WO2023077330A1 - 电解液、二次电池及包含该二次电池的用电装置 - Google Patents

电解液、二次电池及包含该二次电池的用电装置 Download PDF

Info

Publication number
WO2023077330A1
WO2023077330A1 PCT/CN2021/128534 CN2021128534W WO2023077330A1 WO 2023077330 A1 WO2023077330 A1 WO 2023077330A1 CN 2021128534 W CN2021128534 W CN 2021128534W WO 2023077330 A1 WO2023077330 A1 WO 2023077330A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
weight
compound
solvent
formula
Prior art date
Application number
PCT/CN2021/128534
Other languages
English (en)
French (fr)
Inventor
张翠平
韩昌隆
姜彬
吴则利
黄磊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21962848.4A priority Critical patent/EP4358221A1/en
Priority to CN202180094489.1A priority patent/CN116964816A/zh
Priority to PCT/CN2021/128534 priority patent/WO2023077330A1/zh
Publication of WO2023077330A1 publication Critical patent/WO2023077330A1/zh
Priority to US18/408,488 priority patent/US20240178454A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, in particular to an electrolyte, a secondary battery and an electrical device including the secondary battery.
  • the present application was made in view of the above-mentioned problems, and an object thereof is to provide an electrolytic solution, a secondary battery, and an electric device including the secondary battery.
  • the secondary battery has good safety performance and a long cycle life.
  • an electrolyte including a solvent, the solvent includes the following formula (1) compound and ethylene carbonate, and relative to the total weight of the solvent, the The content of the ethylene carbonate is less than or equal to 25% by weight.
  • R1 is C1-C6 alkyl substituted by fluorine, C2-C6 alkenyl substituted by fluorine;
  • R2 and R3 are the same or different, and are independently hydrogen atom, fluorine atom or C1-C6 alkyl substituted by fluorine .
  • the content of the ethylene carbonate is 5% by weight-25% by weight; optionally 10% by weight-20% by weight;
  • the content of the compound of formula (1) is 5% by weight to 35% by weight; optionally 10% by weight to 30% by weight;
  • R1 is a perfluorosubstituted C1-C6 alkyl group; preferably, in the compound of formula (1), R1 is -CF 3 or -C 2 F 5 , R2 and R3 are each independently a hydrogen atom or a fluorine atom.
  • the electrolytic solution of the present application contains the compound of the above formula (1) and a specific amount of ethylene carbonate as a solvent, which improves the safety performance and cycle life of the battery.
  • the solvent also includes dimethyl carbonate and/or carboxylate, and the carboxylate is methyl formate, ethyl formate, ethyl acetate, ethyl propionate and propyl formate At least one, preferably propyl formate; alternatively, relative to the total weight of the solvent, the content of the compound of formula (1) is denoted as W1, and the content of the dimethyl carbonate and/or carboxylate is denoted as is W2, then the electrolyte satisfies: 1.5 ⁇ W2/W1 ⁇ 3; optionally, 2 ⁇ W2/W1 ⁇ 2.5.
  • the electrolytic solution of the present application improves the conductivity of the electrolytic solution by further containing low-viscosity organic solvents such as the above-mentioned dimethyl carbonate and/or carboxylate, and then improves the power performance and life of the battery, thereby obtaining high safety, Batteries with high cycle life and high power performance.
  • the electrolytic solution includes an electrolyte salt
  • the electrolyte salt includes lithium bisfluorosulfonyl imide and lithium hexafluorophosphate
  • the volume molar concentration of lithium bisfluorosulfonyl imide in the electrolyte salt is expressed as C1
  • the volume molar concentration of lithium hexafluorophosphate in the electrolyte salt is denoted as C2
  • the electrolyte satisfies: 0.25 ⁇ C1/C2 ⁇ 9; optionally, 1 ⁇ C1/C2 ⁇ 4.
  • the content of the compound of formula (1) is denoted as A1
  • the content of the lithium bisfluorosulfonyl imide is denoted as A2
  • the electrolyte satisfies: 0.3 ⁇ A1/A2 ⁇ 8.4 ;
  • the electrolyte of the present application further contains lithium bisfluorosulfonyl imide to improve the conductivity of the electrolyte, thereby improving the power performance and life of the battery, thereby obtaining a battery with high safety, high cycle life and high power performance .
  • the electrolytic solution also includes an additive comprising vinylene carbonate.
  • an additive comprising vinylene carbonate.
  • the content of the vinylene carbonate is less than or equal to 5% by weight; it may be 0.1% by weight to 3% by weight.
  • the viscosity of the electrolyte at 25° C. is ⁇ 5 mPa ⁇ s; it may be 2 mPa.s-5 mPa.s.
  • the present application provides a secondary battery, which includes the electrolyte solution of the first aspect of the present application.
  • the secondary battery prepared by the electrolyte solution of the present application has high safety performance and high cycle life.
  • the present application provides an electrical device, which includes the secondary battery of the second aspect of the present application.
  • an electrolyte solution capable of improving the safety performance and cycle performance of a secondary battery, a secondary battery using the electrolyte solution having good safety performance and cycle performance, and an electric device including the secondary battery.
  • any lower limit can be combined with any other upper limit to form an unexpressed range; and any lower limit can be combined with any other upper limit to form an unexpressed range, just as any upper limit can be combined with any other upper limit to form an unexpressed range.
  • every point or individual value between the endpoints of a range is included within that range, although not expressly stated herein.
  • each point or individual value may serve as its own lower or upper limit in combination with any other point or individual value, or with other lower or upper limits, to form a range not expressly recited. It should be understood that the list of values is by way of example only and should not be construed as exhaustive.
