrating an example of an air conditioner according to a first embodiment of the present invention.
  • the air conditioner 100 shown in FIG. 1 includes an outdoor unit 1 and an indoor unit 2.
  • the outdoor unit 1 includes a DC motor 3 such as a compressor motor or a fan motor, an outdoor control board 4 for controlling the DC motor 3, and a temperature protector 5 for protecting the DC motor 3 from temperature abnormalities.
  • the outdoor unit 1 may include, for example, an AC (Alternating Current) motor instead of the DC motor 3.
  • the outdoor control board 4 includes an inrush current prevention circuit 6 for protecting the outdoor control board 4 from an inrush current, a diode bridge 8 for rectifying an AC current supplied from an AC power supply 7, and an electrolytic capacitor for accumulating charges. 9 and a DC / DC converter 10.
  • the DC / DC converter 10 converts the applied DC voltage into a low-voltage DC voltage for operating each component on the outdoor control board 4, or is a source of conversion of drive voltage by the motor drive element 11. Or convert it to voltage.
  • the low DC voltage generated by the DC / DC converter 10 is applied to each component on the outdoor control board 4 through a path not shown in FIG.
  • the outdoor control board 4 transmits a motor drive element 11 for driving the DC motor 3, and a drive command signal for the DC motor 3 to the motor drive element 11 and controls the inrush current prevention circuit 6.
  • the microcomputer 12 and the outdoor communication circuit 14 for exchanging information with the indoor control board 13 mentioned later are provided.
  • the indoor unit 2 includes an indoor control board 13.
  • the indoor control board 13 includes an indoor power supply circuit 15 for converting the AC power supply 7 into a power supply for operating each component on the indoor control board 13, an indoor microcomputer 16 for controlling the functions of the indoor unit 2,
  • An indoor communication circuit 17 for exchanging information with the outdoor control board 4 is provided.
  • the outdoor unit 1 and the indoor unit 2 are connected to each other via an outdoor communication circuit 14, an internal / external communication line 26, and an indoor communication circuit 17.
  • the inrush current prevention circuit 6 includes an inrush current prevention relay 18 and a PTC (Positive Temperature Coefficient) 19 connected in parallel to the contact portion 20b.
  • the PTC 19 is, for example, a PTC thermistor.
  • the inrush current prevention relay 18 is connected to the relay drive power source 21 via the temperature protector 5 at one end of the coil portion 20a, and connected to the outdoor microcomputer 12 at the other end of the coil portion 20a. By supplying a current to 20a, the contact portion 20b is electrically connected, and by not supplying a current to the coil portion 20a, the contact portion 20b is electrically disconnected.
  • the contact portion 20 b is provided on the supply line A of the AC power supply 7 on the outdoor control board 4.
  • the inrush current prevention relay 18 corresponds to a first relay.
  • the coil part 20a corresponds to the first coil part.
  • the contact portion 20b corresponds to the first contact portion.
  • the temperature protector 5 is in an electrically connected state when the target temperature is lower than a certain temperature, and when the target temperature exceeds a certain temperature, the electrical connection between both ends is cut off and the electrical connection is not established. It becomes a state.
  • the temperature protector 5 is attached to the outline or winding of the DC motor 3 as a target.
  • the temperature protector 5 has a coil portion 20a connected to one end and a relay drive power source 21 connected to the other end.
  • the temperature protector 5 is provided on the supply line B of the relay drive power supply 21.
  • the temperature protector 5 may be connected to the coil portion 20a at one end and to the outdoor microcomputer 12 at the other end.
  • the temperature protector 5 is, for example, a thermostat.
  • the temperature protector 5 is not limited to a switch form, and may be a form in which electrical connection between both terminals is interrupted by temperature, such as a temperature fuse.
  • FIG. 2 is a flowchart of a process for detecting a temperature abnormality of the DC motor winding executed by the outdoor unit shown in FIG. 1 and stopping the DC motor.
  • the outdoor unit 1 when AC current is supplied from the AC power supply 7 to the outdoor control board 4, the supplied AC current passes through the PTC 19 of the inrush current prevention circuit 6, and is then rectified by the diode bridge 8 to be electrolyzed. Charge is accumulated in the capacitor 9. As a result, the AC voltage applied from the AC power source 7 to the outdoor control board 4 is converted into a DC voltage.
  • the converted DC voltage is converted by the DC / DC converter 10 into a low DC voltage necessary for the operation of the outdoor microcomputer 12, the motor driving element 11, the outdoor communication circuit 14, and the like, and the outdoor microcomputer 12, the motor driving element is converted. 11 and the outdoor communication circuit 14 and the like.
  • the power supply voltage of the relay drive power supply 21 is also a low DC voltage and is generated by the DC / DC converter 10.
  • the outdoor microcomputer 12 When the generated low DC voltage is applied to the outdoor microcomputer 12, the outdoor microcomputer 12 is activated.
  • the outdoor microcomputer 12 controls the power source voltage of the relay drive power source 21 to be applied to the coil unit 20a so that a current flows through the coil unit 20a.
