WO2019174161A1 - 一种固态复合金属锂负极 - Google Patents

一种固态复合金属锂负极 Download PDF

Info

Publication number
WO2019174161A1
WO2019174161A1 PCT/CN2018/094675 CN2018094675W WO2019174161A1 WO 2019174161 A1 WO2019174161 A1 WO 2019174161A1 CN 2018094675 W CN2018094675 W CN 2018094675W WO 2019174161 A1 WO2019174161 A1 WO 2019174161A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite
solid
negative electrode
solid electrolyte
Prior art date
Application number
PCT/CN2018/094675
Other languages
English (en)
French (fr)
Inventor
张强
刘鹤
程新兵
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019174161A1 publication Critical patent/WO2019174161A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a metal lithium negative electrode, in particular to a solid composite metal lithium negative electrode, belonging to the technical field of lithium metal batteries.
  • Lithium-sulfur batteries and lithium-oxygen batteries with lithium metal as the negative electrode as a new generation of high-energy energy storage system, the actual energy density is expected to reach 650Wh kg -1 and 950Wh kg -1 respectively , realizing the current commercial lithium-ion battery 2 - 3 times the energy density to meet the energy density requirements of electric vehicles and portable, wearable electronic devices.
  • Conductive pro-lithium anode framework materials can provide a place for the deposition of metallic lithium, effectively alleviating the volume expansion of the anode during cycling.
  • the object of the present invention is to provide a solid composite lithium metal anode, which jointly protects the metal lithium anode by constructing a pro-lithium framework material and introducing a solid electrolyte, and simultaneously inhibits the growth of lithium dendrite from the nucleation and growth stages, and alleviates the anode.
  • a solid composite lithium metal anode comprising a composite layer and a solid electrolyte protective layer formed by compounding a metal lithium and a pro-lithium framework material, the solid electrolyte protective layer being coated on a surface of the composite layer.
  • the composite layer is realized by molten lithium, electrochemical deposition or physical mechanical mixing by metal lithium and a pro-lithium framework material;
  • the solid electrolyte protective layer is by dipping, scraping, spin coating, spraying Or a sputtering method coats the solid electrolyte on the surface of the composite layer.
  • the pro-lithium skeleton material of the present invention is preferably one or more of graphene, carbon black, carbon nanotubes, copper foam and nickel foam.
  • the graphene comprises nitrogen doping and boron doping.
  • the foamed copper comprises zinc oxide, silicon oxide or aluminum oxide modified copper foam
  • the carbon nanotube comprises zinc oxide modification, gold nanoparticle modification, and doping Nitrogen or silver nanoparticle modified carbon nanotubes
  • the foamed nickel comprising copper nanoparticle modified foamed nickel
  • the carbon black comprising silica modified, zinc oxide modified or alumina modified carbon black.
  • the solid electrolyte protective layer of the present invention comprises an inorganic solid electrolyte and an organic solid electrolyte, and the mass percentage of the inorganic solid electrolyte and the organic solid electrolyte are 0.1 to 40% and 60 to 99.9%, respectively.
  • the inorganic solid electrolyte of the present invention is preferably Li 2+2x Zn 1-x GeO 4 , Li 14 Zn(GeO 4 ) 4 , Na 1+x Zr 2 P 3-x Si x O 12 , Li 1+x Al x Ti 2-x (PO 4 ) 3 , Li 1+x Al x Ge 2-x (PO 4 ), Li 0.33 La 0.557 TiO 3 , ABO 3 , D 3 E 2 (GO 4 ) 3 , Li 5 La 3 M 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 , Li 10 GeP 2 S 12 , xLi 2 S–(1-x)P 2 S 5 , 75Li 2 S–( 25-x) one or more of P 2 S 5 —xP 2 Se 5 , Li 3 PO 4 , Li 3 PS 4 , Li 4 SiO 4 , Li 3 N, LiF and Li 2.9 PO 3.3 N 0.5 , wherein
  • the organic solid electrolyte of the present invention is preferably a lithium ion of a conductive ion with polyvinyl alcohol, polyethylene oxide, polytetrafluoroethylene, sodium carboxymethyl cellulose, polyurethane, polyacrylonitrile, polymethyl methacrylate, a mixture of one or more of polyvinyl formal, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, perfluorosulfonic acid, polyvinyl butyral, and polyvinyl chloride, lithium salt concentration It is 0.01 to 20 mol L -1 .
  • the lithium salt of the present invention is preferably lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium difluoroxaluminate and di(trifluoromethyl) One or more of lithium sulfonyl).
  • the pro-lithium framework material can alleviate the volume expansion problem of the anode during charge and discharge, and the pro-lithium site on the skeleton can also regulate the nucleation and deposition of lithium metal.
  • the solid state composite lithium metal anode has a volume expansion of 1 to 20% during charge and discharge, no obvious dendrites appear in the battery cycle of 20 to 5000 cycles, and the solid state composite can be
  • the utilization rate of the metal lithium negative electrode is increased to 80 to 99.9999%.
  • the invention provides a solid composite lithium metal negative electrode comprising two layers of upper and lower layers, namely a solid electrolyte protective layer on the surface and a composite layer of metallic lithium and a pro-lithium framework material at the bottom.
