TWI699085B - 電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器 - Google Patents

電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器 Download PDF

Info

Publication number
TWI699085B
TWI699085B TW107106505A TW107106505A TWI699085B TW I699085 B TWI699085 B TW I699085B TW 107106505 A TW107106505 A TW 107106505A TW 107106505 A TW107106505 A TW 107106505A TW I699085 B TWI699085 B TW I699085B
Authority
TW
Taiwan
Prior art keywords
power supply
power
voltage
circuit
reactor
Prior art date
Application number
TW107106505A
Other languages
English (en)
Other versions
TW201935839A (zh
Inventor
初瀬渉
江幡勇紀
田村正博
橋本浩之
上田貴郎
田村建司
Original Assignee
日商日立江森自控空調有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立江森自控空調有限公司 filed Critical 日商日立江森自控空調有限公司
Publication of TW201935839A publication Critical patent/TW201935839A/zh
Application granted granted Critical
Publication of TWI699085B publication Critical patent/TWI699085B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

電力轉換裝置及使用其的馬達驅動裝置以及冷凍機器   電力轉換裝置(1)係將來自交流電源(2)的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比交流電源的電壓更大的電壓之升壓動作,具備:電力轉換電路部,其具有經由電抗器(4)使交流電源短路的短路電路(6),且藉由進行短路電路(6)之接通/斷開來進行升壓動作;及控制部(10),與交流電源(2)的電源電壓及電抗器(4)的電壓對應地設定短路電路(6)的導通率。