  • the contact portion 20b is connected, and the AC current that has been supplied to the diode bridge 8 via the PTC 19 until now is supplied to the diode bridge 8 via the contact portion 20b. The route is switched.
  • a DC motor drive signal is transmitted from the outdoor microcomputer 12 to the motor drive element 11, and a DC voltage different from the low voltage DC voltage generated by the DC / DC converter 10 is generated.
  • the motor drive element 11 converts the voltage into a drive voltage for rotating the DC motor 3.
  • the outdoor unit 1 performs normal operation (step S101).
  • step S101 While the temperature abnormality due to abnormal heat generation of the winding of the DC motor 3 does not occur (No in step S102), the outdoor unit 1 performs normal operation (step S101).
  • step S102 When a temperature abnormality occurs due to abnormal heat generation of the winding of the DC motor 3 (Yes in step S102), the temperature protector 5 is activated (step S103), and the electrical connection between both ends of the temperature protector 5 is cut off. Thus, the power supply voltage of the relay drive power supply 21 applied to the coil portion 20a is cut off (step S104). Thereby, the contact part 20b is opened (step S105).
  • step S106 Since the AC current path is switched from the path via the contact point 20b to the path via the PTC 19, the temperature and resistance value of the PTC 19 rise (step S106), and the voltage drop at the PTC 19 increases. As a result, the AC current is not supplied after the inrush current prevention circuit 6, the electric charge cannot be accumulated in the electrolytic capacitor 9, and the DC voltage applied to the DC / DC converter 10 is lowered (step S107).
  • step S108 When the DC voltage applied to the DC / DC converter 10 decreases, the DC voltage applied to the motor drive element 11 also decreases, and the motor drive element 11 cannot generate a drive voltage (step S108), and the DC motor. 3 stops (step S109).
  • the DC / DC converter 10 cannot generate a low DC voltage necessary for the operation of the outdoor microcomputer 12, the motor drive element 11, and the outdoor communication circuit 14, and the outdoor unit 1 stops.
  • the protection function of the DC motor 3 by the program of the outdoor microcomputer 12 is caused by some factor such as the program runaway of the outdoor microcomputer 12. Even if it does not work, the DC motor 3 can be stopped.
  • the voltage applied to both ends of the temperature protector 5 is reduced as compared with the configuration in which the path of the AC current supplied from the AC power supply 7 is directly cut off by the temperature protector.
  • a component having a smaller rated voltage has a smaller component size, so that the temperature protector 5 can be downsized.
  • FIG. 3 is a schematic block diagram which shows an example of the air conditioner concerning Embodiment 2 of this invention.
  • the air conditioner 100A according to the second embodiment of the present invention is that the AC current supplied from the AC power supply 7 is not supplied directly to the outdoor unit 1A but is supplied via the indoor unit 2A. Mainly different from Form 1. The description of the same configuration and operation as those in the first embodiment is omitted, and a description of the different configuration and operation will be given below.
  • the air conditioner 100A shown in FIG. 3 includes an outdoor unit 1 and an indoor unit 2A.
  • the indoor unit 2A includes an indoor control board 13A.
  • the indoor control board 13A includes an indoor power supply circuit 15A for converting the AC power supply 7 into a power supply for operating each component on the indoor control board 13A, an indoor microcomputer 16A for controlling the functions of the indoor unit 2A,
  • An indoor communication circuit 17A for exchanging information with the outdoor control board 4 is provided.
  • the outdoor unit 1A and the indoor unit 2A are connected via the outdoor communication circuit 14, the internal / external communication line 26, and the indoor communication circuit 17A.
  • the indoor control board 13A includes an outdoor power supply relay 22.
  • the outdoor power supply relay 22 has a relay drive power source 24 connected to one end of the coil portion 23a, an indoor microcomputer 16A connected to the other end of the coil portion 23a, and a current flowing through the coil portion 23a under the control of the indoor microcomputer 16A.
  • the contact portion 23b is electrically connected, and no current is passed through the coil portion 23a, so that the contact portion 23b is electrically disconnected.
  • the contact part 23b is provided in the supply line C of the AC power supply 7 on the indoor control board 13A.
  • the outdoor power supply relay 22 corresponds to a second relay.
  • the coil portion 23a corresponds to the second coil portion.
  • the contact portion 23b corresponds to the second contact portion.
  • the contact portion 23b of the outdoor power supply relay 22 is provided on the supply line C of the AC power supply 7 on the indoor control board 13A. Thereby, it is possible to cut off the AC current supplied to the outdoor control board 4 without cutting off the AC current using a breaker or the like.
  • FIG. 4 is a schematic block diagram which shows an example of the air conditioner concerning Embodiment 3 of this invention.
  • the temperature protector 5 is not provided between the relay drive power supply 21 and the inrush current prevention relay 18, and the communication between the communication circuit power supply 25 and the outdoor communication circuit 14 is performed.
  • the point that the temperature protector 5A is provided is mainly different from the above-described second embodiment. The description of the same configuration and operation as those of the second embodiment is omitted, and a description of the different configuration and operation will be given below.
