WO2022036769A1 - 一种交流斩波电路及单相交流电机驱动系统 - Google Patents

一种交流斩波电路及单相交流电机驱动系统 Download PDF

Info

Publication number
WO2022036769A1
WO2022036769A1 PCT/CN2020/113872 CN2020113872W WO2022036769A1 WO 2022036769 A1 WO2022036769 A1 WO 2022036769A1 CN 2020113872 W CN2020113872 W CN 2020113872W WO 2022036769 A1 WO2022036769 A1 WO 2022036769A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
coupled
terminal
power supply
Prior art date
Application number
PCT/CN2020/113872
Other languages
English (en)
French (fr)
Inventor
周宗杰
喻辉洁
蔡坤明
Original Assignee
厦门市必易微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市必易微电子技术有限公司 filed Critical 厦门市必易微电子技术有限公司
Priority to EP20949974.8A priority Critical patent/EP4199342A4/en
Priority to JP2023512772A priority patent/JP2023538142A/ja
Publication of WO2022036769A1 publication Critical patent/WO2022036769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/04Single phase motors, e.g. capacitor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the field of electronics, in particular but not limited to an AC chopper circuit and a single-phase AC motor drive system.
  • a single-phase motor generally refers to an asynchronous motor powered by a single-phase AC power supply provided by the mains AC power. Because the mains power supply is very convenient and economical, and it is used for family life, single-phase motors are not only used in production, but also closely related to people's daily life. Especially with the increasing improvement of people's living standards, the amount of single-phase motors used in household electrical appliances such as electric fans is also increasing. The single-phase motor adjusts the speed of the motor through the speed control circuit.
  • the first single-phase motor speed regulation method is the inductive mechanical switch speed regulation.
  • the speed regulation scheme is realized by adjusting the inductance size of the series connection to adjust the inductance mechanical ratio of the auxiliary winding and the main winding.
  • the speed regulation range of this scheme is limited and difficult to achieve. Actual low speed start or regulation.
  • the second speed regulation method of single-phase motor is stepless speed regulation of series reactance, which can realize smooth speed regulation, but the speed regulation range is limited, and the size of the reactance is large, and the system efficiency is low.
  • the third method is the thyristor speed regulation, which realizes the voltage regulation by completing the chopper control of the motor terminal voltage through the bidirectional thyristor switch.
  • the method is low cost and simple to implement, so it is widely used at present.
  • the thyristor is adjusted at low speed, the waveform is chopped more and the deformation is larger, so the power factor (PF) is too low and does not meet the power supply requirements. And the torque ripple is large and the noise is large.
  • the fourth method is AC chopper speed regulation.
  • This type of speed regulation circuit often requires multiple auxiliary power supplies that are isolated from each other, and uses a large number of high-voltage components, such as 8 high-voltage diodes and 2 high-voltage bidirectional switches.
  • the high-voltage devices do not share the same ground, so the circuit design is complicated, the high-voltage devices and the control unit need to be isolated from each other, and multiple isolated power supplies are required, making it difficult to achieve system integration. Because the overall system is complex, the cost is high. This high-cost isolated drive and auxiliary power supply scheme is difficult to scale in cost-sensitive applications like single-phase motor drives.
  • the fifth control method is the frequency conversion inverter speed regulation, including the AC-DC conversion circuit for rectifying and filtering the AC power to obtain the DC regulated power supply and the chopper circuit for frequency conversion and chopping of the square wave signal, etc.
  • the AC-DC conversion circuit for rectifying and filtering the AC power to obtain the DC regulated power supply
  • the chopper circuit for frequency conversion and chopping of the square wave signal, etc.
  • PFC power factor correction
  • Another method is to use bridge AC chopper.
  • the input AC power is rectified into a half-wave voltage through a rectifier bridge, and then chopped by a high-frequency bridge circuit, and the negative half cycle is folded and restored.
  • the chopper can effectively overcome the shortcomings of the thyristor chopper, and realize low harmonics and low cost.
  • the rectifier bridge in this solution needs to withstand a large current, which brings about a large conduction loss, which increases the difficulty of heat dissipation, reduces the efficiency, and increases the cost.
  • the present invention provides an AC chopper circuit and a single-phase AC motor drive system.
  • an AC chopper circuit includes: a switch circuit having a first input terminal, a second input terminal, a first output terminal and a second output terminal, wherein the first input terminal is coupled to an AC power supply The first end, the second input end is coupled to the second end of the AC power supply, the first output end is coupled to the first end of the load, and the second output end is coupled to the second end of the load; a synchronization signal generating circuit is used to provide and A synchronization signal related to the polarity of the AC power supply; a switch driving circuit, which controls the switching circuit based on the synchronization signal; and an auxiliary power supply circuit, which is coupled to the switching circuit, and the auxiliary power supply circuit generates an auxiliary power supply voltage based on the voltage signal on the switching circuit for driving the switch. circuit powered.
  • the switch circuit has a reference terminal, the reference terminal of the switch circuit is coupled to the auxiliary power circuit and the switch driving circuit, and the reference terminal of the switch circuit serves as a reference ground of the auxiliary power circuit and the switch driving circuit.
  • the switch circuit has a reference terminal, the reference terminal is coupled to the auxiliary power supply circuit as a reference ground of the auxiliary power supply circuit, and the auxiliary power supply circuit is used to form a current loop by means of the switch circuit.
  • the AC chopper circuit further includes a first capacitor coupled between the first input terminal and the second input terminal of the switching circuit.
  • the switch circuit includes: a first switch tube coupled between a first input end of the switch circuit and a first output end of the switch circuit; a second switch tube coupled to the reference end of the switch circuit and the first output end of the switch circuit between the first output ends of the switch circuit; a third switch tube, coupled between the second input end of the switch circuit and the second output end of the switch circuit; and a fourth switch tube, coupled to the reference end of the switch circuit and the second output.
  • the switch driving circuit includes: a first half-bridge driving circuit for driving the first switching transistor and the second switching transistor, wherein the first half-bridge driving circuit supports the simultaneous driving of the first switching transistor and the second switching transistor turn on; and a second half-bridge drive circuit for driving the third switch tube and the fourth switch tube, wherein the second half-bridge drive circuit supports turning on the third switch tube and the fourth switch tube at the same time, wherein the first half The bridge driving circuit and the second half-bridge driving circuit are non-isolated driving circuits.
  • the first switch tube includes a first body diode connected in parallel, wherein the anode of the first body diode is coupled to the first output end of the switch circuit, and the cathode of the first body diode is coupled to the first input end of the switch circuit
  • the second switch tube includes a parallel second body diode, wherein the anode of the second body diode is coupled to the reference end of the switch circuit, and the cathode of the second body diode is coupled to the first output end of the switch circuit
  • the third switch tube includes a parallel connection the third body diode, wherein the anode of the third body diode is coupled to the second output end of the switch circuit, and the cathode of the second body diode is coupled to the second input end of the switch circuit
  • the fourth switch tube includes a fourth body connected in parallel A diode, wherein the anode of the fourth body diode is coupled to the reference terminal of the switch circuit, and the cathode of the fourth body diode is coupled
  • the auxiliary power supply circuit has an input terminal, an output terminal and a reference terminal, wherein the input terminal of the auxiliary power supply circuit is coupled to the first input terminal, the second input terminal, the first output terminal and the second output terminal of the switching circuit At least one of them, the output end of the auxiliary power circuit is coupled to the switch drive circuit for supplying power to the switch drive circuit and the synchronizing signal generating circuit, and the reference end of the auxiliary power circuit is coupled to the reference end of the switch circuit for the input of the auxiliary power circuit A current loop is formed between the terminal, the reference terminal of the auxiliary power circuit and the switch circuit.
  • the auxiliary power supply circuit includes: a fifth diode, the anode of which is coupled to the first input terminal of the switch circuit, and/or a sixth diode, the anode of which is coupled to the second input terminal of the switch circuit and a voltage conversion circuit having a first input end, a second input end and an output end, wherein the first input end of the voltage conversion circuit is coupled to the cathode of the fifth diode and/or the cathode of the sixth diode, and the voltage The second input end of the conversion circuit is coupled to the reference end of the switch circuit, and the output end of the voltage conversion circuit provides auxiliary power.
  • the auxiliary power supply circuit includes: a fifth diode, the anode of which is coupled to the first output terminal of the switch circuit, and/or a sixth diode, the anode of which is coupled to the second output terminal of the switch circuit and a voltage conversion circuit having a first input end, a second input end and an output end, wherein the first input end of the voltage conversion circuit is coupled to the cathode of the fifth diode and/or the cathode of the sixth diode, and the voltage The second input end of the conversion circuit is coupled to the reference end of the switch circuit, and the output end of the voltage conversion circuit provides auxiliary power.
  • the auxiliary power supply circuit further includes: a seventh diode, the anode of which is coupled to the second input terminal of the voltage conversion circuit, and the cathode of which is coupled to the anode of the fifth diode; and/or an eighth diode tube, the anode of which is coupled to the second input end of the voltage conversion circuit, and the cathode of which is coupled to the anode of the sixth diode.
  • the auxiliary power supply circuit further includes a second capacitor coupled between the first input terminal and the second input terminal of the voltage conversion circuit.
  • the auxiliary power supply circuit includes: a first resistor, the first end of which is coupled to the first input end of the switch circuit; the second resistor, the first end of which is coupled to the second input end of the switch circuit, and the second resistor The terminal is coupled to the second terminal of the first resistor; and the voltage conversion circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal of the voltage conversion circuit is coupled to the second terminal of the first resistor, and the voltage The second input end of the conversion circuit is coupled to the reference end of the power supply circuit, and the output end of the voltage conversion circuit provides auxiliary power.
  • the switch driving circuit controls the first switch tube and the second switch tube to be turned on
  • the third switch tube performs the switching action with a duty cycle
  • the fourth switch tube works in the rectification state
  • the switch driving circuit controls the third switch tube and the fourth switch tube to be turned on, the first switch tube performs a switching action with a duty ratio, and the second switch tube works in a rectification state.
  • the switch drive circuit controls at least two of the first switch transistor, the second switch transistor, the third switch transistor and the fourth switch transistor to turn off; the switch drive circuit One or two switches are further controlled to be turned on to provide a freewheeling loop for the load.
  • the switch driving circuit controls the first switch tube and the third switch tube to be turned on, and the second switch tube and the fourth switch tube to be turned off.
  • the switch driving circuit controls the second switch transistor and the fourth switch transistor to be turned on, and the first switch transistor and the third switch transistor are turned off.
  • the synchronization signal generating circuit includes: a differential amplifier circuit, which generates an AC signal with reference to a reference terminal of the switch circuit based on an AC power supply; a first comparison circuit, the first input terminal of which is coupled to the output terminal of the differential amplifier circuit , the second input terminal of which is coupled to the first threshold signal, and the output terminal of which provides the first synchronization signal; and the second comparison circuit, the first input terminal of which is coupled to the output terminal of the differential amplifier circuit, and the second input terminal of which is coupled to the first synchronization signal.
  • Two threshold signals the output terminals of which provide a second synchronization signal.
  • the synchronization signal includes a first synchronization signal and a second synchronization signal, wherein: when the AC power supply voltage is greater than the first threshold signal, the first synchronization signal is in a first state, and the second synchronization signal is in a second state; When the AC power supply voltage is less than the second threshold signal, the first synchronization signal is in the second state, and the second synchronization signal is in the first state; and when the AC power supply voltage is less than the first threshold signal and greater than the second threshold signal, the first synchronization signal is at the same time.
  • a synchronization signal and a second synchronization signal are set to a first state or a second state, wherein the first threshold signal is a positive voltage signal, and the second threshold signal is a negative voltage signal.
  • the auxiliary power supply circuit has an input terminal, an output terminal and a reference ground terminal, wherein the input terminal of the auxiliary power supply circuit is coupled to the first terminal of the switch circuit, and the reference ground terminal of the auxiliary power supply circuit is coupled to the second terminal of the switch circuit terminal, the output terminal of the auxiliary power supply circuit is used to supply power to the switch driving circuit, wherein a current path is formed between the second terminal and the first terminal of the switch circuit through at least one body diode of the switch circuit.
  • a single-phase AC motor drive system includes the AC chopper circuit described in any of the above embodiments and a motor, wherein the AC chopper circuit is used to drive the motor.
  • the AC chopper circuit and the single-phase AC motor drive system proposed by the invention have simple structure, high efficiency and high power factor.
  • FIG. 1 shows a schematic block diagram of an AC chopper system according to an embodiment
  • FIG. 2 shows a schematic circuit diagram of an AC chopper system according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a synchronization signal generating circuit according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of a waveform according to an embodiment of the present invention
  • FIG. 5 shows a schematic diagram of an auxiliary power supply circuit according to an embodiment of the present invention
  • FIG. 6 shows a schematic diagram of an auxiliary power supply circuit according to another embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of an auxiliary power supply circuit according to yet another embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of an auxiliary power supply circuit according to yet another embodiment of the present invention.
  • connection in the specification includes both direct connection and indirect connection.
  • Indirect connection is a connection through an intermediate medium, such as a connection through an electrically conductive medium such as a conductor, wherein the electrically conductive medium may contain parasitic inductance or parasitic capacitance, and may also be connected through an intermediate circuit or component described in the embodiments in the specification;
  • indirect Connections may also include connections through other active devices or passive devices on the basis of achieving the same or similar functions, such as connections through circuits or components such as signal amplification circuits.
  • a and/or B includes both A and B as well as A or B only.
  • FIG. 1 shows a schematic block diagram of a unidirectional AC motor drive system according to an embodiment.
  • the one-way AC motor drive system includes: an AC power supply Vac, an AC chopper circuit and an AC load M.
  • the AC chopper circuit chops the AC power supply Vac based on the AC power supply Vac to provide an output AC drive signal for driving the AC load M.
  • the AC load M is an AC motor M.