  • the application proposes an electrolytic solution, the electrolytic solution includes a solvent, the solvent includes a compound of the following formula (1) and ethylene carbonate, and relative to the total weight of the solvent, the The content of the ethylene carbonate is less than or equal to 25% by weight.
  • R1 is C1-C6 alkyl substituted by fluorine, C2-C6 alkenyl substituted by fluorine;
  • R2 and R3 are the same or different, and are independently hydrogen atom, fluorine atom or C1-C6 alkane substituted by fluorine base.
  • C1-C6 alkyl in this application means a straight chain or branched chain alkyl group with 1-6 carbon atoms, for example, including but not limited to -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3) 2.
  • fluorine-substituted C1-C6 alkyl in this application means a group formed by replacing one or more hydrogen atoms in the above-mentioned "C1-C6 alkyl" with fluorine, for example, including but not limited to -CH2F , -CHF2, -CF3, -CH2CH2F, -CH2CF3, -C2F5, -CH2CH2CH2F, -CH2CH2CF3, -C3F7, -CH(CF3)2, -CH2CH2CH2CF3, -C4F9, -CH2CH2CH2CH2CH2CF3, etc.
  • R1 is a perfluoro-substituted C1-C6 alkyl group.
  • R1 is -CF3 or -C2F5
  • R2 and R3 are independently a hydrogen atom or a fluorine atom.
  • the electrolyte of the present application contains the compound of formula (1) and a specific amount of ethylene carbonate at the same time, so that the battery can take into account both better safety performance and longer cycle life.
  • ethylene carbonate has poor oxidation resistance, and it is easy to oxidize and produce gas at the positive electrode when the battery is fully charged and stored at high temperature, resulting in battery flatulence, while the compound of formula (1) has a low oxidation potential and can participate in the SEI interface in advance Film formation reduces the oxidative decomposition of ethylene carbonate to produce gas, thereby improving the safety performance and cycle life of the battery; but, if the content of ethylene carbonate is greater than 25%, even if the compound of formula (1) is added to participate in the SEI interface film formation in advance, the battery also has potential safety hazards, and it is impossible to obtain a secondary battery with high safety performance and high cycle life at the same time.
  • the content of ethylene carbonate may be 5 wt %-25 wt %; for example, it may be 10 wt %-20 wt %.
  • the safety performance and cycle life of the battery can be further improved.
  • the content of the compound of formula (1) is 5% by weight to 35% by weight; for example, it can be 10% by weight to 30% by weight, or 15% by weight to 30% by weight %.
  • the compound of formula (1) is within the given range, the kinetic performance of the battery can be further improved on the premise of ensuring that the battery has better safety performance and cycle life.
  • the solvent further includes dimethyl carbonate and/or carboxylate.
  • the carboxylic acid ester may be selected from at least one of methyl formate, ethyl formate, ethyl acetate, ethyl propionate and propyl formate; alternatively, it is propyl formate.
  • the compound of formula (1) itself has a high viscosity. By adding the above-mentioned organic solvent, the viscosity can be reduced, and the power performance and service life of the battery can be improved. The battery thus obtained has more excellent performance, that is, high safety, long cycle life and High power performance.
  • the content of the compound of formula (1) is denoted as W1
  • the content of the dimethyl carbonate and/or carboxylate is denoted as W2
  • the electrolyte satisfies : 1.5 ⁇ W2/W1 ⁇ 3; optionally, 2 ⁇ W2/W1 ⁇ 2.5.
  • the electrolyte solution includes electrolyte salt, and its specific type is not limited and can be selected according to actual needs.
  • it may be selected from lithium hexafluorophosphate, lithium bisfluorosulfonyl imide, lithium bis(trifluoromethyl)sulfonyl imide, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium hexafluoroarsenate, bisoxalate borate
  • the electrolyte salt includes lithium hexafluorophosphate and lithium bisfluorosulfonyl imide.
  • the electrolyte satisfies: 0.25 ⁇ C1/C2 ⁇ 9; alternatively, 1 ⁇ C1/C2 ⁇ 4.
  • the electrolyte satisfies: 0.25 ⁇ C1/C2 ⁇ 9; alternatively, 1 ⁇ C1/C2 ⁇ 4.
  • the compound of formula (1) When the compound of formula (1) is used as the solvent of the electrolyte, its own viscosity is relatively high.
  • the easily dissociated lithium salt bisfluorosulfonimide lithium By adding the easily dissociated lithium salt bisfluorosulfonimide lithium, it is beneficial to the movement of lithium ions, improving the conductivity of the electrolyte, and improving the battery life. The power performance and service life have been improved, and more excellent technical effects have been obtained.
  • the electrolyte satisfies: 0.3 ⁇ A1/ A2 ⁇ 8.4; optionally, 0.4 ⁇ A1/A2 ⁇ 3.
  • A1/A2 within the above range, the electrical conductivity can be improved while ensuring the safety performance of the battery.
  • the electrolyte solution also includes additives, such as vinylene carbonate, 1,3-propane sultone, sulfuric acid esters, fluoroethylene carbonate, difluoroethylene carbonate, Lithium phosphate, lithium tetrafluoroborate, etc.
  • additives such as vinylene carbonate, 1,3-propane sultone, sulfuric acid esters, fluoroethylene carbonate, difluoroethylene carbonate, Lithium phosphate, lithium tetrafluoroborate, etc.
  • vinylene carbonate is preferentially reduced in the negative electrode than the compound of formula (1) and ethylene carbonate (EC), and participates in the formation of SEI film, can avoid the reductive decomposition of electrolyte solvent, therefore, preferably described additive includes vinyl ester.
  • the content of the vinylene carbonate is less than or equal to 5%; it may be 0.1%-3%.
  • the viscosity of the electrolyte at 25° C. is ⁇ 5 mPa ⁇ s; it may be 2 mPa.s-5 mPa.s.