  • the air conditioner 100B shown in FIG. 4 includes an outdoor unit 1A and an indoor unit 2A.
  • the outdoor unit 1A includes a DC motor 3, an outdoor control board 4A, and a temperature protector 5A.
  • the temperature protector 5 ⁇ / b> A is attached to the outer shell or winding of the DC motor 3.
  • the temperature protector 5A has the outdoor communication circuit 14 connected to one end and the communication circuit power supply 25 connected to the other end.
  • the temperature protector 5 ⁇ / b> A is provided on the supply line D of the communication circuit power supply 25.
  • FIG. 5 is a flowchart of processing for detecting a temperature abnormality in the winding of the DC motor and stopping the DC motor, which is executed by the air conditioner shown in FIG.
  • the AC voltage applied from the AC power supply 7 to the indoor power supply circuit 15A is converted into a low voltage DC voltage necessary for the operation of the indoor microcomputer 16A, the indoor communication circuit 17A, and the like in the indoor power supply circuit 15A. It is applied to each component constituting the indoor microcomputer 16A and the indoor communication circuit 17A.
  • the power supply voltage of the relay drive power supply 24 is also a low DC voltage and is generated by the indoor power supply circuit 15A.
  • the indoor microcomputer 16A When the generated low DC voltage is applied to the indoor microcomputer 16A, the indoor microcomputer 16A is activated.
  • the indoor microcomputer 16A controls the power source voltage of the relay drive power source 24 to be applied to the coil portion 23a so that a current flows through the coil portion 23a. Thereby, the contact part 23b is connected and AC current is supplied to the outdoor unit 1A.
  • step S201 When AC current is supplied to the outdoor unit 1A, the outdoor unit 1A performs normal operation (step S201), as in the first embodiment described above.
  • step S201 While the temperature abnormality due to abnormal heat generation of the winding of the DC motor 3 does not occur (No in step S202), the outdoor unit 1A performs normal operation (step S201).
  • step S202 When a temperature abnormality occurs due to abnormal heat generation of the winding of the DC motor 3 (Yes in step S202), the temperature protector 5A is activated (step S203), and the electrical connection between both ends of the temperature protector 5A is cut off. Thus, the power supply voltage of the communication circuit power supply 25 applied to the outdoor communication circuit 14 is cut off (step S204). Thereby, communication between the outdoor communication circuit 14 and the indoor communication circuit 17A is not established, and the indoor microcomputer 16A determines that communication is abnormal (step S205).
  • the indoor microcomputer 16A determines that the communication is abnormal, the indoor microcomputer 16A controls the power supply voltage of the relay drive power supply 24 not to be applied to the coil section 23a so that no current flows through the coil section 23a. As a result, the contact portion 23b is opened (step S206), and no AC current is supplied to the outdoor unit 1A, so that electric charge cannot be stored in the electrolytic capacitor 9 and is applied to the DC / DC converter 10. DC voltage decreases (step S207).
  • step S208 When the DC voltage applied to the DC / DC converter 10 decreases, the DC voltage applied to the motor drive element 11 also decreases, and the motor drive element 11 cannot generate a drive voltage (step S208), and the DC motor. 3 stops (step S209).
  • the DC / DC converter 10 cannot generate a low DC voltage required for the operation of the outdoor microcomputer 12, the motor drive element 11, and the outdoor communication circuit 14, and the outdoor unit 1A stops.
  • the outdoor communication circuit 14 is operable even when the temperature protector 5 is returned to the electrically connected state. In other words, communication between the outdoor communication circuit 14 and the indoor communication circuit 17A does not hold.
  • the protection function of the DC motor 3 by the program of the outdoor microcomputer 12 is caused by some factor such as the program runaway of the outdoor microcomputer 12. Even if it does not work, the DC motor 3 can be stopped.
  • the voltage applied to both ends of the temperature protector 5A is smaller than the configuration in which the path of the AC current supplied from the AC power supply 7 is directly cut off by the temperature protector.
  • a component having a smaller rated voltage has a smaller component size, so that the temperature protector 5A can be downsized.
  • the temperature protector 5A is provided between the outdoor communication circuit 14 and the communication circuit power supply 25.
  • a temperature protector is provided in the internal / external communication line 26, and the temperature protector is connected to the outer periphery or winding of the DC motor 3. It may be attached to a wire or the like. Even in this case, when the temperature protector is activated, communication between the outdoor communication circuit 14 and the indoor communication circuit 17A is not established, and the indoor microcomputer 16A can determine the communication abnormality, and has the same effect. Can do.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機(100)は、室内機(2)と、室外機(1)とを備え、室外機(1)は、DCモータ(3)と、コイル部(20a)と、室外機(1)の電源であるAC電源(7)の供給ライン(A)に設けられる接点部(20b)とを備える、コイル部(20a)に電流が流れないと、接点部(20b)が電気的に非接続状態となり、コイル部(20a)に電流が流れると、接点部(20b)が電気的に接続状態となる突入電流防止リレー(18)と、接点部(20b)と並列に接続されるPTC(19)と、突入電流防止リレー(18)の電源であるリレー駆動電源(21)の供給ライン(B)に設けられるとともに、DCモータ(3)に設けられる、DCモータ(3)の温度が一定の温度未満では電気的に接続状態であり、DCモータ(3)の温度が一定の温度以上になると電気的に非接続状態となる温度プロテクタ(5)とを備える。