  • the AC chopper circuit provides a bridgeless AC chopper function. The AC power supply is directly loaded on the bridge arm of the switch circuit, and the chopper is alternately chopped according to the polarity of the input voltage, so that the rectifier bridge circuit is eliminated between the AC power supply and the switch circuit.
  • the AC chopper circuit includes a switch circuit 11 , a synchronization signal generating circuit 12 , a switch driving circuit 13 and an auxiliary power supply circuit 14 .
  • the input end of the switch circuit 11 directly receives the AC power Vac, and based on the switching action of the switch circuit 11 , the converted AC output voltage Vo is provided at the output end of the switch circuit 11 for driving the motor M.
  • the AC output voltage Vo is an AC chopper signal, and by controlling the duty cycle of the switching action of some switches in the switch circuit 11, the duty cycle of the AC chopper signal of the output voltage Vo at the output end of the switch circuit can be adjusted, so as to adjust the duty cycle of the AC chopper signal.
  • the average value of the amplitude of the output voltage Vo is adjusted, so as to realize the stepless speed regulation of the motor M.
  • the switch circuit 11 has a first input terminal 111 , a second input terminal 112 , a first output terminal 113 and a second output terminal 114 , wherein the first input terminal 111 is coupled to the first terminal of the AC power supply Vac, and the second input terminal 112 is coupled to Connected to the second end of the AC power supply Vac, the first output end 113 is coupled to the first end of the motor M, and the second output end 114 is coupled to the second end of the motor M.
  • the synchronization signal generating circuit 12 is coupled to the first terminal and the second terminal of the AC power supply Vac, and provides a synchronization signal IS related to the polarity of the AC power supply Vac at the output terminal of the synchronization signal generating circuit 12 .
  • the synchronization signal generating circuit can also obtain a signal representing the state of the AC power supply Vac in other parts, such as the output end of the EMI filter coupled to the AC power supply.
  • the AC power source Vac is a commercial power source, such as a sinusoidal AC signal with a frequency of 50Hz and an amplitude of 220V or a frequency of 60Hz and an amplitude of 110V.
  • the synchronization signal IS outputs a first state when the AC power supply Vac is in a positive half cycle of the sine wave, that is, a positive half cycle working signal, and outputs a second state when the AC power supply Vac is in a negative half cycle of the sine wave, that is, a negative half cycle Working signal, in which in the positive half cycle, the voltage of the first input terminal 111 of the switching circuit is lower than the voltage of the second input terminal 112 of the switching circuit, and in the negative half cycle, the voltage of the first input terminal 111 of the switching circuit is greater than the second input terminal of the switching circuit. 112 voltage, the first state is different from the second state.
  • the synchronization signal IS includes a positive half cycle working signal and a negative half cycle working signal, and a dead zone signal is set between the positive half cycle working signal and the negative half cycle working signal.
  • the switch drive circuit 13 generates switch control signals PWM1-PWM4 based on the synchronization signal IS for controlling the switch circuit 11, and the switch drive circuit 13 generates a pulse width (PWM) for chopping at least part of the switches in the switch circuit 11 at the second frequency signal, wherein the second frequency is higher than the first frequency of the AC power supply, so that at least part of the switches in the switching circuit 11 are chopped with the switching action of the second frequency, so that the switching circuit is connected between the first output terminal 113 and the second output terminal 114.
  • An AC chopper signal Vo is formed between the two, wherein the envelope of the AC chopper signal Vo is synchronized with the waveform of the sinusoidal AC power source Vac.
  • the switch driving circuit 13 can further generate the switch control signals PWM1-PWM4 based on feedback signals such as the current detection signal, so as to control the duty cycle of the PWM signal more precisely.
  • the second frequency is more than 10 times the frequency of the AC power source.
  • the auxiliary power supply circuit 14 is coupled to the switching circuit 11 , and generates an auxiliary power supply voltage Vaux based on the voltage signal on the switching circuit 11 for providing auxiliary power supply for the switch driving circuit 13 and the synchronization signal generating circuit 12 .
  • the switch circuit 11 has a reference terminal RG, and the reference terminal RG is coupled to the auxiliary power supply circuit 14 and the switch driving circuit 13 for serving as a reference ground for the auxiliary power supply circuit 14 and the switch driving circuit 13 .
  • the auxiliary power supply circuit 14 obtains the switch circuit 11
  • the voltage signal on the Auxiliary power supply circuit 14 is coupled to the reference ground, and the auxiliary power supply circuit 14 is supplied with power by means of a switch circuit for forming a current loop of the auxiliary power supply circuit 14 .
  • a reference terminal RG of the switch circuit is used as the system reference ground, so as to facilitate the realization of non-isolated control of the system.
  • the auxiliary power supply circuit 14 has an input terminal 141 , a reference ground terminal 142 and an output terminal 143 , wherein the input terminal 141 of the auxiliary power supply circuit 14 is coupled to the first terminal 115 of the switch circuit 11 , and the reference of the auxiliary power supply circuit 14 is The ground terminal 142 is coupled to the second terminal 116 of the switch circuit 11 , and the output terminal 143 of the auxiliary power supply circuit 14 is used to provide the auxiliary power supply voltage Vaux to power the switch driving circuit 13 and the synchronization signal generating circuit 12 .
  • a current path is formed between the second terminal 116 and the first terminal 115 of the switching circuit 11 through at least one body diode of the switching circuit 11 , or a current path is formed through the on-off switch state of the switching circuit 11 .
  • a current loop is constructed between the auxiliary power supply circuit 14 and the auxiliary power supply circuit 14 to supply power to the auxiliary power supply circuit 14 based on the voltage on the switch circuit 11 to generate the auxiliary power supply voltage Vaux.
  • the auxiliary power circuit 14 can be realized without complicated electrical isolation.
  • the AC chopper circuit can be used to realize the stepless speed regulation of the motor through the bridgeless AC chopper topology, and has the advantages of small size, high efficiency, and easy integration of larger power modules.
  • the switch circuit 11 has a reference terminal RG, and the reference terminal RG is coupled to the synchronization signal generating circuit 12 , the switch driving circuit 13 and the auxiliary power supply circuit 14 as the synchronization signal generating circuit 12 , the switch driving circuit 13 and the auxiliary power supply
  • the common reference ground of the circuits 14 is used to realize the operation of the system.
  • the AC chopper circuit is used to drive an AC motor, such as a single-phase AC motor.
  • the AC chopper circuit of the present application can also drive other types of loads.
  • FIG. 2 shows a schematic circuit diagram of an AC chopper system according to an embodiment of the present invention.
  • the switch circuit includes a first switch transistor Q1, a second switch transistor Q2, a third switch transistor Q3 and a fourth switch transistor Q4.
  • the first switch transistor Q1 is coupled between the first input terminal 211 and the first output terminal 213, the second switch transistor Q2 is coupled between the first output terminal 213 and the reference terminal RG, and the third switch transistor Q3 is coupled between the first output terminal 213 and the reference terminal RG.
  • the fourth switch transistor Q4 is coupled between the second output terminal 214 and the reference terminal RG.
  • Each switch tube includes a parallel body diode.
  • the first switch tube Q1 includes a first body diode D1 connected in parallel, wherein the anode of the first body diode D1 is coupled to the first output end 213 of the switch circuit, and the cathode of the first body diode D1 is coupled to the first input end 211 of the switch circuit .
  • the second switch tube Q2 includes a parallel second body diode D2, wherein the anode of the second body diode D2 is coupled to the reference terminal RG of the switch circuit, and the cathode of the second body diode D2 is coupled to the first output terminal 213 of the switch circuit.
  • the third switch tube Q3 includes a third body diode D3 connected in parallel, wherein the anode of the third body diode D3 is coupled to the second output terminal 214 of the switch circuit, and the cathode of the second body diode D2 is coupled to the second input terminal 212 of the switch circuit .
  • the fourth switch tube Q4 includes a fourth body diode D4 connected in parallel, wherein the anode of the fourth body diode D4 is coupled to the reference terminal RG of the switching circuit, and the cathode of the fourth body diode D4 is coupled to the second output terminal 214 of the switching circuit.
  • the switching transistors Q1-Q4 may include field effect transistors such as metal oxide semiconductor field effect transistors (MOSFETs), junction field effect transistors (JFETs), or insulated gate bipolar transistors (IGBTs).
  • the switching transistors Q1-Q4 include parasitic body diodes, which are used to realize the asynchronous (or) rectification function.
  • the switches Q1-Q4 can also be connected in parallel with separate diodes.
  • Each of the switching transistors Q1-Q4 can be replaced by a combination of multiple switching transistors or a combination of switching transistors and diodes.
  • the synchronization signal generating circuit 22 is coupled to the first end and the second end of the AC power supply Vac, that is, the first input end 211 and the second input end 212 of the switching circuit, and provides the synchronization signal IS1 and the synchronization signal at the output end of the synchronization signal generating circuit 22. IS2.
  • the synchronization signals include a first synchronization signal IS1 and a second synchronization signal IS2.
  • the first synchronization signal IS1 and the second synchronization signal IS2 may also be generated according to the synchronization signal IS shown in FIG. 1 .
  • the switch driving circuit generates switch control signals PWM1-PWM4 based on the first synchronization signal IS1 and the second synchronization signal IS2 for controlling the switch transistors Q1-Q4 in the switch circuit.
  • the switch driving circuit may include a driving logic circuit 231 , a first half-bridge driving circuit 232 and a second half-bridge driving circuit 233 as shown in FIG. 2 .
  • the first half-bridge driving circuit 232 and the second half-bridge driving circuit 233 are used for amplifying the logic signal output by the driving logic circuit 231 to provide driving signals suitable for driving the switching transistors Q1-Q4.
  • the first half-bridge driving circuit 232 is coupled to the control terminals of the first switch Q1 and the second switch Q2 for driving the first switch Q1 and the second switch Q2.
  • the second half-bridge driving circuit 233 is coupled to the control terminals of the third switch Q3 and the fourth switch Q4 for driving the third switch Q3 and the fourth switch Q4.
  • the first half-bridge driving circuit 232 does not have a conduction interlock circuit, and can support the first switching transistor Q1 and the second switching transistor Q1.
  • the switch Q2 is turned on, and the second half-bridge driving circuit 233 supports turning on the third switch Q3 and the fourth switch Q4 at the same time.
  • the first half-bridge driving circuit 232 and the second half-bridge driving circuit 233 can adopt a non-isolated driving circuit, and it is not necessary to use an isolation device such as a transformer.
  • the system complexity is further reduced, and the system volume and cost are reduced.
  • the first half-bridge driving circuit 232 can be used to turn on the first switch Q1 and the second switch Q2 at the same time during the positive half-cycle working region, and the second half-bridge driving circuit 233 can be used during the negative half-cycle working region.
  • the third switch transistor Q3 and the fourth switch transistor Q4 are turned on.
  • the auxiliary power supply circuit 24 is coupled to the first input terminal 211 and/or the second input terminal 212 of the switch circuit, and is used for providing the switch driving circuit and the synchronization signal generating circuit with the auxiliary power supply Vaux to supply power.
  • the auxiliary power supply circuit 24 includes a reference terminal RG2, and the reference terminal RG2 serves as the reference ground of the auxiliary power supply circuit 24 and is coupled to the reference ground RG of the switch circuit.
  • the auxiliary power supply circuit 24 has a first input terminal, a second input terminal, an output terminal and a reference terminal, wherein the first input terminal and the second input terminal of the auxiliary power supply circuit 24 are respectively coupled to the first input terminal of the switching circuit.
  • the input terminal 211 and the second input terminal 212 are respectively coupled to the first output terminal 213 and the second output terminal 214 of the switch circuit.
  • the output terminal of the auxiliary power supply circuit 24 is coupled to the switch driving circuit for supplying power to the switch driving circuit.
  • the reference terminal RG2 of the circuit 24 is coupled to the reference terminal RG of the switch circuit for forming a current loop between the auxiliary power circuit 24 and the switch circuit.
  • the switching circuit or the AC power supply Vac can simultaneously charge the capacitors in the auxiliary power supply circuit 24 during the positive and negative half cycles of the AC power supply Vac.
  • the auxiliary power circuit has only one input terminal coupled to the switch circuit, for example, the input terminal of the auxiliary power circuit is coupled to the first input terminal 211 , the second input terminal 212 , the first output terminal 213 and the first input terminal 212 of the switch circuit. Any one of the two output terminals 214 , the switching circuit or the AC power supply is only implemented to charge the capacitor in the auxiliary power supply circuit 24 during the positive half cycle or the negative half cycle of the AC power supply Vac.
  • the AC chopper circuit further includes a first capacitor C1 coupled between the first input terminal 211 and the second input terminal 212 of the switching circuit.
  • the first capacitor C1 can be used to absorb high frequency harmonics.
  • the AC chopper circuit further includes an EMI filter, which is coupled between the first end and the second end of the AC power supply Vac, and the first capacitor C1 and the capacitor included in the EMI filter can be shared, which further reduces the The number and volume of capacitors.
  • the AC chopper circuit includes two capacitors, which are respectively connected in parallel with the two bridge arms of the switch circuit, that is, the first end of the first capacitor is coupled to the first input end 211 of the switch circuit, and the second end is coupled to the first input end 211 of the switch circuit. is coupled to the reference terminal RG of the switch circuit; the first terminal of the second capacitor is coupled to the second input terminal 212 of the switch circuit, and the second terminal is coupled to the reference terminal RG of the switch circuit.
  • FIG. 3 shows a schematic diagram 30 of a synchronization signal generating circuit according to an embodiment of the present invention.
  • the synchronization signal generating circuit 30 has two input terminals, a reference terminal and two output terminals, wherein the two input terminals are respectively coupled to the two output terminals of the AC power supply Vac, and the two output terminals provide the first synchronization signal IS1 and the second synchronization signal IS1 Signal IS2.
  • the synchronization signal generating circuit 30 includes: a differential amplifier circuit 31 , a first comparison circuit 32 and a second comparison circuit 33 .
  • the first and second ends of the AC power supply Vac are floating ports, which are operated by the differential amplifier circuit 31 to eliminate the influence of the common mode signal of the AC power supply, and obtain a reference terminal relative to the switching circuit that is synchronized with the input AC power supply Vac.
  • the differential amplifier circuit 31 has a first input terminal, a second input terminal, a bias terminal and an output terminal, wherein the first input terminal of the differential amplifier circuit 31 is coupled to the first input terminal 311 of the switch circuit
  • the second input terminal of the differential amplifier circuit 31 is coupled to the second input terminal 312 of the switch circuit
  • the offset terminal of the differential amplifier circuit 31 receives the offset voltage Voffset based on the reference terminal RG of the power supply circuit
  • the output terminal of the differential amplifier circuit 31 provides Biased AC signal.