Description

電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器
本發明關於在交流電力與直流電力之間進行電力轉換的電力轉換裝置,以及使用電力轉換裝置的馬達驅動裝置及空調機等冷凍機器。
近年,為了驅動空調機等電動力應用機器,使用藉由開關元件進行電力轉換的電力轉換裝置。在商用交流電源等交流電源中的交流電力與直流電源或負荷中的直流電力之間進行電力轉換的電力轉換裝置中,為了効率提升或減低高次諧波,被要求減低交流電源側的電流波形的失真。
在進行升壓動作的電力轉換裝置中,藉由對供作為升壓動作之用的開關元件的開關驅動進行控制,來減低電流波形的失真。作為減低電流波形的失真之習知技術,已知有專利文獻1及專利文獻2記載的技術。
專利文獻1記載的技術中,與交流電源電流對應地控制高頻變壓器的一次側所連接的振盪電路中的半導體開關元件,使高頻變壓器的輸出依序經由全波整流電路及波形的正負轉換電路,而與交流電源連接。由此,獲得正弦波的交流電源電流的波形。另外,在交流電源電流的零點附近停止對構成正負轉換電路的開關元件的驅動,由此,零電流附近的交流電源電流的波形的失真被抑制。
專利文獻2記載的技術中,使升壓截波電路(chopper circuit)中的開關元件的導通率信號與交流電源電流的瞬時值與升壓比對應地設定。由此,即使不生成基準波形亦可以使交流電源電流正弦波化。 [先前技術文獻] [專利文獻]
專利文獻1:特開2000-188876號公報   專利文獻2:特開2009-207282號公報
[發明所欲解決之課題]
專利文獻1記載的技術中,構成正負轉換電路的開關元件的驅動的停止,因為雜訊施加於振盪電路的半導體開關元件的動作,導致在交流電源電流波形出現意想不到的高次諧波成分。
又,專利文獻2記載的技術中,使用交流電源電流的瞬時值,因此存在開關頻率之控制不穩定之情況。
本發明目的在於提供電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器,該電力轉換裝置可以穩定減低交流電源電流的波形失真使正弦波化。 [解決課題之手段]
為了解決上述課題,本發明的電力轉換裝置,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比交流電源的電壓更大的電壓之升壓動作者,具備:電力轉換電路部,其具備經由電抗器使交流電源短路的短路電路,且藉由接通/斷開(ON/ OFF)短路電路來進行升壓動作;及控制部,其對應於交流電源的電源電壓及電抗器的電壓設定短路電路的導通率(工作比(duty ratio))。
又,為了解決上述課題,本發明的電力轉換裝置,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比交流電源的電壓更大的電壓之升壓動作者,具備:電力轉換電路部,其具有半導體開關元件、及半導體開關元件被接通時將能量儲存的電抗器,且藉由接通/斷開半導體開關元件來進行升壓動作;及控制部,其對應於正弦波來設定半導體開關元件的導通率;另具備:停止手段,其在交流電源的電源電流的零電流附近停止半導體開關元件的接通/斷開,正弦波包含基本波成分與高次成分。
為了解決上述課題,本發明的馬達驅動裝置,係藉由電力轉換裝置對馬達進行驅動者,電力轉換裝置,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比交流電源的電壓更大的電壓之升壓動作,具備:第1電力轉換電路部,其具備經由電抗器使交流電源短路的短路電路,且藉由接通/斷開短路電路來進行升壓動作;控制部,其對應於交流電源的電源電壓及電抗器的電壓來設定短路電路的導通率;及第2電力轉換電路部,其將直流電力轉換為可變電壓且可變頻率的交流電力。
為了解決上述課題,本發明的冷凍機器具備:熱交換器;壓縮冷媒並使循環的壓縮機;對熱交換器進行送風的風扇;對壓縮機或風扇進行驅動的馬達;及對馬達進行驅動的馬達驅動裝置;該馬達驅動裝置係上述本發明的馬達驅動裝置。 發明效果
依據本發明,可以穩定地減低交流電源電流的波形失真使正弦波化,因此可以穩定地抑制電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器產生的高次諧波。
以下,參照圖1~4說明本發明之實施形態。
圖1係本發明的一實施形態之電力轉換裝置的電路構成。