  • the secondary battery according to the second aspect of the present application includes a positive electrode sheet, a negative electrode sheet, a separator, and the electrolyte solution according to the first aspect of the present application.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode collector, and the positive electrode film layer includes the positive electrode active material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • the present application has no special limitation on the shape of the secondary battery, which may be cylindrical, square or any other shape.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • a third aspect of the present application provides an electric device, which includes at least one of the secondary battery, battery module or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electrical device may include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, Electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module, or a battery pack can be selected according to its use requirements.
  • Compound 6 2-Monofluoromethoxy-4-(2-fluoroethyl)-5-monofluoromethyl-1,3,2-dioxaphospholane 2-oxide.
  • the viscosity of the electrolyte in this specification is measured by a viscometer (model Bolefei DVIIT) based on GB/T 10247-2008 “Viscosity Measurement Method”.
  • Example 12 As shown in Table 3, in Example 12, 25.65 g of propyl formate was added to replace dimethyl carbonate, and the operation was the same as that of Example 12, except that the electrolyte was prepared.
  • Examples 1-9 a solvent and lithium hexafluorophosphate were further added, the types and contents of which were shown in Table 3, to prepare an electrolyte.
  • the cathode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , the conductive agent Super P, and the binder polyvinylidene fluoride (PVDF) were prepared into an anode slurry in N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the solid content in the positive electrode slurry is 50wt%, and the mass ratio of LiNi 0.8 Co 0.1 Mn 0.1 O 2 , Super P, and PVDF in the solid component is 8:1:1.
  • Negative electrode slurry was prepared by mixing graphite as the negative electrode active material with conductive agent Super P, thickener CMC, and binder styrene-butadiene rubber (SBR) in deionized water.
  • the solid content in the negative electrode slurry is 30wt%, and the mass ratio of graphite, Super P, CMC and binder styrene-butadiene rubber (SBR) in the solid component is 80:15:3:2.
  • Polyethylene film (PE) is used as the isolation film. Stack the prepared positive pole piece, separator, and negative pole piece in order, so that the separator is in the middle of the positive and negative pole pieces to play the role of isolation, wind up the bare cell, weld the tabs, and place the bare cell
  • the electrolyte solutions prepared in the above examples and comparative examples were respectively injected into the dried battery cells, packaged, left standing, formed, shaped, capacity tested, etc., to prepare a secondary battery.
  • the ambient temperature was adjusted to 25°C, and the secondary battery was charged at a constant current of 1C to 4.25V, and then charged at a constant voltage of 4.25V to a current of 0.05C.
  • Attach the temperature sensing line to the center of the battery surface. Then put the battery into the heating furnace. The furnace heats up at 10°C/min and keeps it warm for 30 minutes. When the temperature of the temperature sensing line increases sharply in an instant and the temperature is much higher than the furnace temperature, it can be considered that the battery is thermally out of control at this time.
  • the temperature of the furnace at the time of the thermal runaway of the battery and the duration of the furnace temperature were recorded.
  • the discharge capacity of the 200th cycle is Cn.
  • Capacity retention (%) after 200 cycles of the battery (Cn/C1) ⁇ 100%.
  • Table 5 and Table 6 show the performance test results of the secondary batteries of Examples and Comparative Examples.
  • the electrolyte of Examples 1-11 contains the compound of formula (1) and a specific amount of ethylene carbonate as a solvent, and the thermal runaway temperature of the battery is high, all of which are above 103°C.
  • the capacity retention rate (%) after 200 cycles all reaches more than 88.5, which improves the safety performance and cycle life of the battery.
  • the electrolyte solution of Examples 15-23 further contains low-viscosity organic solvent and easily dissociated lithium salt lithium bisfluorosulfonimide, which can reduce the thermal runaway of the battery.
  • the temperature, the capacity retention rate (%) after 200 cycles of the battery, and the normal temperature DC resistance (DCR) of the battery at 50% SOC have been further improved, and a battery with high safety performance, high cycle life, and high power performance has been obtained.
  • DCR normal temperature DC resistance
  • Comparative Example 2 the content of ethylene carbonate in the solvent was 26% by weight, and ethylene carbonate was oxidized to produce gas in a large amount at the positive electrode. Even if the compound of formula (1) of the present application was added, the present invention could not be obtained. The technical effect of the application. Furthermore, comparing Comparative Example 2 with Comparative Examples 1 and 7, it can be seen that even if the content of the compound of formula (1) is further increased (see Comparative Example 1) or a low-viscosity organic solvent is added (see Comparative Example 7), it cannot be simultaneously Obtain high safety performance and high cycle life.
  • the cyclic organophosphorus compound did not contain fluorine element.
  • the fluorine contained in the compound of formula (1) of the present application has two effects. 1) Improve the oxidation resistance of the compound, 2) capture hydrogen and oxygen free radicals during thermal runaway, terminate the thermal runaway heat production reaction, and improve safety performance.
  • the organophosphorus compound in Comparative Example 3 does not contain fluorine, so the technical effect of the present application cannot be obtained.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种电解液、二次电池及包含该二次电池的用电装置。本申请的电解液包括溶剂,所述溶剂包括下述式(1)化合物(式中,R1为氟取代的C1-C6烷基、氟取代的C2-C6链烯基;R2、R3相同或不同,分别独立地为氢原子、氟原子或氟取代的C1-C6烷基。)和碳酸乙烯酯,且相对于溶剂的总重量,所述碳酸乙烯酯的含量小于等于25重量%。本申请的电解液应用于二次电池后,使得二次电池具有高安全性能和高循环寿命。

