WO2019176256A1 - インバータ装置およびインバータ装置の制御方法 - Google Patents

インバータ装置およびインバータ装置の制御方法 Download PDF

Info

Publication number
WO2019176256A1
WO2019176256A1 PCT/JP2019/000660 JP2019000660W WO2019176256A1 WO 2019176256 A1 WO2019176256 A1 WO 2019176256A1 JP 2019000660 W JP2019000660 W JP 2019000660W WO 2019176256 A1 WO2019176256 A1 WO 2019176256A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
frequency
output
inverter device
resonance
Prior art date
Application number
PCT/JP2019/000660
Other languages
English (en)
French (fr)
Inventor
勉 石間
良男 田内
浩市 守上
太郎 高田
寛樹 辻
政浩 伊藤
大作 茂野
Original Assignee
島田理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 島田理化工業株式会社 filed Critical 島田理化工業株式会社
Priority to KR1020207001058A priority Critical patent/KR102507173B1/ko
Priority to CN201980003588.7A priority patent/CN110870190B/zh
Priority to JP2020505615A priority patent/JP6959432B2/ja
Priority to TW108103579A priority patent/TWI721370B/zh
Publication of WO2019176256A1 publication Critical patent/WO2019176256A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an inverter device and a method for controlling the inverter device. More specifically, the present invention relates to an inverter device used by being connected to a resonant load and a method for controlling the inverter device.
  • an inverter device is known as a power supply device connected to a resonant load such as an induction heating circuit.
  • an inverter control unit configured by a phase locked loop (PLL) circuit is used as an inverter control unit that controls an inverter unit having an inverter circuit.
  • PLL phase locked loop
  • FIG. 1 (a) shows a configuration explanatory diagram showing the overall configuration of the inverter device controlled by the inverter control unit using the PLL circuit and connected to the resonant load.
  • FIG. 1B shows a detailed configuration explanatory diagram of the inverter control unit in the inverter device shown in FIG.
  • an inverter device 100 converts an alternating voltage supplied from an alternating current (AC) power source 102 into a high frequency alternating voltage having a desired voltage, and a resonant load 200 such as an induction heating circuit. To supply.
  • AC alternating current
  • the AC power source 102 for example, a commercial AC power source can be used.
  • the inverter device 100 converts the commercial AC voltage into a high-frequency AC voltage and supplies it to the resonant load 200.
  • the inverter device 100 receives the AC voltage supplied from the AC power supply 102, converts the DC voltage into a direct current (DC) voltage, and outputs the converter unit 104.
  • the inverter unit 100 is output from the converter unit 104.
  • An inverter unit 106 having an inverter circuit that inputs a DC voltage, reversely converts it into a high-frequency AC voltage, and outputs it, and an output from the inverter unit 106 (here, “output” from the inverter unit 106 refers to the output from the inverter unit 106.
  • the output voltage Vh is output voltage
  • the output current Ih is output from the inverter 106
  • the output power is output from the inverter 106.
  • Output sensor 108 that outputs the detection result as an output sensor signal, and external inverter unit 106
  • a converter control unit 110 that performs feedback control of a DC voltage converted by the converter unit 104 based on an output setting signal that is a signal for setting a force and an output sensor signal that is output from the output sensor 108, and an output that is output from the output sensor 108
  • the inverter control unit 112 includes a PLL circuit 112a (see FIG. 1B) that feedback-controls the operation of the inverter unit 106 based on the sensor signal.
  • the converter circuit of the converter unit 104 includes, for example, a thyristor rectifier circuit or a chopper circuit.
  • FIG. 1B shows a detailed configuration of the inverter control unit 112.
  • the PLL circuit 112a in response to the output sensor signal input to the PLL circuit 112a, the PLL circuit 112a outputs rectangular wave inverter drive signals Q and NQ that are inverter drive signals for driving the inverter unit 106.
  • inverter drive signals Q and NQ are simply referred to as “inverter drive signals” as appropriate.
  • an AC voltage is input to the converter unit 104 from an AC power source 102 such as a commercial AC power source.
  • the converter unit 104 to which an AC voltage is input from the AC power source 102 variably controls the DC voltage according to a control signal from the converter control unit 110 and outputs it to the inverter unit 106.
  • the inverter unit 106 converts the DC voltage output and input from the converter unit 104 into a high-frequency voltage by an ON (ON) / OFF (OFF) switching operation of a transistor constituting the inverter circuit, and outputs the high-frequency voltage.
  • the output sensor 108 is provided at the output stage of the inverter unit 106 in the inverter device 100, and the output sensor 108 is an output (output voltage Vh or output current Ih or output power) from the inverter unit 106. ) And outputs the detection result to the converter control unit 110 and the inverter control unit 112 as an output sensor signal.
  • the converter control unit 110 performs control to vary the DC voltage value that is the output of the converter unit 104 so that the output of the inverter unit 106 is set to the setting level indicated by the output setting signal.
  • the inverter control unit 112 automatically controls the PLL circuit 112 a so that the frequency of the output of the inverter unit 106 becomes the resonance frequency of the resonance load 200.
  • any of the methods conventionally used has a problem that when the output control is performed, the output frequency of the inverter section deviates from the resonance frequency, which is a practical problem.
  • PWM pulse width modulation
  • FIG. 2 shows a configuration explanatory diagram showing the overall configuration of the inverter device in which the output control is performed by the PWM control method and is connected to the resonant load.
  • the inverter device 300 converts an AC voltage supplied from the AC power supply 102 into a high-frequency AC voltage having a desired voltage, and supplies it to a resonant load 200 such as an induction heating circuit. .
  • the AC power source 102 for example, a commercial AC power source can be used as in the inverter device 100 described above.
  • the inverter device 10 converts the commercial AC voltage into a high-frequency AC voltage and resonates. Supply to load 200.
  • the inverter device 300 receives an AC voltage supplied from the AC power source 102, converts the DC voltage into a DC voltage by rectification using a diode, and outputs the DC voltage output from the converter unit 302.
  • An inverter unit 106 having an inverter circuit that inputs and reverse-converts it into a high-frequency AC voltage and outputs it, and an output from the inverter unit 106 (here, "output" from the inverter unit 106 is output from the inverter unit 106)
  • the output voltage Vh which is a voltage
  • the “output current Ih” which is a current output from the inverter unit 106
  • the “output power” which is a power output from the inverter unit 106).
  • the output sensor 108 that outputs the result as an output sensor signal, and the output of the inverter unit 106 from the outside It is configured to include a PWM controller 304 for feedback control of the inverter unit 106 on the basis of the output sensor signal output a constant signal serving as output setting signal from the output sensor 108.
  • Waveform A Output of inverter unit 106 (output voltage Vh or output current Ih)
  • Waveform B Output of inverter unit 106 (output voltage Vh or output current Ih)
  • Waveform C Output of the inverter unit 106 (output voltage Vh or output current Ih)
  • T One cycle of the fundamental component of the output (output voltage Vh or output current Ih) of the inverter unit 106
  • T / 4 1/4 cycle of fundamental wave component of output (output voltage Vh or output current Ih) of inverter unit 106
  • tw the pulse width of the inverter drive signal.
  • inverter device 300 when the drive is started (started) by PWM control of the PWM control unit 304, it is driven near the resonance frequency by an inverter drive signal (rectangular wave inverter drive signal Q, NQ) having a narrow pulse width tw (FIG. 3).
  • inverter drive signal rectangular wave inverter drive signal Q, NQ
  • tw narrow pulse width
  • the pulse width tw is varied by the PWM control of the PWM control unit 304, and the output of the inverter unit 106 is variably controlled.
  • the pulse width tw is widened by the PWM control of the PWM control unit 304 as shown in FIG. 3 (b) and FIG. 3 (c).
  • the drive is controlled near the resonance frequency using a PLL circuit or the like from the start by the PWM control of the PWM control unit 304, and the PWM control is performed in the frequency band.
  • the conventional inverter device 300 has a problem in that it has poor tracking characteristics with respect to a load whose resonance frequency varies.
  • the present invention has been made in view of various problems in the prior art as described above, and the object of the present invention is to shift the output frequency of the inverter unit from the resonance frequency even if output control is performed.
  • an object of the present invention is to provide an inverter device and an inverter device control method with improved tracking characteristics for a load whose resonance frequency varies.
  • the present invention provides a pulse width shorter than a resonance frequency period (for example, a “minimum pulse width” described later) in an inverter device that is a voltage-type inverter connected to a resonance load and PWM-controlled. .)
  • Pulse signal (in the present specification and claims, “a pulse signal having a pulse width shorter than the resonance frequency period” is appropriately referred to as a “narrow pulse signal”) is used as an inverter drive signal. , Start driving the inverter unit starting from a frequency away from the resonance frequency, and shift the frequency of the inverter drive signal to the resonance frequency or near the resonance frequency by frequency control so that the frequency of the inverter drive signal substantially matches the resonance frequency. Is controlled.
  • the pulse width of the inverter drive signal is widened by PWM control, whereby the output of the inverter unit (output voltage or output) Current or output power.) Is controlled to be a preset value.
  • the frequency of the output of the inverter unit does not deviate from the resonance frequency, and the tracking characteristic to a load whose resonance frequency fluctuates can be improved.
  • the frequency at the start of driving the inverter drive signal is separated from the resonance frequency, and the frequency is intentionally shifted so that the frequency of the inverter drive signal becomes the resonance frequency after the start of driving. Regardless of how the resonance frequency on the load side deviates, the resonance frequency can be automatically found by the frequency shift.
  • a region in which the frequency of the inverter drive signal is frequency-shifted is appropriately referred to as a “frequency shift region”. Is preferably determined in the inductive region in consideration of the diode reverse recovery characteristic optimum for the inverter circuit.
  • the starting point of the frequency away from the resonance frequency so that the frequency shift region is an inductive region based on the diode reverse recovery characteristic of the inverter circuit.
  • an inverter device is an inverter device that is a voltage source inverter that is PWM-controlled by connecting to a resonant load, an inverter unit that is connected to the resonant load and driven by an inverter drive signal, and the operation of the inverter unit Control means for controlling the inverter section, wherein the inverter section uses a pulse signal having a pulse width shorter than a period of the resonance frequency of the resonance load as the inverter drive signal, and a frequency separated from the resonance frequency as a starting point. After the start of driving, the frequency of the inverter drive signal is shifted to the resonance frequency or the vicinity of the resonance frequency, and the frequency of the inverter drive signal is controlled to substantially match the resonance frequency. It is.
  • the short pulse width is a pulse width at which the output of the inverter unit becomes a minimum set output value of the set value indicated by the output setting signal from the outside. It is what you have.
  • the inverter device according to the present invention is the above-described inverter device according to the present invention, wherein the starting point is such that the frequency shift region is an inductive region based on a diode reverse recovery characteristic of the inverter circuit constituting the inverter unit. It is a thing.
  • the inverter device according to the present invention is such that in the inverter device according to the present invention, the resonant load is a parallel resonant load, and the starting point is a frequency lower than the resonant frequency.
  • the inverter device according to the present invention is the above-described inverter device according to the present invention, in which an inductor is connected to the output stage of the inverter section.
  • the inverter device according to the present invention is such that, in the above-described inverter device according to the present invention, the control unit has a delay correcting means for correcting a voltage phase delay due to the inductor.
  • the inverter device according to the present invention is such that in the above-described inverter device according to the present invention, the resonant load is a series resonant load, and the starting point is a frequency higher than the resonant frequency.
  • the inverter device according to the present invention is the above-described inverter device according to the present invention, wherein the control unit has a delay correcting means for correcting a circuit delay of the inverter unit.
  • the inverter device according to the present invention is the above-described inverter device according to the present invention, wherein the resonant load is a series resonant load, the inverter unit uses a SiC diode as a free wheel diode in the inverter switching element, and the starting point is The frequency is lower than the resonance frequency.
  • the inverter device according to the present invention is such that, in the above-described inverter device according to the present invention, the starting point is a frequency separated by 5% or more with respect to the frequency of the resonance frequency.
  • the inverter device according to the present invention is the inverter device according to the present invention described above, wherein the control unit performs control so that the frequency of the inverter drive signal substantially matches the resonance frequency, and then performs PWM control to perform the inverter drive signal.
  • the pulse width is increased.
  • the inverter device is the above-described inverter device according to the present invention, wherein the control unit has a minimum level detecting means for detecting that the output of the inverter unit has reached an output level at which phase detection is possible. It is what I did.
  • the inverter device is the above-described inverter device according to the present invention, wherein the control unit includes frequency detection means for detecting that the output of the inverter unit has become an output level frequency at which phase detection is possible. It is what you have.
  • the inverter device according to the present invention is the above-described inverter device according to the present invention, wherein the output terminal of the inverter device and the parallel resonant capacitor box are connected by an air-cooled coaxial cable, and a current transformer is connected to the parallel resonant capacitor box. Thus, a high-frequency current is transmitted to the heating coil.
  • the resonance load is configured by a resonance circuit including a heating coil for induction heating and a resonance capacitor in the inverter device according to the present invention.
  • the control method for an inverter device is a voltage source inverter that is a voltage-type inverter connected to a resonant load and is PWM-controlled.
  • the drive signal after driving the inverter unit starting from a frequency that is separated from the resonance frequency, the frequency of the inverter drive signal is shifted to the resonance frequency or the vicinity of the resonance frequency, and the frequency of the inverter drive signal Is controlled so as to substantially coincide with the resonance frequency.
  • control method of the inverter device according to the present invention is the above-described control method of the inverter device according to the present invention, wherein the short pulse width is the minimum set output of the set value indicated by the output set signal from the outside of the inverter unit.
  • the pulse width is a value.
  • the control method of the inverter device according to the present invention is the above-described control method of the inverter device according to the present invention, wherein the starting point is induction based on the diode reverse recovery characteristic of the inverter circuit in which the frequency shift region constitutes the inverter unit. It is intended to be a sex region.
  • the resonant load is a parallel resonant load
  • the starting point is a frequency lower than the resonant frequency. Is.
  • the inverter device control method according to the present invention is the above-described inverter device control method according to the present invention in which an inductor is connected to the output stage of the inverter section.
  • the inverter device control method according to the present invention corrects the voltage phase delay caused by the inductor in the inverter device control method according to the present invention described above.
  • the resonance load is a series resonance load
  • the starting point is a frequency higher than the resonance frequency. Is.
  • the inverter device control method according to the present invention corrects the circuit delay of the inverter section in the above-described inverter device control method according to the present invention.
  • the inverter device control method according to the present invention is the above-described inverter device control method according to the present invention, wherein the resonant load is a series resonant load, and the inverter unit includes a SiC diode as a freewheel diode in the inverter switching element.
  • the starting point is a frequency lower than the resonance frequency.
  • the control method for an inverter device according to the present invention is the control method for an inverter device according to the present invention described above, wherein the starting point is a frequency separated by 5% or more with respect to the frequency of the resonance frequency. .
  • the inverter device control method according to the present invention is the above-described inverter device control method according to the present invention, wherein the inverter drive signal is controlled by PWM control after the frequency of the inverter drive signal is controlled to substantially coincide with the resonance frequency.
  • the pulse width of the signal is increased.
