WO2021213132A1 - 一种含复合添加剂的锂金属电池电解液及其制备方法 - Google Patents

一种含复合添加剂的锂金属电池电解液及其制备方法 Download PDF

Info

Publication number
WO2021213132A1
WO2021213132A1 PCT/CN2021/083098 CN2021083098W WO2021213132A1 WO 2021213132 A1 WO2021213132 A1 WO 2021213132A1 CN 2021083098 W CN2021083098 W CN 2021083098W WO 2021213132 A1 WO2021213132 A1 WO 2021213132A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
trifluoromethanesulfonate
lithium metal
metal battery
Prior art date
Application number
PCT/CN2021/083098
Other languages
English (en)
French (fr)
Inventor
陆盈盈
张魏栋
李思远
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021213132A1 publication Critical patent/WO2021213132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of secondary high-energy density batteries, in particular to a lithium metal battery electrolyte.
  • the lithium ion battery based on graphite as the negative electrode is limited by the lower theoretical capacity of the negative electrode (372 mAh g -1 ), and its energy density is close to the theoretical limit, and it is difficult to further increase it.
  • the lithium metal negative electrode is considered to be the ultimate negative electrode material for high energy density battery systems, and it is also used for secondary batteries above 300Whkg -1 Key technology.
  • Changing the composition of the electrolyte can effectively improve the composition of the lithium metal electrode interface, thereby adjusting the morphology of lithium metal deposition/exfoliation, and improving battery cycle performance and safety.
  • the introduction of high-concentration lithium difluorosulfonate (>4M) in the ester electrolyte can promote the electrochemical reduction of the FSI-anion interface, promote the formation of LiF-rich interfaces, and improve the lithium coulombic efficiency (Highly Fluorinated Interphases Enable High) -Voltage Li-Metal Batteries, Chem2018, 4, 174-185).
  • perfluorinated electrolyte By means of molecular design, the introduction of perfluorinated electrolyte can also achieve the formation of LiF-rich interface at normal electrolyte concentration, and inhibit the formation of dendritic lithium deposition (Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotech 2018, 13, 715-722).
  • Lithium nitrate additives commonly used in ether electrolytes can promote the formation of inorganic stable electrochemical interfaces rich in nitrides and lithium oxide, but lithium nitrate is almost not found in ester electrolytes (such as ethylene carbonate and fluoroethylene carbonate). Dissolved, the solubility is only 800ppm (Solubility-mediated sustainable release enabling nitrate additive in carbonate electrolyte for stable lithium metal anode, Nat. Commun., 2018, 9, 3656).
  • researchers fixed the lithium nitrate insoluble crystals in the battery system through a small amount of slow-release method. The slow-release of lithium nitrate can effectively improve the cycle life of the battery (High-capacity rechargeable battery based on deeply cyclable lithium metal anodes, PNAS, 2018, 115) , 5676-5680).
  • the present invention provides an electrolyte for lithium metal batteries.
  • the coordination compound is formed by Lewis acid and lithium nitrate to increase the solubility of lithium nitrate in ester electrolytes and slow down the formation of "dead lithium", thereby improving the overall battery performance of lithium metal batteries. Electrochemical performance and cycle life.
  • An electrolyte for a lithium metal battery comprising an electrolyte lithium salt, an organic solvent, and a composite additive.
  • the organic solvent is an ester solvent.
  • the composite additive includes Lewis acid and lithium nitrate; and the Lewis acid is trifluoromethane sulfonate.
  • Tin acid indium trifluoromethanesulfonate, silver trifluoromethanesulfonate, iron trifluoromethanesulfonate, zinc trifluoromethanesulfonate, magnesium trifluoromethanesulfonate, aluminum trifluoromethanesulfonate, trifluoromethanesulfonic acid A mixture of one or more of sodium, tris(pentafluorophenyl)borane, tris(trimethylsilane)borate or tris(pentafluorophenyl)phosphine.
  • Lewis acid and lithium nitrate can form a coordination compound.
  • the structure is shown in Figure 1 to improve the solubility of lithium nitrate in ester solvents.
  • the composite additive can be converted into a protective layer of inorganic fast ion solid electrolyte rich in nitride and lithium oxide in situ on the surface of the lithium metal negative electrode, which can promote the coarsening of lithium metal deposited crystal grains (5-50 microns) and inhibit nano Grade dendritic deposition is formed to improve battery safety.
  • This coarsened lithium metal deposit has a high utilization of active materials during the discharge process, which can slow down the formation of "dead lithium", thereby improving the electrochemical performance and cycle life of the lithium metal battery.