Description

电解液、二次电池及包含该二次电池的用电装置 技术领域
本申请涉及电池领域,尤其涉及一种电解液、二次电池及包含该二次电池的用电装置。
背景技术
近年来,随着人们对环境问题的日益关注,对可以代替化石燃料而应用于电动车辆(EV,如汽油车辆、柴油车辆等)、混合动力EV(HEV)的新型能源的研究正在积极的进行。除了考虑环境方面,人们对高安全性、长循环寿命的电池的要求也迫使研究人员对现有电池进行深入研究。
因此,如何使电池同时兼顾较好的安全性能和电化学性能仍是本领域亟待解决的问题。
发明内容
本申请是鉴于上述课题而进行的,其目的在于提供一种电解液、二次电池及包含该二次电池的用电装置,所述二次电池的安全性能好、且循环寿命长。
为了达到上述目的,在本申请的第一方面,提供了一种电解液,包括溶剂,所述溶剂包括下述式(1)化合物和碳酸乙烯酯,且相对于所述溶剂的总重量,所述碳酸乙烯酯的含量小于等于25重量%。
Figure PCTCN2021128534-appb-000001
式1中,R1为氟取代的C1-C6烷基、氟取代的C2-C6链烯基;R2、R3相同或不同,分别独立地为氢原子、氟原子或氟取代的C1- C6烷基。
在任意实施方式中,相对于所述溶剂的总重量,所述碳酸乙烯酯的含量为5重量%-25重量%;可选为10重量%-20重量%;
在任意实施方式中,相对于所述溶剂的总重量,所述式(1)化合物的含量为5重量%-35重量%;可选为10重量%-30重量%;
在任意实施方式中,在所述式(1)化合物中,R1为全氟取代的C1-C6烷基;优选地,在所述式(1)化合物中,R1为-CF 3或-C 2F 5,R2、R3分别独立地为氢原子或氟原子。
本申请的电解液中通过含有上述式(1)化合物和特定量的碳酸乙烯酯作为溶剂,提高了电池的安全性能和循环寿命。
在任意实施方式中,所述溶剂还包括碳酸二甲酯和/或羧酸酯,所述羧酸酯为甲酸甲酯、甲酸乙酯、乙酸乙酯、丙酸乙酯和甲酸丙酯中的至少一种,优选的为甲酸丙酯;可选地,相对于溶剂的总重量,所述式(1)化合物的含量记为W1,所述碳酸二甲酯和/或羧酸酯的含量记为W2,则所述电解液满足:1.5≤W2/W1≤3;可选地,2≤W2/W1≤2.5。
本申请的电解液通过进一步含有上述碳酸二甲酯和/或羧酸酯等低粘度有机溶剂,提高了电解液的电导率,进而提高了电池的功率性能和寿命,从而获得了高安全性、高循环寿命且高功率性能的电池。
在任意实施方式中,所述电解液包括电解质盐,所述电解质盐包括双氟磺酰亚胺锂和六氟磷酸锂,所述双氟磺酰亚胺锂在所述电解质盐中的体积摩尔浓度记为C1,所述六氟磷酸锂在所述电解质盐中的体积摩尔浓度记为C2,则所述电解液满足:0.25≤C1/C2≤9;可选地,1≤C1/C2≤4。另外,0.2mol/L≤C1≤0.9mol/L;和/或,0.1M/L≤C2≤0.8M/L。
相对于电解液的总重量,所述式(1)化合物的含量记为A1,所述双氟磺酰亚胺锂的含量记为A2,则所述电解液满足:0.3≤A1/A2≤8.4;可选地,0.4≤A1/A2≤3。
本申请的电解液通过进一步含有双氟磺酰亚胺锂,提高了电解液的电导率,进而提高了电池的功率性能和寿命,从而获得了高安全性、高循环寿命且高功率性能的电池。
在任意实施方式中,所述电解液还包括添加剂,所述添加剂包括 碳酸亚乙烯酯。另外,相对于电解液的总重量,所述碳酸亚乙烯酯的含量小于等于5重量%;可选为0.1重量%-3重量%。
在任意实施方式中,所述电解液在25℃下的粘度≤5mPa·s;可选为2mPa.s-5mPa.s。
在本申请的第二方面,本申请提供一种二次电池,其包括本申请第一方面的电解液。通过本申请的电解液制备成的二次电池具有高安全性能和高循环寿命。
在本申请的第三方面,本申请提供一种用电装置,其包括本申请第二方面的二次电池。
发明的效果
根据本申请,能够提供可提高二次电池的安全性能和循环性能的电解液、使用了该电解液的安全性能和循环性能好的二次电池及包含该二次电池的用电装置。
具体实施方式
以下,将详细说明本申请的电解液、二次电池及包含该二次电池的用电装置。
为了简便,本文仅示例性地公开了一些数值范围。然而,任意下限可以与任何其它上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因此,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合、或与其它下限或上限组合形成未明确记载的范围。应理解,数值的列举仅作为示例,不应解释为穷尽。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”、“≤”、“≥”均包含本数,“至少一种”是指包括一种或多种,“一种或多种”中的“多种”含义是指两种或两种以上。
电解液
在本申请的第一方面中,本申请提出了一种电解液,所述电解液包括溶剂,所述溶剂包括下述式(1)化合物和碳酸乙烯酯,且相对于溶剂的总重量,所述碳酸乙烯酯的含量小于等于25重量%。
Figure PCTCN2021128534-appb-000002
在式1中,R1为氟取代的C1-C6烷基、氟取代的C2-C6链烯基;R2、R3相同或不同,分别独立地为氢原子、氟原子或氟取代的C1-C6烷基。
本申请中的术语“C1-C6烷基”,表示具有1-6个碳原子的直链或支链烷基,例如,包括但不限于-CH3、-CH2CH3、-CH2CH2CH3、-CH(CH3)2、-CH2CH2CH2CH3、-C(CH3)3、-CH(CH3)CH2CH3、-CH2CH(CH3)2、-CH2CH2CH2CH2CH3、-CH(CH3)CH2CH2CH3、-CH2CH(CH3)CH2CH3、-CH2CH2CH(CH3)2、-CH2CH2CH2CH2CH2CH3、-CH(C2H5)CH2CH3、-C(CH3)2CH2CH3、-CH(CH3)C(CH3)3等。
本申请中的术语“氟取代的C1-C6烷基”,表示上述“C1-C6烷基”中的一个或多个氢原子被氟取代所形成的基团,例如,包括但不限于-CH2F、-CHF2、-CF3、-CH2CH2F、-CH2CF3、-C2F5、-CH2CH2CH2F、-CH2CH2CF3、-C3F7、-CH(CF3)2、-CH2CH2CH2CF3、-C4F9、-CH2CH2CH2CH2CH2CF3等。
本申请中的术语“氟取代的C2-C6链烯基”,表示上述“氟取代的C1-C6烷基”中的一个或多个单键替换为双键所形成的基团,例如,包括但不限于-CH=CHF、-CF=CF2、-CH=CHCH2F、-CH2CH=CF2、-CH=CHCH2CH=CHCF3等。
在本申请的一实施方式中,优选地,在所述式(1)化合物中R1为全氟取代的C1-C6烷基。
在本申请的一实施方式中,优选地,在所述式(1)化合物中R1为-CF3或-C2F5,R2、R3分别独立地为氢原子或氟原子。
对于式(1)化合物的具体例,可以举出下述表1所示的化合物,但并不限定于此。
表1
式(1)化合物No. R1 R2 R3
化合物1 CF3 H H
化合物2 CH2F H H
化合物3 CHF2 H H
化合物4 C2F5 H F
化合物5 CH2CH2F F H
化合物6 CH2F CH2CH2F CH2F
