WO2024020974A1 - 电解液、二次电池及用电装置 - Google Patents

电解液、二次电池及用电装置 Download PDF

Info

Publication number
WO2024020974A1
WO2024020974A1 PCT/CN2022/108767 CN2022108767W WO2024020974A1 WO 2024020974 A1 WO2024020974 A1 WO 2024020974A1 CN 2022108767 W CN2022108767 W CN 2022108767W WO 2024020974 A1 WO2024020974 A1 WO 2024020974A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte solution
electrolyte
carbonate
solution according
Prior art date
Application number
PCT/CN2022/108767
Other languages
English (en)
French (fr)
Inventor
石春美
谌湘艳
唐代春
田亚西
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/108767 priority Critical patent/WO2024020974A1/zh
Publication of WO2024020974A1 publication Critical patent/WO2024020974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of batteries, specifically to an electrolyte, a secondary battery and an electrical device.
  • Secondary batteries are increasingly widely used due to their clean and renewable characteristics.
  • the industry's performance requirements for secondary batteries continue to increase.
  • people have an increasing demand for new energy vehicles such as electric vehicles and electric bicycles, and their performance requirements are also getting higher and higher.
  • Secondary batteries are an important power source for electric vehicles. Therefore, people have increasingly higher performance requirements for secondary batteries.
  • Secondary batteries mainly rely on the movement of active ions between the positive and negative electrodes to generate electrical energy.
  • active ions such as lithium ions or sodium ions are deintercalated from the positive electrode and embedded in the negative electrode through the electrolyte. The opposite is true during discharge.
  • Secondary batteries have the advantages of high energy density, small self-discharge, and excellent cycle performance. As the marketization of secondary batteries continues to deepen, people's expectations for the performance of secondary batteries are getting higher and higher, and they are developing towards the military and aerospace fields, and these fields have relatively stringent performance requirements for lithium-ion batteries. In terms of high and low temperature performance.
  • this application provides an electrolyte, a secondary battery and an electrical device, aiming to improve the discharge performance of the secondary battery at low and high temperatures and broaden its applicable temperature range.
  • the first aspect of the present application provides an electrolyte solution
  • the components of the electrolyte solution include an electrolyte salt, a first additive represented by formula (1) and a solvent:
  • each R 1 is independently selected from an alkyl group with a carbon number of 1 to 20 or an alkoxy group with a carbon number of 1 to 20, and each R 2 is independently selected from an alkyl group with a carbon number of 1 to 20.
  • Alkyl group from 1 to 20;
  • the solvent includes a low melting point ester compound, and the melting point of the low melting point ester compound is not higher than 40°C.
  • the electrolyte of the present application introduces low melting point ester compounds, which can reduce the viscosity of the electrolyte at low temperatures.
  • the first additive shown in formula (1) is added, which can capture the residual water in the electrolyte and consume it at the same time. It removes HF formed by the decomposition of electrolyte salt at high temperatures, while improving the low-temperature and high-temperature performance of the secondary battery and broadening its applicable temperature.
  • the mass proportion of the first additive in the electrolyte is 0.2% to 5%.
  • the high-temperature stability of the electrolyte is further improved.
  • the mass proportion of the low melting point ester compound in the solvent is 5% to 60%.
  • each R 1 is independently selected from an alkyl group having 1 to 10 carbon atoms
  • each R 2 is independently selected from an alkyl group having 1 to 10 carbon atoms.
  • the low melting point ester compound includes ⁇ -butyrolactone, ethyl acetate, methyl acetate, ethyl butyrate, methyl acetate, methyl formate, propyl acetate, methyl propionate At least one of ester, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate and butyl acrylate.
  • the solvent further includes ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethyl carbonate. At least one of propyl ester, butylene carbonate and fluoroethylene carbonate.
  • the components of the electrolyte further include a second additive, and the second additive includes a fluorine-containing lithium salt and a nitrile compound;
  • the LUMO energy of the fluorine-containing lithium salt is lower than the LUMO energy of at least one component in the solvent, and the nitrile compound is selected from C1 to C10 alkanes substituted by nitrile groups.