  • the molar concentration of the electrolyte lithium salt in the electrolyte is 1.0 to 5.0 mol L -1 ; the mass fraction of the Lewis acid in the electrolyte is 0.001 wt% to 10.0 wt%, The mass fraction of the lithium nitrate in the electrolyte is 0.001 wt% to 10.0 wt%.
  • the cycle performance is positively correlated with the content of lithium nitrate, and the mass fraction of the lithium nitrate in the electrolyte is preferably 1 wt% to 8 wt%.
  • the mass fraction of the Lewis acid in the electrolyte is 0.3 wt% to 1.0 wt%, and the mass fraction of the lithium nitrate in the electrolyte solution is 1.0 wt% to 8.0 wt%.
  • the mass fraction of Lewis acid in the electrolyte is preferably 0.3 wt% to 1.0 wt%.
  • the mass fraction of lithium nitrate in the electrolyte is preferably 1 wt% to 8 wt%.
  • the ester solvent is a mixture of one or more of ethylene carbonate, fluoroethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate.
  • the electrolyte lithium salt is one or more of lithium hexafluorophosphate, lithium bistrifluoromethanesulfonate, lithium difluorosulfonate, lithium perchlorate, lithium difluorooxalate or lithium trifluoromethanesulfonatekind of mix.
  • the ester solvent is a mixture of one or more of fluoroethylene carbonate, dimethyl carbonate, ethylene carbonate, and ethyl methyl carbonate;
  • the electrolyte lithium salt is lithium hexafluorophosphate, bistrifluoromethane sulfonate A mixture of one or more of lithium imide acid, lithium difluorooxalate borate, and indium trifluoromethanesulfonate;
  • the Lewis acid is iron trifluoromethanesulfonate, magnesium trifluoromethanesulfonate or trifluoromethane A mixture of one or more of indium sulfonate.
  • the present invention also provides a method for preparing the electrolyte described in the above technical solution, which includes the following steps: under the protection of an inert gas, the composite additive is added to the ester solvent in which the electrolyte lithium salt is dissolved, and the temperature is within the range of 25-60°C. Heat and stir for 1 to 6 hours.
  • the inert gas is preferably argon.
  • the present invention also provides a lithium metal battery, which includes the electrolyte described in the above technical solution.
  • the lithium metal battery also includes a positive electrode, a shrapnel, a gasket, a separator, and a negative electrode, and is characterized in that the material used in the negative electrode contains lithium metal; the material used in the positive electrode is lithium iron phosphate, nickel cobalt manganese acid Lithium, lithium aluminum nickel cobaltate, lithium cobaltate, lithium nickelate or sulfur; the diaphragm is a single-layer polypropylene diaphragm.
  • the present invention has the following beneficial effects:
  • the lithium metal battery electrolyte of the present invention can be converted into a layer of inorganic fast ion solid electrolyte protective layer rich in nitrides and lithium oxide in situ on the surface of the lithium metal negative electrode, which can promote the coarsening of lithium metal deposited crystal grains (5 -50 microns), inhibit the formation of nano-scale dendritic deposition and improve battery safety.
  • the lithium metal battery electrolyte of the present invention is compatible with current lithium ion battery technology and has commercialization potential.
  • the coulombic efficiency of the negative electrode of the lithium metal battery of the present invention is above 98%; when used with a high-voltage positive electrode or a sulfur positive electrode, the performance and cycle performance of the whole battery can be effectively improved.
  • Figure 1 is a schematic diagram of Lewis acid and lithium nitrate forming a coordination compound in an ester solvent.
  • Figure 2 is a SEM lithium metal deposition diagram, a is a common ester electrolyte, and the lithium metal deposition is nano-dendritic; b is a SEM lithium metal deposition diagram in the first circle of Example 1.
  • the electrolyte solution is heated and stirred at 40 degrees in an argon glove box for 6 hours until the lithium nitrate is completely dissolved.
  • the electrolyte is used to test the full battery with lithium metal as the negative electrode and lithium nickel cobalt manganate as the positive electrode.
  • the single-layer polypropylene film is used as the separator. After testing, the Coulombic efficiency of the battery negative electrode can reach 99.9 by the Li/Cu battery. %; the cycle life is 530 cycles; the SEM lithium metal deposition pattern of the first cycle of Example 1 is shown in b in FIG. 2, and the lithium metal deposition crystal grains are coarsened.
  • a 45-micron thick lithium metal foil is used as the negative electrode of the battery, and the positive electrode uses lithium nickel cobalt manganate with a surface capacity of 3mAh cm -2 as the positive electrode.