  • the composite layer of the present invention is realized by molten lithium, electrochemical deposition or physical mechanical mixing of metallic lithium and pro-lithium framework materials; the solid electrolyte protective layer is by dipping, knife coating, spin coating, spraying or sputtering. A method of coating a solid electrolyte on the surface of the composite layer.
  • the pro-lithium framework material is one or more of graphene, carbon black, carbon nanotubes, copper foam and nickel foam.
  • the graphene comprises nitrogen doping, boron doping, bromine doping, Gold particle modified or silver particle modified graphene
  • the copper foam comprises zinc oxide modified by zinc oxide, silicon oxide or aluminum oxide
  • the carbon nanotube comprises zinc oxide modification, gold nanoparticle modification, nitrogen doping or silver nanoparticle Modified carbon nanotubes
  • the foamed nickel comprising copper nanoparticle modified foamed nickel
  • the carbon black comprising silica modified, zinc oxide modified or alumina modified carbon black.
  • the solid electrolyte protective layer comprises an inorganic solid electrolyte and an organic solid electrolyte to ensure that the solid electrolyte has both super hardness and toughness, and the mass percentages of the inorganic solid electrolyte and the organic solid electrolyte are 0.1 to 40% and 60 to 99.9%, respectively.
  • the organic solid electrolyte is a lithium ion of a conductive ion with polyvinyl alcohol, polyethylene oxide, polytetrafluoroethylene, sodium carboxymethyl cellulose, polyurethane, polyacrylonitrile, polymethyl methacrylate, polyvinyl alcohol a mixture of one or more of formal, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, perfluorosulfonic acid, polyvinyl butyral and polyvinyl chloride, the lithium salt concentration is 0.01 ⁇ 20 mol L -1 .
  • the lithium salt is lithium hexafluorophosphate, lithium hexafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, lithium bis(oxalate)borate, lithium difluorooxalate borate, lithium bisfluoroxaluminate and bis(trifluoromethylsulfonyl) One or more of lithium.
  • Example 1 The lithium metal and the nitrogen-doped graphene were compounded by the method of melt-filling lithium to prepare a nitrogen-doped graphene/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (0.01 mol L -1 lithium hexafluorophosphate).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 1%, no obvious dendrites appear in the 20-turn battery cycle, and the composite metal lithium negative electrode The utilization rate can reach 80%.
  • Example 2 Metal lithium and zinc oxide modified carbon nanotubes were composited by melt-filling lithium to prepare a zinc oxide-modified carbon nanotube/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (0.1 mol An organic-inorganic composite solid electrolyte composed of polyethylene oxide (25%) of L -1 lithium perchlorate and Li 5 La 3 Nb 2 O 12 (75%). The prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 5%, no obvious dendrites appear in the 5000-turn battery cycle, and the composite metal lithium negative electrode The utilization rate can reach 90%.
  • Example 3 A metal modified lithium carbon sphere/metal lithium composite layer was prepared by electrochemical deposition of metallic lithium and silicon oxide modified hollow carbon spheres, and the surface of the composite layer was covered with a lithium salt (20 mol L). -1 double oxalato borate), sodium carboxymethyl cellulose (30%) of Li 4 (70% 3 PO) composed of organic - inorganic composite solid electrolyte.
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 10%, no obvious dendrites appear in the 2000 cycle battery cycle, and the composite metal lithium negative electrode The utilization rate can reach 93%.
  • Example 4 The lithium metal and boron-doped graphene were composited by melt-filling lithium to prepare a boron-doped graphene/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (5 mol L -1 difluorocarbon).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 20%, no obvious dendrites appear in the 1000-turn battery cycle, and the composite metal lithium negative electrode The utilization rate can reach 95%.
  • Example 5 The lithium metal and copper nanoparticle-modified foamed nickel were composited by mechanical physical mixing to prepare a copper nanoparticle modified foamed nickel/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (10 mol).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 13%, no obvious dendrites appear in the 5000-turn battery cycle, and the composite metal lithium negative electrode The utilization rate can reach 99.99%.
  • Example 6 The lithium metal and alumina modified foamed copper were composited by mechanical physical mixing to prepare an alumina modified foamed carbon/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (15 mol L - one pair of yellow-fluoro-imide) polyacrylonitrile (15%) and 2 Zr 2 P 2 SiO 12 ( 85% Na) consisting of organic - inorganic composite solid electrolyte.
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 17%, no obvious dendrites appear in the battery cycle of 300 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 88%.
  • Example 7 Metal lithium and silicon oxide modified copper foam were composited by melt-filling lithium to prepare a silicon oxide modified copper foam/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (18 mol L - a bis (trifluoromethylsulfonyl) lithium) in polymethyl methacrylate (10%) and CaTiO 3 (90%) consisting of organic - inorganic composite solid electrolyte.
