TWI721370B - 逆變器裝置及逆變器裝置之控制方法 - Google Patents

逆變器裝置及逆變器裝置之控制方法 Download PDF

Info

Publication number
TWI721370B
TWI721370B TW108103579A TW108103579A TWI721370B TW I721370 B TWI721370 B TW I721370B TW 108103579 A TW108103579 A TW 108103579A TW 108103579 A TW108103579 A TW 108103579A TW I721370 B TWI721370 B TW I721370B
Authority
TW
Taiwan
Prior art keywords
inverter
frequency
inverter device
output
resonant
Prior art date
Application number
TW108103579A
Other languages
English (en)
Other versions
TW201939876A (zh
Inventor
石間勉
田內良男
守上浩市
高田太郎
辻寬樹
伊藤政浩
茂野大作
Original Assignee
日商島田理化工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商島田理化工業股份有限公司 filed Critical 日商島田理化工業股份有限公司
Publication of TW201939876A publication Critical patent/TW201939876A/zh
Application granted granted Critical
Publication of TWI721370B publication Critical patent/TWI721370B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • General Induction Heating (AREA)

Abstract

本發明係即便進行輸出控制,逆變器部之輸出頻率亦不會偏離共振頻率,又,改善對共振頻率變動之負載之追蹤特性。本發明係一種作為連接於共振負載且受到PWM控制之電壓型逆變器之逆變器裝置,其中,具有連接於共振負載且由逆變器驅動信號所驅動之逆變器部、及控制逆變器部之動作之控制手段,且控制手段係以如下方式進行控制:將較共振負載之共振頻率之週期短之脈衝寬度之脈衝信號作為逆變器驅動信號,將自共振頻率分開之頻率作為起點而開始逆變器部之驅動後,使逆變器驅動信號之頻率頻移至共振頻率或共振頻率附近,使得逆變器驅動信號之頻率與共振頻率大致一致。