  • Fluorine-containing lithium salts with lower LUMO energy can be reduced by preferential solvents, which is beneficial to forming a dense and stable film on the negative electrode, further inhibiting side reactions of the electrolyte.
  • Nitrile compounds can improve the oxidation resistance of the electrolyte, and they contain C ⁇ The N functional group helps to remove trace amounts of water and by-product HF in the electrolyte, further improving the high-temperature and low-temperature performance of the secondary battery.
  • the mass ratio of the fluorine-containing lithium salt and the nitrile compound is 1: (1-4).
  • the mass proportion of the second additive in the electrolyte is 0.5% to 2%.
  • the fluorine-containing lithium salt includes at least one of lithium difluorophosphate and lithium tetrafluoroborate.
  • the nitrile compound is selected from C3 to C9 alkanes substituted by three nitrile groups;
  • the nitrile compound includes at least one of 1,3,6-adiponitrile, succinonitrile and adiponitrile.
  • the concentration of the electrolyte salt in the electrolyte solution, is 0.1 mol/L to 0.8 mol/L.
  • the electrolyte solution of the present application still has excellent high-temperature and low-temperature performance even if the concentration of the electrolyte salt is reduced to 0.1 mol/L ⁇ 0.8 mol/L, and the reduction in the concentration of the electrolyte salt further reduces the electrolyte
  • the viscosity at low temperatures can feed back and improve the low-temperature performance of secondary batteries.
  • the electrolyte salt includes lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, lithium trifluoromethanesulfonimide, At least one of lithium fluomethanesulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • a second aspect of the application provides a secondary battery including the electrolyte of the first aspect of the application.
  • a third aspect of the present application provides an electrical device, which includes the secondary battery of the second aspect of the present application.
  • FIG. 1 is a schematic diagram of an embodiment of a secondary battery.
  • FIG. 2 is an exploded view of FIG. 1 .
  • Figure 3 is a schematic diagram of an embodiment of a battery pack.
  • FIG. 4 is an exploded view of FIG. 3 .
  • FIG. 5 is a schematic diagram of an embodiment of a power consumption device in which a secondary battery is used as a power source.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • alkyl refers to a group formed by an alkane losing one hydrogen, for example, a methyl group is formed by methane losing a hydrogen.
  • the number of carbon atoms can be 1 to 20, including 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, or 20, which refers to alkanes containing 1 to 20 carbon atoms (i.e., C1 to 10 alkanes ) A group formed after losing one hydrogen.
  • Specific examples include C1 alkane, C2 alkane, C3 alkane, C4 alkane, C5 alkane, C6 alkane, C7 alkane, C8 alkane, C9 alkane or C10 alkane or C20 alkane after losing a hydrogen.
  • C1-20 alkanes include methane, ethane, n-propane, isopropane, n-butane, isobutane, 2-ethylbutane, 3,3-dimethylbutane Alkane, n-pentane, isopentane, neopentane, 1-methylpentane, 3-methylpentane, 2-ethylpentane, 4-methyl-2-pentane, n-hexane, 1- Methylhexane, 2-ethylhexane, 2-butylhexane, n-heptane, 1-methylheptane, 2,2-dimethylheptane, 2-ethylheptane, n-octane , n-nonane, n-decane.
  • alkanes refers to alkanes in which the carbon atoms are connected by carbon-carbon single bonds and do not form a ring, and the remaining valence bonds are combined with hydrogen, including straight-chain alkanes and branched-chain alkanes.
  • alkoxy is a group formed by replacing at least one carbon atom in the above-mentioned alkyl group with an oxygen atom.
  • One embodiment of the present application provides an electrolyte solution.
  • the components of the electrolyte solution include an electrolyte salt, a first additive represented by formula (1), and a solvent:
  • each R 1 is independently selected from an alkyl group with a carbon number of 1 to 20 or an alkoxy group with a carbon number of 1 to 20, and each R 2 is independently selected from an alkyl group with a carbon number of 1 to 20.
  • Alkyl group of 1 to 20 is independently selected from an alkyl group with a carbon number of 1 to 20.