Description

空気調和機
 本発明は、モータの温度保護制御を行う空気調和機に関する。
 従来のDC(Direct Current)モータの温度保護制御では、温度プロテクタをDCモータに取り付けて、DCモータの巻線の温度が一定の温度以上となった場合に、モータ駆動素子の電源を遮断している。これにより、モータ駆動素子を強制的に停止させて、DCモータの動作を停止させ、DCモータを保護している(たとえば、特許文献1参照)。
特開2012-228009号公報
 上述した特許文献1に記載の技術では、DCモータの巻線の異常な発熱による温度異常が発生した場合に、モータ駆動素子の電源を遮断し、モータ駆動素子を強制的に停止させて、DCモータの動作を停止させてはいるものの、モータ駆動素子以外の機能は動作可能な状態としている。通常、モータ駆動素子の電源が遮断されていれば、モータ駆動素子は開放状態となるため、DCモータへの電流の経路は形成されずに、DCモータへは電流が流れない。しかしながら、モータ駆動素子の電源が遮断されている状態であっても、モータ駆動素子がショート故障していて、DCモータへの電流の経路が形成されている場合には、DCモータの駆動電圧の元となる電源電圧がモータ駆動素子へ印加されていると、DCモータへ電流が流れてしまう、という問題があった。
 本発明は、上記に鑑みてなされたものであって、モータの異常な発熱による温度異常が発生した場合において、モータ駆動素子がショート故障していたとしても、モータに電流が流れないようにすることができる空気調和機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる空気調和機は、室内機と、室外機とを備える。室外機は、モータと、第1のコイル部と、室外機の電源である交流電源の供給ラインに設けられる第1の接点部とを備える、第1のコイル部に電流が流れないと、第1の接点部が電気的に非接続状態となり、第1のコイル部に電流が流れると、第1の接点部が電気的に接続状態となる第1のリレーとを備える。室外機は、第1の接点部と並列に接続されるPTC(Positive Temperature Coefficient)と、第1のリレーの電源であるリレー駆動電源の供給ラインに設けられるとともに、モータに設けられる、モータの温度が一定の温度未満では電気的に接続状態であり、モータの温度が一定の温度以上になると電気的に非接続状態となる温度プロテクタとを備える。
 本発明にかかる空気調和機は、モータの異常な発熱による温度異常が発生した場合において、モータ駆動素子がショート故障していたとしても、モータに電流が流れないようにすることができるという効果を奏する。
本発明の実施の形態1にかかる空気調和機の一例を示す概略構成図 図1に示す室外機が実行するDCモータの巻線の温度異常を検知してDCモータを停止させる処理のフローチャート 本発明の実施の形態2にかかる空気調和機の一例を示す概略構成図 本発明の実施の形態3にかかる空気調和機の一例を示す概略構成図 図4に示す空気調和機が実行するDCモータの巻線の温度異常を検知してDCモータを停止させる処理のフローチャート
 以下に、本発明の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 まず、本発明の実施の形態1にかかる空気調和機について説明する。図1は、本発明の実施の形態1にかかる空気調和機の一例を示す概略構成図である。
 図1に示す、空気調和機100は、室外機1と、室内機2とを備える。室外機1は、圧縮機モータまたはファンモータなどのDCモータ3と、DCモータ3を制御するための室外制御基板4と、DCモータ3を温度異常から保護するための温度プロテクタ5とを備える。室外機1は、DCモータ3にかえて、たとえばAC(Alternating Current)モータを備えていてもよい。
 室外制御基板4は、突入電流から室外制御基板4を保護するための突入電流防止回路6と、AC電源7から供給されるAC電流を整流するためのダイオードブリッジ8と、電荷を蓄積する電解コンデンサ9と、DC/DCコンバータ10とを備える。DC/DCコンバータ10は、印加されたDC電圧を室外制御基板4上の各部品を動作させるための低い電圧のDC電圧に変換したり、モータ駆動素子11による駆動電圧の変換の元となるDC電圧に変換したりする。DC/DCコンバータ10により生成された低い電圧のDC電圧は、図1において図示しない経路で室外制御基板4上の各部品に印加される。室外制御基板4は、DCモータ3を駆動するためのモータ駆動素子11と、モータ駆動素子11にDCモータ3の駆動指令信号を送信したり、突入電流防止回路6を制御したりするための室外マイコン12と、後述する室内制御基板13と情報をやり取りするための室外通信回路14とを備える。
 室内機2は、室内制御基板13を備える。室内制御基板13は、AC電源7を室内制御基板13上の各部品を動作させるための電源に変換するための室内電源回路15と、室内機2の機能を制御するための室内マイコン16と、室外制御基板4と情報をやり取りするための室内通信回路17とを備える。室外機1と、室内機2とは、室外通信回路14と内外通信ライン26と室内通信回路17とを介して接続される。
 突入電流防止回路6は、突入電流防止リレー18と、その接点部20bに並列接続されるPTC(Positive Temperature Coefficient)19とを備える。PTC19は、たとえばPTCサーミスタである。突入電流防止リレー18は、コイル部20aの一端に温度プロテクタ5を介してリレー駆動電源21を接続し、コイル部20aの他端に室外マイコン12を接続し、室外マイコン12の制御により、コイル部20aに電流を流すことにより、接点部20bが電気的に接続状態となり、コイル部20aに電流を流さないことにより、接点部20bが電気的に非接続状態となるように構成される。接点部20bは、室外制御基板4上のAC電源7の供給ラインAに設けられる。突入電流防止リレー18は、第1のリレーに対応する。コイル部20aは、第1のコイル部に対応する。接点部20bは、第1の接点部に対応する。
 温度プロテクタ5は、対象の温度が一定の温度未満では両端間が電気的に接続状態であり、対象の温度が一定の温度以上になると両端間の電気的接続を遮断して電気的に非接続状態となるものである。温度プロテクタ5は、対象としてのDCモータ3の外郭または巻線などに取り付けられる。温度プロテクタ5は、一端にコイル部20aを接続し、他端にリレー駆動電源21を接続する。温度プロテクタ5は、リレー駆動電源21の供給ラインBに設けられる。温度プロテクタ5は、一端にコイル部20aを接続し、他端に室外マイコン12を接続してもよい。温度プロテクタ5は、たとえばサーモスタットである。温度プロテクタ5は、スイッチの形態に限定されず、温度ヒューズのように温度によって両端子間の電気的接続が遮断される形態であってもよい。
 図2は、図1に示す室外機が実行するDCモータの巻線の温度異常を検知してDCモータを停止させる処理のフローチャートである。