  • the single-layer polypropylene film is used as the separator.
  • the battery tester (Wuhan Landian Company) constant current Charge and discharge at 0.3C, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 320 cycles.
  • the electrolyte of lithium nitrate is heated and stirred at 40 degrees in an argon glove box for 4 hours until all the lithium nitrate is dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickel cobalt manganate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 320 cycles.
  • the electrolyte of lithium nitrate is heated and stirred at 60 degrees in an argon glove box for 6 hours until all the lithium nitrate is dissolved.
  • This electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium iron phosphate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Landian Company ) When charging and discharging at a constant current of 0.3C, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 1000 cycles.
  • the electrolyte of zinc methanesulfonate and 3.0wt% lithium nitrate was heated and stirred at 40 degrees in an argon glove box for 3 hours until the lithium nitrate was completely dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and a lithium nickel cobaltate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 350 cycles.
  • the electrolytic solution of magnesium acid and 8.0wt% lithium nitrate was heated and stirred at 60 degrees in an argon glove box for 6 hours until the lithium nitrate was completely dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and a lithium nickel cobaltate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 1200 cycles.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickel cobalt manganate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 1500 cycles.
  • An electrolyte of 0.5 wt% aluminum trifluoromethanesulfonate and 2.0 wt% lithium nitrate was heated and stirred at 30 degrees in an argon glove box for 2 hours until the lithium nitrate was completely dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickel cobalt manganate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 160 cycles.
  • the electrolyte of 0.3 wt% sodium trifluoromethane sulfonate and 1.0 wt% lithium nitrate was heated and stirred at 30 degrees in an argon glove box for 1 hour until the lithium nitrate was completely dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickel cobalt manganate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 100 cycles.
  • An electrolyte of 0.5 wt% indium trifluoromethanesulfonate and 8.0 wt% lithium nitrate was heated and stirred at 40 degrees in an argon glove box for 5 hours until the lithium nitrate was completely dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium cobalt oxide as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the electrolyte of lithium nitrate is heated and stirred at 40 degrees in an argon glove box for 6 hours until all the lithium nitrate is dissolved.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and sulfur as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Landian Company) When charging and discharging with a current of 0.3C, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 340 cycles.
  • the electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickel cobalt manganate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Blue Electric company) constant current 0.3C charging and discharging, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 290 cycles.
  • This electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickelate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Landian Company ) When charging and discharging at a constant current of 0.3C, the Coulombic efficiency of the battery can reach 99.9%, and the cycle life is 820 cycles.
  • the electrolyte solution of phosphine and 5.0wt% lithium nitrate was heated and stirred at 60 degrees in an argon glove box for 5 hours until the lithium nitrate was completely dissolved.
  • This electrolyte is used to test a full battery with a 45-micron thick lithium metal foil as the negative electrode and lithium nickelate as the positive electrode (3mAh cm -2 ).
  • the single-layer polypropylene film is used as the diaphragm.
  • the battery tester (Wuhan Landian Company ) When charging and discharging at a constant current of 0.3C, the coulombic efficiency of the battery can reach 99.9%, and the cycle life is 640 cycles.
  • the sample is light yellow, clear and transparent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种含复合添加剂的锂金属电池电解液,包括电解质锂盐、有机溶剂和复合添加剂,所述有机溶剂为酯类溶剂,所述的复合添加剂包括路易斯酸和硝酸锂。本发明所述的锂金属电池电解液可以在锂金属负极表面原位转化成一层富含氮化物、氧化锂的无机快离子固态电解质保护层,促进锂金属沉积晶粒粗化,抑制纳米级枝晶状沉积形成,提高电池安全性;并且与目前锂离子电池工艺技术相兼容,具有商业化潜力。本发明还公开了上述锂金属电池电解液的制备方法,包括以下步骤:在惰性气体保护下,将复合添加剂加入到溶有电解质锂盐的酯类溶剂中,并在25~60℃范围内加热搅拌1~6小时。制备方法操作简单,工艺稳定。