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 3%, no obvious dendrites appear in the battery cycle of 600 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 99%.
  • Example 8 The lithium metal and the bromine-doped graphene were compounded by the method of melt-filling lithium to prepare a bromine-doped graphene/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (3 mol L -1 hexafluoride).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 12%, no obvious dendrites appear in the battery cycle of 800 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 90%.
  • Example 9 Metal lithium and gold nanoparticle modified carbon nanotubes were composited by electrochemical deposition to prepare a gold nanoparticle modified carbon nanotube/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt. (4mol L -1 lithium difluoro oxalate borate two) of polyvinylidene fluoride (1%) and organic 0.5Li 2 S-0.5P 2 S 5 (99%) consisting of - inorganic composite solid electrolyte.
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 8%, no obvious dendrites appear in the battery cycle of 3000 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 89%.
  • Example 10 The lithium metal and zinc oxide modified template carbon were composited by melt-thawing lithium to prepare a zinc oxide modified template carbon/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (6 mol L - one pair oxalato borate) is polyvinylidene fluoride - hexafluoropropylene copolymer (12%) of Li 2 AlTi (PO 4) 3 (88%) consisting of organic - inorganic composite solid electrolyte.
  • a lithium salt (6 mol L - one pair oxalato borate) is polyvinylidene fluoride - hexafluoropropylene copolymer (12%) of Li 2 AlTi (PO 4) 3 (88%) consisting of organic - inorganic composite solid electrolyte.
  • the prepared composite metal lithium anode is applied to the test of the lithium copper half-cell, the volume expansion of the anode during charging and discharging is 15%, no obvious dendrites appear in the battery cycle of 4000 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 81%.
  • Example 11 A metal-doped carbon nanotube/metal lithium composite layer was prepared by compounding lithium metal with nitrogen-doped carbon nanotubes by melt-filling lithium, and the surface of the composite layer was covered with a lithium salt (8 mol L -1 ).
  • the prepared composite metal lithium anode is applied to the test of the lithium copper half-cell, the volume expansion of the anode during charging and discharging is 19%, no obvious dendrites appear in the battery cycle of 700 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 96%.
  • Example 12 Metal lithium and silver nanoparticle modified carbon nanotubes were composited by electrochemical deposition to prepare a silver nanoparticle modified carbon nanotube/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt. (10 mol L -1 lithium hexafluorophosphate) an organic-inorganic composite solid electrolyte composed of polyvinyl butyral (23%) and Li 14 Zn(GeO 4 ) 4 (77%).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during the charging and discharging process is 14%, no obvious dendrites appear in the 550-turn battery cycle, and the composite metal lithium The utilization rate of the negative electrode can reach 95%.
  • Example 13 A composite of a lithium-silicate modified macroporous carbon/metal lithium composite layer was prepared by melt-melting lithium metal and silicon oxide-modified macroporous carbon, and the surface of the composite layer was covered with a lithium salt (0.5).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 8%, no obvious dendrites appear in the battery cycle of 1200 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 93%.
  • Example 14 Compounding lithium metal and zinc oxide modified copper foam by mechanical physical mixing to prepare a zinc oxide modified copper foam/metal lithium composite layer, and covering the surface of the composite layer with a lithium salt (2.5 mol L An organic-inorganic composite solid electrolyte composed of -1 lithium bis(dicarboxylate) lithium chloride (25%) and Li 7 La 3 Zr 2 O 12 (75%).
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 16%, no obvious dendrites appear in the battery cycle of 1100 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 92%.
  • Example 15 The lithium metal and alumina modified template carbon were composited by melt-filling lithium to prepare an alumina modified template carbon/metal lithium composite layer, and the surface of the composite layer was covered with a lithium salt (3.5 mol L -1 difluoride yellow imide) of polymethyl methacrylate (20%) and 75Li 2 S-20P 2 S 5 -5P 2 Se 5 (80%) consisting of organic - inorganic composite solid electrolyte.
  • the prepared composite metal lithium negative electrode is applied to the test of the lithium copper half-cell, the volume expansion of the negative electrode during charging and discharging is 6%, no obvious dendrites appear in the battery cycle of 900 cycles, and the composite metal lithium The utilization rate of the negative electrode can reach 94%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种固态复合金属锂负极,包含复合层和固态电解质保护层,复合层由金属锂和亲锂骨架材料复合形成,固态电解质保护层涂覆在复合层表面。复合层由金属锂和亲锂骨架材料通过熔融灌锂、电化学沉积或物理机械混合方式实现;固态电解质保护层通过浸渍、刮涂、旋涂、喷涂或溅射等方法将固态电解质涂覆在复合层表面。相比于普通锂片负极,本发明不仅能缓解负极体积膨胀,还能调控锂金属沉积行为,抑制锂枝晶生长,提高锂金属电池安全性能和循环寿命。在锂铜半电池测试中,该固态复合金属锂负极在充放电过程中体积膨胀为1~20%,在20~5000圈电池循环中无明显枝晶出现,将复合负极的利用率提高至80~99.9999%。