  • the above-mentioned solvents include low melting point ester compounds, and the melting point of the low melting point ester compounds is not higher than 40°C.
  • a low-melting point ester compound is introduced into the above-mentioned electrolyte, which can reduce the viscosity of the electrolyte at low temperatures.
  • the first additive shown in formula (1) is added, which can capture the residual water in the electrolyte and consume the electrolyte at the same time.
  • the HF formed by the decomposition of salt at high temperatures simultaneously improves the low-temperature and high-temperature performance of the secondary battery and broadens its applicable temperature.
  • the melting point of the above-mentioned low melting point ester compound refers to the melting point under normal pressure; normal pressure refers to a standard atmospheric pressure, and its value is 101.325kPa.
  • the mass proportion of the first additive in the electrolyte is 0.2% to 5%.
  • the high-temperature stability of the electrolyte is further improved.
  • the value includes the minimum value and the maximum value of the range, and every value between the minimum value and the maximum value. Specific examples include but are not limited to the point values in the embodiment and : 0.2%, 0.3%, 0.5%, 0.6%, 0.7%, 0.9%, 1%, 1.2%, 1.5%, 1.7%, 1.9%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5 %, 5%.
  • the mass proportion of the low melting point ester compound in the solvent is 5% to 60%.
  • each R 1 is independently selected from an alkyl group having 1 to 10 carbon atoms
  • each R 2 is independently selected from an alkyl group having 1 to 10 carbon atoms.
  • each R 1 is identically selected from an alkyl group having 1 to 10 carbon atoms
  • each R 2 is identically selected from an alkyl group having 1 to 10 carbon atoms.
  • each R 1 is identically selected from a linear alkyl group having 1 to 10 carbon atoms
  • each R 2 is identically selected from a linear alkyl group having 1 to 10 carbon atoms.
  • each R 1 is identically selected from a linear alkyl group having 1 to 5 carbon atoms
  • each R 2 is identically selected from a linear alkyl group having 1 to 5 carbon atoms.
  • each R 1 include, but are not limited to: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl; specific examples of each R 2 include, but are not limited to: methyl, Ethanyl, n-propyl, isopropyl, n-butyl, isobutyl.
  • each R 1 is an ethyl group
  • each R 2 is a methyl group.
  • the first additive N,N-diethyltrimethylsilylamine represented by formula (1) is used.
  • the above-mentioned low melting point ester compounds include ⁇ -butyrolactone, ethyl acetate, methyl acetate, ethyl butyrate, methyl acetate, methyl formate, propyl acetate, and methyl propionate. , at least one of ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate and butyl acrylate.
  • the above-mentioned solvent also includes ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylene propylene carbonate. At least one of ester, butylene carbonate and fluoroethylene carbonate.
  • the components of the electrolyte solution also include a second additive, and the second additive includes fluorine-containing lithium salts and nitrile compounds;
  • the LUMO energy of the fluorine-containing lithium salt is lower than the LUMO energy of at least one component in the solvent, and the nitrile compound is selected from C1 to C10 alkanes substituted by nitrile groups.
  • Fluorine-containing lithium salts with lower LUMO energy can be reduced by preferential solvents, which is beneficial to forming a dense and stable film on the negative electrode, further inhibiting side reactions of the electrolyte.
  • Nitrile compounds can improve the oxidation resistance of the electrolyte, and they contain C ⁇ The N functional group helps to remove trace amounts of water and by-product HF in the electrolyte, further improving the high-temperature and low-temperature performance of the secondary battery.
  • the components in the above solvent except the low-melting ester compound are the main solvent, and the LUMO energy of the fluorine-containing lithium salt is lower than the LUMO energy of the main solvent.
  • LUMO energy can be measured by the photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • Quantum chemical methods can also be used, such as density functional theory (hereinafter referred to as DFT), which has also become an effective method for calculating molecular orbital energy levels.
  • the above-mentioned nitrile compound is selected from C1 to C10 linear alkanes substituted by nitrile groups.
  • the above-mentioned nitrile compound is selected from C3 to C9 alkanes substituted by three nitrile groups.