Description

一种含复合添加剂的锂金属电池电解液及其制备方法 技术领域
本发明涉及二次高能量密度电池技术领域,具体涉及一种锂金属电池电解液。
背景技术
随着便携式电子设备和电动汽车等新能源科技行业的快速发展,全球对具有高能量密度高安全系数储能设备的需求日益增长。基于石墨为负极的锂离子电池受限于负极较低的理论容量(372mAh g -1),其能量密度已经近乎理论极限,很难再有大的提升。
锂金属负极因其极高的理论容量(3860mAh g -1)和超低的电化学势(-3.04V)被认为是高能量密度电池体系的终极负极材料,也是300Whkg -1以上二次电池的关键技术。
然而,化学性质及其活泼的锂金属极易与电解液体系形成不稳定的电化学界,并在充电过程中促进纳米级针状锂金属沉积,并在放电过程中转化为失去电化学连接的“死锂”,这些都会导致电池极化增大并加剧电池短路爆炸的风险。
通过改变电解液组成可以有效改善锂金属电极界面组成,从而调节锂金属沉积/剥离形貌,提升电池循环性能以及安全性。在酯类电解液中引入高浓度的双氟磺酸亚胺锂(>4M)可以促进FSI-阴离子的界面电化学还原,促进富含LiF的界面生成,提升锂库伦效率(Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries,Chem2018,4,174-185)。通过分子设计的手段,引入全氟化电解液同样可以在正常电解液浓度下实现富含LiF界面的生成,抑制枝晶状锂沉积形成(Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries,Nat.Nanotech2018,13,715-722)。
醚类电解液中常用的硝酸锂添加剂可以促使富含氮化物、氧化锂的无机稳定电化学界面形成,但是硝酸锂在酯类电解液(如碳酸乙烯酯,氟代碳酸乙烯酯)中几乎不溶解,溶解度仅为800ppm(Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode,Nat.Commun.,2018,9,3656)。研究人员通过微量缓释的方法,将硝酸锂不溶晶体固定于电池体系内,通过硝酸锂缓释可以有效提升电池循环寿命(High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes,PNAS,2018,115,5676-5680)。
但是,硝酸锂在酯类电解液中溶解度低的本质问题并没有得到解决。
发明内容
本发明提供了一种锂金属电池电解液,通过路易斯酸和硝酸锂构成配位化合物,增加硝酸锂在酯类电解液中的溶解度,减缓“死锂”形成,从而提升锂金属电池全电池的电化学性能以及循环寿命。
本发明解决上述技术问题所提供的技术方案为:
一种锂金属电池电解液,包括电解质锂盐、有机溶剂和复合添加剂,所述有机溶剂为酯 类溶剂,所述的复合添加剂包括路易斯酸和硝酸锂;所述的路易斯酸为三氟甲烷磺酸锡、三氟甲烷磺酸铟、三氟甲烷磺酸银、三氟甲烷磺酸铁、三氟甲烷磺酸锌、三氟甲烷磺酸镁、三氟甲烷磺酸铝、三氟甲烷磺酸钠、三(五氟苯基)硼烷、三(三甲基硅烷)硼酸酯或三(五氟苯基)膦中的一种或多种的混合。
在酯类溶剂中,路易斯酸和硝酸锂可以构成配位化合物,结构如图1所示,提高硝酸锂在酯类溶剂中溶解度。所述的复合添加剂可以在锂金属负极表面原位转化成一层富含氮化物、氧化锂的无机快离子固态电解质保护层,可以促进锂金属沉积晶粒粗化(5~50微米),抑制纳米级枝晶状沉积形成,提高电池安全性。这种粗大化的锂金属沉积在放电过程中活性物质利用度高,可以减缓“死锂”形成,从而提升锂金属电池全电池的电化学性能以及循环寿命。
优选地,所述的电解质锂盐在所述电解液中的摩尔浓度为1.0~5.0mol L -1;所述的路易斯酸在所述电解液中的质量分数为0.001wt%~10.0wt%,所述的硝酸锂在所述电解液中的质量分数为0.001wt%~10.0wt%。
循环性能与硝酸锂含量正相关,所述的硝酸锂在所述电解液中的质量分数优选为1wt%~8wt%。
优选地,所述的路易斯酸在所述电解液中的质量分数为0.3wt%~1.0wt%,所述的硝酸锂在所述电解液中的质量分数为1.0wt%~8.0wt%。
路易斯酸的加入可以促进硝酸锂的溶解,但是过高浓度的路易斯酸会增加锂金属负极表面的副反应,所以路易斯酸在所述电解液中的质量分数优选为0.3wt%~1.0wt%。溶解在电解液中的硝酸根浓度越高,可以在锂金属负极表面更致密地形成一层富含氮化物、氧化锂的无机快离子固态电解质保护层,但是过高浓度的硝酸根会影响电解液离子电导率,所以硝酸锂在所述电解液中的质量分数优选为1wt%~8wt%。
所述的酯类溶剂为碳酸乙烯酯、氟代碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯中的一种或多种的混合。
所述的电解质锂盐为六氟磷酸锂、双三氟甲烷磺酸亚胺锂、双氟磺酸亚胺锂、高氯酸锂、二氟草酸硼酸锂或三氟甲磺酸锂中的一种或多种的混合。
所述的酯类溶剂为氟代碳酸乙烯酯、碳酸二甲酯、碳酸乙烯酯、碳酸甲乙酯中的一种或多种的混合;所述的电解质锂盐为六氟磷酸锂、双三氟甲烷磺酸亚胺锂、二氟草酸硼酸锂、三氟甲烷磺酸铟中的一种或多种的混合;所述的路易斯酸为三氟甲烷磺酸铁、三氟甲烷磺酸镁或三氟甲烷磺酸铟中的一种或多种的混合。
本发明还提供了上述技术方案所述电解液的制备方法,包括以下步骤:在惰性气体保护下,将复合添加剂加入到溶有电解质锂盐的酯类溶剂中,并在25~60℃范围内加热搅拌1~6小时。
所述的惰性气体优选为氩气。
本发明还提供了一种锂金属电池,包括上述技术方案所述电解液。
所述的锂金属电池还包括正极、弹片、垫片、隔膜和负极,其特征在于,所述的负极采用的材料含锂金属;所述的正极采用的材料为磷酸铁锂、镍钴锰酸锂、镍钴酸铝锂、钴酸锂、镍酸锂或硫;所述的隔膜为单层聚丙烯隔膜。
与现有技术相比,本发明具有如下有益效果:
1、本发明所述的锂金属电池电解液可以在锂金属负极表面原位转化成一层富含氮化物、氧化锂的无机快离子固态电解质保护层,可以促进锂金属沉积晶粒粗化(5-50微米),抑制纳米级枝晶状沉积形成,提高电池安全性。