Description

一种固态复合金属锂负极 技术领域
本发明涉及一种金属锂负极,特别涉及一种固态复合金属锂负极,属于锂金属电池技术领域。
背景技术
现代社会的快速发展使得人们对高端储能器件的要求越来越高,尽管传统的锂离子电池(尤其是石墨负极)在不断的优化发展下,其实际能量密度已逐渐趋近于理论极限值(372mAh g -1),但仍然难以满足许多高比能储能器件的要求,如新能源汽车(400Wh kg -1)。因此,具有极高理论容量(3860mAh g -1)和最负电势(-3.040V vs.标准氢电极)的“圣杯”金属锂负极得到了极大的关注。以金属锂作为负极的锂硫电池和锂氧电池作为新一代的高比能储能体系,其实际能量密度分别有望达到650Wh kg -1和950Wh kg -1,实现目前商业化的锂离子电池2-3倍的能量密度,满足电动汽车以及便携式、可穿戴电子设备对能量密度的需求。
虽然金属锂电池具有很多的优势和广泛的应用前景,但自20世纪70年代被提出以来仍存在一些难以解决的问题。锂的不均匀沉积很容易产生枝晶,一方面枝晶会与电解液继续反应造成活性锂和电解液的不可逆消耗以及电池库伦效率的下降,另一方面枝晶的不可控生长还有可能刺穿隔膜,造成电池的短路甚至爆炸,存在极大的安全隐患;另外,与锂离子电池中的插嵌式石墨负极相比,金属锂电池中的锂离子的沉积和脱嵌是没有骨架支撑的,这就使得枝晶很容易脱离电极表面形成无法再被利用的“死锂”,同时也会引起巨大的体积膨胀问题。近年来,研究人员提出了众多策略来解决金属锂负极存在的这些问题:导电亲锂的负极骨架材料(石墨烯等)可为金属锂的沉积提供场所,有效缓解负极在循环过程中的体积膨胀问题,同时减小锂离子沉积/脱嵌的局部电流密度,调控锂离子的形核/沉积行为(专利号:CN105845891A);用高机械模量的固态电解质替代液态有机电解液,不仅能够通过机械阻力抑制锂枝晶的进一步生长,还能解决液态有机电解液易燃易爆带来的安全隐患。
上述两种方案虽然都能够在一定程度上解决金属锂负极存在的不同问题,但是金属锂电极的失效仍然无法避免,目前还没有十分有效的途径同时解决金属锂负极应用的各种问题。因此设计一种结合多种方案、复合保护金属锂负极的高效策略迫在眉睫。
发明内容
本发明的目的是提供一种固态复合金属锂负极,通过构筑亲锂骨架材料和引入固态电解质双重手段共同保护金属锂负极,双管齐下,从形核和生长阶段共同抑制锂枝晶的生长,缓 解负极的体积膨胀问题,同时改善锂金属电池的安全性能。
本发明的技术方案如下:
一种固态复合金属锂负极,包含复合层和固态电解质保护层,所述复合层由金属锂和亲锂骨架材料复合形成,所述固态电解质保护层涂覆在所述复合层的表面。
上述技术方案中,所述复合层是由金属锂和亲锂骨架材料通过熔融灌锂、电化学沉积或物理机械混合的方式实现;所述固态电解质保护层是通过浸渍、刮涂、旋涂、喷涂或溅射方法将固态电解质涂覆在复合层的表面。
本发明所述亲锂骨架材料优选为石墨烯、炭黑、碳纳米管、泡沫铜和泡沫镍中的一种或多种,进一步,优选地,所述石墨烯包含氮掺杂、硼掺杂、溴掺杂、金颗粒修饰或银颗粒修饰的石墨烯;所述泡沫铜包含氧化锌、氧化硅或氧化铝修饰的泡沫铜;所述碳纳米管包含氧化锌修饰、金纳米颗粒修饰、掺氮或银纳米颗粒修饰的碳纳米管;所述泡沫镍包含铜纳米颗粒修饰的泡沫镍;所述炭黑包含氧化硅修饰、氧化锌修饰或氧化铝修饰的炭黑。
本发明所述固态电解质保护层包含无机固态电解质和有机固态电解质,无机固态电解质与有机固态电解质的质量百分比分别为0.1~40%和60~99.9%。
本发明所述无机固态电解质优选为Li 2+2xZn 1-xGeO 4、Li 14Zn(GeO 4) 4、Na 1+xZr 2P 3-xSi xO 12、Li 1+xAl xTi 2-x(PO 4) 3、Li 1+xAl xGe 2-x(PO 4)、Li 0.33La 0.557TiO 3、ABO 3、D 3E 2(GO 4) 3、Li 5La 3M 2O 12、Li 7La 3Zr 2O 12、Li 6.75La 3Zr 1.75Ta 0.25O 12、Li 10GeP 2S 12、xLi 2S–(1-x)P 2S 5、75Li 2S–(25-x)P 2S 5–xP 2Se 5、Li 3PO 4、Li 3PS 4、Li 4SiO 4、Li 3N、LiF和Li 2.9PO 3.3N 0.5中的一种或多种,其中,A=Ca、Sr或La;B=Al或Ti;D=Ca、Mg、Y或La;E=Al、Fe、Ga、Ge、Mn、Ni或V;G=Si、Ge或Al;M=Nb或Ta;x为零或正数。
本发明所述有机固态电解质优选为导离子的锂盐与聚乙烯醇、聚环氧乙烷、聚四氟乙烯、羧甲基纤维素钠、聚胺酯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇缩甲醛、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、全氟磺酸、聚乙烯基缩丁醛和聚氯乙烯中的一种或几种的混合物,锂盐浓度是0.01~20mol L -1
本发明所述锂盐优选为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂中的一种或多种。
本发明相比现有技术,具有如下优点及突出性效果:
所述固态复合金属锂负极相比于普通的锂片负极,亲锂骨架材料能够缓解负极在充放电过程中的体积膨胀问题,骨架上的亲锂位点还可以调控锂金属的形核和沉积行为,抑制锂枝晶产生;固态电解质一方面可以利用其高的机械模量阻碍锂枝晶的进一步生长,另一方面也可以解决液态电解液易燃易爆的安全问题,提高锂金属电池的安全性能和循环寿命。在锂铜半电池测试体系中,该固态复合金属锂负极在充放电过程中的体积膨胀为1~20%,在20~ 5000圈的电池循环中无明显枝晶出现,并且可以将该固态复合金属锂负极的利用率提高至80~99.9999%。