 室外機1では、室外制御基板4にAC電源7からAC電流が供給されると、供給されたAC電流は、突入電流防止回路6のPTC19を通過したのちに、ダイオードブリッジ8で整流され、電解コンデンサ9に電荷が蓄積される。これにより、AC電源7から室外制御基板4に印加されるAC電圧は、DC電圧に変換される。
 変換されたDC電圧は、DC/DCコンバータ10によって、室外マイコン12、モータ駆動素子11および室外通信回路14などの動作に必要となる低い電圧のDC電圧に変換され、室外マイコン12、モータ駆動素子11および室外通信回路14などを構成する各部品に印加される。リレー駆動電源21の電源電圧も低い電圧のDC電圧であり、DC/DCコンバータ10によって生成される。
 生成された低い電圧のDC電圧が室外マイコン12に印加されると、室外マイコン12が起動する。室外マイコン12は、リレー駆動電源21の電源電圧がコイル部20aに印加されて、コイル部20aに電流が流れるように制御する。これにより、接点部20bが接続されて、これまでPTC19を経由してダイオードブリッジ8に供給されていたAC電流が接点部20bを経由してダイオードブリッジ8に供給されるようになり、AC電流の経路が切り替わる。
 通常、AC電流の経路が切り替わるまでには1秒~2秒程度しかかからないため、PTC19の発熱量はそれほど大きくなく、PTC19の抵抗値が突入電流防止回路6以降へのAC電流の供給を断ち切るまでには至らない。
 AC電流の経路が切り替わったのち、室外マイコン12からモータ駆動素子11へDCモータ駆動信号が送信され、DC/DCコンバータ10によって生成された、上述した低い電圧のDC電圧とは別のDC電圧が、モータ駆動素子11によって、DCモータ3を回転させるための駆動電圧に変換される。駆動電圧がDCモータ3に印加されることにより、DCモータ3が回転する。このようにして、室外機1は通常運転を行う(ステップS101)。
 DCモータ3の巻線の異常な発熱による温度異常が発生していない間は(ステップS102でNo)、室外機1は通常運転を行う(ステップS101)。
 DCモータ3の巻線の異常な発熱による温度異常が発生すると(ステップS102でYes)、温度プロテクタ5が作動し(ステップS103)、温度プロテクタ5の両端間の電気的接続が遮断された状態になり、コイル部20aに印加されるリレー駆動電源21の電源電圧を遮断する(ステップS104)。これにより、接点部20bが開放される(ステップS105)。
 AC電流の経路が接点部20bを経由する経路からPTC19を経由する経路に切り替わるため、PTC19の温度と抵抗値とが上昇し(ステップS106)、PTC19での電圧降下が大きくなる。これにより、突入電流防止回路6以降にAC電流が供給されなくなり、電解コンデンサ9に電荷を蓄積させることができなくなって、DC/DCコンバータ10に印加されるDC電圧が低下する(ステップS107)。
 DC/DCコンバータ10に印加されるDC電圧が低下すると、モータ駆動素子11に印加されるDC電圧も低下し、モータ駆動素子11は駆動電圧を生成することができなくなり(ステップS108)、DCモータ3は停止する(ステップS109)。DC/DCコンバータ10は、室外マイコン12、モータ駆動素子11および室外通信回路14の動作に必要となる低い電圧のDC電圧も生成することができなくなり、室外機1は停止する。
 DCモータ3への電力供給が停止し、DCモータ3の巻線に電流が流れなくなると、DCモータ3の巻線の温度は低下し、温度プロテクタ5の両端間が電気的に接続された状態に戻る。温度プロテクタ5が、温度ヒューズの場合には、元の状態には戻らない。
 PTC19の温度が低下し、PTC19の抵抗値が電流が流れる値まで低下したとしても、DC/DCコンバータ10によってリレー駆動電源21の電源電圧が生成されていないため、温度プロテクタ5の両端間が電気的に接続された状態に戻っても、接点部20bは開放された状態のままとなる。このため、電解コンデンサ9への電荷の蓄積が再開されたとしても、PTC19を経由してAC電流が流れるため、すぐにPTC19の温度が上昇し、抵抗値が電流が流れなくなる値まで上昇して、電解コンデンサ9への電荷の蓄積が停止する。電解コンデンサ9への電荷の蓄積の再開および停止が繰り返され、DC/DCコンバータ10に印加されるDC電圧がDC/DCコンバータ10による電圧変換に必要なDC電圧まで上昇することがない。このため、DC/DCコンバータ10は、室外マイコン12などの動作に必要となる低い電圧のDC電圧、およびモータ駆動素子11による駆動電圧の変換の元となるDC電圧を生成することができない。室外制御基板4に供給されるAC電流を、ブレーカなどを用いて一旦遮断し、PTC19の温度を通常運転の運転開始時相当の温度まで低下させない限り、空気調和機100の室外機1は動作を再開しないことになる。
 図2に示す処理によれば、DCモータ3の巻線の異常な発熱による温度異常が発生すると、突入電流防止回路6以降にAC電流が供給されないようになる。このため、モータ駆動素子11がショート故障していたとしてもDCモータ3に電流が流れることがなく、DCモータ3に流れる電流を遮断することができる。
 本実施の形態によれば、室外マイコン12による制御によって、DCモータ3を停止させていないため、室外マイコン12のプログラムの暴走などの何らかの要因によって室外マイコン12のプログラムによるDCモータ3の保護機能が働かない状態であったとしても、DCモータ3を停止させることができる。
 本実施の形態によれば、AC電源7から供給されるAC電流の経路を直接温度プロテクタによって遮断する構成と比較して、温度プロテクタ5の両端に印加される電圧が小さくなる。一般的に定格電圧が小さい部品の方が、部品サイズが小さくなるため、温度プロテクタ5の小型化を図ることができる。
実施の形態2.
 次に、本発明の実施の形態2にかかる空気調和機について説明する。図3は、本発明の実施の形態2にかかる空気調和機の一例を示す概略構成図である。本発明の実施の形態2にかかる空気調和機100Aは、AC電源7から供給されるAC電流が室外機1Aに直接供給されずに、室内機2Aを介して供給される点が、上述した実施の形態1と主に異なる。実施の形態1と重複した構成および作用については説明を省略し、以下に異なる構成および作用についての説明を行う。
 図3に示す、空気調和機100Aは、室外機1と、室内機2Aとを備える。室内機2Aは、室内制御基板13Aを備える。室内制御基板13Aは、AC電源7を室内制御基板13A上の各部品を動作させるための電源に変換するための室内電源回路15Aと、室内機2Aの機能を制御するための室内マイコン16Aと、室外制御基板4と情報をやり取りするための室内通信回路17Aとを備える。室外機1Aと、室内機2Aとは、室外通信回路14と内外通信ライン26と室内通信回路17Aとを介して接続される。