  • control method of the inverter device according to the present invention is such that in the control method of the inverter device according to the present invention described above, it is detected that the output of the inverter unit has reached an output level at which phase detection is possible. is there.
  • control method of the inverter device according to the present invention is to detect that the output of the inverter unit has become an output level frequency at which phase detection is possible in the control method of the inverter device according to the present invention described above. Is.
  • the inverter device control method according to the present invention is the above-described inverter device control method according to the present invention, wherein the output terminal of the inverter device and a parallel resonant capacitor box are connected by an air-cooled coaxial cable, and the parallel resonant capacitor box is connected to the parallel resonant capacitor box.
  • a current transformer is connected to transmit a high-frequency current to the heating coil.
  • the resonance load is configured by a resonance circuit including a heating coil for induction heating and a resonance capacitor. Is.
  • the present invention is configured as described above, the output frequency of the inverter unit does not deviate from the resonance frequency even when output control is performed, and the tracking characteristics to a load whose resonance frequency fluctuates is improved. There is an excellent effect that it becomes possible to do.
  • FIG. 4 is a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention. More specifically, FIG. 4 is a configuration explanatory diagram showing the overall configuration of the inverter device controlled by the control unit and connected to the resonant load.
  • FIG. 5 is a detailed configuration explanatory diagram of a control unit in the inverter device shown in FIG. 4.
  • FIG. 6 is a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention. More specifically, FIG. 6 is a configuration explanatory diagram showing the overall configuration of the inverter device controlled by the control unit and connected to the parallel resonant load.
  • FIGS. 7A, 7B, 7C, 7D, and 7E are schematic waveform diagrams showing operations in the inverter device shown in FIG.
  • FIG. 8 is a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention. More specifically, FIG. 8 is a configuration explanatory diagram showing the overall configuration of the inverter device controlled by the control unit and connected to the series resonant load.
  • FIGS. 9A, 9B, 9C, 9D, and 9E are schematic waveform diagrams showing the operation of the inverter device shown in FIG.
  • FIG. 10 is a configuration explanatory diagram of a control unit in the inverter device according to the example of the embodiment of the present invention.
  • FIG. 11 is a configuration explanatory diagram of a control unit in the inverter device according to the example of the embodiment of the present invention.
  • FIG. 12 is a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention. More specifically, FIG. 12 is a configuration explanatory diagram showing the overall configuration of the inverter device controlled by the control unit and connected to the series resonant load.
  • FIG. 13 is an enlarged explanatory view of an inverter unit in the inverter device shown in FIG.
  • FIG. 14A is a configuration explanatory diagram schematically showing a power source configuration using the inverter device according to the present invention connected to a resonant load.
  • FIG. 14B is a configuration explanatory view schematically showing a power supply configuration using an inverter device according to the prior art connected to a series resonant load.
  • FIG. 14C is a configuration explanatory diagram schematically showing a power supply configuration using an inverter device according to the prior art connected to a parallel resonant load.
  • FIGS. 15A and 15B are configuration explanatory views showing an induction heating resonance load as an example of the resonance load. More specifically, FIG. 15A is a configuration explanatory view showing a series resonance load for induction heating, which is a case of a series resonance load.
  • FIG. 15B is a configuration explanatory view showing a parallel resonance load for induction heating, which is a case of a parallel resonance load.
  • FIGS. 1A and 1B, FIG. 2 and FIGS. 3A, 3B and 3C are referred to.
  • the configurations and functions described above, or the configurations and functions that are the same as or equivalent to the configurations and functions described with reference to the drawings of FIG. 4 and subsequent figures, are shown in FIGS. ) (B) (c) or the same reference numerals as those used in FIG.
  • FIG. 4 shows a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention.
  • FIG. 4 shows the overall configuration of the inverter device controlled by the control unit and connected to the resonant load.
  • FIG. 5 shows a detailed configuration explanatory diagram of the control unit in the inverter apparatus shown in FIG.
  • the inverter device 10 according to an example of the embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the inverter device 10 is a PWM-controlled voltage source inverter connected to the resonant load 200.
  • the inverter device 10 converts the AC voltage supplied from the AC power source 102 into a desired high-frequency AC voltage and supplies it to the resonant load 200 such as an induction heating circuit.
  • the AC power source 102 for example, a commercial AC power source can be used as in the conventional inverter device 100.
  • the inverter device 10 converts the commercial AC voltage into a high-frequency AC voltage and resonates. Supply to load 200.
  • the inverter device 10 includes a converter unit 302 that receives an AC voltage supplied from the AC power source 102, converts the AC voltage into a DC voltage by rectification using a diode, and outputs the DC voltage.
  • the converter unit 302 of the inverter device 10 is configured by a diode rectifier circuit that does not use a converter control unit, and an AC voltage is input from the AC power supply 102, and the input AC voltage is converted into a DC voltage to be converted into an inverter unit. To 106.
  • the inverter unit 106 receives the DC voltage output from the converter unit 302, reversely converts it into a high-frequency AC voltage, and outputs it.
  • the output stage of the inverter unit 106 includes an output from the inverter unit 106 (here, “output” from the inverter unit 106 is “output voltage Vh”, which is a voltage output from the inverter unit 106), or the inverter unit 106.
  • the output sensor 108 is provided for detecting the “output current Ih” output from the inverter or the “output power” output from the inverter 106 and outputting the detection result as an output sensor signal. It has been.
  • the inverter device 10 includes a control unit 12 as control means for controlling the operation of the inverter unit 106.
  • control unit 12 includes a PWM control unit 12a and a frequency shift control unit 12b.
  • the control unit 12 feedback-controls the inverter unit 106 based on an output setting signal that is a signal for setting the output of the inverter unit 106 from the outside and an output sensor signal output from the output sensor 108.
  • control unit 12 drives the transistors of the voltage type inverter constituting the inverter unit 106 by PWM control of the PWM control unit 12a so that the output from the inverter unit 106 becomes the output setting value indicated by the output setting signal.
  • the pulse widths of the rectangular wave inverter drive signals Q and NQ that are inverter drive signals are varied, and the output of the high-frequency AC voltage converted by the inverter unit 106 is varied.
  • the output from the inverter unit 106 is input to the external resonant load 200 via the output sensor 108.
  • control unit 12 of the inverter device 10 performs the operations described below as operations related to the implementation of the present invention.
  • the pulse width is sufficiently shorter than the resonance frequency period, for example, the minimum set output value (output voltage) of the set value indicated by the external output setting signal Or the output current or the output power.
  • the “pulse width that is the minimum set output value of the set value indicated by the output setting signal from the outside” is set to “the minimum pulse.
  • the driving is started (started) by the rectangular wave inverter drive signals Q and NQ starting at a frequency that is a frequency that is separated from the resonance frequency of the resonance load 200.
  • the frequency shift control unit 12b of the control unit 12 is shifted to the resonance frequency from the start of driving (at the start).
  • the shift enables automatic tracking to the changing resonance frequency.
  • the PWM control unit 12 a of the control unit 12 outputs the output setting signal from the outside after the frequency of the rectangular wave inverter drive signals Q and NQ becomes the resonance frequency (resonance point) or near the resonance frequency.
  • the pulse widths of the rectangular wave inverter drive signals Q and NQ are widened by PWM control so that the set value shown in FIG.
  • the inverter device 10 has the minimum set output value (the output voltage or the output current or the output power) of the set value indicated by the output setting signal from the outside as the rectangular wave inverter drive signals Q and NQ that are the inverter drive signals. And a pulse signal (narrow pulse signal) having a pulse width sufficiently shorter than the resonance frequency period (for example, the above-mentioned minimum pulse width), and a frequency separated from the resonance frequency by the narrow pulse signal. After the frequency is shifted from the starting point to the resonance frequency or near the resonance frequency, the resonance frequency is controlled by frequency control.
  • the resonance frequency is controlled by frequency control.
  • the inverter device 10 widens the pulse width of the narrow pulse signal by PWM control, and outputs the set value indicated by the output setting signal from the outside (the output voltage, the output current, or the output power). Like that.
  • the inverter device 10 described above even if output control is performed, the frequency of the output of the inverter unit does not deviate from the resonance frequency, and the tracking characteristic to the load whose resonance frequency varies is improved. Can do.
  • the output control can be performed in the inverter unit 106, a thyristor rectifier circuit or a chopper circuit is not used as a converter circuit of the converter unit unlike the prior art.
  • the inverter device 10 improves the power source power factor and greatly improves the output response speed (according to the experiments by the inventor of the present application) compared with the conventional technology using a thyristor rectifier circuit or a chopper circuit. It has been greatly improved from 100 ms in the conventional technology to 10 ms.) The cost can be reduced and the reliability can be improved by greatly reducing the number of parts.
  • the inverter device 10 sets the start frequency, which is the frequency at the start of driving (starting) of the inverter drive signal, as a frequency away from the resonance frequency, and then shifts the frequency of the inverter drive signal so as to approach the resonance frequency.
  • the tracking characteristic to the resonant load 200 whose resonant frequency fluctuates is greatly improved, and a case where a plurality of resonant loads 200 having different resonant frequencies are switched and connected can be dealt with without problems.
  • the resonant load 200 is a parallel resonant load or a series resonant load, it can be used as the same voltage type inverter, so that the inverter device can be shared.
  • the region (frequency shift region) in which the frequency shift is performed by the frequency shift control unit 12b is determined as an inductive region in consideration of the diode reverse recovery characteristic optimum for the inverter circuit.
  • the start frequency is preferably determined such that the frequency shift region is an inductive region based on the diode reverse recovery characteristic of the inverter circuit.
  • the start frequency that is the frequency at the start of driving (starting) of the inverter drive signal is a frequency that is 5% or more away from the resonance frequency (for example, the resonance frequency is 20 kHz). Then, a frequency 5% or more away from the resonance frequency becomes a frequency of 19 kHz or less or a frequency of 21 kHz or more.) Good results were obtained.
  • the low frequency side of the resonance frequency (from the resonance frequency) (For example, if the resonance frequency is 20 kHz, a frequency 5% or more away on the low frequency side of the resonance frequency is a frequency of 19 kHz or less), or the resonance frequency. (For example, assuming that the resonance frequency is 20 kHz, a frequency 5% or more away from the resonance region on the high frequency side becomes a frequency of 21 kHz or more. .)
  • the start frequency is separated from the resonance frequency (for example, 5% or more with respect to the resonance frequency).
  • the frequency of the narrow pulse signal is shifted to the resonance frequency, and then the pulse width of the narrow pulse signal is widened at the resonance frequency.
  • FIG. 6 shows a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention.
  • FIG. 6 shows the overall configuration of the inverter device controlled by the control unit and connected to the parallel resonant load.
  • the inverter device 20 is connected to a parallel resonant load 22.
  • a parallel resonant load has a characteristic that becomes inductive in a range lower than the resonant frequency
  • a voltage type inverter has an inductive characteristic due to a reverse recovery characteristic of a current of a diode connected in parallel to the inverter element. It has been found that the switching operation at is stable compared to capacitive.
  • the inverter device 20 uses a frequency lower than the resonance frequency of the parallel resonance circuit 22 (for example, a frequency lower than the resonance frequency by 5% or more) as the start frequency of the inverter drive signal, and the frequency from this start frequency.
  • the frequency of the inverter drive signal is increased to the resonance frequency by shifting, and the frequency of the inverter drive signal is locked at the resonance frequency.
  • Reference numeral 24 represents an inductor
  • reference numeral 26 represents a voltage sensor
  • reference numeral 28 represents a control unit.
  • the voltage sensor 26 is a component corresponding to the output sensor 108 described above, and detects a voltage and outputs a signal indicating the detected voltage as an output sensor signal.
  • the control unit 28 includes a frequency shift circuit 30, a voltage-controlled oscillator (VCO) circuit 32, a narrow pulse signal generation circuit 34, an output circuit 36, a phase comparison circuit 38, and a delay setting circuit 40. And a lock completion circuit 42, a detection circuit 44, an error amplifier filter 46, a triangular wave generation circuit 48, and a PWM circuit 50.
  • VCO voltage-controlled oscillator
  • the inverter device 20 is conventionally known except for the point that the control unit 28 includes a frequency shift circuit 30 and shifts the frequency of the inverter drive signal and the point of signal switching in connection with the implementation of the present invention. Therefore, the detailed description of the configuration other than the point of shifting the frequency of the inverter drive signal and the point of signal switching is omitted.
  • an output ON (ON) signal from the outside is input to the frequency shift circuit 30, and the frequency is lower than the resonance frequency of the parallel resonance load 22 (for example, a frequency that is 5% or more lower than the resonance frequency).
  • a signal is output to the VCO circuit 32 so as to start driving the inverter unit 106, and the frequency signal from the output of the VCO circuit 32 is input to the narrow pulse signal generation circuit 34, and the narrow frequency of the output of the VCO circuit 32 is narrowed.
  • a pulse signal is generated by the narrow pulse signal generation circuit 34 and output to the output circuit 36.
  • the signal from the narrow pulse signal generation circuit 34 is switched to the signal from the PWM circuit 50 in accordance with the signal from the lock completion circuit 42.
  • the pulse width of the narrow pulse signal generated by the narrow pulse signal generation circuit 34 is such that the output value output from the inverter unit 106 is the lowest set output value (the set value indicated by the external output setting signal). It is preferable to set the output voltage, the output current, or the output power.
  • FIG. 7 (a), (b), (c), (d), and (e) show waveform diagrams schematically showing the operation of the inverter device 20.
  • FIG. 7 shows waveform diagrams schematically showing the operation of the inverter device 20.
  • waveform D, waveform E, waveform F, waveform G, and waveform H are voltages detected by voltage sensor 26 (capacitor voltage Vc). It is a waveform.
  • FIG. 7A shows a voltage (capacitor voltage Vc) waveform (waveform D) detected by the voltage sensor 26 as an output of the inverter unit 106 at the start frequency at the start of driving (starting time) and a narrow pulse as an inverter driving signal. Indicates the phase difference from the signal.
  • the point A which is a quarter delay of the pulse period of the inverter drive signal, is set as the pulse position of the phase detection pulse, and the zero cross point of the capacitor voltage Vc phase waveform (waveform E) to be compared is set.
  • point B see FIG. 7B
  • the phase difference between point A and point B is compared, and the phase difference is zero (0) or locked at a frequency at which the phase difference is set in advance. (See FIG. 7 (c)).
  • the waveform signal from the voltage sensor 26 and the frequency signal from the VCO circuit 32 are input to the phase comparison circuit 16 to compare the respective phases, and the frequency of the VCO circuit 32 is controlled so as to be the resonance frequency.
  • the drive of the inverter unit 106 is started by an inverter drive signal of a narrow pulse signal having a start frequency that is a frequency away from the resonance frequency, for example, a frequency 5% or more lower than the resonance frequency (FIG. 7A).
  • the frequency of the inverter signal is shifted and increased (see FIG. 7B).
  • the phase comparison circuit 38 locks the frequency of the inverter drive signal at the resonance frequency (see FIG. 7C), and the lock completion circuit 42 detects the lock completion and outputs a signal to the output circuit 36.
  • the output circuit 36 outputs an inverter drive signal whose pulse width tw is widened by PWM control from the narrow pulse signal, and the output of the inverter unit 106 rises to the output of the set value set by the output setting signal. (Refer to FIGS. 7D and 7E.)
  • the inverter device 20 is connected to the parallel resonant load 22 as a resonant load, and the rectangular set inverter drive signals Q and NQ that are inverter drive signals are the minimum set output values (outputs) of the set values indicated by the external output set signals.