具体实施方式
本发明提供一种固态复合金属锂负极,该固态复合金属锂负极包含上下两层,即表面的固态电解质保护层以及底部的金属锂和亲锂骨架材料的复合层。
本发明所述复合层是由金属锂和亲锂骨架材料通过熔融灌锂、电化学沉积或物理机械混合的方式实现;所述固态电解质保护层是通过浸渍、刮涂、旋涂、喷涂或溅射等方法将固态电解质涂覆在复合层的表面。
所述亲锂骨架材料为石墨烯、炭黑、碳纳米管、泡沫铜和泡沫镍中的一种或多种,优选地,所述石墨烯包含氮掺杂、硼掺杂、溴掺杂、金颗粒修饰或银颗粒修饰的石墨烯;所述泡沫铜包含氧化锌、氧化硅或氧化铝修饰的泡沫铜;所述碳纳米管包含氧化锌修饰、金纳米颗粒修饰、掺氮或银纳米颗粒修饰的碳纳米管;所述泡沫镍包含铜纳米颗粒修饰的泡沫镍;所述炭黑包含氧化硅修饰、氧化锌修饰或氧化铝修饰的炭黑。
所述固态电解质保护层包含无机固态电解质和有机固态电解质,保证固态电解质同时具有超强硬度和韧性,无机固态电解质与有机固态电解质的质量百分比分别为0.1~40%和60~99.9%。
所述无机固态电解质为Li 2+2xZn 1-xGeO 4、Li 14Zn(GeO 4) 4、Na 1+xZr 2P 3-xSi xO 12、Li 1+xAl xTi 2-x(PO 4) 3、Li 1+xAl xGe 2-x(PO 4)、Li 0.33La 0.557TiO 3、ABO 3、D 3E 2(GO 4) 3、Li 5La 3M 2O 12、Li 7La 3Zr 2O 12、Li 6.75La 3Zr 1.75Ta 0.25O 12、Li 10GeP 2S 12、xLi 2S–(1-x)P 2S 5、75Li 2S–(25-x)P 2S 5–xP 2Se 5、Li 3PO 4、Li 3PS 4、Li 4SiO 4、Li 3N、LiF和Li 2.9PO 3.3N 0.5中的一种或多种,其中,A=Ca、Sr或La;B=Al或Ti;D=Ca、Mg、Y或La;E=Al、Fe、Ga、Ge、Mn、Ni或V;G=Si、Ge或Al;M=Nb或Ta;x为零或正数。
所述有机固态电解质为导离子的锂盐与聚乙烯醇、聚环氧乙烷、聚四氟乙烯、羧甲基纤维素钠、聚胺酯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇缩甲醛、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、全氟磺酸、聚乙烯基缩丁醛和聚氯乙烯中的一种或几种的混合物,锂盐浓度是0.01~20mol L -1
所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂中的一种或多种。
从以下实施例可进一步理解本发明,但本发明不仅仅局限于以下实施例。
实施例1:将金属锂与掺氮石墨烯通过熔融灌锂的方法进行复合,制备出掺氮石墨烯/金属锂复合层,在复合层表面覆盖一层含锂盐(0.01mol L -1六氟磷酸锂)的聚乙烯醇(40%) 与Li 2ZnGeO 4(60%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为1%,在20圈电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达80%。
实施例2:将金属锂与氧化锌修饰碳纳米管通过熔融灌锂的方法进行复合,制备出氧化锌修饰碳纳米管/金属锂复合层,在复合层表面覆盖一层含锂盐(0.1mol L -1高氯酸锂)的聚环氧乙烷(25%)与Li 5La 3Nb 2O 12(75%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为5%,在5000圈电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达90%。
实施例3:将金属锂与氧化硅修饰的中空碳球通过电化学沉积的方法进行复合,制备出硅修饰中空碳球/金属锂复合层,在复合层表面覆盖一层含锂盐(20mol L -1双乙二酸硼酸锂)的羧甲基纤维素钠(30%)与Li 3PO 4(70%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为10%,在2000圈电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达93%。
实施例4:将金属锂与掺硼石墨烯通过熔融灌锂的方法进行复合,制备出掺硼石墨烯/金属锂复合层,在复合层表面覆盖一层含锂盐(5mol L -1二氟草酸硼酸锂)的聚四氟乙烯(35%)与Li 0.33La 0.557TiO 3(65%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为20%,在1000圈电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达95%。
实施例5:将金属锂与铜纳米颗粒修饰的泡沫镍通过机械物理混合的方法进行复合,制备出铜纳米颗粒修饰泡沫镍/金属锂复合层,在复合层表面覆盖一层含锂盐(10mol L -1六氟硼酸锂)的聚胺酯(0.1%)与Li 7La 3Zr 2O 12(99.9%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为13%,在5000圈电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达99.99%。