2、本发明所述的锂金属电池电解液与目前锂离子电池工艺技术相兼容,具有商业化潜力。
3、本发明所述的锂金属电池负极库伦效率至98%以上;配合高电压正极或硫正极使用,可以有效提升全电池性能和循环性能。
附图说明
图1为路易斯酸和硝酸锂在酯类溶剂中构成配位化合物的示意图。
图2为扫描电镜锂金属沉积图,a为普通酯类电解液,锂金属沉积呈现纳米级枝晶状;b为实施例1首圈沉积的扫描电镜锂金属沉积图。
具体实施方法
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
在氩气手套箱内,配制组成为碳酸乙烯酯∶碳酸二乙酯=1∶1(体积比),含有1.0mol L -1六氟磷酸锂,0.5wt%三氟甲烷磺酸锡和5.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌6小时直至硝酸锂全部溶解。
该电解液用于以金属锂作为负极,镍钴锰酸锂为正极的全电池测试,以单层聚丙烯膜为隔膜,经过测试,通过Li/Cu电池测得电池负极的库伦效率可以达到99.9%;循环寿命530圈;实施例1首圈沉积的扫描电镜锂金属沉积图如图2中的b所示,锂金属沉积晶粒粗化。
以45微米厚锂金属箔作为电池负极,正极使用面容量3mAh cm -2的镍钴锰酸锂为正极,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命320圈。
实施例2
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸二乙酯=1∶2(体积比),含有1.0mol L -1六氟磷酸锂,0.5wt%三氟甲烷磺酸铟和3.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌4小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴锰酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命320圈。
实施例3
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸二甲酯=1∶4(体积比),含有1.2mol L -1六氟磷酸锂,0.8wt%三氟甲烷磺酸铁和8.0wt%硝酸锂的电解液,在氩气手套箱内60度加热搅拌6小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,磷酸铁锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命1000圈。
实施例4
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯=3∶7(体积比),含有2.0mol L -1双三氟甲烷磺酸亚胺锂,0.3wt%三氟甲烷磺酸锌和3.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌3小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴酸铝锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命350圈。
实施例5
在氩气手套箱内,配制组成为碳酸乙烯酯∶碳酸甲乙酯=3∶7(体积比),含有3.0mol L -1双三氟甲烷磺酸亚胺锂,1.0wt%三氟甲烷磺酸镁和8.0wt%硝酸锂的电解液,在氩气手套箱内60度加热搅拌6小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴酸铝锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命1200圈。
实施例6
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯∶碳酸二甲酯=3∶4∶3(体积比),含有1.8mol L -1双三氟甲烷磺酸亚胺锂,0.8mol L -1二氟草酸硼酸锂1.0wt%三氟甲烷磺酸镁和5.0wt%硝酸锂的电解液,在氩气手套箱内60度加热搅拌6小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴锰酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命1500圈。
实施例7
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯∶碳酸二甲酯=3∶4∶3(体积比),含有1.2mol L -1二氟草酸硼酸锂。0.5wt%三氟甲烷磺酸铝和2.0wt%硝酸锂的电解液,在氩气手套箱内30度加热搅拌2小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴锰酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电, 电池的库伦效率可以达到99.9%,循环寿命160圈。
实施例8
在氩气手套箱内,配制组成为碳酸乙烯酯∶碳酸二甲酯=1∶2(体积比),含有1.0mol L -1双氟磺酸亚胺锂。0.3wt%三氟甲烷磺酸钠和1.0wt%硝酸锂的电解液,在氩气手套箱内30度加热搅拌1小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴锰酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命100圈。
实施例9
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯=1∶3(体积比),含有1.6mol L -1高氯酸锂。0.5wt%三氟甲烷磺酸铟和8.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌5小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,钴酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命1000圈。