如圖1所示,電力轉換裝置1的電力轉換電路部(主電路部)具備由整流元件3a~3d構成,交流電源2供給的交流電力進行整流的整流電路。本實施形態中,整流元件3a~3d為二極體。電力轉換裝置1中,交流電源2經由電抗器4連接於整流電路的交流輸入。又,在交流輸入間連接有,用於短路交流輸入,並對從交流電源2經由電抗器4流入的短路電流進行控制的短路電路6。在整流電路的直流輸出連接有,使整流電路的輸出電壓平滑化的平滑電容器5。
電力轉換裝置1具備:對從交流電源2輸入的交流電源電流(以下稱為「電源電流」)進行檢測的交流電源電流檢測器7;對從交流電源2輸入的交流電源電壓進行檢測的交流電源電壓檢測器8;及對整流電路的直流輸出電壓進行檢測的直流輸出電壓檢測器9。短路電路控制部10係依據交流電源電流檢測器7的檢測電流、交流電源電壓檢測器8及直流輸出電壓檢測器9的各檢測電壓,作成短路電路6之短路指令信號10A並輸出。脈衝斷開控制部11判斷是否停止短路指令信號10A,並對應於判斷結果來修正短路指令信號10A,修正後的短路指令信號11A予以輸出。短路電路6可以與交流電源電壓的正負對應地,控制雙向的電流之接通(ON/OFF)。
接著,對本實施形態的動作進行說明。
如圖1所示電力轉換裝置1藉由對短路電路6進行接通/斷開之驅動而進行升壓動作。
短路電路6接通時,交流電源2經由電抗器4被短路,因此電源電流流通於包含交流電源2與短路電路6及電抗器4的閉電路。此時,來自交流電源2的電力亦即電能作為磁能被儲存於電抗器4。接著,短路電路6斷開時,電源電流按包含交流電源2、整流電路、平滑電容器5、電抗器4的路徑流動,儲存於電抗器4的能量經由整流電路往平滑電容器5側釋放。此時,於電抗器4產生與流入電抗器的電源電流時間變化呈比例的感應電壓,因此比交流電源2的電壓振幅更大的直流電壓從整流電路被輸出。
短路電路6斷開時,流入電力轉換裝置1的交流側的電源電流的方向,係與短路電路6接通時流入的電源電流的方向亦即交流電源2的電壓的正負對應地變化,但通過二極體橋路形成的整流電路(全波整流電路),而成為單向(圖中,由上往下的方向)流入直流側亦即平滑電容器。由此,平滑電容器5被比交流電源2的電壓振幅更大的直流電壓充電。
電力轉換裝置1的直流輸出電壓的大小,藉由控制短路電路6為ON(接通)時的導通率(工作比(duty)),可以被控制成為規定值。短路電路控制部10作成與導通率對應的指令信號,藉由對指令信號與載波信號(三角波或鋸齒波等)進行比較的脈寬變調(PWM),作成具有指令信號所示導通率的脈衝信號亦即短路指令信號10A。
考慮上述的短路電路6的接通/斷開動作時,與圖1的電路構成有關的電路方程式可以用式(1)近似表示。
Figure 02_image001
式(1)中,「d」係短路電路6接通時的導通率(工作比),「is 」係電源電流的瞬時值[A],「L」係電抗器4的電感值[H],「vs 」係交流電源2的電源電壓的瞬時值[V],「Ed 」係平滑電容器5的兩端的電壓亦即直流輸出電壓[V],「ΔEd 」係直流輸出電壓的變動成分[V]。
在短路電路6的接通/斷開的1周期(T)中,短路電路6接通及斷開的時間分別設為ton 及toff 時,短路電路6的導通率d表示為「d=ton /(ton +toff )=ton /T」。
其中,設定d=1-K|is |(K:比例增益)時,可以將is 控制成為正弦波狀,此乃習知者(例如前述專利文獻2)。K由電源電流is 的振幅(Is )與升壓比a(=Ed /Vs :Vs 係vs 的振幅)來設定(K=1/(a‧Is ))。由此,可以獲得規定的直流輸出電壓。
相對於此,慣用的技術中,係藉由使Ed 與指令值Ed * 一致的電壓控制器,及使is 與指令值is * (正弦波)一致的電流控制器,將電源電流正弦波化,而且獲得規定的直流輸出電壓。
與這樣的一般的技術比較,藉由「d=1-K|is |」來設定d的技術,其控制裝置之構成簡略化。但是,依據本發明者的檢討,在使用電源電流的瞬時值的手段中,基於開關頻率(PWM頻率)(例如降低頻率時),控制有可能不穩定。
因此,本實施形態中,將導通率d設定成為式(2)。依據式(2),藉由使用電壓值,控制成為穩定化。
Figure 02_image003
式(2)中,「Kpv 」係比例常數(電壓控制增益),「vs * 」係電源電壓指令值[A],「is * 」係電源電流指令值[A],「Ed * 」係直流輸出電壓指令值[A],「ΔEd * 」係直流輸出電壓變動指令值。