Description

逆變器裝置及逆變器裝置之控制方法
本發明係關於一種逆變器裝置及逆變器裝置之控制方法。更詳細而言,本發明係關於一種連接於共振負載而使用之逆變器裝置及逆變器裝置之控制方法。
一般而言,作為連接於如感應加熱電路等之共振負載之電源裝置,已知有逆變器裝置。
先前,於此種逆變器裝置中,作為對具有逆變器電路之逆變器部進行控制之逆變器控制部,使用一種由鎖相迴路(PLL:Phase Locked Loop)電路所構成之逆變器控制部,藉由該逆變器控制部而控制逆變器部。
參照圖1(a)、(b)對由使用PLL電路之逆變器控制部所控制之先前公知之逆變器裝置進行說明。
再者,圖1(a)中示出構成說明圖,該構成說明圖表示由使用PLL電路之逆變器控制部所控制並且連接於共振負載之逆變器裝置之整體構成。
又,圖1(b)中表示圖1(a)所示之逆變器裝置中之逆變器控制部之詳細之構成說明圖。
如圖1(a)所示般,逆變器裝置100係將自交流(AC)電源102所供給之交流電壓轉換成所需之電壓之高頻交流電壓,並 朝如感應加熱電路等之共振負載200供給者。
再者,作為交流電源102,例如可使用商用交流電源,於該情形時,逆變器裝置100將商用交流電壓轉換成高頻交流電壓並朝共振負載200供給。
更詳細而言,逆變器裝置100係具有如下部分而構成:轉換器部104,其具有將自交流電源102所供給之交流電壓輸入後轉換成直流(DC)電壓並輸出之轉換器電路;逆變器部106,其具有將自轉換器部104輸出之直流電壓輸入後逆轉換成高頻交流電壓並輸出之逆變器電路;輸出感測器108,其對來自逆變器部106之輸出(此處,所謂來自逆變器部106之「輸出」,係指自逆變器部106輸出之電壓即「輸出電壓Vh」、或自逆變器部106輸出之電流即「輸出電流Ih」、或自逆變器部106輸出之電力即「輸出電力」)進行檢測並將其檢測結果作為輸出感測器信號而輸出;轉換器控制部110,其基於自外部設定逆變器部106之輸出之信號即輸出設定信號及自輸出感測器108輸出之輸出感測器信號,對轉換器部104轉換之直流電壓進行反饋控制;及逆變器控制部112,其具有基於自輸出感測器108輸出之輸出感測器信號而對逆變器部106之動作進行反饋控制之PLL電路112a(參照圖1(b))。
再者,轉換器部104之轉換器電路例如由閘流體(Thyristor)整流電路或斬波(chopper)電路等所構成。
此處,圖1(b)中示出了逆變器控制部112之詳細構成。於逆變器控制部112中,根據輸入至PLL電路112a中之輸出感測器信號,輸出作為供PLL電路112a驅動逆變器部106之逆變器驅動信號之矩形波逆變器驅動信號Q、NQ。
再者,於本說明書及本申請專利範圍中,關於「矩形波逆變器驅動信號Q、NQ」,適宜地簡稱為「逆變器驅動信號」。
於以上構成,在逆變器裝置100中,將交流電壓自商用交流電源等交流電源102輸入至轉換器部104。自交流電源102輸入了交流電壓之轉換器部104根據來自轉換器控制部110之控制信號對直流電壓進行可變控制,並朝逆變器部106輸出。
逆變器部106將自轉換器部104輸出而輸入之直流電壓根據構成逆變器電路之電晶體之ON(接通)/OFF(斷開)之開關動作而轉換成高頻電壓並輸出。
於逆變器裝置100中之逆變器部106之輸出級,如上所述般設置有輸出感測器108,輸出感測器108對來自逆變器部106之輸出(為輸出電壓Vh或輸出電流Ih或輸出電力)進行檢測,並將其檢測結果作為輸出感測器信號而朝轉換器控制部110及逆變器控制部112輸出。
轉換器控制部110以使逆變器部106之輸出成為由輸出設定信號所指示之設定位準之方式,進行可改變轉換器部104之輸出即直流電壓值之控制。
此處,逆變器控制部112藉由PLL電路112a,以逆變器部106之輸出頻率成為共振負載200之共振頻率之方式進行自動控制。
且說,於連接於共振負載之逆變器裝置中,關於使用高頻電壓與高頻電流之相位控制之輸出控制電路,除上文所述之習知之逆變器裝置100中所示之構成以外,使用有幾種方法。
然而,先前所使用之任一方法均存在如下問題,即, 成為當進行輸出控制時逆變器部之輸出頻率偏離共振頻率的特性,從而於實用上成為問題。
另一方面,於低電力機器所使用之逆變器裝置中,亦使用有脈寬調變(PWM:Pulse Width Modulation)控制方式之輸出控制。
此處,圖2中示出構成說明圖,該構成說明圖表示藉由PWM控制方式進行輸出控制並且連接於共振負載之逆變器裝置之整體構成。
再者,於以下說明中,關於與參照圖1(a)、(b)並進行了說明之構成以及作用相同或相當之構成以及作用,藉由分別標註與圖1(a)、(b)中所使用之符號相同之符號進行表示,而省略其詳細之構成以及作用之說明。
如圖2所示般,逆變器裝置300係將自交流電源102供給之交流電壓轉換成所需之電壓之高頻交流電壓,並朝如感應加熱電路等之共振負載200供給者。
再者,作為交流電源102,與上文所述之逆變器裝置100同樣地,例如可使用商用交流電源,於該情形時,逆變器裝置300將商用交流電壓轉換成高頻交流電壓並朝共振負載200供給。
更詳細而言,逆變器裝置300係具有如下部分而構成:轉換器部302,其將自交流電源102供給之交流電壓輸入後藉由二極體之整流而轉換成直流電壓並輸出;逆變器部106,其具有將自轉換器部302輸出之直流電壓輸入後逆轉換成高頻交流電壓並輸出之逆變器電路;輸出感測器108,其對來自逆變器部106之輸出(此處,所謂來自逆變器部106之「輸出」,係指自逆變器部106 輸出之電壓即「輸出電壓Vh」、或自逆變器部106輸出之電流即「輸出電流Ih」、或自逆變器部106輸出之電力即「輸出電力」)進行檢測,並將其檢測結果作為輸出感測器信號而輸出;及PWM控制部304,其基於自外部設定逆變器部106之輸出之信號即輸出設定信號及自輸出感測器108輸出之輸出感測器信號,對逆變器部106進行反饋控制。
於以上構成中,參照圖3(a)、(b)、(c)中示意性地表示之波形圖,對逆變器裝置300之動作進行說明。
此處,於圖3(a)、(b)、(c)中,波形A:逆變器部106之輸出(輸出電壓Vh或輸出電流Ih);波形B:逆變器部106之輸出(輸出電壓Vh或輸出電流Ih);波形C:逆變器部106之輸出(輸出電壓Vh或輸出電流Ih);T:逆變器部106之輸出(輸出電壓Vh或輸出電流Ih)之基本波成分之1個週期;T/4:逆變器部106之輸出(輸出電壓Vh或輸出電流Ih)之基本波成分之1/4週期;tw:逆變器驅動信號之脈衝寬度。
於逆變器裝置300中,於藉由PWM控制部304之PWM控制而驅動開始時(起動時),藉由脈衝寬度tw較窄之逆變器驅動信號(矩形波逆變器驅動信號Q、NQ)在共振頻率附近進行驅動(圖3(a)),要對逆變器部106之輸出進行可變控制,就要藉由PWM 控制部304之PWM控制而使脈衝寬度tw可變,從而對逆變器部106之輸出進行可變控制。
例如,要使逆變器部106之輸出上升,就要如圖3(b)以及圖3(c)所示般,藉由PWM控制部304之PWM控制來擴大脈衝寬度tw。
即,於習知之逆變器裝置300中,藉由PWM控制部304之PWM控制,自起動時使用PLL電路等而在共振頻率附近控制驅動,且於其頻帶內進行PWM控制。
因此,習知之逆變器裝置300存在對共振頻率變動之負載之追蹤特性較差之問題。
再者,本案申請人在專利申請時所知之先前技術並非文獻公知發明之發明,因此無應記載於本案說明書中之先前技術文獻資訊。
本發明係鑒於如上所述之習知技術中之各種問題而成者,其目的在於欲提供一種逆變器裝置及逆變器裝置之控制方法,其即便進行輸出控制,逆變器部之輸出頻率亦不會偏離共振頻率,又,改善了對共振頻率變動之負載之追蹤特性。
為達成上述目的,本發明係一種作為連接於共振負載且受到PWM控制之電壓型逆變器之逆變器裝置,其中,以如下方式進行控制:使用較共振頻率週期短之脈衝寬度(例如下文所述之「最低脈衝寬度」)之脈衝信號(於本說明書及本申請專利範圍中,將 「較共振頻率週期短之脈衝寬度之脈衝信號」適宜地稱為「窄幅脈衝信號」)作為逆變器驅動信號,將與共振頻率分開之頻率作為起點而開始逆變器部之驅動,藉由頻率控制使逆變器驅動信號頻移至共振頻率或共振頻率附近,使得逆變器驅動信號之頻率與共振頻率大致一致。
並且,本發明係以如下方式進行控制:於根據上述內容以逆變器驅動信號之頻率與共振頻率大致一致之方式進行控制後,藉由PWM控制使逆變器驅動信號之脈衝寬度變寬,藉此逆變器部之輸出(為輸出電壓或輸出電流或輸出電力)成為預先設定之值。
因而,根據本發明,即便進行輸出控制,逆變器部之輸出頻率亦不會偏離共振頻率,又,可改善對共振頻率變動之負載之追蹤特性。
即,於本發明中,藉由將逆變器驅動信號之驅動開始時之頻率與共振頻率分開,並且刻意地頻移使得該驅動開始之後逆變器驅動信號之頻率成為共振頻率,而不論共振負載側之共振頻率如何偏離,均可藉由該頻移而自動地找出共振頻率。
此處,較佳為將逆變器驅動信號之頻率頻移之區域(於本說明書及本申請專利範圍中,將「將逆變器驅動信號之頻率頻移之區域」適宜地稱為「頻移區域」)決定為考慮了對逆變器電路最佳之二極體逆向恢復特性的感應性區域。
換言之,與共振頻率分開之頻率之起點較佳為決定為如下,即,頻移區域成為基於逆變器電路之二極體逆向恢復特性之感應性區域。