  • Voltage or output current or output power is used, and a pulse signal having a pulse width sufficiently shorter than a resonance frequency period (narrow pulse signal) is output, and the narrow pulse signal is separated from the resonance frequency (for example,
  • the frequency of the inverter drive signal is controlled to the resonance frequency by performing frequency control by frequency shift that starts from the starting point) and increases to the resonance frequency or the vicinity of the resonance frequency.
  • the inverter device 20 widens the pulse width of the narrow pulse signal by PWM control, and outputs the set value indicated by the output setting signal from the outside (the output voltage or output current or output power). Like that.
  • an inductor 24 for preventing harmonic current is connected between the output stage of the inverter unit 106, that is, between the inverter unit 106 and the voltage sensor 26.
  • the inverter device 20 when the inverter unit 106, which is a voltage source inverter, is connected to the parallel resonant load 22, a harmonic current flows due to the harmonic component voltage of the rectangular wave voltage.
  • the inductor 24 is connected in series to the output stage of the inverter unit 106.
  • the output voltage of the inverter unit 106 is a rectangular wave
  • the rectangular wave is composed of a combined waveform of a sine wave and an odd harmonic. Since the harmonic component has a high frequency, the reactance of the capacitor is reduced, and the harmonic current is increased to cause current waveform distortion, and the loss of the transistor that is a switching element of the inverter unit 106 is deteriorated.
  • the inductor 24 is connected to the output stage of the inverter unit 106 for the purpose of suppressing such harmonic current.
  • the control unit 28 of the inverter device 20 is provided with a delay setting circuit 40 for setting a signal delay time when the output signal from the VCO circuit 32 is input to the phase comparison circuit 38 and the phase comparison is performed. ing.
  • the inverter device 20 when the inverter unit 106, which is a voltage source inverter, is connected to the parallel resonant load 22, a harmonic current flows due to the harmonic component voltage of the rectangular wave voltage.
  • the inductors 24 are connected in series, a delay occurs in the voltage phase at resonance due to the inductor component due to the series connection of the inductors 24.
  • a delay setting circuit 40 that delays the drive-side pulse phase input to the phase comparison circuit 38 is provided to correct the delay.
  • FIG. 8 shows a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention.
  • FIG. 8 shows the overall configuration of the inverter device controlled by the control unit and connected to the series resonant load.
  • the inverter device 60 is connected to a series resonant load 62.
  • a series resonant load has a characteristic that becomes inductive in a frequency range higher than the resonant frequency
  • a voltage type inverter has an inductive characteristic due to a reverse recovery characteristic of a current of a diode connected in parallel to the inverter element. It has been found that the switching operation at is stable compared to capacitive.
  • the inverter device 60 uses a frequency higher than the resonance frequency of the series resonance circuit 22 (for example, a frequency higher than the resonance frequency by 5% or more) as the start frequency of the inverter drive signal, and the frequency from this start frequency.
  • the frequency of the inverter drive signal is lowered to the resonance frequency and the frequency of the inverter drive signal is locked at the resonance frequency.
  • Reference numeral 64 denotes a current sensor
  • reference numeral 66 denotes a resonance capacitor of the series resonance load 62.
  • the current sensor 64 is a component corresponding to the output sensor 108 described above, and detects a current and outputs a signal indicating the detected current as an output sensor signal.
  • control part 28 Since the structure of the control part 28 is the same as that of the inverter apparatus 20 demonstrated above, the detailed description is abbreviate
  • an output ON (ON) signal from the outside is input to the frequency shift circuit 30, and the frequency is higher than the resonance frequency of the series resonance load 62 (for example, a frequency higher than the resonance frequency by 5% or more).
  • a signal is output to the VCO circuit 32 so as to start driving the inverter unit 106, and the frequency signal from the output of the VCO circuit 32 is input to the narrow pulse signal generation circuit 34, and the frequency of the output of the VCO circuit 32 is narrow.
  • a pulse signal is generated by the narrow pulse signal generation circuit 34 and output to the output circuit 36.
  • the signal from the narrow pulse signal generation circuit 34 is switched to the signal from the PWM circuit 50 in accordance with the signal from the lock completion circuit 42.
  • the pulse width of the narrow pulse signal generated by the narrow pulse signal generation circuit 34 is such that the output value output from the inverter unit 106 is the lowest set output value (the set value indicated by the external output setting signal). It is preferable to set the output voltage, the output current, or the output power.
  • FIG. 9 shows waveform diagrams that schematically show the operation of the inverter device 60.
  • FIG. 9 shows waveform diagrams that schematically show the operation of the inverter device 60.
  • waveforms I, J, K, L, and M are current (output current) waveforms detected by the current sensor 64. It is.
  • FIG. 9A shows a current (output current) waveform (waveform I) detected by the current sensor 64 as an output of the inverter unit 106 at the start frequency at the start of driving (starting) and a narrow pulse signal as an inverter driving signal. And the phase difference.
  • the point C which is 1 ⁇ 4 of the pulse cycle of the inverter drive signal, is set as the pulse position of the phase detection pulse, and the zero cross point of the output current phase waveform (waveform J) to be compared is D.
  • the phase difference between point C and point D is compared, and the phase difference is zero (0) or locked at a frequency at which the phase difference is set in advance ( Reference is made to FIG.
  • the waveform signal from the current sensor 64 and the frequency signal from the VCO circuit 32 are input to the phase comparison circuit 16 to compare the respective phases, and the frequency of the VCO circuit 32 is controlled so as to be the resonance frequency.
  • the drive of the inverter unit 106 is started by an inverter drive signal of a narrow pulse signal having a start frequency that is a frequency away from the resonance frequency, for example, a frequency 5% higher than the resonance frequency (FIG. 9A). And the frequency of the inverter signal is shifted and lowered (see FIG. 9B).
  • the frequency of the inverter drive signal is locked at the resonance frequency by the phase comparison circuit 38 (see FIG. 9C), and the lock completion circuit 42 detects the completion of the lock and outputs a signal to the output circuit 36.
  • the output circuit 36 outputs an inverter drive signal whose pulse width tw is widened by PWM control from the narrow pulse signal, and the output of the inverter unit 106 rises to the output of the set value set by the output setting signal.
  • the delay setting circuit 40 is used to correct the circuit delay of the inverter unit 106 in the inverter device 60 to which the series resonant load 62 is connected.
  • the inverter device 60 is connected to a series resonant load 62 as a resonant load, and as the rectangular wave inverter drive signals Q and NQ which are inverter drive signals, the minimum set output value (output) of the set value indicated by the external output set signal Voltage or output current or output power) is used, and a pulse signal having a pulse width sufficiently shorter than a resonance frequency period (narrow pulse signal) is output, and the narrow pulse signal is separated from the resonance frequency (for example, The frequency of the inverter drive signal is controlled to the resonance frequency by performing frequency control by frequency shift that starts from the starting point and then decreases to the resonance frequency or near the resonance frequency. .
  • the inverter device 60 widens the pulse width of the narrow pulse signal by PWM control, and outputs the set value indicated by the output setting signal from the outside (the output voltage, the output current, or the output power). Like that.
  • FIG. 10 shows a configuration explanatory diagram of a control unit in an inverter device according to an example of the embodiment of the present invention.
  • the configuration other than the control unit is the same as that of the inverter devices 20 and 60 according to the second and third embodiments described above and the inverter according to the seventh embodiment described later. Since there is no difference from the configuration of the apparatus 400, illustration and description of other configurations excluding the control unit are omitted.
  • the control unit 70 of the inverter device according to the fourth embodiment has a configuration in addition to the configuration of the control unit 28 as compared with the control unit 28 in each of the above-described embodiments (second, third, and seventh embodiments).
  • a minimum level detection circuit 72 is provided, and both are different in this respect.
  • the output level decreases as the frequency moves away from the resonance frequency, and the output from the inverter unit 106 is accurate. Phase detection is not possible.
  • control unit 70 is provided with the minimum level detection circuit 72, and the output of the inverter unit 106 has reached an output level at which the phase detection can be performed by the minimum level detection circuit 72. This is detected and phase comparison is started.
  • the level (output voltage, output current, or output power) of the resonant load by the pulse drive signal as the inverter drive signal is detected by the lowest level detection circuit 72 of the control unit 70. Is detected, and the phase comparison circuit 38 for controlling the resonance frequency near the predetermined level is started when the level becomes a preset level or more.
  • FIG. 11 shows a configuration explanatory diagram of a control unit in an inverter device according to an example of the embodiment of the present invention.
  • the configuration other than the control unit is the same as that of the inverter devices 20 and 60 according to the second and third embodiments described above and the inverter according to the seventh embodiment described later. Since there is no difference from the configuration of the apparatus 400, illustration and description of other configurations excluding the control unit are omitted.
  • the control unit 80 of the inverter device according to the fifth embodiment has a configuration in addition to the configuration of the control unit 28 as compared with the control unit 28 in each of the above-described embodiments (second, third, and seventh embodiments).
  • a minimum level frequency detection circuit 82 is provided, and both are different in this respect.
  • the output level decreases as the frequency moves away from the resonance frequency, and the output from the inverter unit 106 is accurate. Phase detection is not possible.
  • the control unit 80 is provided with the lowest level frequency detection circuit 82, and the output of the inverter unit 106 has an output level at which the lowest level frequency detection circuit 82 can detect the phase. It was detected that the frequency (lowest level frequency) was reached, and phase comparison was started.
  • the phase comparison circuit 38 is started to operate at the time of detection.
  • An inverter device includes both the lowest level detection circuit 72 in the fourth embodiment and the lowest level frequency detection circuit 82 in the fifth embodiment. It is provided.
  • FIG. 12 shows a configuration explanatory diagram of an inverter device according to an example of the embodiment of the present invention.
  • FIG. 12 shows the overall configuration of the inverter device controlled by the control unit and connected to the series resonant load.
  • FIG. 13 shows an enlarged explanatory diagram of the inverter part in the inverter device shown in FIG.
  • This inverter device 400 (inverter device according to an example of the seventh embodiment of the present invention) 400 shown in FIG. 12 is compared with the configuration of the inverter device 60 according to the third embodiment shown in FIG. They differ from each other in that an inverter unit 406 is provided instead of 106.
  • the inverter unit 406 of the inverter device 400 uses a SiC diode as a free-wheeling diode (freewheel diode) 406b in the inverter switching element 406a.
  • an SiC diode is used as the freewheeling diode 406b connected in parallel in the opposite direction to the semiconductor switching element 406c.
  • the resonant load forms a series resonant circuit 62, and the inverter drive is short enough to ensure a minimum set output value (output voltage, output current, or output power).
  • the frequency of the pulse drive signal that is a signal is started from a frequency lower than the resonance frequency (for example, a frequency that is 5% or more lower than the resonance frequency), and frequency control is performed by frequency shift that raises the frequency to near the resonance frequency T
  • the frequency of the pulse drive signal as the inverter drive signal is controlled to the resonance frequency.
  • a SiC diode is used as the free wheel diode 106b of the inverter switching element 106a.
  • FIG. 14 (a) shows a configuration explanatory diagram schematically showing a power source configuration using the inverter device according to the present invention connected to a resonant load.
  • FIG. 14B shows a configuration explanatory diagram schematically showing a power source configuration using a conventional inverter device connected to a series resonant load.
  • FIG. 14C shows a configuration explanatory diagram schematically showing a power source configuration using a conventional inverter device connected to a parallel resonant load.
  • the power source configuration using the inverter devices 10, 20, 60, and 400 connected to the above-described resonant load according to the present invention shown in FIG. 14 (a) can be used for induction heating.
  • the output terminal 500 of the connected inverter device 10, 20, 60, 400 according to the present invention and the parallel resonant capacitor box 502 are connected by an air-cooled coaxial cable 504, and a small current transformer (handy type) is connected to the parallel resonant capacitor box 502.
  • a current transformer) 506 is connected to transmit a high-frequency current to the heating coil 508.
  • the distance from the inverter device to the heating coil may be increased and the heating operation may be performed manually.
  • a water-cooled cable 602 is connected to the output terminal 600 a of the inverter device 600 according to the prior art and extended, and the impedance is converted by the small current transformer (handy type current transformer) 606 through the relay box 604, and the heating coil 608 is converted. It was transmitting high frequency current.
  • an air-cooled coaxial cable 702 is connected to the output terminal 700a of the inverter device 700 using a conventional inverter device 700 connected to a parallel resonant load.
  • the impedance is converted by a small current transformer (handy type current transformer) 706 through the relay box 704 and a high frequency current is transmitted to the heating coil 708.
  • the harmonic current flows in the reciprocating stray capacitance of the water-cooled cable 602, so the extension distance is limited.
  • the limit of the extension distance was about 50 m.
  • the series reactor in the inverter device 700 is large and heavy. Therefore, the power source itself becomes large and heavy, and cannot be used easily at the work site as a small power source.
  • the parallel resonance capacitor box 502 is composed of a parallel resonance capacitor.
  • the small current transformer (handy type current transformer) 506 the same configuration as that of the conventional structure, that is, the small current transformers (handy type current transformers) 606 and 706 may be used. it can.
  • the heating coil 508 can use the same configuration as that of the conventional configuration, that is, the heating coils 608 and 708.
  • the inverter device includes a resonance circuit including the resonance load 200, the parallel resonance load 22 or the series resonance load 62 in each of the above embodiments, and a heating coil for induction heating. It is configured by a resonance circuit including a resonance capacitor.
  • various configurations can be used as the resonant load 200, the parallel resonant load 22 or the series resonant load 62 connected to the inverter device according to the present invention including the inverter devices 10, 20, 60 and 400. You may make it connect the resonance load for induction heating as shown to 15 (a) (b) to the inverter apparatus by this invention.
  • FIG. 15 (a) shows a configuration explanatory view showing a series resonance load for induction heating, which is a case of a series resonance load.
  • FIG. 15B shows a configuration explanatory view showing a parallel resonant load for induction heating which is a case of a parallel resonant load.
  • a harmonic removing filter is connected in series to the induction heating parallel resonant load.
  • the filter is tangent as an inductor 24 in the inverter device 20.
  • the present invention is not limited to 5% or more away from the resonance frequency, and may be less than 5% away from the resonance frequency.
  • the numerical value of “5%” is a suitable numerical value that the present inventor has empirically obtained through experiments, but the present invention is not limited to the numerical value of “5%”, and the start frequency is determined from the resonance frequency. It only has to be away.
  • the frequency shift region (frequency shift region) is preferably determined to be an inductive region in consideration of the diode reverse recovery characteristic optimum for the inverter circuit.
  • the resonance frequency is 5% or more. It was an area.
  • the present invention can be used for an inverter device which is a power supply device connected to a resonant load such as an induction heating circuit.
  • Inverter device 12 Control unit (control means) 12a PWM controller (control means) 12b Frequency shift control unit (control means) 20 Inverter device 22 Parallel resonant circuit 24 Inductor 26 Voltage sensor 28 Control unit (control means) DESCRIPTION OF SYMBOLS 30 Frequency shift circuit 32 Voltage-controlled oscillator (VCO) circuit 34 Narrow-width pulse signal generation circuit 36 Output circuit 38 Phase comparison circuit 40 Delay setting circuit 42 Lock completion circuit 44 Detection circuit 46 Error amplifier filter 48 Triangular wave generation circuit DESCRIPTION OF SYMBOLS 50 PWM circuit 60 Inverter apparatus 62 Series resonance load 64 Current sensor 66 Resonance capacitor 70 Control part (control means) 72 Minimum level detection circuit (minimum level detection means) 80 Control unit (control means) 82 Minimum level frequency detection circuit (frequency detection means) DESCRIPTION OF SYMBOLS 100 Inverter apparatus 102 Alternating current (AC) power supply 104 Converter part 106 Inverter part 108 Output sensor 110 Converter control part 112 Control