式(2)中「vs * -L・(dis * /dt)」係圖1的電路的部位的電壓(瞬時值),亦即與電源電流is 的正弦波波形相關的電壓。L‧(dis * /dt)係電抗器4的電感與電源電流時間變化率的積,亦即,電抗器4的電壓。又,「Kpv (Ed * +ΔEd * )」係與直流輸出電壓的電壓控制相關。「ΔEd * 」係設定成為直流輸出電壓檢測器9檢測出的「Ed 」的值與「Ed * 」之間的偏差的值。又,「Kpv 」的值,係與「ΔEd * 」的值對應地,當「ΔEd * 」的值越大時設為越大,越小時設為越小。
還有,式(2)中,vs * 、is * 分別由式(3)、式(4)來設定。
Figure 02_image005
Figure 02_image007
式(3)中,「Vs-1st * 」係電源電壓基本波振幅。式(4)中,「Is-1st * 」係電源電流基本波振幅。「ω」係電源角頻率,「t」係時間。
其中,關於「vs * 」,依據交流電源電壓檢測器8檢測出的「vs 」,「vs 」的振幅與相位被計測,計測出的「vs 」的振幅及相位的各值分別被設定為式(3)中的「Vs-1st * 」及「ωt」。還有,以使電源電流的相位成為和電源電壓同相的方式進行控制,因此計測出的「vs 」的相位的值作為式(4)中的「ωt」被設定。關於「is * 」,依據交流電源電流檢測器7檢測出的「is 」,「is 」的振幅被計測出,計測出的「is 」的振幅的值作為式(4)中的「Is-1st * 」被設定。
具體的計算過程的記載被省略,將式(2)代入電路方程式之式(1),算出is ,可知is 可以是大致正弦波狀。將藉由基於式(2)的導通率d對圖1的電力轉換裝置進行控制之情況下的電源電流波形的一例示出於圖2。如圖2所示,本例中可以成為具有振動成分的正弦波化的電源電流。電源電流的振動成分可以藉由公知的濾波器電路除去。
本實施形態中,當交流電源電流檢測器7檢測出零附近的電源電流時,短路電路控制部10停止短路電路6的接通/斷開。由此,可以減少零電流附近的電源電流波形的失真。此技術為公知的技術,但本實施形態中,進一步將零電流附近的電源電流的斜率(時間變化率)減低至接近零。由此,可以抑制短路電路6的接通/斷開停止成為對於升壓動作之雜訊,而導致在電源電流波形產生意想不到的高次諧波。
本實施形態中,為了將零電流附近的電源電流的斜率(時間變化率)的大小減少至比正弦波(基本波)更低,因此在「is * 」加上高次成分例如式(5)所示加上三次諧波成分。
Figure 02_image009
式(5)中,「Is-3rd * 」係電源電流三次指令振幅。「Is-3rd * 」的大小係比「Is-1st * 」小的值,例如設定為「Is-1st * 」的三分之一左右的值。
圖3表示如式(5)所示在電源電流指令值is * 加上了三次諧波成分之情況下的電源電流的波形例。但是,在零電流附近未停止短路電路6的接通/斷開。
如圖3的波形例所示,藉由將三次諧波成分相加於電源電流指令值is * ,零電流附近的電源電流的斜率的大小可以減低至接近零之大小。本波形例中的振動成分可以藉由公知的濾波器電路除去(圖4的波形例亦同樣)。
圖4表示如式(5)所示在電源電流指令值is * 加上了三次諧波成分之情況下的電源電流的波形例。但是,在零電流附近停止短路電路6的接通/斷開。
如圖4的波形例所示,在零電流附近的電源電流的斜率的大小被減低至接近零之大小的時點,短路電路6的接通/斷開被停止。即使短路電路6的接通/斷開被停止,亦可以抑制在電源電流波形產生意想不到的高次諧波。
如上述說明,依據本實施形態,對應於電路中的規定部位的電壓、本實施形態中為交流電源2及電抗器4的電壓來設定導通率(duty),電源電流波形可以確實正弦波化。由此,電力轉換裝置的効率可以提升。還有,藉由減低與電抗器4的電壓值相關的電源電流的零電流附近的時間變化率,據此,在零電流附近即使為了減低波形失真而停止接通/斷開動作,亦可以抑制意想不到的高次諧波的產生。
上述實施形態中的對電流正弦波相加高次成分的手段,在慣用技術之情況下,亦即,藉由使Ed 與指令值Ed * 一致的電壓控制器、及使is 與指令值is * (正弦波)一致的電流控制器,使電源電流正弦波化,並且獲得規定的直流輸出電壓之情況下亦可以適用。又,上述實施形態中的對電流正弦波相加高次成分的手段,亦可以適用在設定d=1-K|is |(K:比例增益)之情況。彼等之情況下,電力轉換裝置具備:電力轉換電路部,其具有半導體開關元件(上述實施形態中為「短路電路6」)被接通時將能量儲存的電抗器,且藉由接通/斷開半導體開關元件進行升壓動作;及控制部,對應於包含基本波成分與高次成分的正弦波電流來設定半導體開關元件的導通率。