  • the differential amplifier circuit 31 includes resistors R1-R4 and an operational amplifier circuit 35, wherein the resistor R1 is coupled between the first input terminal of the differential amplifier circuit 31 and the first input terminal of the operational amplifier circuit 35 , the resistor R2 is coupled between the first input terminal of the operational amplifier circuit 35 and the output terminal of the operational amplifier circuit 35 , and the resistor R3 is coupled between the second input terminal of the differential amplifier circuit 31 and the second input terminal of the operational amplifier circuit 35 In between, the resistor R4 is coupled between the second input terminal of the operational amplifier circuit 35 and the offset voltage Voffset.
  • the output terminal of the operational amplifier circuit 35 provides the bias AC signal.
  • Vacp is the voltage of the second terminal of the AC power supply
  • Vacn is the voltage of the first terminal of the AC power supply
  • the non-inverting input terminal of the first comparison circuit 32 is coupled to the output terminal of the differential amplifier circuit 31 , the inverting input terminal is coupled to the first threshold signal Vth1 , and the output terminal thereof provides the first synchronization signal IS1 .
  • the inverting input terminal of the second comparison circuit 33 is coupled to the output terminal of the differential amplifier circuit 31 , the non-inverting input terminal is coupled to the second threshold signal Vth2 , and the output terminal thereof provides the second synchronization signal IS2 .
  • the first threshold signal Vth1 and the second threshold signal Vth2 may be voltage signals with the reference terminal RG of the switch circuit as the reference ground.
  • the resistors R1-R4 can also be replaced by other series-parallel equivalent resistors.
  • Table 1 shows a state table of the first synchronization signal IS1 and the second synchronization signal IS2 according to an embodiment of the present invention.
  • the voltage of the second input terminal 312 of the switching circuit is greater than the voltage of the first input terminal 311, and when the AC power Vac is greater than the first threshold signal Vth1, the first synchronization signal IS1 is in the first state (for example, a high level state, or a "1" value), the second synchronization signal IS2 is in a second state (for example, a low level state, or a "0" value), and the state is set as a positive half-cycle working area.
  • the first threshold signal is a positive voltage signal
  • the second threshold signal is a negative voltage signal
  • the first synchronization signal IS1 is the first synchronous signal IS1.
  • the second synchronization signal IS2 is in the first state (“1” value), and this state is set as the negative half cycle working area.
  • the first synchronization signal IS1 and the second synchronization signal IS2 are set to the first Two states ("0" value), this state is set as deadband.
  • the first synchronization signal IS1 and the second synchronization signal are set to the first state ("1" value) at the same time.
  • the synchronization signal IS1 and the second synchronization signal are set to the second state ("0" value).
  • Vth1 -Vth2.
  • FIG. 4 shows a schematic diagram of waveforms according to an embodiment of the present invention.
  • the function of the AC chopper circuit will be described below with reference to FIG. 2 and FIG. 3 .
  • the signals shown in Figure 4 are the AC power supply signal Vac, the AC chopper output voltage Vo, the first synchronization signal IS1, the second synchronization signal IS2, the dead zone signal from top to bottom, and represent the switch states of the four switches or their switches respectively.
  • Signals PWM1-PWM4 that control the state of the signals.
  • the AC chopper scheme is divided into three working regions, namely the positive half-cycle working region T1, the negative half-cycle working region T2 and the dead region T0.
  • the working area can be indicated by the first synchronization signal IS1 and the second synchronization signal IS2.
  • the working time period when the input voltage Vac is higher than the first comparison threshold Vth is defined as the positive half-cycle operation region T1; the input voltage Vac is lower than the first comparison threshold Vth and higher than the second comparison threshold -Vth.
  • the time period is defined as the dead zone T0; the working zone where the input voltage is lower than the second comparison threshold value -Vth is defined as the negative half-cycle working zone T2.
  • the AC power supply is in the positive half cycle (Vac>0)
  • the voltage 211 of the first input terminal of the switching circuit is lower than the voltage 212 of the second input terminal of the switching circuit, at this time, the PWM1 and PWM2 signals are high, and the PWM3 signal is high.
  • the PWM signal is a PWM signal with a second frequency
  • the PWM4 signal is a PWM signal complementary to the PWM3 signal, wherein the second frequency is greater than the first frequency of the AC power supply Vac.
  • the switch driving circuit controls the first bridge arm including the first switch transistor Q1 and the second switch transistor Q2 to be turned on, and the third switch transistor Q3 of the second bridge arm performs the switching action with the set duty ratio under the control of the PWM signal , the fourth switch tube Q4 works in the rectification state, which is complementary to the switching action of the third switch tube Q3, that is, when the third switch tube Q3 is turned on, the fourth switch tube Q4 is turned off, and when the third switch tube Q3 is turned off When turned off, the fourth switch tube Q4 is turned on.
  • the control signal at the control end of the fourth switch Q4 may be a low value, and the fourth switch Q4 is turned on through its body diode and flows current, so that the fourth switch Q4 operates in an asynchronous rectification state.
  • the control signal at the control end of the fourth switch Q4 can also be a PWM control signal complementary to the signal at the control end of the third switch Q3, so that the fourth switch Q4 works in a synchronous rectification state.
  • the AC power supply Vac is in the negative half cycle (Vac ⁇ 0)
  • the voltage of the first input terminal 211 of the switch circuit is greater than the voltage of the second input terminal 212 of the switch circuit
  • the PWM3 and PWM4 signals are controlled to be high at this time.
  • the PWM1 signal is a PWM signal of the second frequency
  • the PWM2 signal is a PWM signal complementary to the PWM1 signal.
  • the switch driving circuit controls the conduction of the second bridge arm including the third switch transistor Q3 and the fourth switch transistor Q4.
  • the first switch Q1 of the first bridge arm performs switching operations with a set duty cycle under the control of the PWM signal
  • the second switch Q2 works in a rectifying state, which is complementary to the switching operation of the first switch Q1.
  • the voltage difference between the first output terminal 213 and the second output terminal 214 of the switching circuit that is, the output voltage Vo of the switching circuit presents an AC chopper signal, which has the function of controlling the third switching transistor Q3 or the first switching transistor Q1.
  • the second frequency and duty cycle corresponding to the PWM signal, and the shape of the envelope of the AC chopper signal Vo follows the shape of the AC power supply Vac, the output of the switching circuit generates the same envelope as the input voltage waveform and the amplitude is average
  • a voltage signal whose value is proportional to the duty cycle is positively applied to the load M. Therefore, through such control, the output voltage Vo can be adjusted by changing the duty ratio of the PWM signal, so that stepless speed regulation of the motor can be realized.
  • the envelope of the output voltage Vo corresponds to the shape of the AC power supply, the system has a higher power factor.
  • the switch dead zone T0 When the AC power supply Vac is before and after the switching state, the switch dead zone T0 is set.
  • the switch tube When working in the dead zone T0, that is, between the positive half-cycle working zone T1 and the negative half-cycle working zone T2, at least two of the switching tubes Q1-Q4 The switch tube is turned off, but the switch tubes Q1-Q4 cannot be turned off at the same time, otherwise the inductive load will not only induce a high voltage breakdown of the switch tube, but also the current waveform will be easily distorted and affect the total harmonic distortion (THD). Therefore, it is necessary to give an appropriate drive signal to provide a freewheeling loop for the inductive load.
  • TDD total harmonic distortion
  • the switch driving circuit controls one or two of the first switch transistor Q1, the second switch transistor Q2, the third switch transistor Q3 and the fourth switch transistor Q4 to be turned on at the same time.
  • the switch driving circuit controls the second switch Q2 and the fourth switch Q4 to be turned on, the first switch Q1 and the third switch Q3 are turned off, and the load M and the A freewheeling loop is formed between the reference terminals RG.
  • the switch driving circuit controls the first switch Q1 and the second switch Q2 to be turned on, the third switch Q3 and the fourth switch Q4 are turned off, or the third switch
  • the tube Q3 and the fourth switch tube Q4 are turned on, and the first switch tube Q1 and the second switch tube Q2 are turned off.
  • the corresponding output terminal of the bridge arm that is turned on is clamped to the reference terminal RG potential of the switch circuit, and the two switches of the other bridge arm give a turn-off signal, and the residual current of the inductive load will force one of the switches of the bridge arm to be turned off.
  • the body diode of the tube is turned on to form a freewheeling loop.
  • the switch driving circuit controls the first switch transistor Q1 and the third switch transistor Q3 to be turned on, the second switch transistor Q2 and the fourth switch transistor Q4 are turned off, and the AC power supply Vac and A freewheeling circuit is formed between the loads M.
  • FIG. 5 shows a schematic diagram of an auxiliary power supply circuit 50 according to an embodiment of the present invention.
  • the auxiliary power supply circuit 50 has a first input terminal 51, a second input terminal 52, an output terminal 53 and a reference terminal 54, wherein the first input terminal 51 and the second input terminal 52 of the auxiliary power supply circuit 50 are respectively coupled to the first input terminal of the switch circuit.
  • the input terminal 511 and the second input terminal 512, the output terminal 53 of the auxiliary power supply circuit 50 provides the auxiliary power supply Vaux for powering the switch driving circuit and the synchronization signal generating circuit
  • the reference terminal RG2 of the auxiliary power supply circuit 50 is coupled to the reference terminal of the switch circuit RG is used to form a current loop between the first input terminal 51 of the auxiliary power supply circuit 50 , the reference terminal RG2 of the auxiliary power supply circuit, the switch circuit and the second input terminal 52 of the auxiliary power supply circuit.
  • the auxiliary power supply circuit 50 includes: a fifth diode D5, whose anode is coupled to the first input terminal 511 of the switch circuit; a sixth diode D6, whose anode is coupled to the second input terminal 512 of the switch circuit; and a second capacitor C2 , the first end of which is coupled to the cathode of the fifth diode D5 and the cathode of the sixth diode D6, the second end of which is coupled to the reference end RG of the switch circuit; and the voltage conversion circuit 55, which has a first input end, The second input terminal and the output terminal, wherein the first input terminal of the voltage conversion circuit 55 is the cathode of the fifth diode D5 and/or the cathode of the sixth diode D6, and the second input terminal of the voltage conversion circuit 55 is coupled to the switch
  • the reference terminal RG of the circuit and the output terminal of the voltage conversion circuit 55 provide the auxiliary power supply Vaux.
  • the voltage conversion circuit 55 may include a linear regulator circuit (LDO) or a DC-DC switch mode voltage conversion circuit, such as a buck circuit (Buck), a boost circuit (Boost) or a buck-boost circuit (Buck-Boost), etc. .
  • LDO linear regulator circuit
  • Boost boost circuit
  • Buck-Boost buck-boost circuit
  • the input AC power supply Vac when the AC power supply Vac is in the positive half cycle, the input AC power supply forms a current loop to the DC through the fifth diode D5 of the auxiliary power supply circuit 50, the common reference terminal RG2, and the switch tubes Q2 and Q1 in the switch circuit. /DC converter 55 input power supply.
  • the input AC power supply Vac When the AC power supply Vac is in the negative half cycle, the input AC power supply Vac forms a loop through the sixth diode D6 of the auxiliary power supply, the common reference terminal RG2, and the switching tubes Q4 and Q3 of the switching circuit to supply power to the input of the DC/DC converter 55 .
  • the body diodes D1, D2, D3, D4 inside the four main switches and the diodes D5 and/or D6 of the auxiliary power supply form a rectifier bridge.
  • the five diodes D5 , the common reference terminal RG2 , the body diodes D2 and D1 form a current loop to supply power to the input of the DC/DC converter 55 .
  • the AC power supply Vac supplies power to the DC/DC converter of the auxiliary power supply through the sixth diode D6 of the auxiliary power supply, the common reference terminal RG2, and the body diodes D4 and D3 of the switching circuit to form a loop.
  • the current in the inductive load can still pass through the body diode of the switching circuit and the current formed by the auxiliary power supply. Freewheeling in the loop.
  • the auxiliary power supply circuit 50 may not include the sixth diode D6, and the auxiliary power supply circuit 50 is powered by the AC power supply Vac input only during the positive half cycle of the AC power supply Vac.
  • the auxiliary power circuit may not include the second capacitor C2, and the AC power directly supplies power to the DC/DC converter 55 for further providing auxiliary power.
  • the second capacitor C2 constitutes a part of the voltage conversion circuit 55, or the second capacitor C2 is replaced by other forms of energy storage devices.
  • FIG. 6 shows a schematic diagram of an auxiliary power supply circuit 60 according to another embodiment of the present invention.
  • the auxiliary power supply circuit 60 further includes a bypass device: a seventh diode D7, the anode of which is coupled to the second input terminal of the voltage conversion circuit, wherein the first input terminal of the voltage conversion circuit The cathode of the diode D5 or D6 is coupled, and the cathode of D7 is coupled to the anode of the fifth diode D5.
  • the auxiliary power circuit 60 may further include a bypass device: an eighth diode D8, the anode of which is coupled to the second input terminal of the voltage conversion circuit, and the cathode of which is coupled to the anode of the sixth diode D6.
  • the auxiliary power circuit includes diodes D5 and D8, but does not include D6 and D7.
  • the auxiliary power circuit includes diodes D6 and D7 and does not include D5 and D8.
  • the auxiliary power circuit includes diodes D5, D6, D7 and D8 simultaneously. In these embodiments, the reference ground terminal of the auxiliary power supply circuit can form a current loop without being coupled to the switch circuit.
  • a current loop is formed through D5, C2 and D8;
  • a current loop is formed through D6, C2 and D7.
  • the power of the diode is greatly reduced, the specification requirements for the diodes D5-D8 are also lower, and the volume is smaller.
  • FIG. 7 shows a schematic diagram of an auxiliary power supply circuit 70 according to yet another embodiment of the present invention.
  • the first input terminal 71 and/or the second input terminal 72 of the auxiliary power supply circuit 70 are respectively coupled to the first output terminal 711 and/or the second output terminal 712 of the switching circuit.
  • the auxiliary power circuit 70 takes power from the output of the switching circuit.
  • FIG. 8 shows a schematic diagram of an auxiliary power supply circuit 80 according to yet another embodiment of the present invention.
  • the auxiliary power supply circuit 80 includes: a first resistor R1, the first terminal of which is coupled to the first input terminal 811 of the switch circuit, and/or the second resistor R2, the first terminal of which is coupled to the second input terminal 812 of the switch circuit; and
  • the voltage conversion circuit 85 has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal of the voltage conversion circuit 85 is coupled to the second terminal of the first resistor R1 and/or the second terminal of the second resistor R2 , the second input terminal of the voltage conversion circuit 85 is coupled to the reference terminal RG of the switch circuit, and the output terminal of the voltage conversion circuit 85 provides the auxiliary power Vaux.
  • auxiliary power supply circuit By coupling the reference ground terminal of the auxiliary power supply circuit with the reference terminal RG of the power supply circuit, power can be obtained from the input or output of the switching circuit, and the auxiliary power supply loop can be constructed with the help of the body diode of the switch in the switching circuit, which simplifies the auxiliary power supply. design and cost.
  • logic controls such as “high level” and “low level”, “in-phase” and “inversion” in the above-mentioned logic control can be exchanged or changed with each other, and by adjusting the subsequent logic control, the same as the above-mentioned logic control can be realized.
  • Embodiments have the same function or purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明提供了一种交流斩波电路和单相交流电机驱动系统。交流斩波电路包括开关电路、同步信号发生电路、开关驱动电路和辅助电源电路。其中开关电路的输入端耦接交流电源,开关电路的输出端驱动交流负载,开关驱动电路基于同步信号发生电路的输出信号控制开关电路;辅助电源电路基于开关电路上的电压信号产生辅助电源电压用于为开关驱动电路供电。本发明提出的交流斩波电路及单相交流电机驱动系统,具有简单的结构和较高的效率,同时具有较高的功率因数。