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • General Induction Heating (AREA)

Abstract

出力制御を行ってもインバータ部の出力の周波数が共振周波数からずれることがなく、また、共振周波数が変動する負荷への追尾特性を改善する。共振負荷(200)に接続してPWM制御される電圧形インバータであるインバータ装置(10)において、共振負荷(200)に接続されてインバータ駆動信号(Q,NQ)により駆動されるインバータ部(106)と、インバータ部(106)の動作を制御する制御手段(12)とを有し、制御手段(12)は、共振負荷(200)の共振周波数の周期より短いパルス幅のパルス信号をインバータ駆動信号(Q,NQ)として、共振周波数より離れた周波数を起点としてインバータ部(106)の駆動を開始した後に、インバータ駆動信号(Q,NQ)の周波数を共振周波数または共振周波数近傍まで周波数シフトさせて、インバータ駆動信号(Q,NQ)の周波数が共振周波数と略一致するように制御する。

Description

インバータ装置およびインバータ装置の制御方法
 本発明は、インバータ装置およびインバータ装置の制御方法に関する。さらに詳細には、本発明は、共振負荷に接続して用いるインバータ装置およびインバータ装置の制御方法に関する。
 一般に、誘導加熱回路などのような共振負荷に接続する電源装置として、インバータ装置が知られている。
 従来、こうしたインバータ装置においては、インバータ回路を有するインバータ部を制御するインバータ制御部として、位相同期(PLL:Phase Locked Loop)回路により構成されるインバータ制御部が用いられており、このインバータ制御部によりインバータ部が制御されていた。
 
 図1(a)(b)を参照しながら、PLL回路を用いたインバータ制御部により制御される従来より公知のインバータ装置について説明する。
 なお、図1(a)には、PLL回路を用いたインバータ制御部により制御されるとともに共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図が示されている。
 また、図1(b)には、図1(a)に示すインバータ装置におけるインバータ制御部の詳細な構成説明図があらわされている。
 
 図1(a)に示すように、インバータ装置100は、交流(AC)電源102から供給される交流電圧を所望の電圧の高周波交流電圧に変換して、誘導加熱回路などのような共振負荷200へ供給するものである。
 なお、交流電源102としては、例えば、商用交流電源を用いることができ、その場合には、インバータ装置100は、商用交流電圧を高周波交流電圧に変換して共振負荷200へ供給する。
 より詳細には、インバータ装置100は、交流電源102から供給される交流電圧を入力して直流(DC)電圧に変換して出力するコンバータ回路を有するコンバータ部104と、コンバータ部104から出力された直流電圧を入力して高周波交流電圧に逆変換して出力するインバータ回路を有するインバータ部106と、インバータ部106からの出力(ここで、インバータ部106からの「出力」とは、インバータ部106から出力される電圧たる「出力電圧Vh」、または、インバータ部106から出力される電流たる「出力電流Ih」、または、インバータ部106から出力される電力たる「出力電力」である。)を検出してその検出結果を出力センサー信号として出力する出力センサー108と、外部からインバータ部106の出力を設定する信号たる出力設定信号と出力センサー108から出力された出力センサー信号とに基づいてコンバータ部104が変換する直流電圧をフィードバック制御するコンバータ制御部110と、出力センサー108から出力された出力センサー信号に基づいてインバータ部106の動作をフィードバック制御するPLL回路112a(図1(b)を参照する。)を有するインバータ制御部112とを有して構成されている。
 なお、コンバータ部104のコンバータ回路は、例えば、サイリスタ整流回路やチョッパ回路などにより構成される。
 
 ここで、図1(b)には、インバータ制御部112の詳細な構成が示されている。インバータ制御部112においては、PLL回路112aに入力された出力センサー信号に応じて、PLL回路112aがインバータ部106を駆動するインバータ駆動信号である矩形波インバータ駆動信号Q、NQを出力する。
 なお、本明細書および本特許請求の範囲においては、「矩形波インバータ駆動信号Q、NQ」について、単に「インバータ駆動信号」と適宜に称する。
 
 以上の構成において、インバータ装置100においては、商用交流電源などの交流電源102から、交流電圧がコンバータ部104に入力される。交流電源102から交流電圧を入力されたコンバータ部104は、コンバータ制御部110からの制御信号により直流電圧を可変制御して、インバータ部106へ出力する。
 インバータ部106は、コンバータ部104から出力されて入力した直流電圧を、インバータ回路を構成するトランジスタのON(オン)/OFF(オフ)のスイッチング動作により高周波電圧に変換して出力する。
 インバータ装置100におけるインバータ部106の出力段には、上記したように出力センサー108が設けられており、出力センサー108はインバータ部106からの出力(出力電圧Vhまたは出力電流Ihまたは出力電力である。)を検出して、その検出結果を出力センサー信号としてコンバータ制御部110とインバータ制御部112とへ出力する。
 コンバータ制御部110は、インバータ部106の出力を出力設定信号により指示された設定レベルにするように、コンバータ部104の出力である直流電圧値を可変する制御を行う。
 ここで、インバータ制御部112は、PLL回路112aにより、インバータ部106の出力の周波数が共振負荷200の共振周波数となるように自動制御する。
 
 ところで、共振負荷に接続するインバータ装置においては、高周波電圧と高周波電流との位相制御を用いた出力制御回路に関して、上記した従来のインバータ装置100において示した構成の他にいくつかの手法が用いられている。
 しかしながら、従来より用いられているいずれの手法においても、出力制御を行うとインバータ部の出力の周波数が共振周波数からずれていく特性となり、実用上の課題となっていたという問題点があった。
 
 一方、低電力機器に用いるインバータ装置においては、パルス幅変調(PWM:Pulse Width Modulation)制御方式による出力制御も用いられている。
 ここで、図2には、PWM制御方式により出力制御が行われるとともに共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図が示されている。
 なお、以下の説明においては、図1(a)(b)を参照しながら説明した構成ならびに作用と同一あるいは相当する構成ならびに作用については、図1(a)(b)において用いた符号と同一の符号をそれぞれ付して示すことにより、その詳細な構成ならびに作用の説明は省略する。
 図2に示すように、インバータ装置300は、交流電源102から供給される交流電圧を所望の電圧の高周波交流電圧に変換して、誘導加熱回路などのような共振負荷200へ供給するものである。
 なお、交流電源102としては、上記したインバータ装置100と同様に、例えば、商用交流電源を用いることができ、その場合には、インバータ装置10は、商用交流電圧を高周波交流電圧に変換して共振負荷200へ供給する。
 より詳細には、インバータ装置300は、交流電源102から供給される交流電圧を入力してダイオードによる整流により直流電圧に変換して出力するコンバータ部302と、コンバータ部302から出力された直流電圧を入力して高周波交流電圧に逆変換して出力するインバータ回路を有するインバータ部106と、インバータ部106からの出力(ここで、インバータ部106からの「出力」とは、インバータ部106から出力される電圧たる「出力電圧Vh」、または、インバータ部106から出力される電流たる「出力電流Ih」、または、インバータ部106から出力される電力たる「出力電力」である。)を検出してその検出結果を出力センサー信号として出力する出力センサー108と、外部からインバータ部106の出力を設定する信号たる出力設定信号と出力センサー108から出力された出力センサー信号とに基づいてインバータ部106をフィードバック制御するPWM制御部304とを有して構成されている。
 
 以上の構成において、図3(a)(b)(c)に模式的に示す波形図を参照しながら、インバータ装置300の動作について説明する。
 ここで、図3(a)(b)(c)において、
  波形A:インバータ部106の出力(出力電圧Vhまたは出力電流Ih)
  波形B:インバータ部106の出力(出力電圧Vhまたは出力電流Ih)
  波形C:インバータ部106の出力(出力電圧Vhまたは出力電流Ih)
  T:インバータ部106の出力(出力電圧Vhまたは出力電流Ih)の基本波成分の1周期
  T/4:インバータ部106の出力(出力電圧Vhまたは出力電流Ih)の基本波成分の1/4周期
  tw:インバータ駆動信号のパルス幅
である。
 インバータ装置300においては、PWM制御部304のPWM制御により駆動開始時(スタート時)はパルス幅twの狭いインバータ駆動信号(矩形波インバータ駆動信号Q、NQ)により共振周波数近傍で駆動させ(図3(a))、インバータ部106の出力を可変制御するにはPWM制御部304のPWM制御によりパルス幅twを可変させて、インバータ部106の出力を可変制御する。
 例えば、インバータ部106の出力を上昇するには、図3(b)ならびに図3(c)に示すように、PWM制御部304のPWM制御によりパルス幅twを広げることになる。
 即ち、従来のインバータ装置300においては、PWM制御部304のPWM制御により、スタート時からPLL回路などを用いて共振周波数近傍で駆動を制御され、その周波数帯でPWM制御を行っていた。
 このため、従来のインバータ装置300は、共振周波数が変動する負荷への追尾特性に劣るという問題点があった。
 
 なお、本願出願人が特許出願のときに知っている先行技術は、文献公知発明に係る発明ではないため、本願明細書に記載すべき先行技術文献情報はない。
 本発明は、上記したような従来の技術における種々の問題点に鑑みてなされたものであり、その目的とするところは、出力制御を行ってもインバータ部の出力の周波数が共振周波数からずれることがなく、また、共振周波数が変動する負荷への追尾特性を改善したインバータ装置およびインバータ装置の制御方法を提供しようとするものである。
 上記目的を達成するために、本発明は、共振負荷に接続してPWM制御される電圧形インバータであるインバータ装置において、共振周波数周期より短いパルス幅(例えば、後述する「最低パルス幅」である。)のパルス信号(本明細書および本特許請求の範囲においては、「共振周波数周期より短いパルス幅のパルス信号」を「狭幅パルス信号」と適宜に称する。)をインバータ駆動信号として用いて、共振周波数より離れた周波数を起点としてインバータ部の駆動を開始し、周波数制御によりインバータ駆動信号を共振周波数または共振周波数近傍まで周波数シフトさせて、インバータ駆動信号の周波数が共振周波数と略一致するように制御したものである。
 そして、本発明は、上記によりインバータ駆動信号の周波数が共振周波数と略一致するように制御した後に、PWM制御によりインバータ駆動信号のパルス幅を広くすることにより、インバータ部の出力(出力電圧または出力電流または出力電力である。)が予め設定された値となるように制御したものである。
 従って、本発明によれば、出力制御を行ってもインバータ部の出力の周波数が共振周波数からずれることがなく、また、共振周波数が変動する負荷への追尾特性を改善することができるようになる。
 
 つまり、本発明においては、インバータ駆動信号の駆動開始時の周波数を共振周波数から離すとともに、当該駆動開始の後にインバータ駆動信号の周波数が共振周波数となるように意図的に周波数シフトすることによって、共振負荷側の共振周波数がいかようにずれても、当該周波数シフトにより自動で共振周波数を探し当てることが可能となる。
 ここで、インバータ駆動信号の周波数を周波数シフトする領域(本明細書および本特許請求の範囲においては、「インバータ駆動信号の周波数を周波数シフトする領域」を「周波数シフト領域」と適宜に称する。)は、インバータ回路に最適なダイオード逆回復特性を考慮した誘導性領域に決定することが好ましい。
 換言すれば、共振周波数より離れた周波数の起点は、周波数シフト領域がインバータ回路のダイオード逆回復特性に基づく誘導性領域となるように決定することが好ましい。
 