以下,對上述實施形態相關的實施例進行說明。 實施例1
圖5係本發明實施例1之電力轉換裝置的電路構成。
本實施例1中,構成電力轉換裝置1A的整流電路之整流元件3a~3d,係由半導體開關元件之MOSFET (Metal Oxide Semiconductor Field Effect Transistor)、及與MOSFET逆並聯連接的二極體構成。二極體可以使用MOSFET的內建二極體。另外,藉由彼等MOSFET的接通/斷開驅動,電力轉換裝置1A進行升壓動作。亦即,整流元件3a~3d構成的整流電路係兼作為短路電路6。
電力轉換裝置1A的升壓動作如下。
交流電源2的電壓的方向如圖中向上之情況下,當接通整流元件3c(MOSFET)使短路電路6接通時,電源電流流入包含交流電源2、整流元件3a(二極體)、整流元件3c(MOSFET)、電抗器4的閉電路。由此,將能量儲存於電抗器4。
接著,當斷開整流元件3c(MOSFET)而斷開短路電路6時,電源電流流過包含交流電源2、整流元件3a(二極體)、平滑電容器5、整流元件3d(二極體)、電抗器4的路徑,儲存於電抗器4的能量被釋放至平滑電容器5側。此時,於電抗器4產生感應電壓,因此從整流電路輸出比交流電源2的電壓振幅更大的直流電壓。
本實施例1中的短路電路6,係藉由MOSFET的全橋式電路,使電源電流流入雙方。例如交流電源2的電壓的方向如圖中向下之情況下,當接通整流元件3d (MOSFET)而接通短路電路6時,電源電流流入包含交流電源2、電抗器4、整流元件3d(MOSFET)、整流元件3b(二極體)的閉電路。由此,能量儲存於電抗器4。
接著,當斷開整流元件3d(MOSFET)而斷開短路電路6時,電源電流按包含交流電源2、電抗器4、整流元件3c(二極體)、平滑電容器5、整流元件3b(二極體)的路徑流動,儲存於電抗器4的能量被釋放至平滑電容器5側。此時,於電抗器4產生感應電壓,因此從整流電路輸出比交流電源2的電壓振幅更大的直流電壓。
上述升壓動作中,電源電流流入整流元件(二極體)時,接通成對的MOSFET亦可。由此,可以減低電力轉換裝置1A中發生的電力損失。這樣的MOSFET的動作,在電抗器4的能量被放出時,亦即短路電路6作為整流電路而動作時,係和所謂同步整流動作同樣的動作。
電力轉換裝置1A的直流輸出電壓的大小,係藉由對短路電路6亦即上述整流元件3c(MOSFET)及整流元件3d(MOSFET)分別接通時的導通率(工作比)進行控制,而被控制成為規定值。短路電路控制部10作成與導通率對應的指令信號,通過指令信號與載波信號(三角波或鋸齒波等)進行比較的脈寬變調(PWM),作成具有指令信號所示導通率的脈衝信號亦即短路指令信號10A。導通率d按上述式(2)被設定。由此,如上述說明般,電源電流波形可以確實正弦波化,効率可以提升。
還有,本實施例1中,為了減少在電源電流的零電流附近的波形失真而停止整流元件(MOSFET)的接通/斷開動作,並且為了使零電流附近的電源電流的斜率(時間變化率)比正弦波(基本波)更減低,而在上述式(2)中的「is * 」加上高次成分,例如如上述式(5)所示加上三次諧波成分。由此,如上述說明,在零電流附近,即使為了減少波形失真而停止接通/斷開動作實,亦可以抑制意想不到的高次諧波的發生。 實施例2
圖6係本發明實施例2之馬達驅動裝置的電路構成。
如圖6所示,在對馬達100進行驅動的逆變器裝置的直流側,連接有作為直流電源的前述實施例1的電力轉換裝置1A。
逆變器裝置的主電路係由三相橋式電路構成,該三相橋式電路由分別連接有飛輪二極體的6個半導體開關元件30a~30f(圖6中為MOSFET)構成。三相橋式電路中,在直流輸入側連接有前述實施例1的電力轉換裝置1A(圖5),在交流輸出側連接有馬達100。
來自交流電源2的恆定電壓・恆定頻率的交流電力,通過電力轉換裝置1A被轉換為規定電壓的直流電力。通過對半導體開關元件30a~30f進行接通/斷開驅動,將該直流電力轉換為可變頻率・可變電壓的交流電力。藉由該交流電力對馬達100進行可變速驅動。
逆變器裝置控制馬達100使按所要的速度旋轉。此時,逆變器控制部50算出為了使馬達100的速度與速度指令值一致而必要的馬達電流,以使檢測出的馬達電流亦即逆變器裝置的三相輸出電流Iuvw 與算出的馬達電流一致的方式,對半導體開關元件30a~30f的接通/斷開驅動進行控制。