 室内制御基板13Aは、室外給電リレー22を備える。室外給電リレー22は、コイル部23aの一端にリレー駆動電源24を接続し、コイル部23aの他端に室内マイコン16Aを接続し、室内マイコン16Aの制御により、コイル部23aに電流を流すことにより、接点部23bが電気的に接続状態となり、コイル部23aに電流を流さないことにより、接点部23bが電気的に非接続状態となるように構成される。接点部23bは、室内制御基板13A上のAC電源7の供給ラインCに設けられる。室外給電リレー22は、第2のリレーに対応する。コイル部23aは、第2のコイル部に対応する。接点部23bは、第2の接点部に対応する。
 本実施の形態によれば、上述した本発明の実施の形態1と同様の効果を奏することができる。さらに、本実施の形態によれば、室内制御基板13A上のAC電源7の供給ラインCに室外給電リレー22の接点部23bが設けられる。これにより、ブレーカなどを用いてAC電流の遮断を行わなくても、室外制御基板4へ供給されるAC電流を遮断することが可能となる。
実施の形態3.
 次に、本発明の実施の形態3にかかる空気調和機について説明する。図4は、本発明の実施の形態3にかかる空気調和機の一例を示す概略構成図である。本発明の実施の形態3にかかる空気調和機100Bは、リレー駆動電源21と突入電流防止リレー18との間に温度プロテクタ5が設けられずに、通信回路電源25と室外通信回路14との間に温度プロテクタ5Aが設けられている点が、上述した実施の形態2と主に異なる。実施の形態2と重複した構成および作用については説明を省略し、以下に異なる構成および作用についての説明を行う。
 図4に示す、空気調和機100Bは、室外機1Aと、室内機2Aとを備える。室外機1Aは、DCモータ3と、室外制御基板4Aと、温度プロテクタ5Aとを備える。温度プロテクタ5Aは、DCモータ3の外郭または巻線などに取り付けられる。温度プロテクタ5Aは、一端に室外通信回路14を接続し、他端に通信回路電源25を接続する。温度プロテクタ5Aは、通信回路電源25の供給ラインDに設けられる。
 図5は、図4に示す空気調和機が実行するDCモータの巻線の温度異常を検知してDCモータを停止させる処理のフローチャートである。
 室内機2Aでは、AC電源7から室内電源回路15Aに印加されるAC電圧が、室内電源回路15Aで室内マイコン16Aおよび室内通信回路17Aなどの動作に必要となる低い電圧のDC電圧に変換され、室内マイコン16Aおよび室内通信回路17Aなどを構成する各部品に印加される。リレー駆動電源24の電源電圧も低い電圧のDC電圧であり、室内電源回路15Aで生成される。
 生成された低い電圧のDC電圧が室内マイコン16Aに印加されると、室内マイコン16Aが起動する。室内マイコン16Aは、リレー駆動電源24の電源電圧がコイル部23aに印加されて、コイル部23aに電流が流れるように制御する。これにより、接点部23bが接続されて、室外機1AにAC電流が供給されるようになる。
 室外機1AにAC電流が供給されると、上述した実施の形態1と同様に、室外機1Aは通常運転を行う(ステップS201)。
 DCモータ3の巻線の異常な発熱による温度異常が発生していない間は(ステップS202でNo)、室外機1Aは通常運転を行う(ステップS201)。
 DCモータ3の巻線の異常な発熱による温度異常が発生すると(ステップS202でYes)、温度プロテクタ5Aが作動し(ステップS203)、温度プロテクタ5Aの両端間の電気的接続が遮断された状態になり、室外通信回路14に印加される通信回路電源25の電源電圧を遮断する(ステップS204)。これにより、室外通信回路14と室内通信回路17Aとの間での通信が成り立たなくなり、室内マイコン16Aは、通信異常と判定する(ステップS205)。
 室内マイコン16Aは、通信異常と判定すると、リレー駆動電源24の電源電圧がコイル部23aに印加されないようにして、コイル部23aに電流が流れないように制御する。これにより、接点部23bが開放されて(ステップS206)、室外機1AにAC電流が供給されないようになり、電解コンデンサ9に電荷を蓄積させることができなくなって、DC/DCコンバータ10に印加されるDC電圧が低下する(ステップS207)。
 DC/DCコンバータ10に印加されるDC電圧が低下すると、モータ駆動素子11に印加されるDC電圧も低下し、モータ駆動素子11は駆動電圧を生成することができなくなり(ステップS208)、DCモータ3は停止する(ステップS209)。DC/DCコンバータ10は、室外マイコン12、モータ駆動素子11および室外通信回路14の動作に必要となる低い電圧のDC電圧も生成することができなくなり、室外機1Aは停止する。
 DCモータ3への電力供給が停止し、DCモータ3の巻線に電流が流れなくなると、DCモータ3の巻線の温度は低下し、温度プロテクタ5Aの両端間が電気的に接続された状態に戻る。温度プロテクタ5が、温度ヒューズの場合には、元の状態には戻らない。
 しかし、DC/DCコンバータ10によって通信回路電源25の電源電圧が生成されていないため、温度プロテクタ5の両端間が電気的に接続された状態に戻っても、室外通信回路14は動作可能とはならず、室外通信回路14と室内通信回路17Aとの間での通信は成り立たない。
 図5に示す処理によれば、DCモータ3の巻線の異常な発熱による温度異常が発生すると、室外機1AにAC電流が供給されないようになる。このため、モータ駆動素子11がショート故障していたとしてもDCモータ3に電流が流れることがなく、DCモータ3に流れる電流を遮断することができる。
 本実施の形態によれば、室外マイコン12による制御によって、DCモータ3を停止させていないため、室外マイコン12のプログラムの暴走などの何らかの要因によって室外マイコン12のプログラムによるDCモータ3の保護機能が働かない状態であったとしても、DCモータ3を停止させることができる。
 本実施の形態によれば、AC電源7から供給されるAC電流の経路を直接温度プロテクタによって遮断する構成と比較して、温度プロテクタ5Aの両端に印加される電圧が小さくなる。一般的に定格電圧が小さい部品の方が、部品サイズが小さくなるため、温度プロテクタ5Aの小型化を図ることができる。
 本実施の形態では、温度プロテクタ5Aを室外通信回路14と通信回路電源25との間に設けているが、内外通信ライン26に温度プロテクタを設けて、当該温度プロテクタをDCモータ3の外郭または巻線などに取り付けてもよい。この場合においても、当該温度プロテクタが作動すると、室外通信回路14と室内通信回路17Aとの間での通信が成り立たなくなり、室内マイコン16Aは通信異常を判定することができ、同様の効果を奏することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。
 1,1A 室外機、2,2A 室内機、3 DCモータ、4 室外制御基板、5 温度プロテクタ、6 突入電流防止回路、7 AC電源、8 ダイオードブリッジ、9 電解コンデンサ、10 DC/DCコンバータ、11 モータ駆動素子、12 室外マイコン、13 室内制御基板、14 室外通信回路、15 室内電源回路、16 室内マイコン、17 室内通信回路、18 突入電流防止リレー、19 PTC、20a,23a コイル部、20b,23b 接点部、21,24 リレー駆動電源、22 室外給電リレー、25 通信回路電源、26 内外通信ライン、100,100A,100B 空気調和機。