即,本發明之逆變器裝置係作為連接於共振負載且受到PWM控制之電壓型逆變器者,其中,具有連接於共振負載且由逆變器驅動信號所驅動之逆變器部、及控制上述逆變器部之動作之控制手段,且上述控制手段係以如下方式進行控制:將較上述共振負載之共振頻率之週期短之脈衝寬度之脈衝信號作為上述逆變器驅動信號,將與上述共振頻率分開之頻率作為起點而開始上述逆變器部之驅動後,使上述逆變器驅動信號之頻率頻移至上述共振頻率或上述共振頻率附近,使得上述逆變器驅動信號之頻率與上述共振頻率大致一致。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述較短之脈衝寬度係使上述逆變器部之輸出成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值的脈衝寬度。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述起點係以如下方式設定,即,上述頻移之區域成為基於構成上述逆變器部之逆變器電路之二極體逆向恢復特性的感應性區域。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述共振負載為並聯共振負載,上述起點為低於上述共振頻率之頻率。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,於上述逆變器部之輸出級連接有電感器。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述控制部具有對由上述電感器引起之電壓相位之延遲進行修正之延遲修正手段。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述共振負載為串聯共振負載,上述起點為高於上述共振頻率之頻率。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述控制部具有對上述逆變器部之電路延遲進行修正之延遲修正手段。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述共振負載為串聯共振負載,上述逆變器部使用SiC(碳化矽)二極體作為逆變器開關元件中之飛輪二極體(freewheel diode),上述起點為低於上述共振頻率之頻率。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述起點為相對於上述共振頻率之頻率分開5%以上之頻率。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述控制部於以上述逆變器驅動信號之頻率與上述共振頻率大致一致之方式進行控制後,藉由PWM控制使上述逆變器驅動信號之脈衝寬度變寬。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述控制部具有最低位準感測手段,該最低位準感測手段對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之情況進行感測。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述控制部具有頻率感測手段,該頻率感測手段對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之頻率之情況進行感測。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,利用空冷同軸纜線將上述逆變器裝置之輸出端子與並聯共振電容器箱連接,並將變流器連接至上述並聯共振電容器箱,而向加熱線圈傳送高頻電流。
又,本發明之逆變器裝置係如上所述之本發明之逆變器裝置,其中,上述共振負載由包含感應加熱用之加熱線圈及共振電容器之共振電路所構成。
又,本發明之逆變器裝置之控制方法係作為連接於共振負載且受到PWM控制之電壓型逆變器之逆變器裝置之控制方法,其中,以如下方式進行控制:將較共振負載之共振頻率之週期短之脈衝寬度之脈衝信號作為逆變器驅動信號,將與上述共振頻率分開之頻率作為起點而開始逆變器部之驅動後,使上述逆變器驅動信號之頻率頻移至上述共振頻率或上述共振頻率附近,使得上述逆變器驅動信號之頻率與上述共振頻率大致一致。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述較短之脈衝寬度係上述逆變器部之輸出成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值的脈衝寬度。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述起點係以如下方式設定,即,上述頻移之區域成為基於構成上述逆變器部之逆變器電路之二極體逆向恢復特性的感應性區域。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述共振負載為並聯共振負載,上述起點為低於上述共振頻率之頻率。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,於上述逆變器部之輸出級連接有電感器。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,對由上述電感器引起之電壓相位之延遲進行修正。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述共振負載為串聯共振負載,上述起點為高於上述共振頻率之頻率。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,對上述逆變器部之電路延遲進行修正。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述共振負載為串聯共振負載,上述逆變器部使用SiC二極體作為逆變器開關元件中之飛輪二極體,上述起點為低於上述共振頻率之頻率。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述起點為相對於上述共振頻率之頻率分開5%以上之頻率。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,以上述逆變器驅動信號之頻 率與上述共振頻率大致一致之方式進行控制後,藉由PWM控制使上述逆變器驅動信號之脈衝寬度變寬。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之情況進行感測。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之頻率之情況進行感測。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其係利用空冷同軸纜線將上述逆變器裝置之輸出端子與並聯共振電容器箱連接,並將變流器連接至上述並聯共振電容器箱,而向加熱線圈傳送高頻電流。
又,本發明之逆變器裝置之控制方法係如上所述之本發明之逆變器裝置之控制方法,其中,上述共振負載由包含感應加熱用之加熱線圈及共振電容器之共振電路所構成。
本發明係藉由以上所說明之方式而構成,因此實現如下優異之效果:即便進行輸出控制,逆變器部之輸出頻率亦不會偏離共振頻率,又,可改善對共振頻率變動之負載之追蹤特性。
10‧‧‧逆變器裝置
12‧‧‧控制部(控制手段)
12a‧‧‧PWM控制部(控制手段)
12b‧‧‧頻移控制部(控制手段)
20‧‧‧逆變器裝置
22‧‧‧並聯共振電路(並聯共振負載)
24‧‧‧電感器
26‧‧‧電壓感測器
28‧‧‧控制部(控制手段)
30‧‧‧頻移電路
32‧‧‧電壓控制振盪器(VCO:Voltage-controlled oscillator)電路
34‧‧‧窄幅脈衝信號產生電路
36‧‧‧輸出電路
38‧‧‧相位比較電路
40‧‧‧延遲設定電路
42‧‧‧鎖定結束電路
44‧‧‧檢波電路
46‧‧‧誤差放大濾波器
48‧‧‧三角波產生電路
50‧‧‧PWM電路
60‧‧‧逆變器裝置
62‧‧‧串聯共振負載(串聯共振電路)
64‧‧‧電流感測器
66‧‧‧共振電容器
70‧‧‧控制部(控制手段)
72‧‧‧最低位準感測電路(最低位準感測手段)
80‧‧‧控制部(控制手段)
82‧‧‧最低位準頻率感測電路(頻率感測手段)
100‧‧‧逆變器裝置
102‧‧‧交流(AC)電源
104‧‧‧轉換器部
106‧‧‧逆變器部
108‧‧‧輸出感測器
110‧‧‧轉換器控制部
112‧‧‧控制部
112a‧‧‧PLL電路
200‧‧‧共振負載
300‧‧‧逆變器裝置
302‧‧‧轉換器部
304‧‧‧PWM控制部
400‧‧‧逆變器裝置
406‧‧‧逆變器部
406a‧‧‧逆變器開關元件
406b‧‧‧環流二極體(飛輪二極體)
406c‧‧‧半導體開關元件
500‧‧‧輸出端子
502‧‧‧並聯共振電容器箱
504‧‧‧空冷同軸纜線
506‧‧‧變流器
508‧‧‧加熱線圈
600‧‧‧逆變器裝置
600a‧‧‧輸出端子
602‧‧‧水冷纜線
604‧‧‧中繼盒
606‧‧‧變流器
608‧‧‧加熱線圈
700‧‧‧逆變器裝置
700a‧‧‧輸出端子
702‧‧‧空冷同軸纜線
704‧‧‧中繼盒
706‧‧‧變流器
708‧‧‧加熱線圈
Vh‧‧‧輸出電壓
Ih‧‧‧輸出電流
Q‧‧‧矩形波逆變器驅動信號
NQ‧‧‧矩形波逆變器驅動信號
T‧‧‧逆變器部之輸出(輸出電壓或輸出電流)之基本波成分之1個週期
T/4‧‧‧逆變器部之輸出(輸出電壓或輸出電流)之基本波成分之1/4週期
Tw‧‧‧矩形波逆變器驅動信號Q、NQ之脈衝寬度
圖1(a)、(b)係使用PLL電路來控制之先前公知之逆變器裝置之構成說明圖。更詳細而言,圖1(a)係對由使用PLL電路之逆變器控制部所控制並且連接於共振負載之逆變器裝置之整體構成進行 表示之構成說明圖。又,圖1(b)係圖1(a)所示之逆變器裝置中之逆變器控制部之詳細之構成說明圖。
圖2係對藉由PWM控制方式進行輸出控制並且連接於共振負載之先前公知之逆變器裝置之整體構成進行表示之構成說明圖。
圖3(a)、(b)、(c)係表示圖2所示之逆變器裝置之動作之示意性波形圖。
圖4係本發明之實施形態之一例之逆變器裝置的構成說明圖。更詳細而言,圖4係對由控制部所控制並且連接於共振負載之逆變器裝置之整體構成進行表示之構成說明圖。
圖5係圖4所示之逆變器裝置中之控制部之詳細之構成說明圖。
圖6係本發明之實施形態之一例之逆變器裝置的構成說明圖。更詳細而言,圖6係對由控制部所控制並且連接於並聯共振負載之逆變器裝置之整體構成進行表示之構成說明圖。
圖7(a)、(b)、(c)、(d)、(e)係表示圖6所示之逆變器裝置之動作之示意性波形圖。
圖8係本發明之實施形態之一例之逆變器裝置之構成說明圖。更詳細而言,圖8係對由控制部所控制並且連接於串聯共振負載之逆變器裝置之整體構成進行表示之構成說明圖。
圖9(a)、(b)、(c)、(d)、(e)係表示圖8所示之逆變器裝置之動作之示意性波形圖。