 即ち、本発明によるインバータ装置は、共振負荷に接続してPWM制御される電圧形インバータであるインバータ装置において、共振負荷に接続されてインバータ駆動信号により駆動されるインバータ部と、上記インバータ部の動作を制御する制御手段とを有し、上記制御手段は、上記共振負荷の共振周波数の周期より短いパルス幅のパルス信号を上記インバータ駆動信号として、上記共振周波数より離れた周波数を起点として上記インバータ部の駆動を開始した後に、上記インバータ駆動信号の周波数を上記共振周波数または上記共振周波数近傍まで周波数シフトさせて、上記インバータ駆動信号の周波数が上記共振周波数と略一致するように制御するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記短いパルス幅は、上記インバータ部の出力が外部からの出力設定信号が示す設定値の最低設定出力値となるパルス幅であるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記起点は、上記周波数シフトする領域が上記インバータ部を構成するインバータ回路のダイオード逆回復特性に基づく誘導性領域となるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記共振負荷は、並列共振負荷であり、上記起点は、上記共振周波数より低い周波数であるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記インバータ部の出力段にインダクタを接続したものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記制御部は、上記インダクタによる電圧位相の遅れを補正する遅れ補正手段を有するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記共振負荷は、直列共振負荷であり、上記起点は、上記共振周波数より高い周波数であるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記制御部は、上記インバータ部の回路遅れを補正する遅れ補正手段を有するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記共振負荷は直列共振負荷であり、上記インバータ部は、インバータスイッチング素子におけるフリーホイールダイオードとしてSiCダイオードを用い、上記起点は、上記共振周波数より低い周波数であるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記起点は、上記共振周波数の周波数に対して5%以上離れた周波数であるようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記制御部は、上記インバータ駆動信号の周波数が上記共振周波数と略一致するように制御した後に、PWM制御により上記インバータ駆動信号のパルス幅を広くするようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記制御部は、上記インバータ部の出力が位相検知が可能になる出力レベルになったことを検知する最低レベル検知手段を有するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記制御部は、上記インバータ部の出力が位相検知が可能になる出力レベルの周波数になったことを検知する周波数検知手段を有するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記インバータ装置の出力端子と並列共振コンデンサボックスとを空冷同軸ケーブルで接続し、上記並列共振コンデンサボックスに変流器を接続して、加熱コイルに高周波電流を伝送するようにしたものである。
 また、本発明によるインバータ装置は、上記した本発明によるインバータ装置において、上記共振負荷は、誘導加熱用の加熱コイルと共振コンデンサとからなる共振回路により構成されるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、共振負荷に接続してPWM制御される電圧形インバータであるインバータ装置の制御方法において、共振負荷の共振周波数の周期より短いパルス幅のパルス信号をインバータ駆動信号として、上記共振周波数より離れた周波数を起点としてインバータ部の駆動を開始した後に、上記インバータ駆動信号の周波数を上記共振周波数または上記共振周波数近傍まで周波数シフトさせて、上記インバータ駆動信号の周波数が上記共振周波数と略一致するように制御するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記短いパルス幅は、上記インバータ部の出力が外部からの出力設定信号が示す設定値の最低設定出力値となるパルス幅であるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記起点は、上記周波数シフトする領域が上記インバータ部を構成するインバータ回路のダイオード逆回復特性に基づく誘導性領域となるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記共振負荷は、並列共振負荷であり、上記起点は、上記共振周波数より低い周波数であるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ部の出力段にインダクタを接続したものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インダクタによる電圧位相の遅れを補正するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記共振負荷は、直列共振負荷であり、上記起点は、上記共振周波数より高い周波数であるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ部の回路遅れを補正するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記共振負荷は直列共振負荷であり、上記インバータ部は、インバータスイッチング素子におけるフリーホイールダイオードとしてSiCダイオードを用い、上記起点は、上記共振周波数より低い周波数であるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記起点は、上記共振周波数の周波数に対して5%以上離れた周波数であるようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ駆動信号の周波数が上記共振周波数と略一致するように制御した後に、PWM制御により上記インバータ駆動信号のパルス幅を広くするようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ部の出力が位相検知が可能になる出力レベルになったことを検知するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ部の出力が位相検知が可能になる出力レベルの周波数になったことを検知するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記インバータ装置の出力端子と並列共振コンデンサボックスとを空冷同軸ケーブルで接続し、上記並列共振コンデンサボックスに変流器を接続して、加熱コイルに高周波電流を伝送するようにしたものである。
 また、本発明によるインバータ装置の制御方法は、上記した本発明によるインバータ装置の制御方法において、上記共振負荷は、誘導加熱用の加熱コイルと共振コンデンサとからなる共振回路により構成されるようにしたものである。
 本発明は、以上説明したように構成されているので、出力制御を行ってもインバータ部の出力の周波数が共振周波数からずれることがなく、また、共振周波数が変動する負荷への追尾特性を改善することが可能になるという優れた効果を奏する。
図1(a)(b)は、PLL回路を用いて制御される従来より公知のインバータ装置の構成説明図である。より詳細には、図1(a)は、PLL回路を用いたインバータ制御部により制御されるとともに共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図である。また、図1(b)は、図1(a)に示すインバータ装置におけるインバータ制御部の詳細な構成説明図である。 図2は、PWM制御方式により出力制御が行われるとともに共振負荷に接続された従来より公知のインバータ装置の全体の構成をあらわす構成説明図である。 図3(a)(b)(c)は、図2に示すインバータ装置における動作を示す模式的な波形図である。 図4は、本発明の実施の形態の一例によるインバータ装置の構成説明図である。より詳細には、図4は、制御部により制御されるとともに共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図である。 図5は、図4に示すインバータ装置における制御部の詳細な構成説明図である。 図6は、本発明の実施の形態の一例によるインバータ装置の構成説明図である。より詳細には、図6は、制御部により制御されるとともに並列共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図である。 図7(a)(b)(c)(d)(e)は、図6に示すインバータ装置における動作を示す模式的な波形図である。 図8は、本発明の実施の形態の一例によるインバータ装置の構成説明図である。より詳細には、図8は、制御部により制御されるとともに直列共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図である。 図9(a)(b)(c)(d)(e)は、図8に示すインバータ装置における動作を示す模式的な波形図である。 図10は、本発明の実施の形態の一例によるインバータ装置における制御部の構成説明図である。 図11は、本発明の実施の形態の一例によるインバータ装置における制御部の構成説明図である。 図12は、本発明の実施の形態の一例によるインバータ装置の構成説明図である。より詳細には、図12は、制御部により制御されるとともに直列共振負荷に接続されたインバータ装置の全体の構成をあらわす構成説明図である。 図13は、図12に示すインバータ装置におけるインバータ部の拡大説明図である。 図14(a)は、共振負荷に接続される本発明によるインバータ装置を用いた電源構成を模式的に示す構成説明図である。また、図14(b)は、直列共振負荷に接続される従来の技術によるインバータ装置を用いた電源構成を模式的に示す構成説明図である。また、図14(c)は、並列共振負荷に接続される従来の技術によるインバータ装置を用いた電源構成を模式的に示す構成説明図である。 図15(a)(b)は、共振負荷の一例として誘導加熱用共振負荷を示す構成説明図である。より詳細には、図15(a)は、直列共振負荷の場合である誘導加熱用直列共振負荷を示す構成説明図である。図15(b)は、並列共振負荷の場合である誘導加熱用並列共振負荷を示す構成説明図である。
 以下、添付の図面を参照しながら、本発明によるインバータ装置およびインバータ装置の制御方法の実施の形態の一例を詳細に説明するものとする。
 なお、以下の「発明を実施するための形態」の項の説明においては、図1(a)(b)、図2ならびに図3(a)(b)(c)の各図を参照しながら説明した構成ならびに作用、あるいは、図4以下の各図を参照しながら説明する構成ならびに作用と同一あるいは相当する構成ならびに作用については、図1(a)(b)、図2ならびに図3(a)(b)(c)あるいは図4以下において用いた符号と同一の符号をそれぞれ付して示すことにより、その詳細な構成ならびに作用の説明は省略する。
 
 (I)第1の実施の形態
  (I-1)構成
 図4には、本発明の実施の形態の一例によるインバータ装置の構成説明図があらわされている。なお、図4には、制御部により制御されるとともに共振負荷に接続されたインバータ装置の全体の構成があらわされている。
 また、図5には、図4に示すインバータ装置における制御部の詳細な構成説明図があらわされている。
 これら図4ならびに図5を参照しながら、本発明の実施の形態の一例によるインバータ装置10について説明する。
 
 本発明の実施の形態の一例によるインバータ装置10は、共振負荷200に接続するPWM制御の電圧形インバータである。
 即ち、インバータ装置10は、交流電源102から供給される交流電圧を所望の電圧の高周波交流電圧に変換して、誘導加熱回路などのような共振負荷200へ供給するものである。
 なお、交流電源102としては、従来のインバータ装置100と同様に、例えば、商用交流電源を用いることができ、その場合には、インバータ装置10は、商用交流電圧を高周波交流電圧に変換して共振負荷200へ供給する。
 より詳細には、インバータ装置10は、交流電源102から供給される交流電圧を入力してダイオードによる整流により直流電圧に変換して出力するコンバータ部302を備えている。
 即ち、インバータ装置10のコンバータ部302は、コンバータ制御部を使用しないダイオード整流回路で構成されており、交流電源102から交流電圧が入力され、入力された交流電圧を直流電圧に変換してインバータ部106へ出力する。
 インバータ部106は、コンバータ部302から出力された直流電圧を入力して高周波交流電圧に逆変換して出力する。
 インバータ部106の出力段には、インバータ部106からの出力(ここで、インバータ部106からの「出力」とは、インバータ部106から出力される電圧たる「出力電圧Vh」、または、インバータ部106から出力される電流たる「出力電流Ih」、または、インバータ部106から出力される電力たる「出力電力」である。)を検出してその検出結果を出力センサー信号として出力する出力センサー108が設けられている。
 インバータ装置10は、インバータ部106の動作を制御する制御手段として制御部12を備えている。
 図5に示すように、制御部12は、PWM制御部12aと、周波数シフト制御部12bとを有して構成されている。
 制御部12は、外部からインバータ部106の出力を設定する信号たる出力設定信号と出力センサー108から出力された出力センサー信号とに基づいて、インバータ部106をフィードバック制御する。
 即ち、制御部12は、インバータ部106からの出力が出力設定信号が示す出力設定値となるように、PWM制御部12aのPWM制御により、インバータ部106を構成する電圧型インバータのトランジスタを駆動するインバータ駆動信号たる矩形波インバータ駆動信号Q、NQのパルス幅を可変して、インバータ部106で変換される高周波交流電圧の出力を可変する。
 なお、インバータ部106からの出力は、出力センサー108を介して外部の共振負荷200に入力される。
 
  (I-2)動作
 以上の構成において、インバータ装置10の制御部12は、本発明の実施の関連する動作として、以下に説明する動作を行う。
 即ち、インバータ装置10からの出力を開始する駆動開始時(スタート時)は、共振周波数周期より十分に短いパルス幅、例えば、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)となるパルス幅(本明細書および本特許請求においては、「外部からの出力設定信号が示す設定値の最低設定出力値となるパルス幅」を「最低パルス幅」と適宜に称する。)であって、かつ、共振負荷200の共振周波数より離れた周波数を起点とした矩形波インバータ駆動信号Q、NQにより駆動開始(スタート)させる。
 これによって、共振負荷200の共振周波数が変動しても、駆動開始時(スタート時)から制御部12の周波数シフト制御部12bによる矩形波インバータ駆動信号Q、NQの周波数を共振周波数へシフトする周波数シフトにより、変動する共振周波数への自動追尾が可能になる。
 そして、インバータ装置10においては、制御部12のPWM制御部12aが、矩形波インバータ駆動信号Q、NQの周波数が共振周波数(共振点)または共振周波数近傍になった後に、外部からの出力設定信号が示す設定値の出力になるように、PWM制御により矩形波インバータ駆動信号Q、NQのパルス幅を広げる。
 
 即ち、インバータ装置10は、インバータ駆動信号である矩形波インバータ駆動信号Q、NQとして、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)を出力するとともに共振周波数周期より十分に短いパルス幅(例えば、上記した最低パルス幅である。)のパルス信号(狭幅パルス信号)を用い、その狭幅パルス信号を共振周波数より離れた周波数を起点にスタートさせてから共振周波数または共振周波数近傍まで周波数をシフトさせた後に、周波数制御により共振周波数に制御する。
 その後に、インバータ装置10は、PWM制御により狭幅パルス信号のパルス幅を広くして、外部からの出力設定信号が示す設定値の出力(出力電圧または出力電流または出力電力である。)になるようにする。
 
  (I-3)作用効果
 従って、上記において説明したインバータ装置10によれば、出力制御を行ってもインバータ部の出力の周波数が共振周波数からずれることがなく、また、共振周波数が変動する負荷への追尾特性を改善することができる。
 また、上記において説明したインバータ装置10においては、インバータ部106において出力制御ができるため、従来の技術のようにコンバータ部のコンバータ回路としてサイリスタ整流回路やチョッパ回路を使用することがない。
 このため、インバータ装置10は、サイリスタ整流回路やチョッパ回路を使用する従来の技術と比較すると、電源力率の改善、出力応答速度の大幅な改善(本願発明者の実験によれば、応答速度は、従来の技術における100msから10msに大幅に改善された。)、部品点数の大幅削減によるコスト低減ならびに信頼性向上を図ることができるようになる。
 また、インバータ装置10は、インバータ駆動信号の駆動開始時(スタート時)の周波数たるスタート周波数を共振周波数より離れた周波数とし、それからインバータ駆動信号の周波数を共振周波数に近づけるように周波数シフトさせるため、共振周波数が変動する共振負荷200への追尾特性が大幅に改善され、また、共振周波数の異なる複数の共振負荷200を切り替えて接続する場合にも問題なく対応することができる。
 さらに、共振負荷200が並列共振負荷であっても直列共振負荷であっても同じ電圧型インバータとして使用することができるので、インバータ装置の共通化を図ることができるようになる。
 