实施例6:将金属锂与氧化铝修饰的泡沫铜通过机械物理混合的方法进行复合,制备出氧化铝修饰泡沫碳/金属锂复合层,在复合层表面覆盖一层含锂盐(15mol L -1双氟黄酰亚胺锂)的聚丙烯腈(15%)与Na 2Zr 2P 2SiO 12(85%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为17%,在300圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达88%。
实施例7:将金属锂与氧化硅修饰的泡沫铜通过熔融灌锂的方法进行复合,制备出氧化硅修饰泡沫铜/金属锂复合层,在复合层表面覆盖一层含锂盐(18mol L -1二(三氟甲基磺酰)锂)的聚甲基丙烯酸甲酯(10%)与CaTiO 3(90%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为3%, 在600圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达99%。
实施例8:将金属锂与掺溴石墨烯通过熔融灌锂的方法进行复合,制备出掺溴石墨烯/金属锂复合层,在复合层表面覆盖一层含锂盐(3mol L -1六氟砷酸锂)的聚乙烯醇缩甲醛(5%)与Li 6.75La 3Zr 1.75Ta 0.25O 12(95%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为12%,在800圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达90%。
实施例9:将金属锂与金纳米颗粒修饰的碳纳米管通过电化学沉积的方法进行复合,制备出金纳米颗粒修饰碳纳米管/金属锂复合层,在复合层表面覆盖一层含锂盐(4mol L -1二氟草酸硼酸锂)的聚偏氟乙烯(1%)与0.5Li 2S–0.5P 2S 5(99%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为8%,在3000圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达89%。
实施例10:将金属锂与氧化锌修饰的模板碳通过熔融灌锂的方法进行复合,制备出氧化锌修饰模板碳/金属锂复合层,在复合层表面覆盖一层含锂盐(6mol L -1双乙二酸硼酸锂)的聚偏氟乙烯-六氟丙烯共聚物(12%)与Li 2AlTi(PO 4) 3(88%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为15%,在4000圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达81%。
实施例11:将金属锂与掺氮碳纳米管通过熔融灌锂的方法进行复合,制备出掺氮碳纳米管/金属锂复合层,在复合层表面覆盖一层含锂盐(8mol L -1高氯酸锂)的全氟磺酸(18%)与Li 2.9PO 3.3N 0.5(82%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为19%,在700圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达96%。
实施例12:将金属锂与银纳米颗粒修饰的碳纳米管通过电化学沉积的方法进行复合,制备出银纳米颗粒修饰碳纳米管/金属锂复合层,在复合层表面覆盖一层含锂盐(10mol L -1六氟磷酸锂)的聚乙烯基缩丁醛(23%)与Li 14Zn(GeO 4) 4(77%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为14%,在550圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达95%。
实施例13:将金属锂与氧化硅修饰的大孔碳通过熔融灌锂的方法进行复合,制备出氧化硅修饰大孔碳/金属锂复合层,在复合层表面覆盖一层含锂盐(0.5mol L -1二(三氟甲基磺酰)锂)的聚乙烯基缩丁醛(30%)与Li 4SiO 4(70%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为8%, 在1200圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达93%。
实施例14:将金属锂与氧化锌修饰的泡沫铜通过机械物理混合的方法进行复合,制备出氧化锌修饰泡沫铜/金属锂复合层,在复合层表面覆盖一层含锂盐(2.5mol L -1双乙二酸硼酸锂)的聚氯乙烯(25%)与Li 7La 3Zr 2O 12(75%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为16%,在1100圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达92%。
实施例15:将金属锂与氧化铝修饰的模板碳通过熔融灌锂的方法进行复合,制备出氧化铝修饰模板碳/金属锂复合层,在复合层表面覆盖一层含锂盐(3.5mol L -1双氟黄酰亚胺锂)的聚甲基丙烯酸甲酯(20%)与75Li 2S–20P 2S 5–5P 2Se 5(80%)组成的有机-无机复合固态电解质。将制备出的复合金属锂负极应用于锂铜半电池的测试中,该负极在充放电过程中的体积膨胀为6%,在900圈的电池循环中无明显枝晶出现,且该复合金属锂负极的利用率可达94%。