圖10係本發明之實施形態之一例之逆變器裝置中之控制部之構成說明圖。
圖11係本發明之實施形態之一例之逆變器裝置中之控制部之 構成說明圖。
圖12係本發明之實施形態之一例之逆變器裝置之構成說明圖。更詳細而言,圖12係對由控制部所控制並且連接於串聯共振負載之逆變器裝置之整體構成進行表示之構成說明圖。
圖13係圖12所示之逆變器裝置中之逆變器部之放大說明圖。
圖14(a)係示意性地表示使用連接於共振負載之本發明之逆變器裝置之電源構成的構成說明圖。又,圖14(b)係示意性地表示使用連接於串聯共振負載之習知技術之逆變器裝置之電源構成的構成說明圖。又,圖14(c)係示意性地表示使用連接於並聯共振負載之習知技術之逆變器裝置之電源構成的構成說明圖。
圖15(a)、(b)係表示感應加熱用共振負載作為共振負載之一例之構成說明圖。更詳細而言,圖15(a)係表示串聯共振負載之情形時之感應加熱用串聯共振負載之構成說明圖。圖15(b)係表示並聯共振負載之情形時之感應加熱用並聯共振負載之構成說明圖。
以下,參照隨附圖式對本發明之逆變器裝置及逆變器裝置之控制方法之實施形態之一例詳細地進行說明。
再者,於以下「實施方式」之項目之說明中,關於與已參照圖1(a)、(b)、圖2以及圖3(a)、(b)、(c)之各圖而說明之構成以及作用、或參照圖4以下之各圖而說明之構成以及作用相同或相當之構成以及作用,藉由分別標註與圖1(a)、(b)、圖2以及圖3(a)、(b)、(c)或圖4以下中所使用之符號相同之符號,而省略其詳細之構成以及作用之說明。
(I)第1實施形態
(I-1)構成
於圖4中表示本發明之實施形態之一例之逆變器裝置之構成說明圖。再者,於圖4中表示由控制部所控制並且連接於共振負載之逆變器裝置之整體構成。
又,於圖5中表示圖4所示之逆變器裝置中之控制部之詳細之構成說明圖。
參照該等圖4及圖5對本發明之實施形態之一例之逆變器裝置10進行說明。
本發明之實施形態之一例之逆變器裝置10係連接於共振負載200之PWM控制之電壓型逆變器。
即,逆變器裝置10係將自交流電源102所供給之交流電壓轉換成所需之電壓之高頻交流電壓,並朝如感應加熱電路等之共振負載200供給者。
再者,作為交流電源102,與習知之逆變器裝置100同樣地,例如可使用商用交流電源,於該情形時,逆變器裝置10將商用交流電壓轉換成高頻交流電壓並朝共振負載200供給。
更詳細而言,逆變器裝置10具備轉換器部302,其將自交流電源102供給之交流電壓輸入後,藉由二極體之整流而轉換成直流電壓並進行輸出。
即,逆變器裝置10之轉換器部302由不使用轉換器控制部之二極體整流電路所構成,且自交流電源102輸入交流電壓,將所輸入之交流電壓轉換成直流電壓並朝逆變器部106輸出。
逆變器部106將自轉換器部302輸出之直流電壓輸入後,逆轉換成高頻交流電壓並進行輸出。
於逆變器部106之輸出級設置有輸出感測器108,其對來自逆變器部106之輸出(此處,所謂來自逆變器部106之「輸出」,係指自逆變器部106輸出之電壓即「輸出電壓Vh」、或自逆變器部106輸出之電流即「輸出電流Ih」、或自逆變器部106輸出之電力即「輸出電力」)進行檢測並將其檢測結果作為輸出感測器信號進行輸出。
逆變器裝置10具備控制部12作為控制逆變器部106之動作之控制手段。
如圖5所示般,控制部12係具有PWM控制部12a、及頻移控制部12b而構成。
控制部12基於自外部設定逆變器部106之輸出之信號即輸出設定信號及自輸出感測器108輸出之輸出感測器信號,對逆變器部106進行反饋控制。
即,控制部12以來自逆變器部106之輸出成為輸出設定信號所表示之輸出設定值之方式,藉由PWM控制部12a之PWM控制而使對構成逆變器部106之電壓型逆變器之電晶體進行驅動之作為逆變器驅動信號之矩形波逆變器驅動信號Q、NQ的脈衝寬度可變,從而使由逆變器部106所轉換之高頻交流電壓之輸出可變。
再者,來自逆變器部106之輸出經由輸出感測器108輸入至外部之共振負載200。
(I-2)動作
於以上構成中,逆變器裝置10之控制部12進行以下說明之動作作為本發明之實施之相關動作。
即,於開始來自逆變器裝置10之輸出之驅動開始時(起動時),藉由矩形波逆變器驅動信號Q、NQ進行驅動開始(起動),該矩形波逆變器驅動信號Q、NQ為較共振頻率週期足夠短之脈衝寬度、例如成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)的脈衝寬度(於本說明書及本專利申請中,將「成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值的脈衝寬度」適宜地稱為「最低脈衝寬度」),且其將與共振負載200之共振頻率分開之頻率作為起點。
藉此,即便共振負載200之共振頻率變動,藉由自驅動開始時(起動時)將藉由控制部12之頻移控制部12b所獲得之矩形波逆變器驅動信號Q、NQ之頻率向共振頻率進行偏移之頻移,仍可進行對變動之共振頻率之自動追蹤。
並且,於逆變器裝置10中,控制部12之PWM控制部12a於矩形波逆變器驅動信號Q、NQ之頻率成為共振頻率(共振點)或共振頻率附近後,以成為來自外部之輸出設定信號所表示之設定值之輸出之方式,藉由PWM控制來擴大矩形波逆變器驅動信號Q、NQ之脈衝寬度。
即,逆變器裝置10使用輸出來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)並且較共振頻率週期足夠短之脈衝寬度(例如為上述最低脈衝寬度)之脈衝信號(窄幅脈衝信號)作為逆變器驅動信號即矩形波逆變器驅動信號Q、NQ,將該窄幅脈衝信號以與共振頻率分開之頻率為起點進行起動後使頻率偏移至共振頻率或共振頻率附近,其後藉由頻率控制而控制於共振頻率。
其後,逆變器裝置10藉由PWM控制使窄幅脈衝信號之脈衝寬度變寬,而使之成為來自外部之輸出設定信號所表示之設定值之輸出(為輸出電壓或輸出電流或輸出電力)。
(I-3)作用效果
因而,根據上述所說明之逆變器裝置10,即便進行輸出控制,逆變器部之輸出頻率亦不會偏離共振頻率,又,可改善對共振頻率變動之負載之追蹤特性。
又,於上述所說明之逆變器裝置10中,由於逆變器部106中可進行輸出控制,故而無需如習知技術般使用閘流體整流電路或斬波電路作為轉換器部之轉換器電路。
因此,與使用閘流體整流電路或斬波電路之習知技術相比,逆變器裝置10可謀求電源功率因數之改善、輸出響應速度之大幅度改善(根據本案發明者之實驗,響應速度自習知技術中之100ms大幅度地改善為10ms)、藉由零件數量之大幅度削減所獲得之成本降低以及可靠性提高。
又,逆變器裝置10由於係將逆變器驅動信號之驅動開始時(起動時)之頻率即起動頻率設為與共振頻率分開之頻率,然後以使逆變器驅動信號之頻率接近共振頻率之方式頻移,故而大幅度地改善對共振頻率變動之共振負載200之追蹤特性,又,即便於將共振頻率不同之複數個共振負載200進行切換而連接之情形時,亦可無問題地應對。
進而,不論共振負載200為並聯共振負載亦或是串聯共振負載,均可用作相同電壓型逆變器,因此可謀求逆變器裝置之共用化。
此處,藉由頻移控制部12b頻移之區域(頻移區域)較佳為決定為考慮了對於逆變器電路最佳之二極體逆向恢復特性之感應性區域。
換言之,起動頻率較佳為以頻移區域成為基於逆變器電路之二極體逆向恢復特性之感應性區域之方式進行決定。
根據本案發明者之實驗,作為逆變器驅動信號之驅動開始時(起動時)之頻率即起動頻率,若設為相對於共振頻率之頻率分開5%以上之頻率(例如,若共振頻率設為20kHz,則相對於共振頻率之頻率分開5%以上之頻率成為19kHz以下之頻率或21kHz以上之頻率),則可獲得良好之結果。
再者,於將起動頻率設為相對於共振頻率之頻率分開5%以上之頻率時,即將起動頻率自共振頻率之頻率分開5%以上時,可向共振頻率之低頻側(低於共振頻率之頻率方向)分開(例如,若共振頻率設為20kHz,則向共振頻率之低頻側分開5%以上之頻率成為19kHz以下之頻率),或,亦可向共振頻率之高頻側(高於共振頻率之頻率方向)分開(例如,若共振頻率設為20kHz,則向共振頻率之高頻側分開5%以上之頻率成為21kHz以上之頻率)。
再者,根據本案發明者之見解,並不存在如下所述之習知技術:如上文所述之本發明之逆變器裝置10般,將起動頻率與共振頻率之頻率分開(例如,相對於共振頻率之頻率分開5%以上),並自該起動頻率藉由窄幅脈衝信號開始逆變器部之驅動後,使該窄幅脈衝信號向共振頻率頻移,其後以共振頻率開始將窄幅脈衝信號之脈衝寬度擴大之PWM控制。
(II)第2實施形態
(II-1)構成
於圖6中表示本發明之實施形態之一例之逆變器裝置之構成說明圖。再者,於圖6中表示由控制部所控制並且連接於並聯共振負載之逆變器裝置之整體構成。
於參照圖6對本發明之實施形態之一例之逆變器裝置20進行說明時,逆變器裝置20連接於並聯共振負載22。
話說,可知並聯共振負載於頻率低於共振頻率之範圍內具有成為感應性之特性,另一方面,電壓型逆變器由於並聯地連接於逆變器元件之二極體之電流之逆向恢復特性,故而感應性下之開關動作較電容性而言比較穩定。
因而,本發明之逆變器裝置20係將較並聯共振電路22之共振頻率低之頻率(例如為較共振頻率低5%以上之頻率)作為逆變器驅動信號之起動頻率,自該起動頻率頻移而使逆變器驅動信號之頻率上升至共振頻率,並以共振頻率鎖定逆變器驅動信號之頻率。
以下,於對逆變器裝置20進行說明時,符號24為電感器,符號26為電壓感測器,符號28為控制部。
再者,電壓感測器26係相當於上述輸出感測器108之構成要素,對電壓進行感測,並輸出表示所感測到之電壓之信號作為輸出感測器信號。
控制部28係具有如下部分而構成:頻移電路30、電壓控制振盪器(VCO:Voltage-controlled oscillator)電路32、窄幅脈衝信號產生電路34、輸出電路36、相位比較電路38、延遲設定電路40、鎖定結束電路42、檢波電路44、誤差放大濾波器46、三角 波產生電路48、及PWM電路50。
此處,逆變器裝置20除與本發明之實施相關聯地讓控制部28具備頻移電路30而將逆變器驅動信號之頻率頻移之方面及信號切換之方面以外,可應用先前公知之逆變器裝置之技術,因此關於除將逆變器驅動信號之頻率頻移之方面及信號切換之方面以外之其他構成,省略詳細說明。