Description

一种交流斩波电路及单相交流电机驱动系统 技术领域
本发明涉及电子领域,具体但不限于涉及一种交流斩波电路及单相交流电机驱动系统。
背景技术
单相电机,一般是指由市电交流电提供的单相交流电源进行供电的异步电动机。因为市电电源供电非常方便经济,为家庭生活用电,所以单相电机不但在生产上用量大,而且也与人们日常生活密切相关。尤其是随着人民生活水平的日益提高,用于家用电器设备如电风扇等的单相电机的用量,也越来越大。单相电机通过调速电路来调节电机的转速。
第一种单相电机的调速方法为电感机械开关调速,通过调节串接的电感大小来调节辅助绕组与主绕组电感机械配比来实现调速方案,但是该方案调速范围有限,难以实际低速启动或调节。
第二种单相电机的调速方法为串电抗无级调速,能实现平滑调速,但是调速范围有限,且电抗尺寸大,系统效率低。
第三种方法为可控硅调速,通过双向可控硅开关来完成对电机端电压的斩波控制而实现调压。该方法成本低、实现简单,因而目前被广泛应用。然而,可控硅在低速调速时由于波形被斩波较多,变形较大,因而功率因数(PF)过低,不符合电源要求。且转矩脉动大,噪音大。
第四种方法为交流斩波器调速,该类调速电路往往需要多路相互隔离的辅助电源,且采用大量的高压元器件,如通常需要8个高压二极管和2个高压双向开关,且高压器件不共地,因此电路设计复杂,高压器件和控制单元之间需要相互隔离,且需要多个隔离电源,很难实现系统集成。因为整体系统复杂,成本较高。这种高成本的隔离驱动和辅助供电方案难以在像单相电机驱动这样对成本敏感的应用中推广。
第五种控制方法是变频逆变器调速,包括将交流电源进行整流滤波以获得直流稳压电源的交流-直流变换电路和对方波信号进行变频斩波的斩波电路等,虽然具有同时调幅调频、灵活应用的优势,但是需要在输入整流电路后采用大电容或交流-直流开关变换电路来获取直流稳压源,且采用复杂的变频逆变电路来产生交流变频电压源。其体积大,成本高,系统操作复杂。且因为输入整流滤波电容的存在,其功率因数较低,如半载功率因数经常为0.5至0.6之间。因此对于大功率逆变器往往需要增加额外的前级功率因数校正(PFC)电路。但这也增加了系统成本和引入额外的损耗。
另有一种方法采用有桥交流斩波,将输入交流电源通过整流桥整形成半波电压,再通过 高频桥式电路实现斩波,并将负半周翻折复原。该种斩波器可以有效克服可控硅斩波的缺点,实现低谐波和较低的成本。但该方案中的整流桥需承受较大的电流,整流桥带来了较大的导通损耗,增大了散热难度,且降低了效率,增大了成本。
有鉴于此,需要提供一种更加优良的电路拓扑或控制方法,以期解决上述至少部分问题。
发明内容
针对上述方案中的一个或多个问题,本发明提出了一种交流斩波电路及单相交流电机驱动系统。
根据本发明的一个方面,一种交流斩波电路,包括:开关电路,具有第一输入端、第二输入端、第一输出端和第二输出端,其中第一输入端耦接交流电源的第一端,第二输入端耦接交流电源的第二端,第一输出端耦接负载的第一端、第二输出端耦接负载的第二端;同步信号发生电路,用于提供与交流电源极性相关的同步信号;开关驱动电路,基于同步信号控制开关电路;以及辅助电源电路,耦接开关电路,辅助电源电路基于开关电路上的电压信号产生辅助电源电压,用于为开关驱动电路供电。
在一个实施例中,开关电路具有一参考端,开关电路参考端耦接辅助电源电路及开关驱动电路,开关电路参考端作为辅助电源电路及开关驱动电路的参考地。
在一个实施例中,开关电路具有一参考端,参考端耦接辅助电源电路作为辅助电源电路的参考地,辅助电源电路借助开关电路用于形成电流回路。
在一个实施例中,交流斩波电路进一步包括第一电容,耦接在开关电路的第一输入端和第二输入端之间。
在一个实施例中,开关电路包括:第一开关管,耦接在开关电路的第一输入端和开关电路的第一输出端之间;第二开关管,耦接在开关电路的参考端和开关电路的第一输出端之间;第三开关管,耦接在开关电路的第二输入端和开关电路的第二输出端之间;以及第四开关管,耦接在开关电路的参考端和第二输出端之间。
在一个实施例中,开关驱动电路包括:第一半桥驱动电路,用于驱动第一开关管和第二开关管,其中第一半桥驱动电路支持同时将第一开关管和第二开关管导通;以及第二半桥驱动电路,用于驱动第三开关管和第四开关管,其中第二半桥驱动电路支持同时将第三开关管和第四开关管导通,其中第一半桥驱动电路和第二半桥驱动电路为非隔离型驱动电路。
在一个实施例中,第一开关管包括并联的第一体二极管,其中第一体二极管的阳极耦接开关电路的第一输出端,第一体二极管的阴极耦接开关电路的第一输入端;第二开关管包括并联的第二体二极管,其中第二体二极管的阳极耦接开关电路的参考端,第二体二极管的阴 极耦接开关电路的第一输出端;第三开关管包括并联的第三体二极管,其中第三体二极管的阳极耦接开关电路的第二输出端,第二体二极管的阴极耦接开关电路的第二输入端;以及第四开关管包括并联的第四体二极管,其中第四体二极管的阳极耦接开关电路的参考端,第四体二极管的阴极耦接开关电路的第二输出端。
在一个实施例中,辅助电源电路具有输入端、输出端和参考端,其中辅助电源电路的输入端耦接开关电路的第一输入端、第二输入端、第一输出端和第二输出端之中至少一个,辅助电源电路的输出端耦接开关驱动电路用于为开关驱动电路和同步信号发生电路供电,辅助电源电路的参考端耦接开关电路的参考端用于在辅助电源电路的输入端、辅助电源电路的参考端和开关电路之间形成电流回路。
在一个实施例中,辅助电源电路包括:第五二极管,其阳极耦接开关电路的第一输入端,和/或,第六二极管,其阳极耦接开关电路的第二输入端;以及电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端耦接第五二极管的阴极和/或第六二极管的阴极,电压变换电路的第二输入端耦接开关电路的参考端,电压变换电路的输出端提供辅助电源。
在一个实施例中,辅助电源电路包括:第五二极管,其阳极耦接开关电路的第一输出端,和/或,第六二极管,其阳极耦接开关电路的第二输出端;以及电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端耦接第五二极管的阴极和/或第六二极管的阴极,电压变换电路的第二输入端耦接开关电路的参考端,电压变换电路的输出端提供辅助电源。
在一个实施例中,辅助电源电路进一步包括:第七二极管,其阳极耦接电压变换电路的第二输入端,其阴极耦接第五二极管的阳极;和/或第八二极管,其阳极耦接电压变换电路的第二输入端,其阴极耦接第六二极管的阳极。
在一个实施例中,辅助电源电路进一步包括第二电容,耦接在电压变换电路的第一输入端和第二输入端之间。
在一个实施例中,辅助电源电路包括:第一电阻,其第一端耦接开关电路的第一输入端;第二电阻,其第一端耦接开关电路的第二输入端,其第二端耦接第一电阻的第二端;以及电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端耦接第一电阻的第二端,电压变换电路的第二输入端耦接供电电路的参考端,电压变换电路的输出端提供辅助电源。
在一个实施例中,当同步信号表征正半周工作区时,开关电路的第一输入端电压小于开 关电路的第二输入端电压,开关驱动电路控制第一开关管和第二开关管导通,第三开关管以占空比进行开关动作,第四开关管工作在整流状态;以及当同步信号表征负半周工作区时,开关电路的第一输入端电压大于开关电路的第二输入端电压,开关驱动电路控制第三开关管和第四开关管导通,第一开关管以占空比进行开关动作,第二开关管工作在整流状态。
在一个实施例中,当同步信号表征死区时,开关驱动电路控制第一开关管、第二开关管、第三开关管和第四开关管中的至少两个开关管关断;开关驱动电路进一步控制一或两个开关管导通,用于为负载提供续流回路。
在一个实施例中,在死区期间内,开关驱动电路控制第一开关管和第三开关管导通,第二开关管和第四开关管关断。
在一个实施例中,在死区期间内,开关驱动电路控制第二开关管和第四开关管导通,第一开关管和第三开关管关断。
在一个实施例中,同步信号发生电路包括:差分放大电路,基于交流电源产生以开关电路的参考端为参考的交流信号;第一比较电路,其第一输入端耦接差分放大电路的输出端,其第二输入端耦接第一阈值信号,其输出端提供第一同步信号;以及第二比较电路,其第一输入端耦接差分放大电路的输出端,其第二输入端耦接第二阈值信号,其输出端提供第二同步信号。
在一个实施例中,同步信号包括第一同步信号和第二同步信号,其中:当交流电源电压大于第一阈值信号时时,第一同步信号呈第一状态,第二同步信号呈第二状态;当交流电源电压小于第二阈值信号时,第一同步信号呈第二状态,第二同步信号呈第一状态;以及当交流电源电压小于第一阈值信号并大于第二阈值信号时,同时将第一同步信号和第二同步信号设置为第一状态或第二状态,其中第一阈值信号为正电压信号,第二阈值信号为负电压信号。
在一个实施例中,辅助电源电路具有输入端、输出端和参考地端,其中辅助电源电路的输入端耦接开关电路的第一端,辅助电源电路的参考地端耦接开关电路的第二端,辅助电源电路的输出端用于为开关驱动电路供电,其中开关电路的第二端至第一端之间通过开关电路的至少一个体二极管形成电流通路。
根据本发明的另一个方面,一种单相交流电机驱动系统包括如上任一实施例所述的交流斩波电路以及电机,其中交流斩波电路用于驱动电机。
本发明提出的交流斩波电路及单相交流电机驱动系统,具有简单的结构和较高的效率,同时具有较高的功率因数。
附图说明
图1示出了根据一实施例的交流斩波系统框图示意图;
图2示出了根据本发明一实施例的交流斩波系统电路示意图;
图3示出了根据本发明一实施例的同步信号发生电路示意图;
图4示出了根据本发明一实施例的波形示意图;
图5示出了根据本发明一实施例的辅助电源电路示意图;
图6示出了根据本发明另一实施例的辅助电源电路示意图;
图7示出了根据本发明又一实施例的辅助电源电路示意图;
图8示出了根据本发明又一实施例的辅助电源电路的示意图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
该部分的描述只针对几个典型的实施例,本发明并不仅局限于实施例描述的范围。不同实施例的组合、不同实施例中的一些技术特征进行相互替换,相同或相近的现有技术手段与实施例中的一些技术特征进行相互替换也在本发明描述和保护的范围内。
说明书中的“耦接”或“连接”既包含直接连接,也包含间接连接。间接连接为通过中间媒介进行的连接,如通过电传导媒介如导体的连接,其中电传导媒介可含有寄生电感或寄生电容,也可通过说明书中实施例所描述的中间电路或部件的连接;间接连接还可包括可实现相同或相似功能的基础上通过其他有源器件或无源器件的连接,如通过信号放大电路等电路或部件的连接。“A和/或B”既包含同时包括A和B的情况,也包含仅包括A或仅包括B的情况。