  • the above-mentioned nitrile compound is selected from C3 to C9 linear alkanes substituted by three nitrile groups.
  • the above-mentioned nitrile compound includes at least one of 1,3,6-adiponitrile, succinonitrile and adiponitrile.
  • the mass ratio of the above-mentioned fluorine-containing lithium salt and the above-mentioned nitrile compound is 1: (1-4).
  • the mass proportion of the above-mentioned second additive in the electrolyte is 0.5% to 2%.
  • the value includes the minimum value and the maximum value of the range, and every value between the minimum value and the maximum value. Specific examples include but are not limited to the point values in the embodiment and : 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2%.
  • the concentration of the electrolyte salt in the electrolyte solution is 0.1 mol/L to 0.8 mol/L.
  • the electrolyte solution of the present application still has excellent high-temperature and low-temperature performance even if the concentration of the electrolyte salt is reduced to 0.1 mol/L ⁇ 0.8 mol/L, and the reduction in the concentration of the electrolyte salt further reduces the electrolyte
  • the viscosity at low temperatures can feed back and improve the low-temperature performance of secondary batteries.
  • the above-mentioned electrolyte salt includes lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, lithium trifluoride At least one of lithium methanesulfonate, lithium difluorophosphate, lithium difluoroborate, lithium dioxaloborate, lithium difluorodioxalate phosphate and lithium tetrafluoroxalate phosphate.
  • the above-mentioned electrolyte salt is lithium hexafluorophosphate.
  • the components of the above-mentioned electrolyte solution further include an antifreeze agent.
  • Antifreezes commonly used in this field can be used, including but not limited to: ethylene glycol, propylene glycol, methanol, etc. It can further improve the instability of carboxylic acid ester solvents during the charging and discharging process of secondary batteries.
  • An embodiment of the present application provides a secondary battery including the electrolyte of the first aspect of the present application.
  • the secondary battery has excellent discharge performance at low and high temperatures, has a wide applicable temperature range, and the temperature application window range can be broadened to -60°C to 70°C.
  • the above-mentioned secondary battery further includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the positive electrode sheet includes a current collector and a positive electrode active layer disposed on the surface of the current collector.
  • the components of the positive electrode active layer include positive electrode active materials.
  • the current collector in the positive electrode sheet has two surfaces opposite in its own thickness direction, and the positive active material layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the current collector in the positive electrode sheet can be a metal foil or a composite current collector.
  • the metal foil aluminum foil can be used.
  • the composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyterephthalate It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the above-mentioned cathode active material can be a commonly used cathode active material in this application, such as a lithium ion cathode active material; further, as an example, the lithium ion active material can include at least one of the following materials: lithium-containing phosphoric acid with an olivine structure Salts, lithium transition metal oxides and their respective modified compounds.
  • the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials of batteries can also be used. Only one type of these positive electrode active materials may be used alone, or two or more types may be used in combination.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM333),
  • LiNi 0.5 Co 0.2 Mn 0.3 O 2 (can also be abbreviated to NCM523), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (can also be abbreviated to NCM211), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (can also be abbreviated to NCM622), LiNi 0.8 At least one of Co 0.1 Mn 0.1 O 2 (also referred to as NCM811), lithium nickel cobalt aluminum oxide (such as LiNi 0.85 Co 0.15 Al 0.05 O 2 ) and their modified compounds.
  • lithium-containing phosphates with an olivine structure may include, but are not limited to, at least one of lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), lithium manganese phosphate (such as LiMnPO 4 ), and lithium iron manganese phosphate.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • lithium manganese phosphate such as LiMnPO 4
  • lithium iron manganese phosphate lithium iron manganese phosphate
  • the molecular formula of the lithium ion active material is: LiFex Mn (1-x) PO 4 , and x is any number from 0 to 1.
  • LiFe x Mn (1-x) PO 4 is LiMnPO 4 lithium manganese phosphate
  • LiFePO 4 is LiFePO 4 lithium iron phosphate
  • the weight ratio of the cathode active material in the cathode active layer is 80 wt% to 100 wt%.
  • the components of the positive electrode active layer further include a positive electrode conductive agent and a positive electrode binder.