 ここで、周波数シフト制御部12bにより周波数シフトする領域(周波数シフト領域)は、インバータ回路に最適なダイオード逆回復特性を考慮した誘導性領域に決定することが好ましい。
 換言すれば、スタート周波数は、周波数シフト領域がインバータ回路のダイオード逆回復特性に基づく誘導性領域となるように決定することが好ましい。
 本願発明者による実験によれば、インバータ駆動信号の駆動開始時(スタート時)の周波数たるスタート周波数としては、共振周波数の周波数に対して5%以上離れた周波数(例えば、共振周波数が20kHzであるとすると、共振周波数の周波数に対して5%以上離れた周波数は19kHz以下の周波数または21kHz以上の周波数となる。)とすると良好な結果が得られた。
 なお、スタート周波数を共振周波数の周波数に対して5%以上離れた周波数とする際、即ち、スタート周波数を共振周波数の周波数から5%以上離す際には、共振周波数の低域側(共振周波数よりも低い周波数方向)に離してもよいし(例えば、共振周波数が20kHzであるとすると、共振周波数の低域側に5%以上離れた周波数は19kHz以下の周波数となる。)、あるいは、共振周波数の高域側(共振周波数よりも高い周波数方向)に離してもよい(例えば、共振周波数が20kHzであるとすると、共振周波数の高域側に5%以上離れた周波数は21kHz以上の周波数となる。)。
 なお、本願発明者の知見によれば、上記した本発明によるインバータ装置10のように、スタート周波数を共振周波数の周波数から離すようにして(例えば、共振周波数の周波数に対して5%以上離すようにする。)、当該スタート周波数から狭幅パルス信号によりインバータ部の駆動を開始した後に、当該狭幅パルス信号を共振周波数へ周波数シフトさせ、その後に共振周波数で狭幅パルス信号のパルス幅を広げるPWM制御を開始させるような従来の技術は存在しない。
 
 (II)第2の実施の形態
  (II-1)構成
 図6には、本発明の実施の形態の一例によるインバータ装置の構成説明図があらわされている。なお、図6には、制御部により制御されるとともに並列共振負荷に接続されたインバータ装置の全体の構成があらわされている。
 図6を参照しながら、本発明の実施の形態の一例によるインバータ装置20について説明すると、インバータ装置20は、並列共振負荷22に接続されている。
 ところで、並列共振負荷では、共振周波数より周波数が低い範囲では誘導性になる特性があり、一方、電圧型インバータは、インバータ素子に並列に接続されているダイオードの電流の逆回復特性より、誘導性でのスイッチング動作は容量性に比較して安定なことが分かっている。
 従って、本発明によるインバータ装置20は、並列共振回路22の共振周波数よりも低い周波数(例えば、共振周波数より5%以上低い周波数である。)をインバータ駆動信号のスタート周波数とし、このスタート周波数から周波数シフトさせてインバータ駆動信号の周波数を共振周波数まで上昇し、共振周波数でインバータ駆動信号の周波数をロックさせるようにしている。
 
 以下に、インバータ装置20について説明すると、符号24はインダクタであり、符号を26は電圧センサーであり、符号28は制御部である。
 なお、電圧センサー26は、上記した出力センサー108に相当する構成要素であり、電圧を検知して、出力センサー信号として検知した電圧を示す信号を出力する。
 制御部28は、周波数シフト回路30と、電圧制御発振器(VCO:Voltage-controlled oscillator)回路32と、狭幅パルス信号発生回路34と、出力回路36と、位相比較回路38と、遅れ設定回路40と、ロック完了回路42と、検波回路44と、誤差アンプフィルタ46と、三角波発生回路48と、PWM回路50とを有して構成されている。
 ここで、インバータ装置20は、本発明の実施に関連して制御部28が周波数シフト回路30を備えていてインバータ駆動信号の周波数を周波数シフトする点と信号切換の点を除いて、従来より公知のインバータ装置の技術を適用することができるので、インバータ駆動信号の周波数を周波数シフトする点と信号切換の点を除く他の構成に関する詳細な説明は省略する。
 
  (II-2)動作
 以上の構成において、インバータ装置20の動作について、本発明の実施に関連する制御部28の動作を中心に説明する。
 制御部28においては、外部からの出力オン(ON)信号を周波数シフト回路30に入力し、並列共振負荷22の共振周波数より低い周波数(例えば、共振周波数より5%以上低い周波数である。)からインバータ部106の駆動を開始するようにVCO回路32に信号を出力し、VCO回路32の出力からの周波数信号は狭幅パルス信号発生回路34に入力され、VCO回路32の出力の周波数の狭幅パルス信号が狭幅パルス信号発生回路34により発生されて出力回路36に出力される。出力回路36では、ロック完了回路42の信号により、狭幅パルス信号発生回路34の信号からPWM回路50の信号に切り換える。
 ここで、狭幅パルス信号発生回路34により発生される狭幅パルス信号のパルス幅は、インバータ部106から出力される出力値が、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)となるように設定することが好ましい。
 
 図7(a)(b)(c)(d)(e)には、インバータ装置20における動作を模式的に示す波形図があらわされている。
 なお、図7(a)(b)(c)(d)(e)において、波形D、波形E、波形F、波形Gならびに波形Hは、電圧センサー26により検知された電圧(コンデンサ電圧Vc)波形である。
 図7(a)は、駆動開始時(スタート時)のスタート周波数におけるインバータ部106の出力として電圧センサー26により検知された電圧(コンデンサ電圧Vc)波形(波形D)とインバータ駆動信号たる狭幅パルス信号との位相差を示す。
 インバータ装置20に並列共振負荷22が接続されている場合には、共振周波数以下の周波数領域ではインバータ駆動信号の位相はコンデンサ電圧Vcの位相より遅れることが分かっている。
 ここで、位相比較回路38において、インバータ駆動信号のパルスの周期の1/4遅れの位置たるA点を位相検波パルスのパルス位置とし、比較するコンデンサ電圧Vc位相波形(波形E)のゼロクロス点をB点として(図7(b)を参照する。)、A点とB点との位相差を比較し、位相差がゼロ(0)または予め設定されている位相差となった周波数でロックする(図7(c)を参照する。)。
 一方、電圧センサー26からの波形信号とVCO回路32からの周波数信号とを位相比較回路16に入力してそれぞれの位相を比較し、共振周波数となるようにVCO回路32の周波数を制御する。
 具体的には、共振周波数から離れた周波数、例えば、共振周波数より5%以上低い周波数をスタート周波数とした狭幅パルス信号のインバータ駆動信号によりインバータ部106の駆動を開始し(図7(a)を参照する。)、当該インバータ信号の周波数を周波数シフトして上昇させる(図7(b)を参照する。)。
 そして、位相比較回路38によりインバータ駆動信号の周波数を共振周波数でロックさせ(図7(c)を参照する。)、ロック完了回路42がロック完了を検知して出力回路36へ信号を出力する。この信号により、出力回路36からは、狭幅パルス信号からPWM制御によりパルス幅twが広がったインバータ駆動信号が出力され、インバータ部106の出力が出力設定信号によって設定された設定値の出力まで上昇する(図7(d)(e)を参照する。)。
 
 即ち、インバータ装置20は、共振負荷として並列共振負荷22を接続し、インバータ駆動信号である矩形波インバータ駆動信号Q、NQとして、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)を出力する共振周波数周期より十分に短いパルス幅のパルス信号(狭幅パルス信号)を用い、その狭幅パルス信号を共振周波数より離れた周波数(例えば、共振周波数より5%以上低い周波数である。)を起点にスタートさせてから共振周波数または共振周波数近傍まで周波数を上昇する周波数シフトによる周波数制御を行って、インバータ駆動信号の周波数を共振周波数に制御する。
 その後に、インバータ装置20は、PWM制御により狭幅パルス信号のパルス幅を広くして、外部からの出力設定信号が示す設定値の出力(出力電圧または出力電流または出力電力である。)になるようにする。
 
  (II-3)作用効果
 従って、インバータ装置20においても、インバータ装置10に関して上記(I-3)において説明したと同様な作用効果が得られる。
 
  (II-4)第2の実施の形態におけるその他の特徴的な構成
   (ア)インバータ装置20においては、インバータ部106の出力段、即ち、インバータ部106と電圧センサー26との間に、高調波電流を防止するインダクタ24が接続されている。
 即ち、インバータ装置20においては、並列共振負荷22に電圧形インバータであるインバータ部106を接続した場合に、矩形波電圧の高調波成分の電圧により高調波電流が流れるので、これを防止するためのインダクタ24をインバータ部106の出力段に直列接続している。
 インバータ部106の出力電圧は矩形波になるが、矩形波はサイン波と奇数高調波との合成波形からなることは一般的に知られており、矩形波のまま並列共振負荷22に接続すると奇数高調波成分は周波数が高いためコンデンサのリアクタンスが小さくなり、高調波電流が増大し電流波形ひずみを起こしたり、インバータ部106のスイッチング素子であるトランジスタの損失悪化などを引き起こす。
 このため、こうした高調波電流を抑制する目的で、インバータ装置20ではインバータ部106の出力段にインダクタ24が接続されている。
 
   (イ)インバータ装置20の制御部28においては、VCO回路32からの出力信号を位相比較回路38に入力して位相比較を行う際に、信号遅れ時間を設定するための遅れ設定回路40を設けている。
 即ち、インバータ装置20においては、並列共振負荷22に電圧形インバータであるインバータ部106を接続した場合に、矩形波電圧の高調波成分の電圧により高調波電流が流れるので、これを防止するためにインダクタ24を直列接続したが、このインダクタ24の直列接続によるインダクタ成分により共振時の電圧位相に遅れが生じる。
 インバータ装置20の制御部28においては、この電圧位相の遅れを補正するために、位相比較回路38に入力する駆動側のパルス位相を遅らせる遅れ設定回路40を設けて遅れ補正を行っている。
 
 (III)第3の実施の形態
  (III-1)構成
 図8には、本発明の実施の形態の一例によるインバータ装置の構成説明図があらわされている。なお、図8には、制御部により制御されるとともに直列共振負荷に接続されたインバータ装置の全体の構成があらわされている。
 図8を参照しながら、本発明の実施の形態の一例によるインバータ装置60について説明すると、インバータ装置60は、直列共振負荷62に接続されている。
 ところで、直列共振負荷では、共振周波数より周波数が高い範囲では誘導性になる特性があり、一方、電圧型インバータは、インバータ素子に並列に接続されているダイオードの電流の逆回復特性より、誘導性でのスイッチング動作は容量性に比較して安定なことが分かっている。
 従って、本発明によるインバータ装置60は、直列共振回路22の共振周波数よりも高い周波数(例えば、共振周波数より5%以上高い周波数である。)をインバータ駆動信号のスタート周波数とし、このスタート周波数から周波数シフトさせてインバータ駆動信号の周波数を共振周波数まで下降し、共振周波数でインバータ駆動信号の周波数をロックさせるようにしている。
 
 以下に、インバータ装置60について説明すると、符号64は電流センサーであり、符号66は直列共振負荷62の共振コンデンサである。
 なお、電流センサー64は、上記した出力センサー108に相当する構成要素であり、電流を検知して、出力センサー信号として検知した電流を示す信号を出力する。
 制御部28の構成は、上記において説明したインバータ装置20における構成と同様であるので、その詳細な説明は省略する。
 
  (III-2)動作
 以上の構成において、インバータ装置60の動作について、本発明の実施に関連する制御部28の動作を中心に説明する。
 制御部28においては、外部からの出力オン(ON)信号を周波数シフト回路30に入力し、直列共振負荷62の共振周波数より高い周波数(例えば、共振周波数より5%以上高い周波数である。)からインバータ部106の駆動を開始するようにVCO回路32に信号を出力し、VCO回路32の出力からの周波数信号は狭幅パルス信号発生回路34に入力され、VCO回路32の出力の周波数の狭幅パルス信号が狭幅パルス信号発生回路34により発生されて出力回路36に出力される。出力回路36では、ロック完了回路42の信号により、狭幅パルス信号発生回路34の信号からPWM回路50の信号に切り換える。
 ここで、狭幅パルス信号発生回路34により発生される狭幅パルス信号のパルス幅は、インバータ部106から出力される出力値が、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)となるように設定することが好ましい。
 
 図9(a)(b)(c)(d)(e)には、インバータ装置60における動作を模式的に示す波形図があらわされている。
 なお、図9(a)(b)(c)(d)(e)において、波形I、波形J、波形K、波形Lならびに波形Mは、電流センサー64により検知された電流(出力電流)波形である。
 図9(a)は、駆動開始時(スタート時)のスタート周波数におけるインバータ部106の出力として電流センサー64により検知された電流(出力電流)波形(波形I)とインバータ駆動信号たる狭幅パルス信号との位相差を示す。
 インバータ装置60に直列共振負荷62が接続されている場合には、共振周波数以上の周波数領域では出力電流の位相はインバータ駆動信号の位相より遅れることが分かっている。
 ここで、位相比較回路38において、インバータ駆動信号のパルスの周期の1/4遅れの位置たるC点を位相検波パルスのパルス位置とし、比較する出力電流位相波形(波形J)のゼロクロス点をD点として(図9(b)を参照する。)、C点とD点との位相差を比較し、位相差がゼロ(0)または予め設定されている位相差となった周波数でロックする(図9(c)を参照する。)。
 一方、電流センサー64からの波形信号とVCO回路32からの周波数信号とを位相比較回路16に入力してそれぞれの位相を比較し、共振周波数となるようにVCO回路32の周波数を制御する。
 具体的には、共振周波数から離れた周波数、例えば、共振周波数より5%以上高い周波数をスタート周波数とした狭幅パルス信号のインバータ駆動信号によりインバータ部106の駆動を開始し(図9(a)を参照する。)、当該インバータ信号の周波数を周波数シフトして下降させる(図9(b)を参照する。)。
 そして、位相比較回路38によりインバータ駆動信号の周波数を共振周波数でロックさせ(図9(c)を参照する。)、ロック完了回路42がロック完了を検知して出力回路36へ信号を出力する。この信号により、出力回路36からは、狭幅パルス信号からPWM制御によりパルス幅twが広がったインバータ駆動信号が出力され、インバータ部106の出力が出力設定信号によって設定された設定値の出力まで上昇する(図9(d)(e)を参照する。)。
 なお、遅れ設定回路40は、直列共振負荷62を接続したインバータ装置60においては、インバータ部106の回路遅れを補正するために使用される。
 
 即ち、インバータ装置60は、共振負荷として直列共振負荷62を接続し、インバータ駆動信号である矩形波インバータ駆動信号Q、NQとして、外部からの出力設定信号が示す設定値の最低設定出力値(出力電圧または出力電流または出力電力である。)を出力する共振周波数周期より十分に短いパルス幅のパルス信号(狭幅パルス信号)を用い、その狭幅パルス信号を共振周波数より離れた周波数(例えば、共振周波数より5%以上高い周波数である。)を起点にスタートさせてから共振周波数または共振周波数近傍まで周波数を下降する周波数シフトによる周波数制御を行って、インバータ駆動信号の周波数を共振周波数に制御する。
 その後に、インバータ装置60は、PWM制御により狭幅パルス信号のパルス幅を広くして、外部からの出力設定信号が示す設定値の出力(出力電圧または出力電流または出力電力である。)になるようにする。
 