实施例10
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸二乙酯=1∶2(体积比),含有1.2mol L -1六氟磷酸锂,0.5wt%三氟甲烷磺酸铟和5.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌6小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,硫为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命340圈。
实施例11
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯=3∶7(体积比),含有1.0mol L -1六氟磷酸锂,0.5wt%三(五氟苯基)硼烷和2.0wt%硝酸锂的电解液,在氩气手套箱内40度加热搅拌3小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍钴锰酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命290圈。
实施例12
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯=3∶7(体积比),含有1.2mol L -1六氟磷酸锂,0.3wt%三(三甲基硅烷)硼酸酯和5.0wt%硝酸锂的电解液,在氩气手套箱内60度加热搅拌5小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命820圈。
实施例13
在氩气手套箱内,配制组成为氟代碳酸乙烯酯∶碳酸甲乙酯=3∶7(体积比),含有2.0mol L -1三氟甲磺酸锂,0.3wt%三(五氟苯基)膦和5.0wt%硝酸锂的电解液,在氩气手套箱内60度加热搅拌5小时直至硝酸锂全部溶解。
该电解液用于以45微米厚锂金属箔作为负极,镍酸锂为正极(3mAh cm -2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命640圈。
溶解度实验
配制组成为碳酸乙烯酯∶碳酸二乙酯=1∶1(体积比),含有三氟甲烷磺酸锡和硝酸锂的样品,如表1所示。样品淡黄色澄清透明。配制组成为碳酸乙烯酯∶碳酸二乙酯=1∶1(体积比),含有1wt%硝酸锂的电解液样品,样品白色浑浊。
表1
样品序号 三氟甲烷磺酸锡(wt%) 硝酸锂(wt%)
1 0.5 0
2 0.5 1
3 0.5 2
4 0.5 3
5 0.5 5
结论:在酯类溶剂中,路易斯酸和硝酸锂可以构成配位化合物,提高硝酸锂在酯类溶剂中溶解度。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种含复合添加剂的锂金属电池电解液,其特征在于,包括电解质锂盐、有机溶剂和复合添加剂,所述有机溶剂为酯类溶剂,所述的复合添加剂包括路易斯酸和硝酸锂;所述的路易斯酸为三氟甲烷磺酸锡、三氟甲烷磺酸铟、三氟甲烷磺酸银、三氟甲烷磺酸铁、三氟甲烷磺酸锌、三氟甲烷磺酸镁、三氟甲烷磺酸铝、三氟甲烷磺酸钠、三(五氟苯基)硼烷、三(三甲基硅烷)硼酸酯或三(五氟苯基)膦中的一种或多种的混合。
  2. 根据权利要求1所述的锂金属电池电解液,其特征在于,所述的酯类溶剂为碳酸乙烯酯、氟代碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯中的一种或多种的混合。
  3. 根据权利要求1所述的锂金属电池电解液,其特征在于,所述的电解质锂盐为六氟磷酸锂、双三氟甲烷磺酸亚胺锂、双氟磺酸亚胺锂、高氯酸锂、二氟草酸硼酸锂或三氟甲磺酸锂中的一种或多种的混合。
  4. 根据权利要求1所述的锂金属电池电解液,其特征在于,所述的酯类溶剂为氟代碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸乙烯酯、碳酸甲乙酯中的一种或多种的混合;所述的电解质锂盐为六氟磷酸锂、双三氟甲烷磺酸亚胺锂、二氟草酸硼酸锂、三氟甲烷磺酸锂中的一种或多种的混合;所述的路易斯酸为三氟甲烷磺酸铁、三氟甲烷磺酸镁、三氟甲烷磺酸锡或三氟甲烷磺酸铟中的一种或多种的混合。
  5. 根据权利要求1所述的锂金属电池电解液,其特征在于,所述的电解质锂盐在所述电解液中的摩尔浓度为1.0~5.0mol L -1;所述的路易斯酸在所述电解液中的质量分数为0.001wt%~10.0wt%,所述的硝酸锂在所述电解液中的质量分数为0.001wt%~10.0wt%。
  6. 根据权利要求5所述的锂金属电池电解液,其特征在于,所述的路易斯酸在所述电解液中的质量分数为0.3wt%~1.0wt%,所述的硝酸锂在所述电解液中的质量分数为1.0wt%~8.0wt%。
  7. 权利要求1~6任意一项所述锂金属电池电解液的制备方法,其特征在于,包括以下步骤:在惰性气体保护下,将复合添加剂加入到溶有电解质锂盐的酯类溶剂中,并在25~60℃范围内加热搅拌1~6小时。
  8. 一种锂金属电池,其特征在于,包括权利要求1~6任意一项所述的电解液。
  9. 根据权利要求8所述的锂金属电池,包括正极、弹片、垫片、隔膜和负极,其特征在于,所述的负极采用的材料含锂金属;所述的正极采用的材料为磷酸铁锂、镍钴锰酸锂、镍钴酸铝锂、钴酸锂、镍酸锂或硫;所述的隔膜为单层聚丙烯隔膜。
PCT/CN2021/083098 2020-04-22 2021-03-25 一种含复合添加剂的锂金属电池电解液及其制备方法 WO2021213132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010323851.5 2020-04-22
CN202010323851.5A CN111477957B (zh) 2020-04-22 2020-04-22 一种含复合添加剂的锂金属电池电解液及其制备方法