(II-2)動作
於以上構成中,關於逆變器裝置20之動作,以與本發明之實施相關之控制部28之動作為中心進行說明。
於控制部28中,將來自外部之輸出接通(ON)信號輸入至頻移電路30,以自較並聯共振負載22之共振頻率低之頻率(例如為較共振頻率低5%以上之頻率)開始逆變器部106之驅動之方式向VCO電路32輸入信號,來自VCO電路32之輸出之頻率信號被輸入至窄幅脈衝信號產生電路34,從而藉由窄幅脈衝信號產生電路34產生VCO電路32之輸出之頻率之窄幅脈衝信號並輸出至輸出電路36。於輸出電路36中,根據鎖定結束電路42之信號,自窄幅脈衝信號產生電路34之信號切換成PWM電路50之信號。
此處,由窄幅脈衝信號產生電路34所產生之窄幅脈衝信號之脈衝寬度較佳為設定為如下,即,自逆變器部106輸出之輸出值成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)。
於圖7(a)、(b)、(c)、(d)、(e)中表示將逆變器裝置20之動作示意性地表示之波形圖。
再者,於圖7(a)、(b)、(c)、(d)、(e)中,波形D、波 形E、波形F、波形G以及波形H係由電壓感測器26感測到之電壓(電容器電壓Vc)波形。
圖7(a)表示作為驅動開始時(起動時)之起動頻率中之逆變器部106之輸出而由電壓感測器26感測到之電壓(電容器電壓Vc)波形(波形D)與作為逆變器驅動信號之窄幅脈衝信號之相位差。
於逆變器裝置20連接有並聯共振負載22之情形時,可知於共振頻率以下之頻率區域中逆變器驅動信號之相位較電容器電壓Vc之相位而言延遲。
此處,於相位比較電路38中,將逆變器驅動信號之脈衝之週期之1/4延遲之位置即A點作為相位檢波脈衝之脈衝位置,將進行比較之電容器電壓Vc相位波形(波形E)之零交叉點作為B點(參照圖7(b)),對A點與B點之相位差進行比較,並以相位差成為零(0)或預先設定之相位差之頻率進行鎖定(參照圖7(c))。
另一方面,將來自電壓感測器26之波形信號及來自VCO電路32之頻率信號輸入至相位比較電路38後對各自之相位進行比較,以成為共振頻率之方式控制VCO電路32之頻率。
具體而言,藉由將與共振頻率分開之頻率、例如較共振頻率低5%以上之頻率作為起動頻率之窄幅脈衝信號之逆變器驅動信號而開始逆變器部106之驅動(參照圖7(a)),使該逆變器信號之頻率頻移並上升(參照圖7(b))。
然後,藉由相位比較電路38以共振頻率鎖定逆變器驅動信號之頻率(參照圖7(c)),鎖定結束電路42感測到鎖定結束並向輸出電路36輸出信號。根據該信號,而自輸出電路36輸出藉由PWM控制而脈衝寬度tw自窄幅脈衝信號變大之逆變器驅動信號, 從而逆變器部106之輸出上升至由輸出設定信號所設定之設定值之輸出(參照圖7(d)、(e))。
即,逆變器裝置20係連接並聯共振負載22作為共振負載,使用輸出來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)之較共振頻率週期足夠短之脈衝寬度之脈衝信號(窄幅脈衝信號)作為逆變器驅動信號即矩形波逆變器驅動信號Q、NQ,以與共振頻率分開之頻率(例如為較共振頻率低5%以上之頻率)為起點使該窄幅脈衝信號起動後進行將頻率上升至共振頻率或共振頻率附近的頻移之頻率控制,而將逆變器驅動信號之頻率控制於共振頻率。
其後,逆變器裝置20藉由PWM控制而使窄幅脈衝信號之脈衝寬度變寬,而使之成為來自外部之輸出設定信號所表示之設定值之輸出(為輸出電壓或輸出電流或輸出電力)。
(II-3)作用效果
因而,即便於逆變器裝置20中仍可獲得與關於逆變器裝置10而在上述(I-3)中所說明之作用效果相同之作用效果。
(II-4)第2實施形態中之其他特徵性構成
(a)於逆變器裝置20中,在逆變器部106之輸出級、即逆變器部106與電壓感測器26之間連接有防止高諧波電流之電感器24。
即,於逆變器裝置20中,在將作為電壓型逆變器之逆變器部106連接於並聯共振負載22之情形時,由於因矩形波電壓之高諧波成分之電壓導致高諧波電流流過,故而將用以防止該高諧波電流之電感器24串聯連接於逆變器部106之輸出級。
逆變器部106之輸出電壓成為矩形波,但是一般已知矩形波包含正弦波與奇次高諧波之合成波形,若直接在矩形波狀態下連接於並聯共振負載22,則奇次高諧波成分由於頻率較高故而電容器之電抗變小,而高諧波電流增大,引起電流波形失真,或引起作為逆變器部106之開關元件之電晶體之損耗惡化等。
因此,為了抑制此種高諧波電流,而於逆變器裝置20中在逆變器部106之輸出級連接了電感器24。
(b)於逆變器裝置20之控制部28中,在將來自VCO電路32之輸出信號輸入至相位比較電路38進行相位比較時,設置了用以設定信號延遲時間之延遲設定電路40。
即,於逆變器裝置20中,在將作為電壓型逆變器之逆變器部106連接於並聯共振負載22之情形時,由於因矩形波電壓之高諧波成分之電壓導致高諧波電流流過,故而為了防止該高諧波電流而將電感器24串聯連接,但是因藉由該電感器24之串聯連接所獲得之電感器成分,導致共振時之電壓相位產生延遲。
於逆變器裝置20之控制部28中,為了對該電壓相位之延遲進行修正,而設置使向相位比較電路38輸入之驅動側之脈衝相位延遲之延遲設定電路40來進行延遲修正。
(III)第3實施形態
(III-1)構成
於圖8中表示本發明之實施形態之一例之逆變器裝置之構成說明圖。再者,於圖8中表示由控制部所控制並且連接於串聯共振負載之逆變器裝置之整體構成。
於參照圖8對本發明之實施形態之一例之逆變器裝置60進行說明時,逆變器裝置60連接於串聯共振負載62。
話說,可知串聯共振負載於頻率高於共振頻率之範圍內具有成為感應性之特性,另一方面,電壓型逆變器由於並聯地連接於逆變器元件之二極體之電流之逆向恢復特性,故而在感應性下之開關動作較電容性而言比較穩定。
因而,本發明之逆變器裝置60係將較串聯共振負載62之共振頻率高之頻率(例如為較共振頻率高5%以上之頻率)作為逆變器驅動信號之起動頻率,自該起動頻率頻移並使逆變器驅動信號之頻率下降至共振頻率,並且以共振頻率鎖定逆變器驅動信號之頻率。
以下,於對逆變器裝置60進行說明時,符號64為電流感測器,符號66為串聯共振負載62之共振電容器。
再者,電流感測器64係相當於上文所述之輸出感測器108之構成要素,對電流進行感測,並輸出表示所感測到之電流之信號作為輸出感測器信號。
控制部28之構成由於與上述中所說明之逆變器裝置20中之構成相同,故而省略其詳細說明。
(III-2)動作
於以上構成中,關於逆變器裝置60之動作,以與本發明之實施相關之控制部28之動作為中心進行說明。
於控制部28中,將來自外部之輸出接通(ON)信號輸入至頻移電路30,以自較串聯共振負載62之共振頻率高之頻率(例如為較共振頻率高5%以上之頻率)開始逆變器部106之驅動之方式向VCO電路32輸入信號,來自VCO電路32之輸出之頻率信號被輸入至窄幅脈衝信號產生電路34,從而藉由窄幅脈衝信號產生電路34產生VCO電路32之輸出之頻率之窄幅脈衝信號並輸出至輸出電路36。於輸出電路36中,根據鎖定結束電路42之信號,自窄幅脈衝信號產生電路34之信號切換成PWM電路50之信號。
此處,由窄幅脈衝信號產生電路34所產生之窄幅脈衝信號之脈衝寬度較佳為設定為如下,即,以自逆變器部106輸出之輸出值成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)。
於圖9(a)、(b)、(c)、(d)、(e)中表示將逆變器裝置60之動作示意性地表示之波形圖。
再者,於圖9(a)、(b)、(c)、(d)、(e)中,波形I、波形J、波形K、波形L以及波形M係由電流感測器64所感測到之電流(輸出電流)波形。
圖9(a)表示作為驅動開始時(起動時)之起動頻率中之逆變器部106之輸出而由電流感測器64感測到之電流(輸出電流)波形(波形I)與作為逆變器驅動信號之窄幅脈衝信號之相位差。
於逆變器裝置60連接有串聯共振負載62之情形時,可知於共振頻率以上之頻率區域中輸出電流之相位較逆變器驅動信號之相位而言延遲。
此處,於相位比較電路38中,將逆變器驅動信號之脈衝之週期之1/4延遲之位置即C點作為相位檢波脈衝之脈衝位置,將進行比較之輸出電流相位波形(波形J)之零交叉點作為D點(參照圖9(b)),對C點與D點之相位差進行比較,並以相位差成為零(0)或預先設定之相位差之頻率進行鎖定(參照圖9(c))。
另一方面,將來自電流感測器64之波形信號及來自VCO電路32之頻率信號輸入至相位比較電路38後對各自之相位進行比較,以成為共振頻率之方式控制VCO電路32之頻率。
具體而言,藉由將與共振頻率分開之頻率、例如較共振頻率高5%以上之頻率作為起動頻率之窄幅脈衝信號之逆變器驅動信號而開始逆變器部106之驅動(參照圖9(a)),使該逆變器信號之頻率頻移並下降(參照圖9(b))。
然後,藉由相位比較電路38以共振頻率鎖定逆變器驅動信號之頻率(參照圖9(c)),鎖定結束電路42感測到鎖定結束並向輸出電路36輸出信號。根據該信號,而自輸出電路36輸出藉由PWM控制而脈衝寬度tw自窄幅脈衝信號變大之逆變器驅動信號,從而逆變器部106之輸出上升至由輸出設定信號所設定之設定值之輸出(參照圖9(d)、(e))。
再者,延遲設定電路40於連接有串聯共振負載62之逆變器裝置60中,用以對逆變器部106之電路延遲進行修正。
即,逆變器裝置60連接串聯共振負載62作為共振負載,使用輸出來自外部之輸出設定信號所表示之設定值之最低設定輸出值(為輸出電壓或輸出電流或輸出電力)之較共振頻率週期足夠短之脈衝寬度之脈衝信號(窄幅脈衝信號)作為逆變器驅動信號即矩形波逆變器驅動信號Q、NQ,以與共振頻率分開之頻率(例如為較共振頻率高5%以上之頻率)為起點使該窄幅脈衝信號起動後進行將頻率下降至共振頻率或共振頻率附近的頻移之頻率控制,而將逆變器驅動信號之頻率控制於共振頻率。
其後,逆變器裝置60藉由PWM控制而使窄幅脈衝 信號之脈衝寬度變寬,而使之成為來自外部之輸出設定信號所表示之設定值之輸出(為輸出電壓或輸出電流或輸出電力)。
(III-3)作用效果
因而,即便於逆變器裝置60中仍可獲得與關於逆變器裝置10而在上述(I-3)中所說明之作用效果相同之作用效果。