化合物7 CF3 H CF3
化合物8 CF3 CH2F CH2F
化合物9 -CH=CHF H H
化合物10 CH2CF3 H H
本申请的电解液中同时包含式(1)化合物和特定量的碳酸乙烯酯,可以使电池同时兼顾较好的安全性能和较长的循环寿命。
发明人发现,碳酸乙烯酯的耐氧化性较差,在电池满充高温存储时容易在正极发生氧化产气,导致电池胀气,而式(1)化合物的氧化电位较低,可以提前参与SEI界面成膜,降低碳酸乙烯酯的氧化分解产气,从而改善电池的安全性能和循环寿命;但是,如果碳酸乙烯酯的含量大于25%,即使加入式(1)化合物提前参与SEI界面成膜,,电池也存在安全隐患,不能获得同时具有高安全性能和高循环寿命的二次电池。
在一些实施方式中,相对于电解液溶剂的总重量,碳酸乙烯酯的含量可以为5重量%-25重量%;例如可以为10重量%-20重量%。当碳酸乙烯酯的含量在所给范围内时,可以进一步改善电池的安全性能和循环寿命。
在一些实施方式中,相对于所述溶剂的总重量,所述式(1)化合物的含量为5重量%-35重量%;例如可以为10重量%-30重量%,15重量%-30重量%。式(1)化合物在所给范围内时,可以在保证电池具有较好的安全性能和循环寿命的前提下,进一步改善电池的动力学性能。
在一些实施方式中,所述溶剂还包括碳酸二甲酯和/或羧酸酯。所述羧酸酯可以选自甲酸甲酯、甲酸乙酯、乙酸乙酯、丙酸乙酯和甲酸丙酯中的至少一种;可选地,为甲酸丙酯。式(1)化合物本身粘度较高,通过添加上述有机溶剂,能够降低粘度,提升电池的功率性能和使用寿命,由此得到的电池具有更优异的性能,即,安全性高、循环寿命长且功率性能高。
另外,可选地,相对于溶剂的总重量,所述式(1)化合物的含量记为W1,所述碳酸二甲酯和/或羧酸酯的含量记为W2,则所述电解液满足:1.5≤W2/W1≤3;可选地,2≤W2/W1≤2.5。通过使W2/W1在上述范围内,能够获得良好的降低粘度的效果,有利于提高电池寿命。
在一些实施方式中,所述电解液包括电解质盐,其具体种类不受限制,可根据实际需求进行选择。例如,可选自六氟磷酸锂、双氟磺酰亚胺锂、双(三氟甲基)磺酰亚胺锂、四氟硼酸锂、三氟甲基磺酸锂、六氟砷酸锂、双草酸硼酸锂、高氯酸锂中的一种或几种。优选地,所述电解质盐包括六氟磷酸锂和双氟磺酰亚胺锂。
当所述双氟磺酰亚胺锂在所述电解质盐中的体积摩尔浓度记为C1、所述六氟磷酸锂在所述电解质盐中的体积摩尔浓度记为C2时,所述电解液满足:0.25≤C1/C2≤9;可选地,1≤C1/C2≤4。另外,优选地,0.2mol/L≤C1≤0.9mol/L;和/或,0.1M/L≤C2≤0.8M/L。
式(1)化合物作为电解液的溶剂使用时,本身粘度较高,通过添加易解离锂盐双氟磺酰亚胺锂有利于锂离子的移动,提高电解液的导电率,提升了电池的功率性能和使用寿命,获得了更加优异的技术效果。
优选地,在相对于电解液的总重量所述式(1)化合物的含量记为A1、所述双氟磺酰亚胺锂的含量记为A2时,所述电解液满足:0.3≤A1/A2≤8.4;可选地,0.4≤A1/A2≤3。通过使A1/A2在上述范围内,能够在保证电池安全性能的情况下提高电导率。
在一些实施方式中,所述电解液还包括添加剂,作为所述添加剂,例如可以举出碳酸亚乙烯酯、1,3-丙磺酸内酯,硫酸酯类,氟代碳酸乙烯酯、二氟磷酸锂、四氟硼酸锂等。其中,因为碳酸亚乙 烯酯优先于式(1)化合物和碳酸乙烯酯(EC)在负极还原,并参与SEI膜的形成,能够避免电解液溶剂的还原分解,因此,优选所述添加剂包括碳酸亚乙烯酯。进一步优选地,相对于电解液的总重量,所述碳酸亚乙烯酯的含量小于等于5%;可选为0.1%-3%。
在一些实施方式中,所述电解液在25℃下的粘度≤5mPa·s;可选为2mPa.s-5mPa.s。
二次电池
本申请的第二方面的二次电池包括正极极片、负极极片、隔离膜和本申请的第一方面的电解液。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解液在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种, 也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜 的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
用电装置
本申请的第三方面提供一种用电装置,该用电装置包括本申请提供的二次电池、电池模块或电池包中的至少一种。该二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作该用电装置的能量存储单元。该用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为上述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
以下实施例中使用的化合物1-6均购自国药试剂,化学名依次为:
化合物1:2-三氟甲氧基-1,3,2-二氧磷杂环戊烷2-氧化物;
化合物2:2-单氟甲氧基-1,3,2-二氧磷杂环戊烷2-氧化物;
化合物3:2-二氟甲氧基-1,3,2-二氧磷杂环戊烷2-氧化物;
化合物4:2-五氟乙氧基-5-氟-1,3,2-二氧磷杂环戊烷2-氧化物;
化合物5:2-(2-氟乙氧基)-4-氟-1,3,2-二氧磷杂环戊烷2-氧化物;
化合物6:2-单氟甲氧基-4-(2-氟乙基)-5-单氟甲基-1,3,2-二氧磷杂环戊烷2-氧化物。
25℃下的粘度
本说明书中的电解液的粘度采用粘度计(型号为博乐飞DVⅡT)基于GB/T 10247-2008《粘度测量方法》进行测量。
实施例1
在充满氩气的手套箱中(水含量<10ppm,氧气含量<1ppm),作为溶剂将式(1)化合物4.275g、碳酸乙烯酯4.275g、碳酸甲乙酯76.95g(重量为5:5:90)混合均匀,向其中缓慢加入12.5g的六氟磷酸锂使其浓度为1M,待作为锂盐的六氟磷酸锂完全溶解后,得到锂盐浓度为1mol/L的电解液,最后加入2g碳酸亚乙烯酯,得到电解液。
电解液中的各成分的具体种类、含量以及各成分之间的配比如表2所示。
实施例2-11
按照表2所示,添加式(1)化合物和碳酸乙烯酯,通过相应地调节碳酸甲乙酯的量使溶剂在电解液的总重量中的含量始终保持为85.5重量%,除此之外与实施例1相同地进行操作,制备得到电解液。
实施例12
在充满氩气的手套箱中(水含量<10ppm,氧气含量<1ppm),作为溶剂加入式(1)化合物12.825g、碳酸乙烯酯8.55g以及碳酸甲乙酯38.475g,另外加入25.65g碳酸二甲酯混合均匀,向其中缓慢加入12.5g的六氟磷酸锂使其浓度为1M,待作为锂盐的六氟磷酸锂完全溶解后,得到锂盐浓度为1mol/L的电解液,最后加入2g碳酸亚乙烯酯,得到电解液。
电解液中的各成分的具体种类、含量以及各成分之间的配比如表3所示。
实施例13
按照表3所示,在实施例12中添加25.65g甲酸丙酯替换掉碳酸二甲酯,除此之外与实施例12相同地进行操作,制备得到电解液。
实施例14