  (III-3)作用効果
 従って、インバータ装置60においても、インバータ装置10に関して上記(I-3)において説明したと同様な作用効果が得られる。
 
 (IV)第4の実施の形態
 図10には、本発明の実施の形態の一例によるインバータ装置における制御部の構成説明図があらわされている。
 なお、この第4の実施の形態においては、制御部を除く他の構成については、上記した第2、3の各実施の形態によるインバータ装置20、60および後述する第7の実施の形態によるインバータ装置400の構成と異なるところがないので、制御部を除く他の構成の図示ならびに説明は省略する。
 この第4の実施の形態によるインバータ装置の制御部70は、上記した各実施の形態(第2、3、7の実施の形態)における制御部28と比較すると、制御部28の構成に加えて最低レベル検知回路72を備えており、この点において両者は異なる。
 第2、3、7の実施の形態によるインバータ装置20、60、400においては、周波数が共振周波数から離れると出力レベル(共振電圧または共振電流)が低下して、インバータ部106の出力から正確な位相検知ができなくなる。
 このため、第4の実施の形態によるインバータ装置においては、制御部70に最低レベル検知回路72を設け、インバータ部106の出力が最低レベル検知回路72で位相検知が可能になる出力レベルになったことを検知して、位相比較を開始するようにした。
 
 即ち、第4の実施の形態によるインバータ装置は、制御部70の最低レベル検知回路72により、インバータ駆動信号たるパルス駆動信号による共振負荷の出力(出力電圧または出力電流または出力電力である。)レベルを検知して、予め設定されたレベル以上になった場合に共振周波数近傍に制御する位相比較回路38を動作開始させるものである。
 
 (V)第5の実施の形態
 図11には、本発明の実施の形態の一例によるインバータ装置における制御部の構成説明図があらわされている。
 なお、この第5の実施の形態においては、制御部を除く他の構成については、上記した第2、3の各実施の形態によるインバータ装置20、60および後述する第7の実施の形態によるインバータ装置400の構成と異なるところがないので、制御部を除く他の構成の図示ならびに説明は省略する。
 この第5の実施の形態によるインバータ装置の制御部80は、上記した各実施の形態(第2、3、7の実施の形態)における制御部28と比較すると、制御部28の構成に加えて最低レベル周波数検知回路82を備えており、この点において両者は異なる。
 第2、3、7の実施の形態によるインバータ装置20、60、400においては、周波数が共振周波数から離れると出力レベル(共振電圧または共振電流)が低下して、インバータ部106の出力から正確な位相検知ができなくなる。
 このため、第5の実施の形態によるインバータ装置においては、制御部80に最低レベル周波数検知回路82を設け、インバータ部106の出力が最低レベル周波数検知回路82で位相検知が可能になる出力レベルの周波数(最低レベル周波数)になったことを検知して、位相比較を開始するようにした。
 
 即ち、第5の実施の形態によるインバータ装置は、制御部80の最低レベル周波数検知回路82により、インバータ駆動信号たるパルス駆動信号の周波数を周波数シフトさせる際に予め設定された周波数(最低レベル周波数)になったことを検知し、その検知の時点で位相比較回路38を動作開始させるものである。
 
 (VI)第6の実施の形態
 本発明による第6の実施の形態の一例によるインバータ装置は、上記した第4の実施の形態における最低レベル検知回路72と上記した第5の実施の形態における最低レベル周波数検知回路82との両者を備えたものである。
 なお、この第6の実施の形態においては、制御部に最低レベル検知回路と最低レベル周波数検知回路との両者を設けた点を除き、その他の構成については上記した各実施の形態(第2、3、4、5の各実施の形態)および後述する第7の実施の形態における構成と異なるところがないので、上記した各実施の形態(第2、3、4、5の各実施の形態)および後述する第7の実施の形態における説明を援用することにより、その図示ならびに説明は省略する。
 
 (VII)第7の実施の形態
 図12には、本発明の実施の形態の一例によるインバータ装置の構成説明図があらわされている。なお、図12には、制御部により制御されるとともに直列共振負荷に接続されたインバータ装置の全体の構成があらわされている。
 また、図13には、図12に示すインバータ装置におけるインバータ部の拡大説明図があらわされている。
 この図12に示すインバータ装置(本発明による第7の実施の形態の一例によるインバータ装置)400は、図8に示す上記した第3の実施の形態によるインバータ装置60の構成と比較すると、インバータ部106に代えてインバータ部406を備えている点において両者は異なっている。
 図13に示すように、インバータ装置400のインバータ部406は、インバータスイッチング素子406aにおける環流ダイオード(フリーホイールダイオード)406bとしてSiCダイオードを用いるようにしたものである。
 より詳細には、図13に示すように、インバータ部406のインバータスイッチング素子406aにおいて、半導体スイッチング素子406cと逆向き並列に接続されたフリーホイールダイオード406bとして、SiCダイオードを用いるようにしている。
 この第7の実施の形態のインバータ装置400においては、共振負荷は直列共振回路62を形成し、最低設定出力値(出力電圧または出力電流または出力電力である。)が確保できる十分に短いインバータ駆動信号たるパルス駆動信号の周波数を共振周波数よりも低い周波数(例えば、共振周波数より5%以上低い周波数である。)を起点にスタートさせ、共振周波数近傍まで周波数を上昇する周波数シフトによる周波数制御を行って。インバータ駆動信号たるパルス駆動信号の周波数を共振周波数に制御する。
 
 即ち、インバータ装置400においては、インバータスイッチング素子106aのフリーホイールダイオード106bとして、SiCダイオードを用いている。
 このため、その特性から電流回生時のリカバリー時間がほとんどないので、直列共振回路で容量性(C性)でのインバータ動作が可能となり、低い周波数(C性領域)を起点にして、周波数の高い共振周波数までシフトさせてることができる。
 
 (VIII)第8の実施の形態
 次に、図14(a)(b)(c)を参照しながら、本発明による第8の実施の形態の一例によるインバータ装置について説明する。
 ここで、図14(a)には、共振負荷に接続される本発明によるインバータ装置を用いた電源構成を模式的に示す構成説明図があらわされている。
 また、図14(b)には、直列共振負荷に接続される従来の技術によるインバータ装置を用いた電源構成を模式的に示す構成説明図があらわされている。
 さらに、図14(c)には、並列共振負荷に接続される従来の技術によるインバータ装置を用いた電源構成を模式的に示す構成説明図があらわされている。
 
 図14(a)に示す上記した本発明による共振負荷に接続されるインバータ装置10、20、60、400を用いた電源構成は、誘導加熱の用途に用いることができるものであり、共振負荷に接続される本発明によるインバータ装置10、20、60、400の出力端子500と並列共振コンデンサボックス502とを空冷同軸ケーブル504で接続し、並列共振コンデンサボックス502に小型の変流器(ハンディタイプの変流器)506を接続して、加熱コイル508に高周波電流を伝送するようにしたものである。
 
 誘導加熱の用途においては、インバータ装置から加熱コイルまでの距離を長くして、人手により加熱作業を行うことがあり、従来は、図14(b)に示すように、直列共振負荷に接続される従来の技術によるインバータ装置600の出力端子600aに水冷ケーブル602を接続して延長し、中継ボックス604を通して小型の変流器(ハンディタイプの変流器)606でインピーダンス変換して、加熱コイル608に高周波電流を伝送していた。
 あるいは、従来においては、図14(c)に示すように、並列共振負荷に接続される従来の技術によるインバータ装置700を用いて、インバータ装置700の出力端子700aに空冷同軸ケーブル702を接続して延長し、中継ボックス704を通して小型の変流器(ハンディタイプの変流器)706でインピーダンス変換して、加熱コイル708に高周波電流を伝送していた。
 
 しかしながら、図14(b)に示す直列共振負荷に接続される従来の技術によるインバータ装置600を用いた場合には、水冷ケーブル602の往復の浮遊容量に高調波電流が流れるため延長距離に限界があり、一般的には、延長距離の限界は50m程であった。
 また、図14(c)に示す並列共振負荷に接続される従来の技術によるインバータ装置700を用いて、空冷同軸ケーブル702の距離を延長する場合には、インバータ装置700内部の直列リアクトルが大きく重くなるため、電源自体も大きく重くなり、小型電源として作業現場で容易に使用することができないものであった。
 一方、図14(a)に示す共振負荷に接続される本発明によるインバータ装置10、20、60、400を用いた構成においては、大きな直流リアクトルが不要の電圧型インバータを使用しているため、小型の電源構成が可能であり、これに空冷同軸ケーブル504を接続することで、200m以上でも容易に空冷同軸ケーブル504を延長することが可能な小型電源を構成することができる。
 なお、並列共振コンデンサボックス502は、並列共振用コンデンサからなるものである。
 また、小型の変流器(ハンディタイプの変流器)506としては、従来の構成、即ち、小型の変流器(ハンディタイプの変流器)606、706と同一のものを使用することができる。
 同様に、加熱コイル508も、従来の構成、即ち、加熱コイル608、708と同一のものを使用することができる。
 
 (IX)第9の実施の形態
 本発明による第9の実施の形態の一例によるインバータ装置は、上記した各実施の形態における共振負荷200、並列共振負荷22あるいは直列共振負荷62を構成する共振回路が、誘導加熱用の加熱コイルと共振コンデンサとからなる共振回路により構成されるようにしたものである。
 即ち、インバータ装置10、20、60、400を含む本発明によるインバータ装置に接続する共振負荷200、並列共振負荷22あるいは直列共振負荷62としては各種の構成のものを用いることができ、例えば、図15(a)(b)に示すような誘導加熱用共振負荷を本発明によるインバータ装置に接続するようにしてもよい。
 ここで、図15(a)には、直列共振負荷の場合である誘導加熱用直列共振負荷を示す構成説明図があらわされている。
 また、図15(b)には、並列共振負荷の場合である誘導加熱用並列共振負荷を示す構成説明図があらわされている。この図15(b)に示す構成においては、誘導加熱用並列共振負荷に高調波除去用のフィルターが直列接続されている。
 なお、図6に示すインバータ装置20においては、  フィルターはインバータ装置20内にインダクタ24として接線されている。
 
 (X)その他の実施の形態および変形例の説明
 なお、上記した実施の形態は例示に過ぎないものであり、本発明は他の種々の形態で実施することができる。即ち、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。
 例えば、上記した実施の形態は、以下の(X-1)乃至(X-4)に示すように変形するようにしてもよい。
 
  (X-1)上記した実施の形態において、スタート周波数を共振周波数から離す際に、具体的には共振周波数から5%以上離すことを例示した。
 しかしながら、本発明は、共振周波数から5%以上離すことに限られるものではなく、共振周波数から5%未満離すようにしてもよい。
 即ち、「5%」との数値は本願発明者が実験により実証的に求めた好適な数値ではあるが、本発明は「5%」の数値に限られものではなく、スタート周波数が共振周波数から離れていればよい。
 スタート周波数を共振周波数から離すことにより、共振負荷側の共振周波数がいかようにずれても、周波数シフトにより自動で共振周波数を探し当てることが可能となる。
 ここで、周波数シフトする領域(周波数シフト領域)は、インバータ回路に最適なダイオード逆回復特性を考慮した誘導性領域に決定することが好ましく、本願発明者が実験によれば共振周波数から5%以上の領域であった。
 
  (X-2)上記した実施の形態においては、各構成における具体的な回路構成などは説明を省略したが、各構成に対応する従来より公知の回路構成を用いてよいことは勿論である。
 
  (X-3)上記した実施の形態においては、各構成における具体的な回路定数などの説明を省略したが、各構成に対応する従来より公知の回路定数を用いてよいことは勿論である。
 
  (X-4)上記した各実施の形態ならびに上記した(X-1)乃至(X-3)に示す各実施の形態は、適宜に組み合わせるようにしてもよいことは勿論である。
 本発明は、誘導加熱回路などのような共振負荷に接続する電源装置たるインバータ装置に利用することができる。
  10  インバータ装置
  12  制御部(制御手段)
  12a PWM制御部(制御手段)
  12b 周波数シフト制御部(制御手段)
  20  インバータ装置
  22  並列共振回路
  24  インダクタ
  26  電圧センサー
  28  制御部(制御手段)
  30  周波数シフト回路
  32  電圧制御発振器(VCO:Voltage-controlled oscillator)回路
  34  狭幅パルス信号発生回路
  36  出力回路
  38  位相比較回路
  40  遅れ設定回路
  42  ロック完了回路
  44  検波回路
  46  誤差アンプフィルタ
  48  三角波発生回路
  50  PWM回路
  60  インバータ装置
  62  直列共振負荷
  64  電流センサー
  66  共振コンデンサ
  70  制御部(制御手段)
  72  最低レベル検知回路(最低レベル検知手段)
  80  制御部(制御手段)
  82  最低レベル周波数検知回路(周波数検知手段)
 100  インバータ装置
 102  交流(AC)電源
 104  コンバータ部
 106  インバータ部
 108  出力センサー
 110  コンバータ制御部
 112  制御部
 112a PLL回路
 200  共振負荷
 300  インバータ装置
 302  コンバータ部
 304  PWM制御部
 400  インバータ装置
 406  インバータ部
 406a インバータスイッチング素子
 406b 環流ダイオード(フリーホイールダイオード)
 406c 半導体スイッチング素子
 500  出力端子
 502  並列共振コンデンサボックス
 504  空冷同軸ケーブル
 506  変流器
 508  加熱コイル
 600  インバータ装置
 600a 出力端子
 602  水冷ケーブル
 604  中継ボックス
 606  変流器
 608  加熱コイル
 700  インバータ装置
 700a 出力端子
 702  空冷同軸ケーブル
 704  中継ボックス
 706  変流器
 708  加熱コイル
  Vh  出力電圧
  Ih  出力電流
   Q  矩形波インバータ駆動信号
  NQ  矩形波インバータ駆動信号
   T  インバータ部の出力(出力電圧または出力電流)の基本波成分の1周期
 T/4  インバータ部の出力(出力電圧または出力電流)の基本波成分の1/4周期
  tw  矩形波インバータ駆動信号Q、NQのパルス幅

Claims (30)