(IV)第4實施形態
於圖10中表示本發明之實施形態之一例之逆變器裝置中之控制部的構成說明圖。
再者,於該第4實施形態中,關於除了控制部以外之其他構成,由於無與上文所述之第2、3各實施形態之逆變器裝置20、60及下文所述之第7實施形態之逆變器裝置400之構成不同之處,故而省略除控制部以外之其他構成之圖示以及說明。
相較於上文所述之各實施形態(第2、3、7實施形態)中之控制部28,該第4實施形態之逆變器裝置之控制部70除了控制部28之構成還具備最低位準感測電路72,於此方面而言兩者不同。
於第2、3、7實施形態之逆變器裝置20、60、400中,若頻率與共振頻率分開則輸出位準(共振電壓或共振電流)降低,而無法自逆變器部106之輸出進行準確之相位感測。
因此,於第4實施形態之逆變器裝置中,在控制部70設置最低位準感測電路72,對逆變器部106之輸出成為可藉由最低位準感測電路72進行相位感測之輸出位準之情況進行感測,而開始相位比較。
即,第4實施形態之逆變器裝置係藉由控制部70之 最低位準感測電路72感測藉由作為逆變器驅動信號之脈衝驅動信號所獲得之共振負載之輸出(為輸出電壓或輸出電流或輸出電力)位準,於成為預先設定之位準以上之情形時使控制於共振頻率附近之相位比較電路38開始動作。
(V)第5實施形態
於圖11中表示本發明之實施形態之一例之逆變器裝置中之控制部的構成說明圖。
再者,於該第5實施形態中,關於除了控制部以外之其他構成,由於無與上文所述之第2、3各實施形態之逆變器裝置20、60及下文所述之第7實施形態之逆變器裝置400之構成不同之處,故而省略除了控制部以外之其他構成之圖示以及說明。
相較於上文所述之各實施形態(第2、3、7實施形態)中之控制部28,該第5實施形態之逆變器裝置之控制部80除了控制部28之構成還具備最低位準頻率感測電路82,於該方面而言兩者不同。
於第2、3、7實施形態之逆變器裝置20、60、400中,若頻率與共振頻率分開則輸出位準(共振電壓或共振電流)降低,而無法自逆變器部106之輸出進行準確之相位感測。
因此,於第5實施形態之逆變器裝置中,在控制部80設置最低位準頻率感測電路82,對逆變器部106之輸出成為可藉由最低位準頻率感測電路82進行相位感測之輸出位準之頻率(最低位準頻率)之情況進行感測,而開始相位比較。
即,第5實施形態之逆變器裝置係藉由控制部80之最低位準頻率感測電路82對使作為逆變器驅動信號之脈衝驅動信 號之頻率頻移時成為預先設定之頻率(最低位準頻率)之情況進行感測,並於該感測之時間點使相位比較電路38開始動作。
(VI)第6實施形態
本發明之第6實施形態之一例之逆變器裝置具有上文所述之第4實施形態中之最低位準感測電路72及上文所述之第5實施形態中之最低位準頻率感測電路82兩者。
再者,於該第6實施形態中,除了在控制部設置有最低位準感測電路及最低位準頻率感測電路兩者以外,關於其他構成,並無與上文所述之各實施形態(第2、3、4、5各實施形態)及下文所述之第7實施形態中之構成不同之處,因此藉由引用上文所述之各實施形態(第2、3、4、5各實施形態)及下文所述之第7實施形態中之說明,而省略其圖示以及說明。
(VII)第7實施形態
於圖12中表示本發明之實施形態之一例之逆變器裝置之構成說明圖。再者,於圖12中表示由控制部所控制並且連接於串聯共振負載之逆變器裝置之整體構成。
又,於圖13中表示圖12所示之逆變器裝置中之逆變器部之放大說明圖。
該圖12所示之逆變器裝置(本發明之第7實施形態之一例之逆變器裝置)400與圖8所示之上文所述之第3實施形態之逆變器裝置60之構成相比,於具備逆變器部406以代替逆變器部106之方面上,兩者不同。
如圖13所示般,逆變器裝置400之逆變器部406係使用SiC二極體作為逆變器開關元件406a中之環流二極體(飛輪二 極體)406b者。
更詳細而言,如圖13所示般,於逆變器部406之逆變器開關元件406a中,使用SiC二極體作為與半導體開關元件406c相反且並聯地連接之飛輪二極體406b。
於該第7實施形態之逆變器裝置400中,共振負載形成串聯共振電路62,以較共振頻率低之頻率(例如為較共振頻率低5%以上之頻率)為起點使可確保最低設定輸出值(為輸出電壓或輸出電流或輸出電力)之足夠短之逆變器驅動信號即脈衝驅動信號之頻率起動,進行將頻率上升至共振頻率附近之頻移之頻率控制,而將作為逆變器驅動信號之脈衝驅動信號之頻率控制於共振頻率。
即,於逆變器裝置400中,使用SiC二極體作為逆變器開關元件406a之飛輪二極體406b。
因此,由於該特性故而幾乎無電流再生時之恢復時間,因此可利用串聯共振電路進行電容性(C性)下之逆變器動作,可以較低頻率(C性區域)為起點,偏移至頻率較高之共振頻率。
(VIII)第8實施形態
其次,參照圖14(a)、(b)、(c)對本發明之第8實施形態之一例之逆變器裝置進行說明。
此處,於圖14(a)中表示將使用連接於共振負載之本發明之逆變器裝置之電源構成示意性地表示之構成說明圖。
又,於圖14(b)中表示將使用連接於串聯共振負載之習知技術之逆變器裝置之電源構成示意性地表示之構成說明圖。
進而,於圖14(c)中表示將使用連接於並聯共振負載之習知技術之逆變器裝置之電源構成示意性地表示之構成說明圖。
圖14(a)所示之使用上文所述之本發明之連接於共振負載之逆變器裝置10、20、60、400之電源構成係可用於感應加熱用途者,係利用空冷同軸纜線504將連接於共振負載之本發明之逆變器裝置10、20、60、400之輸出端子500與並聯共振電容器箱502連接,並將小型變流器(手持型變流器)506連接於並聯共振電容器箱502,而向加熱線圈508傳送高頻電流。
於感應加熱用途中,存在逆變器裝置至加熱線圈之距離變長,而藉由手動進行加熱作業之情況,習知,如圖14(b)所示般,對連接於串聯共振負載之習知技術之逆變器裝置600之輸出端子600a連接水冷纜線602而延長,通過中繼盒604而利用小型變流器(手持型變流器)606進行阻抗轉換,而向加熱線圈608傳送高頻電流。
或,習知,如圖14(c)所示般,使用連接於並聯共振負載之習知技術之逆變器裝置700,對逆變器裝置700之輸出端子700a連接空冷同軸纜線702而延長,通過中繼盒704而利用小型變流器(手持型變流器)706進行阻抗轉換,而向加熱線圈708傳送高頻電流。
然而,於圖14(b)所示之使用連接於串聯共振負載之習知技術之逆變器裝置600之情形時,由於在水冷纜線602之往復之雜散電容中高諧波電流流過,故而延長距離存在極限,一般而言,延長距離之極限為50m左右。
又,於圖14(c)所示之使用連接於並聯共振負載之習知技術之逆變器裝置700,並延長空冷同軸纜線702之距離之情形時,由於逆變器裝置700內部之串聯電抗器變大變重,故而電源本 身亦變大變重,從而無法作為小型電源而於作業現場容易地使用者。
另一方面,於圖14(a)所示之使用連接於共振負載之本發明之逆變器裝置10、20、60、400的構成中,由於使用了無需較大之直流電抗器之電壓型逆變器,故而可成為小型電源構成,藉由對其連接空冷同軸纜線504,可構成即便為200m以上亦可容易地延長空冷同軸纜線504之小型電源。
再者,並聯共振電容器箱502係包含並聯共振用電容器者。
又,作為小型變流器(手持型變流器)506,可使用習知之構成、即與小型變流器(手持型變流器)606、706相同者。
同樣地,加熱線圈508亦可使用習知之構成、即與加熱線圈608、708相同者。
(IX)第9實施形態
本發明之第9實施形態之一例之逆變器裝置係藉由如下方式而成者,即,構成上文所述之各實施形態中之共振負載200、並聯共振負載22或串聯共振負載62之共振電路由包含感應加熱用之加熱線圈及共振電容器之共振電路所構成。
即,作為連接於包含逆變器裝置10、20、60、400在內之本發明之逆變器裝置的共振負載200、並聯共振負載22或串聯共振負載62,可使用各種構成者,例如可將如圖15(a)、(b)所示之感應加熱用共振負載連接於本發明之逆變器裝置。
此處,於圖15(a)中表示對串聯共振負載之情形時之感應加熱用串聯共振負載進行表示之構成說明圖。
又,於圖15(b)中表示對並聯共振負載之情形時之感應加熱用並聯共振負載進行表示之構成說明圖。於該圖15(b)所示之構成中,在感應加熱用並聯共振負載中串聯連接有高諧波去除用之濾波器。
再者,於圖6所示之逆變器裝置20中,濾波器作為電感器24而接線於逆變器裝置20內。
(X)其他實施形態及變形例之說明
再者,上文所述之實施形態僅為例示,本發明可以其他各種形態進行實施。即,本發明並不限於上文所述之實施形態,可於不脫離本發明之主旨之範圍內進行各種省略、置換、變更。
例如,上文所述之實施形態可如以下(X-1)至(X-4)所示般進行變形。
(X-1)於上文所述之實施形態中,於將起動頻率與共振頻率分開時,具體而言例示了與共振頻率分開5%以上之情況。
然而,本發明並不限於與共振頻率分開5%以上,亦可與共振頻率分開未滿5%。
即,「5%」數值係本案發明者藉由實驗而實證地求出之較佳之數值,但是本發明並不限於「5%」之數值,只要起動頻率與共振頻率分開即可。
藉由將起動頻率與共振頻率分開,而不論共振負載側之共振頻率如何偏離,均可藉由頻移而自動地找出共振頻率。
此處,頻移之區域(頻移區域)較佳為決定為考慮了對逆變器電路最佳之二極體逆向恢復特性之感應性區域,根據本案發明者之實驗,為自共振頻率起5%以上之區域。
(X-2)於上文所述之實施形態中,各構成中之具體之電路構成等省略了說明,但是理所當然可使用與各構成對應之先前公知之電路構成。
(X-3)於上文所述之實施形態中,省略了各構成中之具體之電路常數等說明,但是理所當然可使用與各構成對應之先前公知之電路常數。
(X-4)理所當然,上文所述之各實施形態以及上文所述之(X-1)至(X-3)所示之各實施形態亦可適宜地組合。
(產業上之可利用性)
本發明可用於連接於如感應加熱電路等之共振負載之電源裝置即逆變器裝置。
10‧‧‧逆變器裝置
12‧‧‧控制部(控制手段)
102‧‧‧交流(AC)電源
106‧‧‧逆變器部
108‧‧‧輸出感測器
200‧‧‧共振負載
302‧‧‧轉換器部
Ih‧‧‧輸出電流
NQ‧‧‧矩形波逆變器驅動信號
Q‧‧‧矩形波逆變器驅動信號
Vh‧‧‧輸出電壓