Claims (8)

  1. 一种固态复合金属锂负极,其特征在于,包含复合层和固态电解质保护层,所述复合层由金属锂和亲锂骨架材料复合形成,所述固态电解质保护层涂覆在所述复合层的表面。
  2. 按照权利要求1所述的固态复合金属锂负极,其特征在于,所述复合层是由金属锂和亲锂骨架材料通过熔融灌锂、电化学沉积或物理机械混合的方式实现;所述固态电解质保护层是通过浸渍、刮涂、旋涂、喷涂或溅射方法将固态电解质涂覆在复合层的表面。
  3. 按照权利要求1所述的固态复合金属锂负极,其特征在于,所述亲锂骨架材料为石墨烯、炭黑、碳纳米管、泡沫铜和泡沫镍中的一种或多种。
  4. 按照权利要求3所述的固态复合金属锂负极,其特征在于,所述石墨烯包含氮掺杂、硼掺杂、溴掺杂、金颗粒修饰或银颗粒修饰的石墨烯;所述泡沫铜包含氧化锌、氧化硅或氧化铝修饰的泡沫铜;所述碳纳米管包含氧化锌修饰、金纳米颗粒修饰、掺氮或银纳米颗粒修饰的碳纳米管;所述泡沫镍包含铜纳米颗粒修饰的泡沫镍;所述炭黑包含氧化硅修饰、氧化锌修饰或氧化铝修饰的炭黑。
  5. 按照权利要求1-4中任一权利要求所述的固态复合金属锂负极,其特征在于,所述固态电解质保护层包含无机固态电解质和有机固态电解质,无机固态电解质与有机固态电解质的质量百分比分别为0.1~40%和60~99.9%。
  6. 按照权利要求5所述的固态复合金属锂负极,其特征在于,所述无机固态电解质为Li 2+2xZn 1-xGeO 4、Li 14Zn(GeO 4) 4、Na 1+xZr 2P 3-xSi xO 12、Li 1+xAl xTi 2-x(PO 4) 3、Li 1+xAl xGe 2-x(PO 4)、Li 0.33La 0.557TiO 3、ABO 3、D 3E 2(GO 4) 3、Li 5La 3M 2O 12、Li 7La 3Zr 2O 12、Li 6.75La 3Zr 1.75Ta 0.25O 12、Li 10GeP 2S 12、xLi 2S–(1-x)P 2S 5、75Li 2S–(25-x)P 2S 5–xP 2Se 5、Li 3PO 4、Li 3PS 4、Li 4SiO 4、Li 3N、LiF和Li 2.9PO 3.3N 0.5中的一种或多种,其中,A=Ca、Sr或La;B=Al或Ti;D=Ca、Mg、Y或La;E=Al、Fe、Ga、Ge、Mn、Ni或V;G=Si、Ge或Al;M=Nb或Ta;x为零或正数。
  7. 按照权利要求5所述的固态复合金属锂负极,其特征在于,所述有机固态电解质为导离子的锂盐与聚乙烯醇、聚环氧乙烷、聚四氟乙烯、羧甲基纤维素钠、聚胺酯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙烯醇缩甲醛、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、全氟磺酸、聚乙烯基缩丁醛和聚氯乙烯中的一种或几种的混合物,锂盐浓度是0.01~20mol L -1
  8. 按照权利要求7所述的固态复合金属锂负极,其特征在于,所述锂盐为六氟磷酸锂、六氟硼酸锂、六氟砷酸锂、高氯酸锂、双乙二酸硼酸锂、二氟草酸硼酸锂、双氟黄酰亚胺锂和二(三氟甲基磺酰)锂中的一种或多种。
PCT/CN2018/094675 2018-03-14 2018-07-05 一种固态复合金属锂负极 WO2019174161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810210158.XA CN108511708A (zh) 2018-03-14 2018-03-14 一种固态复合金属锂负极
CN201810210158.X 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019174161A1 true WO2019174161A1 (zh) 2019-09-19

Family

ID=63376136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094675 WO2019174161A1 (zh) 2018-03-14 2018-07-05 一种固态复合金属锂负极

Country Status (2)