  • the above-mentioned positive electrode conductive agent can use conductive agents commonly used in the art, including but not limited to: at least one of graphite, carbon nanotubes, nanofibers, carbon black and graphene. Specifically, it can be selected from at least one of SP, KS-6, acetylene black, Ketjen black ECP with branched structure, SFG-6, vapor-grown carbon fiber VGCF, carbon nanotube CNTs, graphene and its composite conductive agent. kind.
  • the weight ratio of the positive electrode conductive agent in the positive electrode active layer is 0 to 20 wt%.
  • the binder of the above-mentioned cathode binder may be polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, fluoride Ethylene-hexafluoropropylene-tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer, hydrogenated nitrile rubber, styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), poly At least one of acrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA), carboxymethyl chitosan (CMCS) and fluorine-containing acrylate resin.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the weight ratio of the positive electrode binder in the positive electrode active layer is 0 to 30 wt%.
  • the positive electrode sheet can be prepared by: dispersing the above-mentioned components for preparing the positive electrode sheet in a solvent (such as N-methylpyrrolidone) to form a positive electrode slurry; coating the positive electrode slurry on On the current collector, after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N-methylpyrrolidone
  • the solid content of the positive electrode slurry is 40wt% ⁇ 80wt%, and the viscosity at room temperature is adjusted to 5000mPa ⁇ s ⁇ 25000mPa ⁇ s.
  • the positive electrode slurry is coated on the surface of the positive electrode current collector, dried and cold pressed by a cold rolling mill to form Positive electrode piece; the positive electrode powder coating unit area density is 150 ⁇ 350 mg/m 2 , the positive electrode piece compacted density is 3.0 ⁇ 3.6g/cm 3 , optional 3.3 ⁇ 3.5g/cm 3 .
  • the calculation formula of the compacted density is:
  • Compaction density coating surface density / (thickness of electrode piece after extrusion - thickness of current collector).
  • the negative electrode sheet includes a current collector and a negative electrode active layer located on the surface of the current collector.
  • the components of the negative electrode active layer include negative electrode active material, negative electrode conductive agent and negative electrode binder.
  • the negative active material adopts commonly used negative active materials in this application; further, as an example, the negative active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, Tin-based materials and lithium titanate, etc.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon carbon composites, silicon nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as battery negative electrode active materials can also be used. Only one type of these negative electrode active materials may be used alone, or two or more types may be used in combination.
  • the weight ratio of the negative active material in the negative active layer is 70 wt% to 100 wt%.
  • the above-mentioned negative electrode conductive agent can use conductive materials commonly used in the art, including but not limited to: at least one of graphite, carbon nanotubes, nanofibers, carbon black, and graphene. Specifically, it can be selected from at least one of SP, KS-6, acetylene black, Ketjen black ECP with branched structure, SFG-6, vapor-grown carbon fiber VGCF, carbon nanotube CNTs, graphene and its composite conductive agent. kind.
  • the weight ratio of the negative electrode conductive agent in the negative electrode active layer is 0 to 20 wt%.
  • the above-mentioned negative electrode binder can be a binder commonly used in this field, which can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA) ), at least one of sodium alginate (SA), polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • PAAS sodium polyacrylate
  • PAM polyacrylamide
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • PMAA polymethacrylic acid
  • CMCS carboxymethyl chitosan
  • the weight ratio of the negative electrode binder in the negative electrode active layer is 0 to 30 wt%.
  • the negative active layer optionally also includes other auxiliaries, such as thickeners, such as sodium carboxymethyl cellulose (CMC-Na), and the like. Based on the total weight of the negative electrode active layer, the weight ratio of other additives in the negative electrode active layer is 0 to 15 wt%.
  • auxiliaries such as thickeners, such as sodium carboxymethyl cellulose (CMC-Na), and the like. Based on the total weight of the negative electrode active layer, the weight ratio of other additives in the negative electrode active layer is 0 to 15 wt%.