馬達100可以適用感應馬達或同步馬達(例如永久磁鐵同步馬達)等三相交流馬達。又,作為逆變器裝置使用的半導體開關元件,亦可以適用IGBT(Insulated Gate Bipolar Transistor)。半導體開關元件適用MOSFET時,飛輪二極體可以使用內建二極體。
依據上述本實施例2,藉由使用本發明實施例1之電力轉換裝置1A(圖5)作為逆變器裝置的直流電源,馬達驅動裝置的効率可以提升,並且可以抑制馬達驅動裝置中的意想不到的高次諧波的發生。 實施例3
圖7係本發明實施例3之冷凍機器之構成圖。冷凍機器係調節溫度的裝置,係空調機或冷凍機等。本實施例3中,藉由上述實施例2之馬達驅動裝置(圖6)對風扇馬達進行驅動。
如圖7所示,冷凍機器300係由以下構成:熱交換器301及302;對彼等熱交換器送風的風扇303及304;壓縮冷媒並使循環的壓縮機305;配置於熱交換器301與熱交換器302之間,以及壓縮機305與熱交換器301及302之間,供冷媒流入的配管306;及馬達驅動裝置307。
作為使風扇303、304旋轉驅動的風扇馬達,可以使用永久磁鐵同步馬達。對壓縮機305進行驅動的壓縮機用馬達308,係配置於壓縮機305的內部。壓縮機用馬達308亦可以使用永久磁鐵同步馬達或三相感應馬達。
馬達驅動裝置307具備:將來自商用交流電源的交流電力轉換為直流電力的直流電源電路;將來自該直流電源電路的直流電力轉換為交流電力並供給至壓縮機用馬達308的壓縮機用馬達驅動用逆變器;及將來自該直流電源電路的直流電力轉換為交流電力並供給至風扇馬達的風扇馬達驅動用逆變器。直流電源電路可以適用前述實施例1(圖5)。又,作為包含逆變器的馬達驅動裝置307可以適用前述實施例2(圖6)。
設置彼此獨立的第1及第2直流電源電路,壓縮機用馬達驅動用逆變器及壓縮機用馬達驅動用逆變器分別從第1直流電源電路及第2直流電源電路接受直流電力亦可。
依據本實施例3,藉由將本發明的實施例2之馬達驅動裝置(圖6)使用作為馬達驅動裝置307,可以提升冷凍機器的効率,並且可以抑制冷凍機器中的意想不到的高次諧波的發生。
本發明不限定於前述實施例,包含各樣變形例。例如前述實施例係為了容易理解本發明而詳細說明者,但不限定於必定要具備說明的全部構成。又,針對各實施例之構成的一部分,可以進行其他構成的追加・削除・置換。
例如作為圖5中的半導體開關元件或圖6所示逆變器用的半導體開關元件,可以使用IGBT(Insulated Gate Bipolar Transistor),SJ(Super Junction)-MOSFET等。但是,使用IGBT之情況下,二極體係外加。又,構成半導體開關元件的半導體材料,除通常的半導體矽以外,亦可以使用SiC(Silicon Carbide)等寬能隙半導體中。
1、1A‧‧‧電力轉換裝置2‧‧‧交流電源3a、3b、3c、3d‧‧‧整流元件4‧‧‧電抗器5‧‧‧平滑電容器6‧‧‧短路電路7‧‧‧交流電源電流檢測器8‧‧‧交流電源電壓檢測器9‧‧‧直流輸出電壓檢測器10‧‧‧短路電路控制部10A‧‧‧短路指令信號11‧‧‧脈衝斷開控制部11A‧‧‧修正後的短路指令信號30a、30b、30c‧‧‧半導體開關元件30d、30e、30f‧‧‧半導體開關元件50‧‧‧逆變器控制部100‧‧‧馬達300‧‧‧冷凍機器301‧‧‧熱交換器302‧‧‧熱交換器303‧‧‧風扇304‧‧‧風扇305‧‧‧壓縮機306‧‧‧配管307‧‧‧馬達驅動裝置308‧‧‧壓縮機用馬達
[圖1] 本發明的一實施形態之電力轉換裝置的電路構成。   [圖2] 電源電流波形的一例。   [圖3] 於電源電流指令值加入了三次諧波成分之情況下的電源電流的波形例。   [圖4] 於電源電流指令值加入了三次諧波成分之情況下的電源電流的波形例。   [圖5] 實施例1之電力轉換裝置的電路構成。   [圖6] 實施例2之馬達驅動裝置的電路構成。   [圖7] 實施例3之冷凍機器之構成圖。
1‧‧‧電力轉換裝置
2‧‧‧交流電源
3a、3b、3c、3d‧‧‧整流元件
4‧‧‧電抗器
5‧‧‧平滑電容器
6‧‧‧短路電路
7‧‧‧交流電源電流檢測器
8‧‧‧交流電源電壓檢測器
9‧‧‧直流輸出電壓檢測器
10‧‧‧短路電路控制部
10A‧‧‧短路指令信號
11‧‧‧脈衝斷開控制部
11A‧‧‧修正後的短路指令信號