Claims (5)

  1.  室内機と、室外機とを備える空気調和機であって、
     前記室外機は、
     モータと、
     第1のコイル部と、前記室外機の電源である交流電源の供給ラインに設けられる第1の接点部とを備える、前記第1のコイル部に電流が流れないと、前記第1の接点部が電気的に非接続状態となり、前記第1のコイル部に電流が流れると、前記第1の接点部が電気的に接続状態となる第1のリレーと、
     前記第1の接点部と並列に接続されるPTC(Positive Temperature Coefficient)と、
     前記第1のリレーの電源であるリレー駆動電源の供給ラインに設けられるとともに、前記モータに設けられる、前記モータの温度が一定の温度未満では電気的に接続状態であり、前記モータの温度が一定の温度以上になると電気的に非接続状態となる温度プロテクタとを備える
     空気調和機。
  2.  前記モータは、DC(Direct Current)モータであり、
     前記PTCは、PTCサーミスタである
     請求項1に記載の空気調和機。
  3.  前記温度プロテクタは、前記モータの外殻または巻線に取り付けられる
     請求項1または2に記載の空気調和機。
  4.  前記室内機は、
     第2のコイル部と、前記室外機の電源である交流電源の供給ラインに設けられる第2の接点部とを備える第2のリレーを備える
     請求項1から3のいずれか1項に記載の空気調和機。
  5.  室内機と、室外機とを備える空気調和機であって、
     前記室外機は、
     モータと、
     前記室内機と通信を行う室外通信回路と、
     前記室外通信回路の電源である通信回路電源の供給ラインに設けられるとともに、前記モータに設けられる、前記モータの温度が一定の温度未満では電気的に接続状態であり、前記モータの温度が一定の温度以上になると電気的に非接続状態となる温度プロテクタとを備え、
     前記室内機は、
     コイル部と、前記室外機の電源である交流電源の供給ラインに設けられる接点部とを備える、前記コイル部に電流が流れないと、前記接点部が電気的に非接続状態となり、前記コイル部に電流が流れると、前記接点部が電気的に接続状態となるリレーと、
     前記室外機と通信を行う室内通信回路と、
     前記室外通信回路と前記室内通信回路との間での通信が成り立たなくなると、前記コイル部に電流が流れないようにする室内マイコンとを備える
     空気調和機。
PCT/JP2018/012141 2018-03-26 2018-03-26 空気調和機 WO2019186648A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/012141 WO2019186648A1 (ja) 2018-03-26 2018-03-26 空気調和機
JP2020510197A JP7004801B2 (ja) 2018-03-26 2018-03-26 空気調和機
EP18911575.1A EP3779298B1 (en) 2018-03-26 2018-03-26 Air conditioner
CN201880091403.8A CN111868446B (zh) 2018-03-26 2018-03-26 空调机
AU2018417096A AU2018417096B2 (en) 2018-03-26 2018-03-26 Air conditioner
US16/982,098 US11486600B2 (en) 2018-03-26 2018-03-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012141 WO2019186648A1 (ja) 2018-03-26 2018-03-26 空気調和機

Publications (1)

Publication Number Publication Date
WO2019186648A1 true WO2019186648A1 (ja) 2019-10-03

Family

ID=68062353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012141 WO2019186648A1 (ja) 2018-03-26 2018-03-26 空気調和機

Country Status (6)