  • the negative electrode sheet can be prepared by dispersing the above-mentioned components for preparing the negative electrode sheet, such as carbon materials, conductive agents, binders and any other components in a solvent (such as deionized water) , to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the solid content of the negative electrode slurry is 30wt% ⁇ 70wt%, and the viscosity at room temperature is adjusted to 2000mPa ⁇ s ⁇ 10000mPa ⁇ s; the obtained negative electrode slurry is coated on the negative electrode current collector, and after a drying process, cold pressing, for example, Roll to obtain the negative electrode sheet.
  • the negative electrode powder coating unit area density is 75mg/m 2 ⁇ 220mg/m 2
  • the negative electrode sheet compacted density is 1.2g/m 3 ⁇ 2.0g/m 3 .
  • the isolation film is located between the positive electrode sheet and the negative electrode sheet.
  • isolation membrane there is no particular restriction on the type of isolation membrane in this application. Any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film can be a single-layer film or a multi-layer composite film, with no special restrictions. When the isolation film is a multi-layer composite film, the materials of each layer can be the same or different, and there is no particular limitation.
  • the above-mentioned secondary battery also includes a casing for packaging the positive electrode sheet, the negative electrode sheet, the isolation film and the electrolyte.
  • the above-mentioned shell may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc. It can also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • the secondary battery of this application is a lithium ion battery.
  • FIG. 1 shows a square-structured secondary battery 4 as an example.
  • the housing may include a housing 41 and a cover 43 .
  • the housing 41 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose a receiving cavity.
  • the housing 41 has an opening communicating with the accommodation cavity, and the cover plate 43 can cover the opening to close the accommodation cavity.
  • the positive electrode sheet, the negative electrode sheet and the separator film can be formed into the electrode assembly 42 through a winding process or a lamination process.
  • the electrode assembly 42 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 42 .
  • the number of electrode assemblies 42 contained in the battery 4 can be one or more, and can be adjusted according to needs.
  • This application also provides an electrical device, which includes the above-mentioned secondary battery.
  • the secondary battery may exist in the form of a battery cell or may be further assembled into a battery pack.
  • the battery pack 1 includes a battery box and one or more secondary batteries 4 provided in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 can be covered with the lower box 3 and form a closed space for the secondary battery 4 .
  • the plurality of secondary batteries 4 can be arranged in the battery box in any manner.
  • the above-mentioned secondary battery or the battery pack assembled therefrom can be used as a power source for an electrical device, or as an energy storage unit for an electrical device.
  • the above-mentioned electric devices may be, but are not limited to, mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • mobile devices such as mobile phones, laptops, etc.
  • electric vehicles such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf golf carts, electric trucks, etc.
  • electric trains ships and satellites, energy storage systems, etc.
  • FIG. 5 shows an electrical device 5 as an example.
  • the electric device 5 is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack may be used.
  • the power-consuming device may be a mobile phone, a tablet computer, a laptop computer, etc.
  • the device is usually required to be thin and light, and a battery can be used as a power source.
  • Preparation of positive electrode sheet Mix the positive active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 , conductive agent conductive carbon black, and binder polyvinylidene fluoride (PVDF) in a mass ratio of 96:2:2, and then add N - Methyl pyrrolidone (NMP) was used as the solvent, and the system was stirred under the action of a vacuum mixer until the system was uniform to obtain a positive electrode slurry with a solid content of 65wt%. The positive electrode slurry was then evenly coated on one surface of an aluminum foil with a thickness of 13 ⁇ m. above, dried at 120°C, and cold pressed to obtain the positive electrode sheet.
  • PVDF polyvinylidene fluoride
  • isolation membrane A polyethylene (PE) porous polymer film with a thickness of 12 ⁇ m was used as the isolation membrane.
  • a first additive N,N-diethyltrimethylsilylamine
  • LiPF 6 lithium salt to form an electrolyte.
  • the concentration of LiPF 6 lithium salt is 0.4M, and the mass content of the first additive is recorded as T1. Please see Table 1 for details.
  • the positive electrode sheet and the negative electrode sheet are sequentially cut, shaped, assembled, put into the shell, electrolyte is injected, formed, and aged to prepare a lithium-ion battery.