图1示出了根据一实施例的单向交流电机驱动系统框图示意图。单向交流电机驱动系统包括:交流电源Vac,交流斩波电路和交流负载M,交流斩波电路基于交流电源Vac将交流电源Vac进行斩波变换提供输出交流驱动信号用于驱动交流负载M。优选地,交流负载M为交流电机M。交流斩波电路提供一种无桥交流斩波功能,将交流电源直接加载在开关电路的桥臂上,根据输入电压的极性交替斩波,使得交流电源和开关电路之间消除了整流桥电路,从而消除了整流桥带来额外的导通损耗,为更大功率的模块集成提供了更优的方向。交流斩波电路包括开关电路11、同步信号发生电路12、开关驱动电路13和辅助电源电路14。开关电路11的输入端直接接收交流电源Vac,基于开关电路11的开关动作,在开关电路11的输出端提供经转换的交流输出电压Vo用于驱动电机M。交流输出电压Vo为交流斩波信号,其中通过 控制开关电路11中部分开关的开关动作的占空比,可以对开关电路输出端的输出电压Vo的交流斩波信号的占空比进行调节,从而对输出电压Vo的幅值平均值进行调节,从而实现对电机M的无级调速。该拓扑在交流电源Vac和开关电路11之间消除了整流电路,进一步简化了系统,减少了无源器件的数量,体积小,效率高,易于更大功率模块的集成。开关电路11具有第一输入端111、第二输入端112、第一输出端113和第二输出端114,其中第一输入端111耦接交流电源Vac的第一端,第二输入端112耦接交流电源Vac的第二端,第一输出端113耦接电机M的第一端、第二输出端114耦接电机M的第二端。同步信号发生电路12耦接交流电源Vac的第一端和第二端,并在同步信号发生电路12的输出端提供与交流电源Vac极性相关的同步信号IS。在另外的实施例中,同步信号发生电路也可在其他部位获得表征交流电源Vac状态的信号,如耦接交流电源的EMI滤波器的输出端等。优选地,交流电源Vac为市电电源,如其频率为50Hz、幅值为220V或频率为60Hz、幅值为110V的正弦交流电信号。在一个实施例中,同步信号IS在交流电源Vac处于正弦波正半周期时输出第一状态,即正半周工作信号,在交流电源Vac处于正弦波负半周期时输出第二状态,即负半周工作信号,其中在正半周期,开关电路的第一输入端111电压小于开关电路的第二输入端112电压,在负半周期开关电路的第一输入端111电压大于开关电路的第二输入端112电压,第一状态不同于第二状态。优选地,同步信号IS包括正半周工作信号,负半周工作信号,并在正半周工作信号和负半周工作信号之间设置死区信号。
开关驱动电路13基于同步信号IS产生开关控制信号PWM1-PWM4用于控制开关电路11,开关驱动电路13产生用于对开关电路11中至少部分开关以第二频率进行斩波的脉冲宽度(PWM)信号,其中第二频率高于交流电源的第一频率,使得开关电路11中至少部分开关以第二频率的开关动作进行斩波,使得开关电路在第一输出端113和第二输出端114之间形成交流斩波信号Vo,其中交流斩波信号Vo的包络线与正弦交流电源Vac的波形同步。并通过控制第二频率的PWM信号的占空比对输出交流信号Vo进行调节。开关驱动电路13可进一步基于电流检测信号等反馈信号产生开关控制信号PWM1-PWM4,以更精确控制PWM信号的占空比。在一个实施例中,第二频率为交流电源频率的10倍以上。
辅助电源电路14耦接开关电路11,基于开关电路11上的电压信号产生辅助电源电压Vaux,用于为开关驱动电路13和同步信号发生电路12提供辅助电源。优选地,开关电路11具有参考端RG,参考端RG耦接辅助电源电路14和开关驱动电路13用于作为辅助电源电路14和开关驱动电路13的参考地,辅助电源电路14通过获取开关电路11上的电压信号和耦接参考地,借助开关电路用于形成辅助电源电路14的电流回路为辅助电源电路14供电。优选地, 将开关电路的一参考端RG作为系统参考地,便于实现系统的非隔离控制。在一个实施例中,辅助电源电路14具有输入端141、参考地端142和输出端143,其中辅助电源电路14的输入端141耦接开关电路11的第一端115,辅助电源电路14的参考地端142耦接开关电路11的第二端116,辅助电源电路14的输出端143用于提供辅助电源电压Vaux为开关驱动电路13和同步信号发生电路12供电。优选地,开关电路11的第二端116至第一端115之间通过开关电路11的至少一个体二极管形成电流通路,或者通过开关电路11的导通的开关状态形成电流通路,在开关电路11和辅助电源电路14之间构建了电流回路,实现基于开关电路11上的电压为辅助电源电路14供电,产生辅助电源电压Vaux。使得辅助电源电路14不需要复杂的电器隔离即能实现。
交流斩波电路通过无桥交流斩波拓扑可用于实现电机的无级调速,同时具有体积小,效率高,易于更大功率模块的集成的优点。
在一个实施例中,开关电路11具有一参考端RG,参考端RG耦接同步信号发生电路12、开关驱动电路13和辅助电源电路14,作为同步信号发生电路12、开关驱动电路13和辅助电源电路14共同的参考地,用于实现系统的运行。
优选地,交流斩波电路用于驱动交流电机,如单相交流电机。本申请的交流斩波电路也可以驱动其它类型的负载。
图2示出了根据本发明一实施例的交流斩波系统电路示意图。其中开关电路包括第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4。第一开关管Q1耦接在第一输入端211和第一输出端213之间,第二开关管Q2耦接在第一输出端213和参考端RG之间,第三开关管Q3耦接在第二输入端212和第二输出端214之间,第四开关管Q4耦接在第二输出端214和参考端RG之间。其中每个开关管包括一个并联的体二极管。第一开关管Q1包括并联的第一体二极管D1,其中第一体二极管D1的阳极耦接开关电路的第一输出端213,第一体二极管D1的阴极耦接开关电路的第一输入端211。第二开关管Q2包括并联的第二体二极管D2,其中第二体二极管D2的阳极耦接开关电路的参考端RG,第二体二极管D2的阴极耦接开关电路的第一输出端213。第三开关管Q3包括并联的第三体二极管D3,其中第三体二极管D3的阳极耦接开关电路的第二输出端214,第二体二极管D2的阴极耦接开关电路的第二输入端212。第四开关管Q4包括并联的第四体二极管D4,其中第四体二极管D4的阳极耦接开关电路的参考端RG,第四体二极管D4的阴极耦接开关电路的第二输出端214。开关管Q1-Q4可包括场效应晶体管如金属氧化物半导体场效应管(MOSFET),结型场效应晶体管(JFET),或绝缘栅双极型晶体管(IGBT)等。优选地,开关管Q1-Q4包括寄生的体二极管, 用于实现非同步(的)整流功能。在另一个实施例中,开关管Q1-Q4可也各自并联分立的二极管。开关管Q1-Q4中的每一个可各自由多个开关管组合或开关管与二极管的组合代替。
同步信号发生电路22耦接交流电源Vac的第一端和第二端,即开关电路的第一输入端211和第二输入端212,并在同步信号发生电路22的输出端提供同步信号IS1和IS2。在图示的实施例中,同步信号包括第一同步信号IS1和第二同步信号IS2。第一同步信号IS1和第二同步信号IS2也可以根据如图1所示的同步信号IS生成。
开关驱动电路基于第一同步信号IS1和第二同步信号IS2产生开关控制信号PWM1-PWM4,用于控制开关电路中的开关管Q1-Q4。其中开关驱动电路可包括如图2所示的驱动逻辑电路231、第一半桥驱动电路232和第二半桥驱动电路233。第一半桥驱动电路232和第二半桥驱动电路233用于将驱动逻辑电路231输出的逻辑信号进行放大,提供适于驱动开关管Q1-Q4的驱动信号。
第一半桥驱动电路232耦接第一开关管Q1和第二开关管Q2的控制端用于驱动第一开关管Q1和第二开关管Q2。第二半桥驱动电路233耦接第三开关管Q3和第四开关管Q4的控制端用于驱动第三开关管Q3和第四开关管Q4。与其它驱动H类开关桥的半桥驱动电路不能同时导通同一边桥臂不同的是,第一半桥驱动电路232不具有导通互锁电路,能支持将第一开关管Q1和第二开关管Q2导通,第二半桥驱动电路233支持同时将第三开关管Q3和第四开关管Q4导通。且与其它交流-交流斩波电路不同的是,基于开关电路参考端RG的选取并作为开关驱动电路、同步信号发生电路22和辅助电源电路24的参考地,本实施例的第一半桥驱动电路232和第二半桥驱动电路233可采用非隔离型的驱动电路,无需变压器等隔离器件的采用。进一步降低了系统复杂度,减小了系统体积和成本。具体的,第一半桥驱动电路232可用于在正半周工作区期间将第一开关管Q1和第二开关管Q2同时导通,第二半桥驱动电路233可用于在负半周工作区期间同时将第三开关管Q3和第四开关管Q4导通。辅助电源电路24耦接开关电路的第一输入端211和/或第二输入端212,用于为开关驱动电路和同步信号发生电路提供辅助电源Vaux,为其供电。辅助电源电路24包括一参考端RG2,该参考端RG2作为辅助电源电路24的参考地,与开关电路的参考地RG耦接。在一个实施例中,辅助电源电路24具有第一输入端、第二输入端、输出端和参考端,其中辅助电源电路24的第一输入端和第二输入端分别耦接开关电路的第一输入端211和第二输入端212或分别耦接开关电路的第一输出端213和第二输出端214,辅助电源电路24的输出端耦接开关驱动电路用于为开关驱动电路供电,辅助电源电路24的参考端RG2耦接开关电路的参考端RG用于在辅助电源电路24和开关电路之间形成电流回路。开关电路或交流电源Vac可以实现在交流电源Vac的 正半周和负半周同时为辅助电源电路24中的电容充电。在一个实施例中,辅助电源电路仅具有一个输入端耦接开关电路,如辅助电源电路的输入端耦接开关电路的第一输入端211、第二输入端212、第一输出端213和第二输出端214中的任意一个,开关电路或交流电源仅在交流电源Vac的正半周或负半周实现为辅助电源电路24中的电容充电。
在图2所示的实施例中,交流斩波电路进一步包括第一电容C1,耦接在开关电路的第一输入端211和第二输入端212之间。第一电容C1可用于吸收高频谐波。在一个实施例中,交流斩波电路进一步包括EMI滤波器,耦接在交流电源Vac的第一端和第二端之间,第一电容C1和EMI滤波器包含的电容可以共用,进一步降低了电容的数量和体积。在另一个实施例中,交流斩波电路包括两个电容,分别和开关电路的两个桥臂并联,即第一个电容的第一端耦接开关电路的第一输入端211,第二端耦接开关电路的参考端RG;第二个电容的第一端耦接开关电路的第二输入端212,第二端耦接开关电路的参考端RG。
图3示出了根据本发明一实施例的同步信号发生电路示意图30。为了保证不同工作区的模式的切换,需要获取表征交流电源Vac状态的信号。同步信号发生电路30具有两个输入端、参考端和两个输出端,其中两个输入端分别耦接交流电源Vac的两个输出端,两个输出端提供第一同步信号IS1和第二同步信号IS2。在图示的实施例中同步信号发生电路30包括:差分放大电路31、第一比较电路32和第二比较电路33。交流电源Vac的第一端和第二端为浮地端口,经过差分放大电路31的运算,用于消除交流电源共模信号的影响,得到一个与输入交流电源Vac同步的相对于开关电路参考端RG的偏置交流信号,以方便后续处理。在图示的实施例中,差分放大电路31具有第一输入端、第二输入端、偏置端和输出端,其中差分放大电路31的第一输入端耦接开关电路的第一输入端311、差分放大电路31的第二输入端耦接开关电路的第二输入端312,差分放大电路31的偏置端接收基于供电电路参考端RG的偏置电压Voffset,差分放大电路31的输出端提供偏置交流信号。在图示的实施例中,差分放大电路31包括电阻R1-R4以及运算放大电路35,其中电阻R1耦接在差分放大电路31的第一输入端和运算放大电路35的第一输入端之间,电阻R2耦接在运算放大电路35的第一输入端和运算放大电路35的输出端之间,电阻R3耦接在差分放大电路31的第二输入端和运算放大电路35的第二输入端之间,电阻R4耦接在运算放大电路35的第二输入端和偏置电压Voffset之间。运算放大电路35的输出端提供偏置交流信号。当设置R1=R3,R2=R4时,偏置交流信号值为:
Figure PCTCN2020113872-appb-000001
其中Vacp为交流电源的第二端的电压,Vacn为交流电源的第一端的电压。
第一比较电路32的同相输入端耦接差分放大电路31的输出端,反相输入端耦接第一阈值信号Vth1,其输出端提供第一同步信号IS1。第二比较电路33的反相输入端耦接差分放大电路31的输出端,同相输入端耦接第二阈值信号Vth2,其输出端提供第二同步信号IS2。其中第一阈值信号Vth1和第二阈值信号Vth2可以为以开关电路的参考端RG为参考地的电压信号。
其中电阻R1-R4也可由其他串并联等效电阻代替。