Claims (30)

  1. 一種逆變器裝置,其係作為連接於共振負載且受到PWM控制之電壓型逆變器者;其特徵在於,其包括:逆變器部,其連接於共振負載且由逆變器驅動信號所驅動;及控制手段,其控制上述逆變器部之動作;上述控制手段係以如下方式進行控制,即,將較上述共振負載之共振頻率之週期短之脈衝寬度之脈衝信號作為上述逆變器驅動信號,將與上述共振頻率分開之頻率作為起點而開始上述逆變器部之驅動後,使上述逆變器驅動信號之頻率頻移至上述共振頻率或上述共振頻率附近,使得上述逆變器驅動信號之頻率與上述共振頻率大致一致。
  2. 如請求項1之逆變器裝置,其中,上述較短之脈衝寬度係上述逆變器部之輸出成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值的脈衝寬度。
  3. 如請求項1或2之逆變器裝置,其中,上述起點係以如下方式設定,即,上述頻移之區域成為基於構成上述逆變器部之逆變器電路之二極體逆向恢復特性的感應性區域。
  4. 如請求項1或2之逆變器裝置,其中,上述共振負載為並聯共振負載,上述起點為低於上述共振頻率之頻率。
  5. 如請求項4之逆變器裝置,其中,於上述逆變器部之輸出級連接有電感器。
  6. 如請求項5之逆變器裝置,其中,上述控制部具有對由上述電感器引起之電壓相位之延遲進行修 正之延遲修正手段。
  7. 如請求項1或2之逆變器裝置,其中,上述共振負載為串聯共振負載,上述起點為高於上述共振頻率之頻率。
  8. 如請求項7之逆變器裝置,其中,上述控制部具有對上述逆變器部之電路延遲進行修正之延遲修正手段。
  9. 如請求項1或2之逆變器裝置,其中,上述共振負載為串聯共振負載,上述逆變器部使用SiC二極體作為逆變器開關元件中之飛輪二極體,上述起點為低於上述共振頻率之頻率。
  10. 如請求項1或2之逆變器裝置,其中,上述起點為相對於上述共振頻率之頻率分開5%以上之頻率。
  11. 如請求項1或2之逆變器裝置,其中,上述控制部於以上述逆變器驅動信號之頻率與上述共振頻率大致一致之方式進行控制後,藉由PWM控制使上述逆變器驅動信號之脈衝寬度變寬。
  12. 如請求項1或2之逆變器裝置,其中,上述控制部具有最低位準感測手段,該最低位準感測手段對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之情況進行感測。
  13. 如請求項1或2之逆變器裝置,其中,上述控制部具有頻率感測手段,該頻率感測手段對上述逆變器部 之輸出成為能夠進行相位感測之輸出位準之頻率之情況進行感測。
  14. 如請求項1或2之逆變器裝置,其中,利用空冷同軸纜線將上述逆變器裝置之輸出端子與並聯共振電容器箱連接,並將變流器連接至上述並聯共振電容器箱,向加熱線圈傳送高頻電流。
  15. 如請求項1或2之逆變器裝置,其中,上述共振負載由包含感應加熱用之加熱線圈及共振電容器之共振電路所構成。
  16. 一種逆變器裝置之控制方法,其係作為連接於共振負載且受到PWM控制之電壓型逆變器的逆變器裝置之控制方法;其特徵在於,以如下方式進行控制:將較共振負載之共振頻率之週期短之脈衝寬度之脈衝信號作為逆變器驅動信號,將與上述共振頻率分開之頻率作為起點而開始逆變器部之驅動後,使上述逆變器驅動信號之頻率頻移至上述共振頻率或上述共振頻率附近,使得上述逆變器驅動信號之頻率與上述共振頻率大致一致。
  17. 如請求項16之逆變器裝置之控制方法,其中,上述較短之脈衝寬度係上述逆變器部之輸出成為來自外部之輸出設定信號所表示之設定值之最低設定輸出值的脈衝寬度。
  18. 如請求項16或17之逆變器裝置之控制方法,其中,上述起點係以如下方式設定,即,上述頻移之區域成為基於構成上述逆變器部之逆變器電路之二極體逆向恢復特性的感應性區域。
  19. 如請求項16或17之逆變器裝置之控制方法,其中,上述共振負載為並聯共振負載, 上述起點為低於上述共振頻率之頻率。
  20. 如請求項19之逆變器裝置之控制方法,其中,於上述逆變器部之輸出級連接電感器。
  21. 如請求項20之逆變器裝置之控制方法,其中,對由上述電感器所引起之電壓相位之延遲進行修正。
  22. 如請求項16或17之逆變器裝置之控制方法,其中,上述共振負載為串聯共振負載,上述起點為高於上述共振頻率之頻率。
  23. 如請求項22之逆變器裝置之控制方法,其中,對上述逆變器部之電路延遲進行修正。
  24. 如請求項16或17之逆變器裝置之控制方法,其中,上述共振負載為串聯共振負載,上述逆變器部使用SiC二極體作為逆變器開關元件中之飛輪二極體,上述起點為低於上述共振頻率之頻率。
  25. 如請求項16或17之逆變器裝置之控制方法,其中,上述起點為相對於上述共振頻率之頻率分開5%以上之頻率。
  26. 如請求項16或17之逆變器裝置之控制方法,其中,於以上述逆變器驅動信號之頻率與上述共振頻率大致一致之方式進行控制後,藉由PWM控制使上述逆變器驅動信號之脈衝寬度變寬。
  27. 如請求項16或17之述變器裝置之控制方法,其中,對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之情況進行感測。
  28. 如請求項16或17之逆變器裝置之控制方法,其中,對上述逆變器部之輸出成為能夠進行相位感測之輸出位準之頻率之情況進行感測。
  29. 如請求項16或17之逆變器裝置之控制方法,其中,利用空冷同軸纜線將上述逆變器裝置之輸出端子與並聯共振電容器箱連接,並將變流器連接至上述並聯共振電容器箱,向加熱線圈傳送高頻電流。
  30. 如請求項16或17之逆變器裝置之控制方法,其中,上述共振負載由包含感應加熱用之加熱線圈與共振電容器之共振電路所構成。
TW108103579A 2018-03-15 2019-01-30 逆變器裝置及逆變器裝置之控制方法 TWI721370B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018-048621 2018-03-15
JP2018048621 2018-03-15
??PCT/JP2019/000660 2019-01-11
PCT/JP2019/000660 WO2019176256A1 (ja) 2018-03-15 2019-01-11 インバータ装置およびインバータ装置の制御方法
WOPCT/JP2019/000660 2019-01-11