  • Embodiments 2 to 6 are basically the same as Embodiment 1, except that in step (4), the quality of the low melting point ester compound (butyl acrylate BA) is adjusted to change T0; or the quality of LiPF 6 lithium salt is adjusted to change The concentration of LiPF 6 lithium salt; or changing the type of low melting point ester compound, please see Table 1 for specific parameters.
  • Examples 7 to 12 are basically the same as Example 1, except that in step (4), while ensuring that the concentration of the electrolyte lithium salt is 0.5M, the type of the electrolyte lithium salt is changed. See Table 1 for specific parameters.
  • Examples 13 to 16 are basically the same as Example 1, except that the content T1 of the first additive (N,N-diethyltrimethylsilylamine) is adjusted in step (4).
  • Embodiments 17 to 20 are basically the same as Embodiment 1, except that the preparation of the electrolyte in step (4) is as follows:
  • DEC diethyl carbonate
  • EMC ethylene carbonate
  • EMC ethyl methyl carbonate
  • T0 low melting point ester compounds
  • the first additive N,N-diethyltrimethylsilylamine
  • the second additive lithium difluorophosphate and 1,3,6-hexanetrinitrile
  • LiPF 6 lithium salt to form an electrolyte; among them, the concentration of LiPF 6 lithium salt is 0.4M, and the content of the first additive is recorded as T1.
  • the mass proportion of the two additives is recorded as T2.
  • the concentration and T1 of the LiPF 6 lithium salt in Examples 17 to 20 were controlled to be the same as those in Example 1, and the mass proportion T2 of the different second additives was adjusted. See Table 1 for details.
  • Comparative Example 1 is basically the same as Example 1, except that the preparation method of the electrolyte in step (4) is: first, diethyl carbonate (DEC): ethylene carbonate (EC): ethyl methyl carbonate ( EMC) is mixed evenly according to the mass ratio of 40:30:30, and then LiPF 6 lithium salt is added to form an electrolyte with a concentration of 1.0M.
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Comparative Example 2 is basically the same as Example 1, except that the preparation method of the electrolyte in step (4) is: first, diethyl carbonate (DEC): ethylene carbonate (EC): ethyl methyl carbonate ( EMC) is mixed evenly according to the mass ratio of 40:30:30, and then lithium hexafluoroarsenate is added to form an electrolyte with a concentration of 1.0M.