表1示出了根据本发明一实施例的第一同步信号IS1和第二同步信号IS2的状态表。
表1
IS1 IS2 工作区
0 0 死区
1 0 正半周
0 1 负半周
1 1 故障
在交流电源Vac处于正弦波正半周期时,开关电路第二输入端312电压大于第一输入端311的电压,当交流电源Vac大于第一阈值信号Vth1时,第一同步信号IS1呈第一状态(例如高电平状态,或“1”值),第二同步信号IS2呈第二状态(例如低电平状态,或“0”值),将该状态设置为正半周工作区。在交流电源Vac处于正弦波负半周期时,当交流电源电压小于第二阈值信号Vth2时,其中第一阈值信号为正电压信号,第二阈值信号为负电压信号,第一同步信号IS1呈第二状态(“0”值),第二同步信号IS2呈第一状态(“1”值),将该状态设置为负半周工作区。当交流电源Vac在正半周期和负半周期之间时,如当交流电源电压小于第一阈值信号Vth1并大于第二阈值信号Vth2时,第一同步信号IS1和第二同步信号IS2设置为第二状态(“0”值),将该状态设置为死区。当交流电源Vac出现故障时,同时将第一同步信号IS1和第二同步信号设置为第一状态(“1”值)。当然也可以在当交流电源在正半周期和负半周期之间的死区时将IS1和IS2同时设置为第一状态(“1”值)并在交流电源Vac出现故障时,同时将第一同步信号IS1和第二同步信号设置为第二状态(“0”值)。在一个实施例中,Vth1=-Vth2。
图4示出了根据本发明一实施例的波形示意图。下面将结合图2和图3对交流斩波电路的功能予以说明。图4所示信号从上至下分别为交流电源信号Vac,交流斩波输出电压Vo,第一同步信号IS1、第二同步信号IS2、死区信号以及分别代表四个开关管开关状态或其开关控制信号状态的信号PWM1-PWM4。根据输入的交流电源Vac的极性,该交流斩波方案分为三种工作区间,即正半周工作区T1,负半周工作区T2以及死区T0。工作区可通过第一同步信 号IS1、第二同步信号IS2来指示。在一个实施例中,当输入电压Vac高于第一比较阈值Vth的工作时间段定义为正半周工作区T1;输入电压Vac低于第一比较阈值Vth而高于第二比较阈值-Vth的工作时间段定义为死区T0;输入电压低于第二比较阈值-Vth的工作区间定义为负半周工作区T2。
在正半周工作区T1,交流电源处于正半周期(Vac>0),开关电路的第一输入端电压211小于开关电路的第二输入端电压212,此时PWM1和PWM2信号为高,PWM3信号为具有第二频率的PWM信号,PWM4信号为与PWM3信号互补的PWM信号,其中第二频率大于交流电源Vac的第一频率。开关驱动电路控制包括第一开关管Q1和第二开关管Q2的第一桥臂导通,第二桥臂的第三开关管Q3在PWM信号的控制下以设定的占空比进行开关动作,第四开关管Q4工作在整流状态,与第三开关管Q3的开关动作呈互补状态,即当第三开关管Q3导通时,第四开关管Q4关断,当第三开关管Q3关断时,第四开关管Q4导通。第四开关管Q4控制端的控制信号可以为低值,第四开关管Q4通过其体二极管导通并流过电流,使第四开关管Q4工作在非同步整流状态。第四开关管Q4控制端的控制信号也可以为与第三开关管Q3控制端信号互补的PWM控制信号,使第四开关管Q4工作在同步整流状态。
在负半周工作区T2,交流电源Vac处于负半周期(Vac<0),开关电路的第一输入端211电压大于开关电路的第二输入端212电压,此时控制PWM3和PWM4信号为高电平,PWM1信号为第二频率的PWM信号,PWM2信号为与PWM1信号互补的PWM信号。开关驱动电路控制包括第三开关管Q3和第四开关管Q4的第二桥臂导通。第一桥臂的第一开关管Q1在PWM信号的控制下以设定占空比进行开关动作,第二开关管Q2工作在整流状态,与第一开关管Q1的开关动作呈互补状态。
通过上述控制,开关电路第一输出端213和第二输出端214之间的压差即开关电路的输出电压Vo呈现交流斩波信号,其具有与控制第三开关管Q3或第一开关管Q1的PWM信号相对应的第二频率和占空比,且交流斩波信号Vo的包络线形状跟随交流电源Vac的形状,在开关电路的输出端产生包络和输入电压波形一样而幅值平均值与占空比成正比的电压信号正向地施加在负载M上。因此,通过这样的控制,其输出电压Vo可以通过改变PWM信号的占空比进行调节,从而可以对电机实现无级调速。同时因其输出电压Vo的包络线与交流电源的形状相对应,系统具有较高的功率因数。
当交流电源Vac在切换状态的前后期间,设置开关死区T0,当工作在死区T0时,即在正半周工作区T1和负半周工作区T2之间,开关管Q1-Q4中至少两个开关管关断,但开关管Q1-Q4不能同时关断,否则感性负载不仅会感应出高压击穿开关管,而且电流波形容易畸变 影响总谐波失真(THD)。因此需要给出适当的驱动信号,为感性负载提供续流回路。开关驱动电路控制第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4中的一至两个开关管同时导通。在图示的实施例中,在死区T0期间内,开关驱动电路控制第二开关管Q2和第四开关管Q4导通,第一开关管Q1和第三开关管Q3关断,负载M与参考端RG之间构成续流回路。
在另一个实施例中,在死区期间T0内,开关驱动电路控制第一开关管Q1和第二开关管Q2导通,第三开关管Q3和第四开关管Q4关断,或者第三开关管Q3和第四开关管Q4导通,第一开关管Q1和第二开关管Q2关断。导通的桥臂对应的输出端被钳位到开关电路的参考端RG电位,另一个桥臂的两个开关给关断信号,感性负载的残余电流会迫使被关断桥臂的其中一个开关管的体二极管导通,形成续流回路。
在又一个实施例中,在死区期间T0内,开关驱动电路控制第一开关管Q1和第三开关管Q3导通,第二开关管Q2和第四开关管Q4关断,交流电源Vac与负载M之间构成续流回路。
图5示出了根据本发明一实施例的辅助电源电路50示意图。辅助电源电路50具有第一输入端51、第二输入端52、输出端53和参考端54,其中辅助电源电路50的第一输入端51和第二输入端52分别耦接开关电路的第一输入端511和第二输入端512,辅助电源电路50的输出端53提供辅助电源Vaux用于为开关驱动电路和同步信号发生电路供电,辅助电源电路50的参考端RG2耦接开关电路的参考端RG用于在辅助电源电路50的第一输入端51、辅助电源电路的参考端RG2、开关电路和辅助电源电路的第二输入端52之间形成电流回路。辅助电源电路50包括:第五二极管D5,其阳极耦接开关电路的第一输入端511;第六二极管D6,其阳极耦接开关电路的第二输入端512;第二电容C2,其第一端耦接第五二极管D5的阴极和第六二极管D6的阴极,其第二端耦接开关电路的参考端RG;以及电压变换电路55,具有第一输入端、第二输入端和输出端,其中电压变换电路55的第一输入端第五二极管D5的阴极和/或第六二极管D6的阴极,电压变换电路55的第二输入端耦接开关电路的参考端RG,电压变换电路55的输出端提供辅助电源Vaux。电压变换电路55可包括线性稳压电路(LDO)或直流-直流开关模式电压变换电路,如降压电路(Buck)、升压电路(Boost)或降压-升压电路(Buck-Boost)等。
如图所示,当交流电源Vac处于正半周时,输入交流电源通过辅助电源电路50的第五二极管D5、公共的参考端RG2、开关电路中的开关管Q2和Q1构成电流回路给DC/DC变换器55的输入供电。当交流电源Vac处于负半周时,输入交流电源Vac通过辅助电源的第六二极管D6、公共的参考端RG2、开关电路的开关管Q4和Q3构成回路给DC/DC变换器55的输 入供电。当电路系统在初始化上电时,四个主开关内部的体二极管D1,D2,D3,D4和辅助电源的二极管D5和/或D6构成整流桥,在正半周交流电源通过辅助电源电路50的第五二极管D5、公共的参考端RG2、体二极管D2和D1构成电流回路给DC/DC变换器55的输入供电。在负半周交流电源Vac通过辅助电源的第六二极管D6、公共的参考端RG2、开关电路的体二极管D4和D3构成回路给辅助电源的DC/DC变换器供电。
而且通过将辅助电源的参考地RG2与开关电路的参考端RG耦接,当开关电路中的开关管全部关断时,感性负载中的电流依旧可通过开关电路的体二极管和辅助电源构成的电流回路中续流。例如当开关Q1-Q4全部断开时,若感性负载中电流从第二输出端514流出,经过体二极管D3、二极管D5、RG2和体二极管D2构成续流回路;若感性负载中电流从第一输出端513流出,经过体二极管D1、二极管D5、RG2和体二极管D4构成续流回路,从而降低电压尖剌,避免在同时关断的极端情况下造成电路的损坏。
在另一个实施例中,辅助电源电路50可不包括第六二极管D6,辅助电源电路50仅在交流电源Vac的正半周内被交流电源Vac输入供电。
在另一个实施例中,辅助电源电路可不包括第二电容C2,交流电源直接向DC/DC变换器55供电用于进一步提供辅助电源。在一个实施例中,第二电容C2构成电压变换电路55的一部分,或者第二电容C2由其他形式的储能器件代替。
图6示出了根据本发明另一实施例的辅助电源电路60示意图。相比图5中的辅助电源电路50,辅助电源电路60进一步包括旁路器件:第七二极管D7,其阳极耦接电压变换电路的第二输入端,其中电压变换电路的第一输入端耦接二极管D5或D6的阴极,D7的阴极耦接第五二极管D5的阳极。辅助电源电路60可进一步包括旁路器件:第八二极管D8,其阳极耦接电压变换电路的第二输入端,其阴极耦接第六二极管D6的阳极。在一个实施例中,辅助电源电路包括二极管D5和D8,不包含D6和D7。在一个实施例中,辅助电源电路包含二极管D6和D7,不包含D5和D8。在一个实施例中,辅助电源电路同时包括二极管D5、D6、D7和D8。在这些实施例中,辅助电源电路的参考地端可不需要耦接开关电路即可形成电流回路,如在交流电源的正半周,通过D5、C2和D8形成电流回路;在交流电源的负半周,通过D6、C2和D7形成电流回路。在图6所示的实施例中,虽然辅助电源电路引入了4个二极管,但由于辅助电源电路所需电流较低,相比较耦接在交流输入电源Vac和开关电路之间的整流桥的方案,其二极管的功率大为降低,对二极管D5-D8的规格要求也较低,体积较小。
图7示出了根据本发明又一实施例的辅助电源电路70示意图。与图5中实施例相比,辅助电源电路70的第一输入端71和/或第二输入端72分别耦接开关电路的第一输出端711和/ 或第二输出端712。辅助电源电路70从开关电路的输出端获取电源。
图8示出了根据本发明又一实施例的辅助电源电路80示意图。其中辅助电源电路80包括:第一电阻R1,第一端耦接开关电路的第一输入端811,和/或,第二电阻R2,第一端耦接开关电路的第二输入端812;以及电压变换电路85,具有第一输入端、第二输入端和输出端,其中电压变换电路85的第一输入端耦接第一电阻R1的第二端和/或第二电阻R2的第二端,电压变换电路85的第二输入端耦接开关电路的参考端RG,电压变换电路85的输出端提供辅助电源Vaux。
通过将辅助电源电路的参考地端与供电电路的参考端RG耦接,可以实现从开关电路的输入或输出取电,并借助开关电路中开关的体二极管,构建辅助电源回路,简化了辅助电源的设计和成本。
本领域技术人员应当知道,上述逻辑控制中的“高电平”与“低电平”、“同相”与“反相”等逻辑控制可相互调换或改变,通过调节后续逻辑控制而实现与上述实施例相同的功能或目的。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。说明书中所涉及的效果或优点等相关描述可因具体条件参数的不确定或其它因素影响而可能在实际实验例中不能体现,效果或优点等相关描述不用于对发明范围进行限制。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (20)