Claims (14)

  1. 一種電力轉換裝置,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比上述交流電源的電壓更大的電壓之升壓動作者,具備:電力轉換電路部,其具備經由電抗器使上述交流電源短路的短路電路,且藉由接通/斷開上述短路電路來進行上述升壓動作;及控制部,其對應於上述交流電源的電源電壓及上述電抗器的電壓來設定上述短路電路的導通率;上述電抗器的電壓,係藉由上述電抗器的電感與上述交流電源的電源電流的時間變化率之積算出。
  2. 如申請專利範圍第1項之電力轉換裝置,其中上述電源電壓的值為正弦波的瞬時值,上述電源電流的時間變化率的值,係以上述電源電流由包含與上述電源電壓為同相的基本波成分之正弦波成分形成而算出的瞬時值。
  3. 如申請專利範圍第2項之電力轉換裝置,其中具備:對上述電源電壓進行檢測的電壓檢測器;及對上述電源電流進行檢測的電流檢測器;上述控制部依據上述電壓檢測器及上述電流檢測器的各檢測值來設定上述導通率。
  4. 如申請專利範圍第1項之電力轉換裝置,其中上述控制部,係以上述直流輸出電壓成為規定值的方式來設定上述導通率。
  5. 如申請專利範圍第4項之電力轉換裝置,其中上述控制部,係依據上述規定值及上述直流輸出電壓與上述規定值之偏差來設定上述導通率。
  6. 如申請專利範圍第5項之電力轉換裝置,其中具備:對上述直流輸出電壓進行檢測的直流電壓檢測器;上述控制部係依據上述直流電壓檢測器的檢測值來設定上述導通率。
  7. 如申請專利範圍第1項之電力轉換裝置,其中另具備:在上述交流電源的電源電流的零電流附近,停止上述短路電路的接通/斷開之手段;上述電源電流的零電流附近的上述電源電流的波形的斜率的大小,係小於正弦波的斜率的大小。
  8. 如申請專利範圍第2項之電力轉換裝置,其中 另具備:在上述電源電流的零電流附近,停止上述短路電路的接通/斷開之手段;上述正弦波成分包含高次成分。
  9. 如申請專利範圍第8項之電力轉換裝置,其中上述高次成分的次數為三次。
  10. 一種電力轉換裝置,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比上述交流電源的電壓更大的電壓之升壓動作者,具備:電力轉換電路部,其具有半導體開關元件、及前述半導體開關元件被接通時將能量儲存的電抗器,且藉由接通/斷開上述半導體開關元件來進行升壓動作;及控制部,其對應於上述交流電源的電源電壓及上述電抗器的電壓來設定上述半導體開關元件的導通率;上述電抗器的電壓,係藉由上述電抗器的電感與上述交流電源的電源電流的時間變化率之積算出;另具備:停止手段,在上述交流電源的電源電流的零電流附近停止上述半導體開關元件的接通/斷開,上述正弦波電流包含基本波成分與高次成分。
  11. 如申請專利範圍第10項之電力轉換裝置,其中上述高次成分的次數為三次。
  12. 如申請專利範圍第10項之電力轉換裝置,其中上述半導體開關元件,當被接通時係經由上述電抗器將上述交流電源短路。
  13. 一種馬達驅動裝置,係藉由電力轉換裝置對馬達進行驅動者,上述電力轉換裝置,具備:第1電力轉換電路部,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比上述交流電源的電壓更大的電壓之升壓動作,具備經由電抗器使上述交流電源短路的短路電路,且藉由接通/斷開上述短路電路來進行升壓動作;控制部,其對應於上述交流電源的電源電壓及上述電抗器的電壓來設定上述短路電路的導通率;及第2電力轉換電路部,其將上述直流電力轉換為可變電壓且可變頻率的交流電力;上述電抗器的電壓,係藉由上述電抗器的電感與上述交流電源的電源電流的時間變化率之積算出。
  14. 一種冷凍機器,具備:熱交換器;壓縮冷媒並使循環的壓縮機;對上述熱交換器進行送風的風扇;對上述壓縮機或上述風扇進行驅動的馬達;及對上述馬達進行驅動的馬達驅動裝置;上述馬達驅動裝置具備: 第1電力轉換電路部,係將來自交流電源的交流電力轉換為直流電力,並且進行將直流輸出電壓轉換為比上述交流電源的電壓更大的電壓之升壓動作,具備經由電抗器使上述交流電源短路的短路電路,且藉由接通/斷開上述短路電路來進行升壓動作;控制部,其對應於上述交流電源的電源電壓及上述電抗器的電壓來設定上述短路電路的導通率;及第2電力轉換電路部,其將上述直流電力轉換為可變電壓且可變頻率的交流電力;上述電抗器的電壓,係藉由上述電抗器的電感與上述交流電源的電源電流的時間變化率之積算出。
TW107106505A 2018-02-07 2018-02-27 電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器 TWI699085B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/JP2018/004152 2018-02-07
??PCT/JP2018/004152 2018-02-07
PCT/JP2018/004152 WO2019155539A1 (ja) 2018-02-07 2018-02-07 電力変換装置、並びにそれを用いたモータ駆動装置および冷凍機器