Publications (2)

Publication Number Publication Date
TW201939876A TW201939876A (zh) 2019-10-01
TWI721370B true TWI721370B (zh) 2021-03-11

Family

ID=67908254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103579A TWI721370B (zh) 2018-03-15 2019-01-30 逆變器裝置及逆變器裝置之控制方法

Country Status (5)

Country Link
JP (1) JP6959432B2 (zh)
KR (1) KR102507173B1 (zh)
CN (1) CN110870190B (zh)
TW (1) TWI721370B (zh)
WO (1) WO2019176256A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6832395B2 (ja) * 2019-07-31 2021-02-24 島田理化工業株式会社 インバータユニットにおけるアース線への漏れ電流抑止回路およびインバータユニットにおけるアース線への漏れ電流抑止方法
JP2022016299A (ja) * 2020-07-10 2022-01-21 島田理化工業株式会社 非接触給電用インバータ装置、非接触給電用インバータ装置の制御方法、非接触送電装置、非接触送受電装置、非接触給電システムならびに非接触送受電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495382A (ja) * 1990-07-31 1992-03-27 Sharp Corp 誘導加熱調理器
TWI247477B (en) * 2003-01-10 2006-01-11 Delta Electronics Inc Parallel inverter system based on tracking of system power reference
JP2007026750A (ja) * 2005-07-13 2007-02-01 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置の制御方法、及び誘導加熱装置
JP2015225851A (ja) * 2014-05-26 2015-12-14 株式会社木村電機製作所 電力制御回路
TWI519053B (zh) * 2014-01-28 2016-01-21 台達電子企業管理(上海)有限公司 逆變器及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785665B2 (ja) * 1986-05-29 1995-09-13 島田理化工業株式会社 定電流大電力用トランジスタ・インバータ
JP3180372B2 (ja) * 1991-06-28 2001-06-25 松下電器産業株式会社 放電灯点灯装置および放電灯の起動点灯方法
US7885085B2 (en) * 2007-01-22 2011-02-08 Power Integrations, Inc. Cascaded PFC and resonant mode power converters
WO2010053108A1 (ja) * 2008-11-05 2010-05-14 株式会社 日立メディコ 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
WO2011016214A1 (ja) * 2009-08-04 2011-02-10 パナソニック株式会社 電力変換装置及び誘導加熱装置
CN102969928B (zh) * 2012-10-25 2014-11-12 中国科学院电工研究所 谐振型变流器的输出功率调节方法
CN104079079B (zh) * 2014-07-14 2018-02-23 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、集成电路和恒压控制方法
JP6503268B2 (ja) * 2015-09-07 2019-04-17 東洋電機製造株式会社 直列共振型電源装置の制御方法及び制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495382A (ja) * 1990-07-31 1992-03-27 Sharp Corp 誘導加熱調理器
TWI247477B (en) * 2003-01-10 2006-01-11 Delta Electronics Inc Parallel inverter system based on tracking of system power reference
JP2007026750A (ja) * 2005-07-13 2007-02-01 Mitsui Eng & Shipbuild Co Ltd 誘導加熱装置の制御方法、及び誘導加熱装置
TWI519053B (zh) * 2014-01-28 2016-01-21 台達電子企業管理(上海)有限公司 逆變器及其控制方法
JP2015225851A (ja) * 2014-05-26 2015-12-14 株式会社木村電機製作所 電力制御回路

Also Published As

Publication number Publication date
CN110870190A (zh) 2020-03-06
KR20200127965A (ko) 2020-11-11
WO2019176256A1 (ja) 2019-09-19
TW201939876A (zh) 2019-10-01
CN110870190B (zh) 2023-12-05
JP6959432B2 (ja) 2021-11-02
KR102507173B1 (ko) 2023-03-06
JPWO2019176256A1 (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
EP2605616B1 (en) Induction heating fusing device and image forming apparatus
US10148136B2 (en) Drive device, method thereof, and wireless power transmission device
JP5699470B2 (ja) スイッチング電源装置
US7679213B2 (en) AC to DC converter circuit
EP0405611A1 (en) Induction heating cooker
KR20210010673A (ko) 무선 전력 전송 장치
JP3641785B2 (ja) プラズマ発生用電源装置
TWI721370B (zh) 逆變器裝置及逆變器裝置之控制方法
EP1742512B1 (en) High-frequency heating apparatus
JP2014233137A (ja) スイッチング電源装置、スイッチング電源制御方法および電子機器
AU2012353158A1 (en) Induction heating fusing device and image forming apparatus
JP2006523429A (ja) 適応性共振スイッチング電力システム
JP6832402B1 (ja) インバータ装置およびインバータ装置の制御方法
JP4142549B2 (ja) 高周波加熱装置
JP2022016299A (ja) 非接触給電用インバータ装置、非接触給電用インバータ装置の制御方法、非接触送電装置、非接触送受電装置、非接触給電システムならびに非接触送受電システム
JP6832395B2 (ja) インバータユニットにおけるアース線への漏れ電流抑止回路およびインバータユニットにおけるアース線への漏れ電流抑止方法
JP2006294392A (ja) 電磁誘導加熱装置、電磁誘導加熱調理装置
JP3274208B2 (ja) 偏磁制御方法
TWI699085B (zh) 電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器
JP5846426B2 (ja) 誘導加熱用高周波インバータとその制御方法
JP4747649B2 (ja) 電力変換装置
JP4350772B2 (ja) 高周波加熱装置
JP3230560B2 (ja) 直流電源装置
JP6057133B2 (ja) 超音波モータの駆動回路
JP2004064907A (ja) 高周波電源装置