  1. 一种交流斩波电路,包括:
    开关电路,具有第一输入端、第二输入端、第一输出端和第二输出端,其中第一输入端耦接交流电源的第一端,第二输入端耦接交流电源的第二端,第一输出端耦接负载的第一端、第二输出端耦接负载的第二端;
    同步信号发生电路,用于提供与交流电源极性相关的同步信号;
    开关驱动电路,基于同步信号控制开关电路;以及
    辅助电源电路,耦接开关电路,辅助电源电路基于开关电路上的电压信号产生辅助电源电压,用于为开关驱动电路供电。
  2. 如权利要求1所述的交流斩波电路,其中开关电路具有一参考端,开关电路的参考端耦接辅助电源电路及开关驱动电路,开关电路的参考端作为辅助电源电路及开关驱动电路的参考地。
  3. 如权利要求1所述的交流斩波电路,进一步包括第一电容,耦接在开关电路的第一输入端和第二输入端之间。
  4. 如权利要求1所述的交流斩波电路,其中开关电路包括:
    第一开关管,耦接在开关电路的第一输入端和开关电路的第一输出端之间;
    第二开关管,耦接在开关电路的参考端和开关电路的第一输出端之间;
    第三开关管,耦接在开关电路的第二输入端和开关电路的第二输出端之间;以及
    第四开关管,耦接在开关电路的参考端和第二输出端之间。
  5. 如权利要求4所述的交流斩波电路,其中开关驱动电路包括:
    第一半桥驱动电路,用于驱动第一开关管和第二开关管,其中第一半桥驱动电路支持同时将第一开关管和第二开关管导通;以及
    第二半桥驱动电路,用于驱动第三开关管和第四开关管,其中第二半桥驱动电路支持同时将第三开关管和第四开关管导通,其中第一半桥驱动电路和第二半桥驱动电路为非隔离型驱动电路。
  6. 如权利要求4所述的交流斩波电路,其中:
    第一开关管包括并联的第一体二极管,其中第一体二极管的阳极耦接开关电路的第一输出端,第一体二极管的阴极耦接开关电路的第一输入端;
    第二开关管包括并联的第二体二极管,其中第二体二极管的阳极耦接开关电路的参考端,第二体二极管的阴极耦接开关电路的第一输出端;
    第三开关管包括并联的第三体二极管,其中第三体二极管的阳极耦接开关电路的第二输出 端,第二体二极管的阴极耦接开关电路的第二输入端;以及
    第四开关管包括并联的第四体二极管,其中第四体二极管的阳极耦接开关电路的参考端,第四体二极管的阴极耦接开关电路的第二输出端。
  7. 如权利要求4所述的交流斩波电路,其中辅助电源电路具有输入端、输出端和参考端,其中辅助电源电路的输入端耦接开关电路的第一输入端、第二输入端、第一输出端和第二输出端之中至少一个,辅助电源电路的输出端耦接开关驱动电路用于为开关驱动电路和同步信号发生电路供电,辅助电源电路的参考端耦接开关电路的参考端用于在辅助电源电路的输入端、辅助电源电路的参考端和开关电路之间形成电流回路。
  8. 如权利要求4所述的交流斩波电路,其中辅助电源电路包括:
    第五二极管,其阳极耦接开关电路的第一输入端,和/或,第六二极管,其阳极耦接开关电路的第二输入端;以及
    电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端耦接第五二极管的阴极和/或第六二极管的阴极,电压变换电路的第二输入端耦接开关电路的参考端,电压变换电路的输出端提供辅助电源。
  9. 如权利要求4所述的交流斩波电路,其中辅助电源电路包括:
    第五二极管,其阳极耦接开关电路的第一输出端,和/或,第六二极管,其阳极耦接开关电路的第二输出端;以及
    电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端耦接第五二极管的阴极和/或第六二极管的阴极,电压变换电路的第二输入端耦接开关电路的参考端,电压变换电路的输出端提供辅助电源。
  10. 如权利要求8或9任一项所述的交流斩波电路,其中辅助电源电路进一步包括:
    第七二极管,其阳极耦接电压变换电路的第二输入端,其阴极耦接第五二极管的阳极;和/或
    第八二极管,其阳极耦接电压变换电路的第二输入端,其阴极耦接第六二极管的阳极。
  11. 如权利要求8或9任一项所述的交流斩波电路,其中辅助电源电路进一步包括第二电容,耦接在电压变换电路的第一输入端和第二输入端之间。
  12. 如权利要求4所述的交流斩波电路,其中辅助电源电路包括:
    第一电阻,其第一端耦接开关电路的第一输入端;
    第二电阻,其第一端耦接开关电路的第二输入端,其第二端耦接第一电阻的第二端;以及
    电压变换电路,具有第一输入端、第二输入端和输出端,其中电压变换电路的第一输入端 耦接第一电阻的第二端,电压变换电路的第二输入端耦接供电电路的参考端,电压变换电路的输出端提供辅助电源。
  13. 如权利要求4所述的交流斩波电路,其中:
    当同步信号表征正半周工作区时,开关电路的第一输入端电压小于开关电路的第二输入端电压,开关驱动电路控制第一开关管和第二开关管导通,第三开关管以占空比进行开关动作,第四开关管工作在整流状态;以及
    当同步信号表征负半周工作区时,开关电路的第一输入端电压大于开关电路的第二输入端电压,开关驱动电路控制第三开关管和第四开关管导通,第一开关管以占空比进行开关动作,第二开关管工作在整流状态。
  14. 如权利要求13所述的交流斩波电路,其中当同步信号表征死区时,,开关驱动电路控制第一开关管、第二开关管、第三开关管和第四开关管中的至少两个开关管关断;开关驱动电路进一步控制一或两个开关管导通,用于为负载提供续流回路。
  15. 如权利要求14所述的交流斩波电路,其中在死区期间内,开关驱动电路控制第一开关管和第三开关管导通,第二开关管和第四开关管关断。
  16. 如权利要求14所述的交流斩波电路,其中在死区期间内,开关驱动电路控制第二开关管和第四开关管导通,第一开关管和第三开关管关断。
  17. 如权利要求4所述的交流斩波电路,其中同步信号发生电路包括:
    差分放大电路,基于交流电源产生以开关电路的参考端为参考的交流信号;
    第一比较电路,其第一输入端耦接差分放大电路的输出端,其第二输入端耦接第一阈值信号,其输出端提供第一同步信号;以及
    第二比较电路,其第一输入端耦接差分放大电路的输出端,其第二输入端耦接第二阈值信号,其输出端提供第二同步信号。
  18. 如权利要求1所述的交流斩波电路,其中同步信号包括第一同步信号和第二同步信号,其中:
    当交流电源电压大于第一阈值信号时时,第一同步信号呈第一状态,第二同步信号呈第二状态;
    当交流电源电压小于第二阈值信号时,第一同步信号呈第二状态,第二同步信号呈第一状态;以及
    当交流电源电压小于第一阈值信号并大于第二阈值信号时,同时将第一同步信号和第二同步信号设置为第一状态或第二状态,其中第一阈值信号为正电压信号,第二阈值信号为负电 压信号。
  19. 如权利要求1所述的交流斩波电路,其中辅助电源电路具有输入端、输出端和参考地端,其中辅助电源电路的输入端耦接开关电路的第一端,辅助电源电路的参考地端耦接开关电路的第二端,辅助电源电路的输出端用于为开关驱动电路供电,其中开关电路的第二端至第一端之间通过开关电路的至少一个体二极管形成电流通路。
  20. 一种单相交流电机驱动系统,包括如权利要求1-9以及12-19任一项所述的交流斩波电路以及电机,其中交流斩波电路用于驱动电机。
PCT/CN2020/113872 2020-08-18 2020-09-08 一种交流斩波电路及单相交流电机驱动系统 WO2022036769A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20949974.8A EP4199342A4 (en) 2020-08-18 2020-09-08 AC CHIPPER CIRCUIT AND SINGLE-PHASE AC ELECTRIC MOTOR DRIVE SYSTEM
JP2023512772A JP2023538142A (ja) 2020-08-18 2020-09-08 交流チョッパ回路及び単相交流モータ用駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010830878.3 2020-08-18
CN202010830878.3A CN114079417A (zh) 2020-08-18 2020-08-18 一种交流斩波电路及单相交流电机驱动系统