  1.  共振負荷に接続してPWM制御される電圧形インバータであるインバータ装置において、
     共振負荷に接続されてインバータ駆動信号により駆動されるインバータ部と、
     前記インバータ部の動作を制御する制御手段と
     を有し、
     前記制御手段は、前記共振負荷の共振周波数の周期より短いパルス幅のパルス信号を前記インバータ駆動信号として、前記共振周波数より離れた周波数を起点として前記インバータ部の駆動を開始した後に、前記インバータ駆動信号の周波数を前記共振周波数または前記共振周波数近傍まで周波数シフトさせて、前記インバータ駆動信号の周波数が前記共振周波数と略一致するように制御する
     ことを特徴とするインバータ装置。
  2.  請求項1に記載のインバータ装置において、
     前記短いパルス幅は、前記インバータ部の出力が外部からの出力設定信号が示す設定値の最低設定出力値となるパルス幅である
     ことを特徴とするインバータ装置。
  3.  請求項1または2のいずれか1項に記載のインバータ装置において、
     前記起点は、前記周波数シフトする領域が前記インバータ部を構成するインバータ回路のダイオード逆回復特性に基づく誘導性領域となるようにした
     ことを特徴とするインバータ装置。
  4.  請求項1、2または3のいずれか1項に記載のインバータ装置において、
     前記共振負荷は、並列共振負荷であり、
     前記起点は、前記共振周波数より低い周波数である
     ことを特徴とするインバータ装置。
  5.  請求項4に記載のインバータ装置において、
     前記インバータ部の出力段にインダクタを接続した
     ことを特徴とするインバータ装置。
  6.  請求項5に記載のインバータ装置において、
     前記制御部は、前記インダクタによる電圧位相の遅れを補正する遅れ補正手段を有する
     ことを特徴とするインバータ装置。
  7.  請求項1、2または3のいずれか1項に記載のインバータ装置において、
     前記共振負荷は、直列共振負荷であり、
     前記起点は、前記共振周波数より高い周波数である
     ことを特徴とするインバータ装置。
  8.  請求項7に記載のインバータ装置において、
     前記制御部は、前記インバータ部の回路遅れを補正する遅れ補正手段を有する
     ことを特徴とするインバータ装置。
  9.  請求項1または2のいずれか1項に記載のインバータ装置において、
     前記共振負荷は直列共振負荷であり、
     前記インバータ部は、インバータスイッチング素子におけるフリーホイールダイオードとしてSiCダイオードを用い、
     前記起点は、前記共振周波数より低い周波数である
     ことを特徴とするインバータ装置。
  10.  請求項1、2、3、4、5、6、7、8または9のいずれか1項に記載のインバータ装置において、
     前記起点は、前記共振周波数の周波数に対して5%以上離れた周波数である
     ことを特徴とするインバータ装置。
  11.  請求項1、2、3、4、5、6、7、8、9または10のいずれか1項に記載のインバータ装置において、
     前記制御部は、前記インバータ駆動信号の周波数が前記共振周波数と略一致するように制御した後に、PWM制御により前記インバータ駆動信号のパルス幅を広くする
     ことを特徴とするインバータ装置。
  12.  請求項1、2、3、4、5、6、7、8、9、10または11のいずれか1項に記載のインバータ装置において、
     前記制御部は、前記インバータ部の出力が位相検知が可能になる出力レベルになったことを検知する最低レベル検知手段を有する
     ことを特徴とするインバータ装置。
  13.  請求項1、2、3、4、5、6、7、8、9、10、11または12のいずれか1項に記載のインバータ装置において、
     前記制御部は、前記インバータ部の出力が位相検知が可能になる出力レベルの周波数になったことを検知する周波数検知手段を有する
     ことを特徴とするインバータ装置。
  14.  請求項1、2、3、4、5、6、7、8、9、10、11、12または13のいずれか1項に記載のインバータ装置において、
     前記インバータ装置の出力端子と並列共振コンデンサボックスとを空冷同軸ケーブルで接続し、前記並列共振コンデンサボックスに変流器を接続して、加熱コイルに高周波電流を伝送する
     ことを特徴とするインバータ装置。
  15.  請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14のいずれか1項に記載のインバータ装置において、
     前記共振負荷は、誘導加熱用の加熱コイルと共振コンデンサとからなる共振回路により構成される
     ことを特徴とするインバータ装置。
  16.  共振負荷に接続してPWM制御される電圧形インバータであるインバータ装置の制御方法において、
     共振負荷の共振周波数の周期より短いパルス幅のパルス信号をインバータ駆動信号として、前記共振周波数より離れた周波数を起点としてインバータ部の駆動を開始した後に、前記インバータ駆動信号の周波数を前記共振周波数または前記共振周波数近傍まで周波数シフトさせて、前記インバータ駆動信号の周波数が前記共振周波数と略一致するように制御する
     ことを特徴とするインバータ装置の制御方法。
  17.  請求項16に記載のインバータ装置の制御方法において、
     前記短いパルス幅は、前記インバータ部の出力が外部からの出力設定信号が示す設定値の最低設定出力値となるパルス幅である
     ことを特徴とするインバータ装置の制御方法。
  18.  請求項16または17のいずれか1項に記載のインバータ装置の制御方法において、
     前記起点は、前記周波数シフトする領域が前記インバータ部を構成するインバータ回路のダイオード逆回復特性に基づく誘導性領域となるようにした
     ことを特徴とするインバータ装置の制御方法。
  19.  請求項16、17または18のいずれか1項に記載のインバータ装置の制御方法において、
     前記共振負荷は、並列共振負荷であり、
     前記起点は、前記共振周波数より低い周波数である
     ことを特徴とするインバータ装置の制御方法。
  20.  請求項19に記載のインバータ装置の制御方法において、
     前記インバータ部の出力段にインダクタを接続した
     ことを特徴とするインバータ装置の制御方法。
  21.  請求項20に記載のインバータ装置の制御方法において、
     前記インダクタによる電圧位相の遅れを補正する
     ことを特徴とするインバータ装置の制御方法。
  22.  請求項16、17または18のいずれか1項に記載のインバータ装置の制御方法において、
     前記共振負荷は、直列共振負荷であり、
     前記起点は、前記共振周波数より高い周波数である
     ことを特徴とするインバータ装置の制御方法。
  23.  請求項22に記載のインバータ装置の制御方法において、
     前記インバータ部の回路遅れを補正する
     ことを特徴とするインバータ装置の制御方法。
  24.  請求項16または17のいずれか1項に記載のインバータ装置の制御方法において、
     前記共振負荷は直列共振負荷であり、
     前記インバータ部は、インバータスイッチング素子におけるフリーホイールダイオードとしてSiCダイオードを用い、
     前記起点は、前記共振周波数より低い周波数である
     ことを特徴とするインバータ装置の制御方法。
  25.  請求項16、17、18、19、20、21、22、23または24のいずれか1項に記載のインバータ装置の制御方法において、
     前記起点は、前記共振周波数の周波数に対して5%以上離れた周波数である
     ことを特徴とするインバータ装置の制御方法。
  26.  請求項16、17、18、19、20、21、22、23、24または25のいずれか1項に記載のインバータ装置の制御方法において、
     前記インバータ駆動信号の周波数が前記共振周波数と略一致するように制御した後に、PWM制御により前記インバータ駆動信号のパルス幅を広くする
     ことを特徴とするインバータ装置の制御方法。
  27.  請求項16、17、18、19、20、21、22、23、24、25または26のいずれか1項に記載のインバータ装置の制御方法において、
     前記インバータ部の出力が位相検知が可能になる出力レベルになったことを検知する
     ことを特徴とするインバータ装置の制御方法。
  28.  請求項16、17、18、19、20、21、22、23、24、25、26または27のいずれか1項に記載のインバータ装置の制御方法において、
     前記インバータ部の出力が位相検知が可能になる出力レベルの周波数になったことを検知する
     ことを特徴とするインバータ装置の制御方法。
  29.  請求項16、17、18、19、20、21、22、23、24、25、26、27または28のいずれか1項に記載のインバータ装置の制御方法において、
     前記インバータ装置の出力端子と並列共振コンデンサボックスとを空冷同軸ケーブルで接続し、前記並列共振コンデンサボックスに変流器を接続して、加熱コイルに高周波電流を伝送する
     ことを特徴とするインバータ装置の制御方法。
  30.  請求項16、17、18、19、20、21、22、23、24、25、26、27、28または29のいずれか1項に記載のインバータ装置の制御方法において、
     前記共振負荷は、誘導加熱用の加熱コイルと共振コンデンサとからなる共振回路により構成される
     ことを特徴とするインバータ装置の制御方法。
PCT/JP2019/000660 2018-03-15 2019-01-11 インバータ装置およびインバータ装置の制御方法 WO2019176256A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207001058A KR102507173B1 (ko) 2018-03-15 2019-01-11 인버터 장치 및 인버터 장치의 제어 방법
CN201980003588.7A CN110870190B (zh) 2018-03-15 2019-01-11 逆变器装置和逆变器装置的控制方法
JP2020505615A JP6959432B2 (ja) 2018-03-15 2019-01-11 インバータ装置およびインバータ装置の制御方法
TW108103579A TWI721370B (zh) 2018-03-15 2019-01-30 逆變器裝置及逆變器裝置之控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018048621 2018-03-15
JP2018-048621 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176256A1 true WO2019176256A1 (ja) 2019-09-19

Family

ID=67908254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000660 WO2019176256A1 (ja) 2018-03-15 2019-01-11 インバータ装置およびインバータ装置の制御方法

Country Status (5)

Country Link
JP (1) JP6959432B2 (ja)
KR (1) KR102507173B1 (ja)
CN (1) CN110870190B (ja)
TW (1) TWI721370B (ja)
WO (1) WO2019176256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027594A (ja) * 2019-07-31 2021-02-22 島田理化工業株式会社 インバータユニットにおけるアース線への漏れ電流抑止回路およびインバータユニットにおけるアース線への漏れ電流抑止方法
JP2022016299A (ja) * 2020-07-10 2022-01-21 島田理化工業株式会社 非接触給電用インバータ装置、非接触給電用インバータ装置の制御方法、非接触送電装置、非接触送受電装置、非接触給電システムならびに非接触送受電システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495382A (ja) * 1990-07-31 1992-03-27 Sharp Corp 誘導加熱調理器
JP2007026750A (ja) * 2005-07-13 2007-02-01 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置の制御方法、及び誘導加熱装置
JP2015225851A (ja) * 2014-05-26 2015-12-14 株式会社木村電機製作所 電力制御回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785665B2 (ja) * 1986-05-29 1995-09-13 島田理化工業株式会社 定電流大電力用トランジスタ・インバータ
JP3180372B2 (ja) * 1991-06-28 2001-06-25 松下電器産業株式会社 放電灯点灯装置および放電灯の起動点灯方法
US6850425B2 (en) * 2003-01-10 2005-02-01 Delta Electronics, Inc. Parallel inverter system based on tracking of system power reference
US7885085B2 (en) * 2007-01-22 2011-02-08 Power Integrations, Inc. Cascaded PFC and resonant mode power converters
US8588371B2 (en) * 2008-11-05 2013-11-19 Hitachi Medical Corporation Phase shift inverter, X-ray high-voltage device using same, X-ray CT device, and X-ray imaging device
CN102171919B (zh) * 2009-08-04 2013-11-13 松下电器产业株式会社 电力变换装置及感应加热装置
CN102969928B (zh) * 2012-10-25 2014-11-12 中国科学院电工研究所 谐振型变流器的输出功率调节方法
CN104811076B (zh) * 2014-01-28 2018-03-16 台达电子企业管理(上海)有限公司 逆变器及其控制方法
CN104079079B (zh) * 2014-07-14 2018-02-23 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、集成电路和恒压控制方法
JP6503268B2 (ja) * 2015-09-07 2019-04-17 東洋電機製造株式会社 直列共振型電源装置の制御方法及び制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495382A (ja) * 1990-07-31 1992-03-27 Sharp Corp 誘導加熱調理器
JP2007026750A (ja) * 2005-07-13 2007-02-01 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置の制御方法、及び誘導加熱装置
JP2015225851A (ja) * 2014-05-26 2015-12-14 株式会社木村電機製作所 電力制御回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021027594A (ja) * 2019-07-31 2021-02-22 島田理化工業株式会社 インバータユニットにおけるアース線への漏れ電流抑止回路およびインバータユニットにおけるアース線への漏れ電流抑止方法
JP2022016299A (ja) * 2020-07-10 2022-01-21 島田理化工業株式会社 非接触給電用インバータ装置、非接触給電用インバータ装置の制御方法、非接触送電装置、非接触送受電装置、非接触給電システムならびに非接触送受電システム

Also Published As

Publication number Publication date
TW201939876A (zh) 2019-10-01
KR102507173B1 (ko) 2023-03-06
CN110870190B (zh) 2023-12-05
JP6959432B2 (ja) 2021-11-02
TWI721370B (zh) 2021-03-11
CN110870190A (zh) 2020-03-06
KR20200127965A (ko) 2020-11-11
JPWO2019176256A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
EP3145047B1 (en) Wireless power transfer device
JP4815499B2 (ja) 非接触電力伝送回路
JP5699470B2 (ja) スイッチング電源装置
EP0405611A1 (en) Induction heating cooker
JP3443654B2 (ja) 電圧共振型インバータ回路
US20170005527A1 (en) Drive device, method thereof, and wireless power transmission device
EP2717652B1 (en) Power control apparatus for high-frequency dielectric heating
WO2019176256A1 (ja) インバータ装置およびインバータ装置の制御方法
JP3312369B2 (ja) インバータ装置
JP2014233137A (ja) スイッチング電源装置、スイッチング電源制御方法および電子機器
KR101391874B1 (ko) 용량성 부하특성을 갖는 공진형 고전압 제어 장치
AU2012353158A1 (en) Induction heating fusing device and image forming apparatus
JP6832402B1 (ja) インバータ装置およびインバータ装置の制御方法
JP2005317306A (ja) 高周波加熱装置
JP2022016299A (ja) 非接触給電用インバータ装置、非接触給電用インバータ装置の制御方法、非接触送電装置、非接触送受電装置、非接触給電システムならびに非接触送受電システム
JP6186392B2 (ja) 電流共振型dc−dcコンバータ
JP2022130803A (ja) 誘導加熱装置
KR100806624B1 (ko) 용량성 부하특성을 갖는 공진형 고전압 제어 장치
JP6832395B2 (ja) インバータユニットにおけるアース線への漏れ電流抑止回路およびインバータユニットにおけるアース線への漏れ電流抑止方法
JP7413906B2 (ja) インバータ及び整流回路
JP4350772B2 (ja) 高周波加熱装置
TW202345498A (zh) 電源裝置、雷射裝置
WO2017216828A1 (ja) 電力変換装置
JP2001118693A (ja) 放電灯点灯装置
JP2004064907A (ja) 高周波電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768406

Country of ref document: EP

Kind code of ref document: A1