Publications (1)

Publication Number Publication Date
WO2021213132A1 true WO2021213132A1 (zh) 2021-10-28

Family

ID=71760584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083098 WO2021213132A1 (zh) 2020-04-22 2021-03-25 一种含复合添加剂的锂金属电池电解液及其制备方法

Country Status (2)

Country Link
CN (1) CN111477957B (zh)
WO (1) WO2021213132A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284553A (zh) * 2021-12-25 2022-04-05 西安交通大学 一种无负极锂金属电池及其制备方法
CN115425292A (zh) * 2022-08-16 2022-12-02 华中科技大学 耐高温电解液、二次电池及其应用
CN115663393A (zh) * 2022-11-02 2023-01-31 华南理工大学 一种锂金属电池用氯端基MXene油墨基隔膜及其制备方法
CN116646606A (zh) * 2023-07-13 2023-08-25 常州千沐新能源有限公司 一种采用磺酸脂基深共晶溶剂的电解液、制备方法以及锂离子电池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477957B (zh) * 2020-04-22 2021-04-16 浙江大学 一种含复合添加剂的锂金属电池电解液及其制备方法
CN114373988A (zh) * 2020-11-20 2022-04-19 扬州大学 含氨基酸添加剂的锂金属电池电解液及其制备方法
CN114628710A (zh) * 2020-12-11 2022-06-14 中国科学院大连化学物理研究所 一种氟化碳电池用电解液及应用
CN112803075A (zh) * 2021-01-17 2021-05-14 北京工业大学 锂离子电池高电压正极材料高浓度电解液
CN113206293A (zh) * 2021-04-14 2021-08-03 华中科技大学 一种锂金属电池电解液及其制备方法与应用
CN113131000B (zh) * 2021-04-19 2022-11-22 清华大学深圳国际研究生院 一种碳酸酯类电解液及金属锂电池
CN113422110B (zh) * 2021-06-29 2022-03-29 华南理工大学 一种混合锆盐电解质材料的合成方法及在锂金属电池中的用途
CN113659203A (zh) * 2021-07-18 2021-11-16 哈尔滨工业大学 一种含复合添加剂的电解液及其应用
CN114284558B (zh) * 2021-12-29 2023-05-05 惠州亿纬锂能股份有限公司 一种锂离子电池电解液及锂离子电池
CN117154224A (zh) * 2023-09-15 2023-12-01 常州千沐新能源有限公司 一种能够增溶锂盐的深共晶电解液添加剂、电解液以及锂电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077394A (zh) * 2009-01-16 2011-05-25 松下电器产业株式会社 非水电解质二次电池用正极的制造方法以及非水电解质二次电池
US20150125760A1 (en) * 2013-11-06 2015-05-07 Retriev Technologies Incorporated Capacitors having conditioned carbon for electrodes
CN108539272A (zh) * 2018-05-10 2018-09-14 清华大学 一种锂金属电池的电解液
CN110085914A (zh) * 2019-06-04 2019-08-02 东莞维科电池有限公司 一种软包高电压锂离子电池电解液及一种锂离子电池
CN111477957A (zh) * 2020-04-22 2020-07-31 浙江大学 一种含复合添加剂的锂金属电池电解液及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785025B (zh) * 2017-01-24 2019-05-03 厦门大学 一种磺酸基聚合物电解质及其原位制备方法和应用
US10084182B2 (en) * 2017-02-23 2018-09-25 Nanotek Instruments, Inc. Alkali metal-sulfur secondary battery containing a protected sulfur cathode and manufacturing method
FR3069959B1 (fr) * 2017-08-07 2019-08-23 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
CN108987801A (zh) * 2017-08-09 2018-12-11 浙江林奈新能源有限公司 一种用于电化学电池电解质的薄膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077394A (zh) * 2009-01-16 2011-05-25 松下电器产业株式会社 非水电解质二次电池用正极的制造方法以及非水电解质二次电池
US20150125760A1 (en) * 2013-11-06 2015-05-07 Retriev Technologies Incorporated Capacitors having conditioned carbon for electrodes
CN108539272A (zh) * 2018-05-10 2018-09-14 清华大学 一种锂金属电池的电解液
CN110085914A (zh) * 2019-06-04 2019-08-02 东莞维科电池有限公司 一种软包高电压锂离子电池电解液及一种锂离子电池
CN111477957A (zh) * 2020-04-22 2020-07-31 浙江大学 一种含复合添加剂的锂金属电池电解液及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284553A (zh) * 2021-12-25 2022-04-05 西安交通大学 一种无负极锂金属电池及其制备方法
CN115425292A (zh) * 2022-08-16 2022-12-02 华中科技大学 耐高温电解液、二次电池及其应用
CN115663393A (zh) * 2022-11-02 2023-01-31 华南理工大学 一种锂金属电池用氯端基MXene油墨基隔膜及其制备方法
CN115663393B (zh) * 2022-11-02 2024-04-16 华南理工大学 一种锂金属电池用氯端基MXene油墨基隔膜及其制备方法
CN116646606A (zh) * 2023-07-13 2023-08-25 常州千沐新能源有限公司 一种采用磺酸脂基深共晶溶剂的电解液、制备方法以及锂离子电池
CN116646606B (zh) * 2023-07-13 2024-05-03 常州千沐新能源有限公司 一种采用磺酸酯基深共晶溶剂的电解液、制备方法以及锂离子电池