在充满氩气的手套箱中(水含量<10ppm,氧气含量<1ppm),作为溶剂加入12.534g式(1)化合物、8.356g碳酸乙烯酯以及62.667g碳酸甲乙酯,另外,加入10.318g双氟磺酰亚胺锂(C1=0.67mol/L)和4.125g六氟磷酸锂(C2=0.33mol/L)使其浓度和为1M,得到锂盐浓度为1mol/L的电解液,最后加入2g碳酸亚乙烯酯。搅拌,制备得到电解液。
实施例15-23
在实施例1-9中,分别进一步加入溶剂和六氟磷酸锂,其种类和含量如表3所示,制备得到电解液。
对比例1-2、8
按照表4所示的材料和配比,与实施例1相同地制备,得到电解液。
对比例3
在充满氩气的手套箱中(水含量<10ppm,氧气含量<1ppm),作为溶剂将表4所示的环状有机磷12.534g、碳酸乙烯酯8.356g、乙酸乙酯25.067g、碳酸甲乙酯37.6g混合均匀,向其中缓慢加入4.125g六氟磷酸锂(0.33mol/L)和10.318g双氟磺酰亚胺锂(C1=0.67mol/L)使其浓度为1M,待完全溶解后,得到锂盐浓度为1mol/L的电解液,最后加入2g碳酸亚乙烯酯,得到电解液。
对比例4-7
按照表4所示的材料和配比,与对比例3相同地制备,得到电解液。
Figure PCTCN2021128534-appb-000003
Figure PCTCN2021128534-appb-000004
Figure PCTCN2021128534-appb-000005
另外,将上述实施例1-23和对比例1-8中得到的电解液分别如下所示制备成二次电池,进行性能测试。测试结果如下表5和表6所示。
二次电池的制备
(1)正极极片的制备:
将正极活性材料LiNi 0.8Co 0.1Mn 0.1O 2、导电剂Super P、粘结剂聚偏二氟乙烯(PVDF)在N-甲基吡咯烷酮(NMP)中制成正极浆料。正极浆料中固体含量为50wt%,固体成分中LiNi 0.8Co 0.1Mn 0.1O 2、Super P、PVDF的质量比为8:1:1。将正极浆料涂布在集流体铝箔上并在85℃下烘干后进行冷压,然后进行切边、裁片、分条后,在85℃的真空条件下烘干4h,制成正极极片。
(2)负极极片的制备:
将作为负极活性材料的石墨与导电剂Super P、增稠剂CMC、粘接剂丁苯橡胶(SBR)在去离子水中混合均匀,制成负极浆料。负极浆料中固体含量为30wt%,固体成分中石墨、Super P、CMC及粘接剂丁苯橡胶(SBR)的质量比为80:15:3:2。将负极浆料涂布在集流体铜箔上并在85℃下烘干,然后进行冷压、切边、裁片、分条后,在120℃真空条件下烘干12h,制成负极极片。
(3)二次电池的制备
以聚乙烯薄膜(PE)作为隔离膜。将制得的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极片中间起到隔离的作用,卷绕得到裸电芯,焊接极耳,将裸电芯置于外包装中,将上述实施例及对比例制备的电解液分别注入到干燥后的电芯中,封装、静置、化成、整形、容量测试等,制备得到二次电池。
二次电池的测试
(a)安全性能
环境温度调节为25℃,将二次电池以1C恒流充电到4.25V,随后以4.25V的电压恒压充电到电流为0.05C。将感温线贴到电池表面的中心位置。随后将电池放到加热炉中,炉子按照10℃/min升温,保温30min,当感温线的温度瞬间急剧增加,温度远远高于炉温时, 可以认为此时电池出现热失控。记录电池热失控时炉子的温度以及炉温持续的时间。
(b)循环性能
25℃下,1C恒流充电到4.25V,恒压充电到0.05C,然后以1C放电到2.8V,记录首次放电容量C1,如此循环测试,第200次循环的放电容量为Cn。
电池循环200次后的容量保持率(%)=(Cn/C1)×100%。
(c)功率性能
室温条件下,二次电池以1C恒流充电到4.25V,恒压充电至电流为0.05C,电池满充后,静置5min,1C放电30min(电池带电量为50%SOC),静置5min,调节温度为25℃,静置1h,记录此时电池的电压并记为V1;以0.4C放电15s,测试脉冲放电后的电压并记为V2。
电池50%SOC时的常温直流阻抗(DCR)=(V1-V2)/I,其中I=0.4C。
表5和表6示出了实施例和对比例的二次电池的性能测试结果。
表5
Figure PCTCN2021128534-appb-000006
Figure PCTCN2021128534-appb-000007
表6
Figure PCTCN2021128534-appb-000008
由表5的测试结果可以得知,实施例1-11的电解液中通过含有式(1)化合物和特定量的碳酸乙烯酯作为溶剂,电池的热失控温度高,均在103℃以上,电池循环200次后的容量保持率(%)均达到88.5以上,提高了电池的安全性能和电池循环寿命。
与实施例1-11以及实施例12-14相比,实施例15-23的电解液通过进一步同时含有低粘度有机溶剂和易解离锂盐双氟磺酰亚胺锂,在电池的热失控温度、电池循环200次后的容量保持率(%)以及电池50%SOC时的常温直流阻抗(DCR)方面获得进一步改善,获得了具有高安全性能、高循环寿命、且高功率性能的电池。由此说明式(1)化合物、低粘度溶剂、易解离锂盐并用,可以提高电解液的安全性能,同时式(1)化合物在阴、阳极的成膜作用,有利于缓解电解液在阴阳极界面的分解,进而改善电池循环寿命以及常温功率性能。
相对于此,由表6的测试结果可知,对比例1、对比例2以及对比例7的电解液,与实施例相比虽然含有式(1)化合物但是由于碳酸乙烯酯在溶剂中的含量过高(大于25重量%),故而不能获得本申请的技术效果。
具体而言,在对比例2中,碳酸乙烯酯在溶剂中的含量为26重 量%,碳酸乙烯酯在正极大量氧化产气,即使加入了本申请的式(1)化合物,也未能获得本申请的技术效果。进而,将对比例2分别与对比例1、7相比可知,即使进一步增加式(1)化合物的含量(参见对比例1)或者另外添加低粘度有机溶剂(参见对比例7),也不能同时获得高安全性能和高循环寿命。
另外,在对比例3、4、5、8的电解液中,虽然碳酸乙烯酯在溶剂中的含量在本申请的范围内,但由于所使用的环状有机磷不是本申请的式(1)化合物,阻燃以及正负极成膜效果较差,未能获得本申请的技术效果。由此表明,在同时使用本申请的式(1)化合物和特定量的碳酸乙烯酯的情况下,能够获得本申请的技术效果。
另外,对比例3-5的电解液中,即使加入了低粘度有机溶剂和易解离锂盐双氟磺酰亚胺锂,但是环状有机磷化合物中不含有氟元素。本申请的式(1)化合物中含有的氟有两方面作用。1)提高化合物的耐氧化性,2)热失控时捕捉氢、氧自由基,终止热失控产热反应,提高安全性能。对比例3中的有机磷化合物不含氟,故而不能获得本申请的技术效果。进而,与氟相比,其他卤素例如氯、溴的电负性比较低,起不到提高耐氧化性的作用,而且氯离子、溴离子的离子体积较大,不利于快速结合氢、氢氧自由基,即不利于热失控的改善。因此,对比例4、5不能获得本申请的技术效果。
与对比例3相比,在对比例6中即使增加碳酸乙烯酯在溶剂中的含量,由于未使用本申请的式(1)化合物,仍不能获得本申请的技术效果。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (14)