Publications (1)

Publication Number Publication Date
WO2022036769A1 true WO2022036769A1 (zh) 2022-02-24

Family

ID=80281551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113872 WO2022036769A1 (zh) 2020-08-18 2020-09-08 一种交流斩波电路及单相交流电机驱动系统

Country Status (4)

Country Link
EP (1) EP4199342A4 (zh)
JP (1) JP2023538142A (zh)
CN (1) CN114079417A (zh)
WO (1) WO2022036769A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874346A (zh) * 2007-03-09 2010-10-27 皇家飞利浦电子股份有限公司 电动机的功率控制
JP2011151950A (ja) * 2010-01-21 2011-08-04 Merstech Inc モータ制御装置、及び、モータ制御方法
CN102324855A (zh) * 2011-09-20 2012-01-18 辽宁省电力有限公司 交流可调电力测量专用电源及其控制方法
CN102377348A (zh) * 2010-08-23 2012-03-14 上海威曼电气科技发展有限公司 一种三相交流斩波器
CN104796005A (zh) * 2015-04-06 2015-07-22 龚秋声 交交桥式斩波双向调压电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588132A (zh) * 2007-11-28 2009-11-25 北京博旺天成科技发展有限公司 一种交流斩波器及其斩波方法
JP2009278779A (ja) * 2008-05-15 2009-11-26 Panasonic Corp 全波整流回路
CN102291005A (zh) * 2010-06-18 2011-12-21 上海威曼电气科技发展有限公司 一种交流斩波器
CN102291006A (zh) * 2010-06-18 2011-12-21 上海威曼电气科技发展有限公司 一种交流斩波器
CN103812352B (zh) * 2014-02-25 2015-09-23 郑州轻工业学院 一种桥式交流斩波功率变换器
JP5866614B1 (ja) * 2014-12-05 2016-02-17 パナソニックIpマネジメント株式会社 スイッチング電源装置
CN104578081A (zh) * 2014-12-31 2015-04-29 郑州轻工业学院 桥式交流斩波动态电压恢复器
CN106877728B (zh) * 2017-03-20 2021-11-12 苏州奥曦特电子科技有限公司 双向电源变换器
TWI619106B (zh) * 2017-08-30 2018-03-21 友達光電股份有限公司 電源電壓同步電路及其顯示裝置
CN208353049U (zh) * 2018-06-28 2019-01-08 深圳市南瑞华腾新能源有限公司 一种基于大功率的双向车载充电机电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874346A (zh) * 2007-03-09 2010-10-27 皇家飞利浦电子股份有限公司 电动机的功率控制
JP2011151950A (ja) * 2010-01-21 2011-08-04 Merstech Inc モータ制御装置、及び、モータ制御方法
CN102377348A (zh) * 2010-08-23 2012-03-14 上海威曼电气科技发展有限公司 一种三相交流斩波器
CN102324855A (zh) * 2011-09-20 2012-01-18 辽宁省电力有限公司 交流可调电力测量专用电源及其控制方法
CN104796005A (zh) * 2015-04-06 2015-07-22 龚秋声 交交桥式斩波双向调压电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199342A4 *

Also Published As

Publication number Publication date
JP2023538142A (ja) 2023-09-06
EP4199342A4 (en) 2024-03-20
CN114079417A (zh) 2022-02-22
EP4199342A1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
CN100461601C (zh) 一种实现隔离高频开关dc-dc变换的系统及方法
WO2019206067A1 (zh) 开关电源电路
EP3820044B1 (en) Stepless speed regulation circuit and method for a motor
CN108923663B (zh) 单相双极性ac-ac变换器拓扑结构及其调制方法
JPH02211065A (ja) インバータ装置
Huang et al. Variable frequency average current mode control for ZVS symmetrical dual-buck H-bridge all-GaN inverter
CN113037120A (zh) 可抑制二次纹波提高功率密度的单相逆变器及控制方法
CN104796019B (zh) 一种z源三电平pwm整流器及其控制方法
CN106849708B (zh) 一种pfc整流装置
CN113765358B (zh) 单级交错并联ac-dc谐振变换电路及其控制方法
CN115441695B (zh) 一种提高功率密度的低压输入高压输出的逆变器调制方法
CN101860245A (zh) 中功率两级式的三相静止变流器
WO2022036769A1 (zh) 一种交流斩波电路及单相交流电机驱动系统
TWI794329B (zh) Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器
CN217388543U (zh) 一种高频恒流驱动器
WO2013134904A1 (zh) 无共模干扰单相逆变器拓扑
WO2022179564A1 (zh) 无桥降压功率因素校正电路
Fan et al. Research on SiC-based Totem-pole Bridgeless PFC Converter and Control Strategy
CN211531341U (zh) 加热电路
CN112865508A (zh) 一种非对称新型t型桥的单相三电平功率因数校正电路
Yang et al. Analysis of modified single-phase PFC AC-DC buck-boost converter
CN213937741U (zh) 基于三相耦合电感的无桥pfc电路
Ding et al. High frequency transformer isolated cascaded Quasi-Z-source inverter
CN115664246B (zh) 多相逆变电路及调制方法
CN220254149U (zh) 一种微组串光伏并网逆变系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020949974

Country of ref document: EP

Effective date: 20230314