Also Published As

Publication number Publication date
CN111477957B (zh) 2021-04-16
CN111477957A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021213132A1 (zh) 一种含复合添加剂的锂金属电池电解液及其制备方法
CN101420047B (zh) 一种锂硫二次电池的制备方法
WO2020063371A1 (zh) 正极极片及锂离子二次电池
CN108767263B (zh) 一种改性金属锂负极铜箔集流体的制备方法及应用
CN113054165A (zh) 一种锌二次电池的负极极片及其制备方法与应用
WO2013185629A1 (zh) 一种高能量密度充放电锂电池
CN106602129B (zh) 一种多离子电池及其制备方法
WO2019153635A1 (zh) 一种用于稳定锂金属电池的醚酯复合电解液
WO2019214035A1 (zh) 一种锂金属电池的电解液
WO2018099092A1 (zh) 一种非水电解液及锂离子电池
WO2020238191A1 (zh) 一种降低电池阻抗的锂二次电池电解液及锂二次电池
CN102629686A (zh) 水系可充放锂离子的电极材料及水溶液可充放锂离子电池
WO2021047405A1 (zh) 一种电解液及包含该电解液的锂金属电池、电池模块、电池包和装置
CN112421185A (zh) 一种无负极二次锂电池的电解液及无负极二次锂电池和化成工艺
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
CN112271334B (zh) 一种以金属镁为负极材料的镁金属电池用负极成膜添加剂及其应用
US20230411693A1 (en) Non-aqueous electrolyte and secondary battery, battery module, battery pack and electrical device containing the same
CN113036100A (zh) 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
WO2023185944A1 (zh) 一种无游离溶剂分子的电解质体系及其制作方法和应用
WO2023240891A1 (zh) 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料
WO2023060554A1 (zh) 电解液、二次电池和用电装置
WO2023077330A1 (zh) 电解液、二次电池及包含该二次电池的用电装置
CN114388731A (zh) 一种锂电池电极及其制备方法和应用
WO2021128001A1 (zh) 二次电池及含有该二次电池的装置
WO2021023265A1 (zh) 一种电解液及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792654

Country of ref document: EP

Kind code of ref document: A1