  1. 一种电解液,包括溶剂,所述溶剂包括下述式(1)化合物和碳酸乙烯酯,且相对于所述溶剂的总重量,所述碳酸乙烯酯的含量小于等于25重量%,
    Figure PCTCN2021128534-appb-100001
    式中,R1为氟取代的C1-C6烷基、氟取代的C2-C6链烯基;R2、R3相同或不同,分别独立地为氢原子、氟原子或氟取代的C1-C6烷基。
  2. 根据权利要求1所述的电解液,其中,相对于所述溶剂的总重量,所述碳酸乙烯酯的含量为5重量%-25重量%;可选为10重量%-20重量%。
  3. 根据权利要求1或2所述的电解液,其中,相对于所述溶剂的总重量,所述式(1)化合物的含量为5重量%-35重量%;可选为10重量%-30重量%。
  4. 根据权利要求1-3任一项所述的电解液,其中,在所述式(1)化合物中,R1为全氟取代的C1-C6烷基。
  5. 根据权利要求1-4任一项所述的电解液,其中,
    在所述式(1)化合物中,R1为-CF 3或-C 2F 5,R2、R3分别独立地为氢原子或氟原子。
  6. 根据权利要求1-5任一项所述的电解液,其中,
    所述溶剂还包括碳酸二甲酯和/或羧酸酯,所述羧酸酯为甲酸甲酯、甲酸乙酯、乙酸乙酯、丙酸乙酯和甲酸丙酯中的至少一种,优选的为甲酸丙酯;
    可选地,相对于所述溶剂的总重量,所述式(1)化合物的含量记为W1,所述碳酸二甲酯和/或羧酸酯的含量记为W2,则所述电解 液满足:1.5≤W2/W1≤3;可选地,2≤W2/W1≤2.5。
  7. 根据权利要求1-6任一项所述的电解液,其中,
    所述电解液包括电解质盐,所述电解质盐包括双氟磺酰亚胺锂和六氟磷酸锂,
    所述双氟磺酰亚胺锂在所述电解质盐中的体积摩尔浓度记为C1,所述六氟磷酸锂在所述电解质盐中的体积摩尔浓度记为C2,则所述电解液满足:0.25≤C1/C2≤9;可选地,1≤C1/C2≤4。
  8. 根据权利要求7所述的电解液,其中,0.2mol/L≤C1≤0.9mol/L;和/或,0.1M/L≤C2≤0.8M/L。
  9. 根据权利要求7或8所述的电解液,其中,相对于电解液的总重量,所述式(1)化合物的含量记为A1,所述双氟磺酰亚胺锂的含量记为A2,则所述电解液满足:0.3≤A1/A2≤8.4;可选地,0.4≤A1/A2≤3。
  10. 根据权利要求1-9任一项所述的电解液,其中,所述电解液还包括添加剂,所述添加剂包括碳酸亚乙烯酯。
  11. 根据权利要求10所述的电解液,其中,相对于电解液的总重量,所述碳酸亚乙烯酯的含量小于等于5重量%;可选为0.1重量%-3重量%。
  12. 根据权利要求1-11任一项所述的电解液,其中,所述电解液在25℃下的粘度≤5mPa·s;可选为2mPa.s-5mPa.s。
  13. 一种二次电池,包括权利要求1-12任一项所述的电解液。
  14. 一种用电装置,包括权利要求13所述的二次电池。
PCT/CN2021/128534 2021-11-04 2021-11-04 电解液、二次电池及包含该二次电池的用电装置 WO2023077330A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21962848.4A EP4358221A1 (en) 2021-11-04 2021-11-04 Electrolyte, secondary battery, and electric device comprising secondary battery
CN202180094489.1A CN116964816A (zh) 2021-11-04 2021-11-04 电解液、二次电池及包含该二次电池的用电装置
PCT/CN2021/128534 WO2023077330A1 (zh) 2021-11-04 2021-11-04 电解液、二次电池及包含该二次电池的用电装置
US18/408,488 US20240178454A1 (en) 2021-11-04 2024-01-09 Electrolytic solution, secondary battery and electrical device containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128534 WO2023077330A1 (zh) 2021-11-04 2021-11-04 电解液、二次电池及包含该二次电池的用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/408,488 Continuation US20240178454A1 (en) 2021-11-04 2024-01-09 Electrolytic solution, secondary battery and electrical device containing same