Country Link
CN (1) CN108511708A (zh)
WO (1) WO2019174161A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360937A (zh) * 2018-11-15 2019-02-19 中国科学院宁波材料技术与工程研究所 一种具有sei保护层的负极、其制备方法及锂/钠金属电池
CN109473627A (zh) * 2018-12-20 2019-03-15 清华大学 一种复合金属锂负极及其制备方法
CN109659493B (zh) * 2018-12-26 2021-03-23 国联汽车动力电池研究院有限责任公司 一种包含固态电解质、低孔隙率的负极及应用该负极的锂电池
CN109904390A (zh) * 2019-01-28 2019-06-18 武汉理工大学 一种金属锂/镀镍碳布复合负极的制备方法
CN109904417A (zh) * 2019-01-29 2019-06-18 电子科技大学 一种锂-异种金属复合负极材料及其制备方法
CN109841828A (zh) * 2019-01-30 2019-06-04 天津大学 一种体相微纳结构的金属锂负极及其制备方法
CN109818048A (zh) * 2019-03-04 2019-05-28 江西星盈科技有限公司 全固态锂金属电池及其制备工艺
CN111864252A (zh) * 2019-04-29 2020-10-30 中国科学院苏州纳米技术与纳米仿生研究所 二次电池装置
CN110061191B (zh) * 2019-05-05 2021-09-24 国联汽车动力电池研究院有限责任公司 一种三维金属锂负极及其制备方法与应用
CN112216876B (zh) * 2019-07-10 2022-04-15 比亚迪股份有限公司 锂离子电池重复单元、锂离子电池及其使用方法、电池模组和汽车
CN110797506A (zh) * 2019-10-10 2020-02-14 武汉瑞科美新能源有限责任公司 复合锂金属负极材料及其制备方法、应用和锂金属电池
CN110911685B (zh) * 2019-11-28 2021-09-14 宁德新能源科技有限公司 用于负极的组合物和包含该组合物的保护膜、负极和装置
CN111063863B (zh) * 2019-12-19 2023-03-14 电子科技大学 一种金属锂复合负极材料及其制备方法和应用
CN111430684B (zh) * 2020-01-19 2022-02-25 蜂巢能源科技有限公司 复合负极及其制备方法和应用
CN111403692B (zh) * 2020-03-09 2023-01-20 重庆天齐锂业有限责任公司 一种具有疏水保护层的金属锂负极的制备方法
CN111446428B (zh) * 2020-03-23 2021-04-20 珠海冠宇电池股份有限公司 一种锂负极材料及其应用
CN111403719B (zh) * 2020-03-31 2021-10-08 浙江大学 一种海绵镍材料及其制备方法和制备柔性锂硫电池的应用
CN113540401B (zh) * 2020-04-21 2023-03-24 华为技术有限公司 金属负极及其制备方法和二次电池
CN111755693A (zh) * 2020-05-29 2020-10-09 湖南立方新能源科技有限责任公司 一种复合金属锂负极及其制备方法、锂离子电池
CN111653754A (zh) * 2020-06-28 2020-09-11 中国华能集团清洁能源技术研究院有限公司 一种硫化物全固态电池锂负极复合材料的制备方法
CN112331825A (zh) * 2020-10-19 2021-02-05 中国电子科技集团公司第十八研究所 一种锂离子电池硅碳银复合负极的制备方法
CN113258044B (zh) * 2021-04-23 2024-02-27 天津中能锂业有限公司 超轻三维骨架金属锂复合体及其制备方法
CN113206218A (zh) * 2021-04-23 2021-08-03 天津中能锂业有限公司 锂离子电池
CN113206257B (zh) * 2021-04-23 2024-03-08 天津中能锂业有限公司 一次锂电池及其制备方法
CN113193172B (zh) * 2021-04-28 2022-09-09 天津中能锂业有限公司 耐高温金属锂负极及其制备方法和用途
CN113241475B (zh) * 2021-05-07 2022-07-01 中国科学院电工研究所 一种固态电解质及其制备方法和应用
CN113346052A (zh) * 2021-06-04 2021-09-03 天津中电新能源研究院有限公司 一种金属锂表面保护方法
CN113346051A (zh) * 2021-06-04 2021-09-03 天津中电新能源研究院有限公司 一种金属锂表面保护层制备方法
CN113451543A (zh) * 2021-06-30 2021-09-28 中汽创智科技有限公司 一种固态锂离子电池预锂化电极及其制备方法
CN114628685B (zh) * 2021-08-09 2023-10-03 万向一二三股份公司 一种超亲锂高稳定的金属锂复合负极片及电池
CN114171799B (zh) * 2021-11-19 2023-06-06 哈尔滨工业大学 一种提高锂在固态电解质表面润湿性的方法及全固态电池
CN116454214A (zh) * 2023-06-20 2023-07-18 清华大学 利用熔融锂预锂化锂离子电池电极的系统、方法及产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489229A (zh) * 2002-10-12 2004-04-14 ����Sdi��ʽ���� 锂电池的锂金属阳极
CN105845891A (zh) * 2016-05-13 2016-08-10 清华大学 一种具有双层结构的金属锂负极
CN106654172A (zh) * 2016-12-28 2017-05-10 中天储能科技有限公司 一种多重保护的锂金属负极片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315420B (zh) * 2010-07-05 2014-09-10 中国科学院上海硅酸盐研究所 具有保护层的金属负极结构及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489229A (zh) * 2002-10-12 2004-04-14 ����Sdi��ʽ���� 锂电池的锂金属阳极
CN105845891A (zh) * 2016-05-13 2016-08-10 清华大学 一种具有双层结构的金属锂负极
CN106654172A (zh) * 2016-12-28 2017-05-10 中天储能科技有限公司 一种多重保护的锂金属负极片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG, XINBING ET AL.: "Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites", PROGRESS IN CHEMISTRY, vol. 30, no. 01, 13 December 2017 (2017-12-13), pages 61 - 67, XP055636704, ISSN: 1005-281X *

Also Published As

Publication number Publication date
CN108511708A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2019174161A1 (zh) 一种固态复合金属锂负极
Liu et al. Progress and prospect of low-temperature zinc metal batteries
WO2021213132A1 (zh) 一种含复合添加剂的锂金属电池电解液及其制备方法
WO2018103563A1 (zh) 一种锂电池的金属锂负极
Nie et al. Design strategies toward high‐performance Zn metal anode
EP2717377B1 (en) Battery
CN101764258B (zh) 一种二次铝电池及其制备方法
CN101764256B (zh) 一种可再充铝电池及其制备方法
CN109728249A (zh) 一种界面保护结构、制备方法以及包含该结构的电池
CN109119603A (zh) 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN102694201A (zh) 一种锂离子电池
US20210143433A1 (en) Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and preparation method thereof
WO2019214035A1 (zh) 一种锂金属电池的电解液
Hu et al. Zinc anode with artificial solid electrolyte interface for dendrite-free Ni-Zn secondary battery
WO2022267529A1 (zh) 正极活性材料、电化学装置与电子设备
WO2021104059A1 (zh) 一种新型电池及其制备方法
WO2017117838A1 (zh) 一种低温无机熔盐铝离子超级电容电池及其制备方法
WO2017206062A1 (zh) 一种二次电池及其制备方法
WO2019153635A1 (zh) 一种用于稳定锂金属电池的醚酯复合电解液
CN110148730A (zh) 一种高首效长寿命硅基负极材料及其制备方法和应用
CN104201353A (zh) 钛系氧化物/碳纳米管的复合负极材料及其制备方法
CN110416551A (zh) 用于可再充电锂电池的负极和包括其的可再充电锂电池
CN111453713A (zh) 一种氧化亚硅/碳材料及其制备方法和应用
CN105870496A (zh) 一种用于锂离子电池负极材料的豆荚状硅@非晶炭@石墨烯纳米卷复合材料
Leng et al. High voltage stable li metal batteries enabled by ether-based highly concentrated electrolytes at elevated temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910161

Country of ref document: EP

Kind code of ref document: A1