Country Link
US (1) US11486600B2 (ja)
EP (1) EP3779298B1 (ja)
JP (1) JP7004801B2 (ja)
CN (1) CN111868446B (ja)
AU (1) AU2018417096B2 (ja)
WO (1) WO2019186648A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135241B1 (ja) * 2022-01-21 2022-09-12 日立ジョンソンコントロールズ空調株式会社 空気調和機及び換気装置
WO2023139798A1 (ja) * 2022-01-21 2023-07-27 日立ジョンソンコントロールズ空調株式会社 空気調和機及び換気装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519622B2 (en) * 2021-01-29 2022-12-06 Rodney Craig Blincoe HVAC monitoring system
CN113766806B (zh) * 2021-08-19 2024-01-19 北京全路通信信号研究设计院集团有限公司 一种用于记录的黑匣子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133731A (ja) * 1988-11-15 1990-05-22 Matsushita Seiko Co Ltd 換気扇の過負荷保護装置
JP2006304557A (ja) * 2005-04-22 2006-11-02 Sharp Corp 保護回路,電源装置
JP2012228009A (ja) 2011-04-18 2012-11-15 Panasonic Corp インバータ制御装置
JP2014062475A (ja) * 2012-09-20 2014-04-10 Fujitsu General Ltd 空気調和装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158942A (ja) 1993-12-09 1995-06-20 Matsushita Seiko Co Ltd 空気調和機電源重畳通信装置
DE69725069D1 (de) * 1996-07-16 2003-10-30 Hitachi Ltd Stromversorgungseinrichtung für eine Klima-Anlage
JP3703346B2 (ja) * 1999-09-24 2005-10-05 三菱電機株式会社 空気調和機
AU753916C (en) * 2000-05-23 2005-12-22 Mitsubishi Denki Kabushiki Kaisha Control circuit for an air conditioner
JP4032723B2 (ja) * 2001-12-06 2008-01-16 松下電器産業株式会社 空調装置
JP2004112929A (ja) 2002-09-19 2004-04-08 Murata Mach Ltd 交流−直流変換装置
JP4609078B2 (ja) 2005-01-24 2011-01-12 パナソニック株式会社 電動機駆動装置およびこれを用いた空気調和機
KR100716250B1 (ko) * 2006-01-05 2007-05-08 삼성전자주식회사 실외 팬 모터의 에러 검출장치 및 방법
JP2010038484A (ja) * 2008-08-07 2010-02-18 Fujitsu General Ltd セパレート型空気調和機
CN201368562Y (zh) * 2009-01-23 2009-12-23 Tcl集团股份有限公司 一种空调用低温制冷控制装置
JP5241585B2 (ja) 2009-04-06 2013-07-17 三菱電機株式会社 空気調和機
JP2011069538A (ja) * 2009-09-25 2011-04-07 Mitsubishi Heavy Ind Ltd 空気調和機
CN201764622U (zh) * 2010-06-30 2011-03-16 松下电器研究开发(苏州)有限公司 空调自动控制电路
JP2012202620A (ja) * 2011-03-25 2012-10-22 Fujitsu General Ltd 空気調和機
JP5382105B2 (ja) * 2011-12-28 2014-01-08 ダイキン工業株式会社 空気調和装置
JP5655775B2 (ja) * 2011-12-28 2015-01-21 ダイキン工業株式会社 空気調和装置
MY166408A (en) * 2012-04-25 2018-06-25 Panasonic Appliances Air Conditioning R&D Malaysia Sdn Bhd Air conditioner
JP6086187B2 (ja) * 2012-07-06 2017-03-01 清水建設株式会社 低温液体貯蔵用タンク
JP5997567B2 (ja) * 2012-10-03 2016-09-28 日立アプライアンス株式会社 モータ制御装置及び空気調和機
JP2014124042A (ja) * 2012-12-21 2014-07-03 Hitachi Appliances Inc モータ制御装置及び空気調和機
JP6231749B2 (ja) * 2013-01-23 2017-11-15 三菱電機株式会社 空気調和機
JP5959500B2 (ja) * 2013-12-27 2016-08-02 三菱電機株式会社 空気調和機及び空気調和機の制御方法
JP6257331B2 (ja) * 2014-01-07 2018-01-10 三菱電機株式会社 インバータ装置
JP6505256B2 (ja) * 2016-01-06 2019-04-24 三菱電機株式会社 空気調和機
JP6785727B2 (ja) * 2017-06-30 2020-11-18 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機、及び空気調和機
CN110594953A (zh) * 2019-09-09 2019-12-20 广东美的暖通设备有限公司 压缩机驱动装置、压缩机压力保护方法及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133731A (ja) * 1988-11-15 1990-05-22 Matsushita Seiko Co Ltd 換気扇の過負荷保護装置
JP2006304557A (ja) * 2005-04-22 2006-11-02 Sharp Corp 保護回路,電源装置
JP2012228009A (ja) 2011-04-18 2012-11-15 Panasonic Corp インバータ制御装置
JP2014062475A (ja) * 2012-09-20 2014-04-10 Fujitsu General Ltd 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779298A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135241B1 (ja) * 2022-01-21 2022-09-12 日立ジョンソンコントロールズ空調株式会社 空気調和機及び換気装置
WO2023139828A1 (ja) * 2022-01-21 2023-07-27 日立ジョンソンコントロールズ空調株式会社 空気調和機及び換気装置
WO2023139798A1 (ja) * 2022-01-21 2023-07-27 日立ジョンソンコントロールズ空調株式会社 空気調和機及び換気装置

Also Published As

Publication number Publication date
US11486600B2 (en) 2022-11-01
CN111868446B (zh) 2021-10-15
EP3779298B1 (en) 2024-06-05
JPWO2019186648A1 (ja) 2020-09-24
US20210108823A1 (en) 2021-04-15
CN111868446A (zh) 2020-10-30
JP7004801B2 (ja) 2022-01-21
EP3779298A1 (en) 2021-02-17
AU2018417096B2 (en) 2022-02-10
EP3779298A4 (en) 2021-07-14
AU2018417096A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2019186648A1 (ja) 空気調和機
US5345126A (en) Positive temperature coefficient start winding protection
JP2008252966A (ja) モータ駆動装置
JP3987950B2 (ja) Dc−dcコンバータ
WO2019123545A1 (ja) 空気調和機
US3036242A (en) Overtemperature protected apparatus
JP2018518006A (ja) 交流電圧網に接続するための配電システム
KR101301518B1 (ko) 아크없는 개폐기 및 보호기능을 포함한 삼상 전동기용 기동 회로
JP7511753B2 (ja) モータ駆動装置およびそれを有する空気調和装置の室外機
JP6567930B2 (ja) 空気調和機
JP2002101550A (ja) 空気調和機の制御装置
JP3581858B2 (ja) インバータ装置
US6816393B2 (en) Switching power supply
KR101549864B1 (ko) 단상 유도 전동기 제어 장치 및 방법
JP7493676B2 (ja) 電源回路、冷蔵庫及び空気調和機
JP5999141B2 (ja) 電力変換装置
JP2012228009A (ja) インバータ制御装置
JP2023059438A (ja) 過電圧保護回路
KR20110035117A (ko) 단상 유도 전동기 제어 장치 및 방법
JP2000013988A (ja) 誤結線保護装置
JP2001074294A (ja) 空気調和機の制御装置
JP2001268777A (ja) 過電流保護装置
JP2012143113A (ja) 電源装置
KR20010060558A (ko) 에어컨의 전원 안정화 제어 회로
JPS6033710Y2 (ja) 単相同期発電機の過熱保護装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510197

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018417096

Country of ref document: AU

Date of ref document: 20180326

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018911575

Country of ref document: EP

Effective date: 20201026