Publications (1)

Publication Number Publication Date
WO2023077330A1 true WO2023077330A1 (zh) 2023-05-11

Family

ID=86240538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128534 WO2023077330A1 (zh) 2021-11-04 2021-11-04 电解液、二次电池及包含该二次电池的用电装置

Country Status (4)

Country Link
US (1) US20240178454A1 (zh)
EP (1) EP4358221A1 (zh)
CN (1) CN116964816A (zh)
WO (1) WO2023077330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117878244A (zh) * 2024-03-08 2024-04-12 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296311A (zh) * 2013-04-25 2013-09-11 合肥工业大学 一种高安全性磷酸酯基电解液及锂离子电池
CN103887563A (zh) * 2014-04-08 2014-06-25 厦门首能科技有限公司 一种锂离子二次电池电解液
CN105489937A (zh) * 2016-01-28 2016-04-13 宁德新能源科技有限公司 非水电解液及使用该非水电解液的锂离子电池
CN111082138A (zh) * 2018-10-19 2020-04-28 Sk新技术株式会社 用于锂二次电池的电解液和包括其的锂二次电池
CN111211353A (zh) * 2020-01-07 2020-05-29 天津市捷威动力工业有限公司 一种用于高电压体系的锂离子电池电解液
WO2021166771A1 (ja) * 2020-02-17 2021-08-26 国立大学法人 東京大学 環状リン酸エステルを含む二次電池用電解液

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296311A (zh) * 2013-04-25 2013-09-11 合肥工业大学 一种高安全性磷酸酯基电解液及锂离子电池
CN103887563A (zh) * 2014-04-08 2014-06-25 厦门首能科技有限公司 一种锂离子二次电池电解液
CN105489937A (zh) * 2016-01-28 2016-04-13 宁德新能源科技有限公司 非水电解液及使用该非水电解液的锂离子电池
CN111082138A (zh) * 2018-10-19 2020-04-28 Sk新技术株式会社 用于锂二次电池的电解液和包括其的锂二次电池
CN111211353A (zh) * 2020-01-07 2020-05-29 天津市捷威动力工业有限公司 一种用于高电压体系的锂离子电池电解液
WO2021166771A1 (ja) * 2020-02-17 2021-08-26 国立大学法人 東京大学 環状リン酸エステルを含む二次電池用電解液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117878244A (zh) * 2024-03-08 2024-04-12 宁德时代新能源科技股份有限公司 电池单体、电池和用电装置

Also Published As

Publication number Publication date
CN116964816A (zh) 2023-10-27
EP4358221A1 (en) 2024-04-24
US20240178454A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
CN111416145B (zh) 锂离子电池
US20230127888A1 (en) Secondary battery with improved high-temperature and low-temperature properties
CN113851724B (zh) 电化学装置和电子装置
WO2018094773A1 (zh) 凝胶聚合物电解质动力电池
JP7106762B2 (ja) 正極シート及びその製造方法、並びにリチウムイオン二次電池
WO2018107745A1 (zh) 电解液及锂二次电池
CN113067033B (zh) 电化学装置及电子装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023045379A1 (zh) 一种电解液、包括其的二次电池及该二次电池的制备方法
JP2022553518A (ja) 二次電池及び該二次電池を備える装置
US20240178454A1 (en) Electrolytic solution, secondary battery and electrical device containing same
WO2023087209A1 (zh) 电化学装置及电子装置
CN111640987B (zh) 一种高功率电解液及含有该电解液的锂离子电池
CN100483841C (zh) 一种低温工作型锂离子二次电池
WO2023060554A1 (zh) 电解液、二次电池和用电装置
CN106941191B (zh) 锂离子电池及其非水电解液
CN115763971A (zh) 一种高电压钴酸锂锂离子电池非水电解液及锂离子电池
JP2023549806A (ja) 電解液、電気化学装置及び電子装置
CN105655516A (zh) 一种可避免胀气的钛酸锂基锂二次电池
WO2024145741A1 (zh) 一种电解质、电池及用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2024020974A1 (zh) 电解液、二次电池及用电装置
CN115000385B (zh) 一种负极材料及其制备方法、负极片和二次电池
CN117361502B (zh) 氟化碳材料及其制备方法、电极、电池和用电装置
WO2023130249A1 (zh) 电解液及使用其的二次电池、电池模块、电池包以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094489.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021962848

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962848

Country of ref document: EP

Effective date: 20240117

NENP Non-entry into the national phase

Ref country code: DE