Publications (2)

Publication Number Publication Date
TW201935839A TW201935839A (zh) 2019-09-01
TWI699085B true TWI699085B (zh) 2020-07-11

Family

ID=67548858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107106505A TWI699085B (zh) 2018-02-07 2018-02-27 電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器

Country Status (3)

Country Link
JP (1) JP7159227B2 (zh)
TW (1) TWI699085B (zh)
WO (1) WO2019155539A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773870B2 (en) * 2009-08-26 2014-07-08 Daikin Industries, Ltd. Power converter and method for controlling same
TWM510429U (zh) * 2015-06-25 2015-10-11 Lan Chang Electric Co Ltd 中央空調系統的交直流電源轉換控制模組
CN106469991A (zh) * 2015-08-10 2017-03-01 Lg电子株式会社 功率转换装置及包括其的空调机
CN107078655A (zh) * 2014-09-30 2017-08-18 三菱电机株式会社 电力转换装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327576A (ja) * 1997-03-21 1998-12-08 Mitsubishi Electric Corp 交流−直流変換装置
JP3488861B2 (ja) * 2000-09-13 2004-01-19 シャープ株式会社 直流電源装置
JP5622470B2 (ja) * 2010-07-27 2014-11-12 株式会社アイ・ライティング・システム 照明用点灯装置
JP5709928B2 (ja) * 2013-05-10 2015-04-30 三菱電機株式会社 電力変換装置
CN106716807A (zh) * 2014-09-30 2017-05-24 大金工业株式会社 电力转换装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773870B2 (en) * 2009-08-26 2014-07-08 Daikin Industries, Ltd. Power converter and method for controlling same
CN107078655A (zh) * 2014-09-30 2017-08-18 三菱电机株式会社 电力转换装置
TWM510429U (zh) * 2015-06-25 2015-10-11 Lan Chang Electric Co Ltd 中央空調系統的交直流電源轉換控制模組
CN106469991A (zh) * 2015-08-10 2017-03-01 Lg电子株式会社 功率转换装置及包括其的空调机

Also Published As

Publication number Publication date
JP7159227B2 (ja) 2022-10-24
JPWO2019155539A1 (ja) 2021-01-14
TW201935839A (zh) 2019-09-01
WO2019155539A1 (ja) 2019-08-15

Similar Documents

Publication Publication Date Title
US9960703B2 (en) DC power-supply device and refrigeration-cycle application device including the same
CN105247769B (zh) 电力转换装置、电动机驱动控制装置、压缩机、鼓风机和空调机
JP5558530B2 (ja) モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
AU2012305574B2 (en) Control device for switching power supply circuit, and heat pump unit
WO2013046728A1 (ja) 電力変換装置
US10056826B2 (en) Direct-current power supply device for controlling at frequency being 3N times frequency of three-phase alternating current and refrigeration-cycle applied device including the same
AU2011358036A1 (en) Backflow preventing means, power converting device, and refrigerating and air-conditioning apparatus
US10833598B2 (en) Power conversion device, motor drive control device, blower, compressor, and air conditioner
JP2017112776A (ja) コンバータ装置、駆動制御装置、モータ、およびコンプレッサ
JP2014131372A (ja) 昇圧回路、モータ駆動モジュール及び冷凍機器
WO2017145339A1 (ja) 直流電源装置および冷凍サイクル適用機器
TWI699085B (zh) 電力轉換裝置及使用其之馬達驅動裝置以及冷凍機器
WO2022071401A1 (ja) 電力変換装置及びそれを備えたヒートポンプシステム
JP5668442B2 (ja) 単相交流直流変換装置及び単相交流直流変換装置を用いた空気調和機
JP2019057979A (ja) モータ制御装置及び空調機
JP6513564B2 (ja) 共振回避可能なインバータ装置
WO2019026729A1 (ja) 電源装置、駆動装置、制御方法、及びプログラム
CN213937741U (zh) 基于三相耦合电感的无桥pfc电路
WO2022036769A1 (zh) 一种交流斩波电路及单相交流电机驱动系统
KR101996260B1 (ko) 전력 변환 장치 및 이를 구비한 공기 조화기
Kang et al. A Novel Power Factor Control for Synchronous Motor Drive System with Small DC-Link Capacitor
JP2020068648A (ja) モータ制御装置及び空調機
Bodhle et al. Embeded control of Z-Source inverter