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Comparative Example 3 is basically the same as Example 1, except that the components of the electrolyte in step (4) do not contain the first additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提出一种电解液、二次电池及用电装置。该电解液的组分包括电解质盐、式(1)所示的第一添加剂及溶剂;其中,各R1分别独立地选自碳原子数为1~20的烷基、碳原子数为1~20的烷氧基中的任意一种,各R2分别独立地选自碳原子数为1~20的烷基;溶剂包括低熔点酯类化合物,低熔点酯类化合物的熔点不高于40℃。该电解液能提高二次电池在低温及高温状态下放电性能,拓宽其适用温度范围。

Description

电解液、二次电池及用电装置 技术领域
本申请涉及电池领域,具体涉及一种电解液、二次电池及用电装置。
背景技术
二次电池因其清洁和可再生的特点得到日益广泛的应用,而为了适应不同环境和应用场景需要,业内对二次电池的性能要求不断提高。近年来,随着新能源行业的快速发展,人们对电动汽车、电动自行车等新能源交通工具的需求越来大,对其性能要求也越来越高,而二次电池是电动汽车的重要动力来源,因此,人们对二次电池的性能要求也越来越高。
二次电池主要依靠活性离子在正极和负极之间移动来产生电能,充电时,锂离子或钠离子等活性离子从正极脱嵌,经过电解液嵌入负极,放电时则相反。二次电池具有能量密度高、自放电小、循环性能优越等优点。随着二次电池市场化不断深入,人们对二次电池性能的期望越来越高,正朝着军用领域和航空航天领域发展,而这些领域对锂离子电池的性能要求都比较苛刻,主要体现在高低温性能上。
如何提高二次电池在低温及高温状态下放电性能,拓宽其适用温度范围,是本领域亟待解决的问题。
发明内容
鉴于上述问题,本申请提供一种电解液、二次电池及用电装置,旨在提高二次电池在低温及高温状态下放电性能,拓宽其适用温度范围。
为了实现上述目的,本申请的第一方面提供了一种电解液,所述电解液的组分包括电解质盐、式(1)所示的第一添加剂及溶剂:
Figure PCTCN2022108767-appb-000001
其中,各R 1分别独立地选自碳原子数为1~20的烷基、碳原子数为1~20 的烷氧基中的任意一种,各R 2分别独立地选自碳原子数为1~20的烷基;
所述溶剂包括低熔点酯类化合物,所述低熔点酯类化合物的熔点不高于40℃。
本申请的电解液中引入了低熔点酯类化合物,能降低电解液在低温下的粘度,同时加入式(1)所示的第一添加剂,能与捕捉电解液中的残留水,同时能消耗掉电解质盐在高温下分解形成的HF,同时提升二次电池的低温性能和高温性能,拓宽其适用温度。
在本申请任意实施方式中,所述第一添加剂在所述电解液中的质量占比为0.2%~5%。
通过调控第一添加剂的含量,进一步提高电解液的高温稳定性。
在本申请任意实施方式中,所述低熔点酯类化合物在所述溶剂中的质量占比为5%~60%。
调控低熔点酯类化合物的含量,进一步提高电解液的低温稳定性。
在本申请任意实施方式中,各R 1分别独立地选自碳原子数为1~10的链烷基,各R 2分别独立地选自碳原子数为1~10的链烷基。
在本申请任意实施方式中,所述低熔点酯类化合物包括γ-丁内酯、乙酸乙酯、乙酸甲酯、丁酸乙酯、乙酸甲酯、甲酸甲酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯和丙烯酸丁酯中的至少一种。
在本申请任意实施方式中,所述溶剂还包括碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯及氟代碳酸亚乙酯中的至少一种。
在本申请任意实施方式中,所述电解液的组分还包括第二添加剂,所述第二添加剂包括含氟锂盐和腈类化合物;
其中,所述含氟锂盐的LUMO能量低于所述溶剂中的至少一个组分的LUMO能量,所述腈类化合物选自被腈基取代的C1~C10烷烃。
LUMO能量较低的含氟锂盐可以优先溶剂被还原,有利于在负极上形成致密稳定的薄膜,进一步抑制电解液的副反应,腈类化合物可以提高电解液的抗氧化性,其含有的C≡N官能团有助于去除电解液中的微量水和副产物HF,进一步提高了二次电池的高温及低温性能。
在本申请任意实施方式中,所述含氟锂盐和所述腈类化合物的质量比为1:(1~4)。
在本申请任意实施方式中,所述第二添加剂在所述电解液中的质量占比为0.5%~2%。
在本申请任意实施方式中,所述含氟锂盐包括二氟磷酸锂、四氟硼酸锂中的至少一种。
在本申请任意实施方式中,所述腈类化合物选自被三个腈基取代的C3~C9烷烃;
可选地,所述腈类化合物包括1,3,6-己三腈、丁二腈和己二腈中的至少一种。
在本申请任意实施方式中,在所述电解液中,所述电解质盐的浓度为0.1mol/L~0.8mol/L。
本申请的电解液通过各组分的协同,即使将电解质盐的浓度降低到0.1mol/L~0.8mol/L,仍具有优异的高温及低温性能,且电解质盐的浓度降低进一步降低了电解液在低温下的粘度,能反哺提高二次电池的低温性能。
在本申请任意实施方式中,所述电解质盐包括六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
本申请的第二方面提供了一种二次电池,包含本申请第一方面的电解液。
本申请的第三方面提供了一种用电装置,所述用电装置包括本申请第二方面的二次电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的 目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是二次电池的一实施方式的示意图。
图2是图1的分解图。
图3是电池包的一实施方式的示意图。
图4是图3的分解图。
图5是二次电池用作电源的用电装置的一实施方式的示意图。
附图标记说明:
1、电池包;2、上箱体;3、下箱体;4、二次电池;41、壳体;42、电极组件;43、盖板;5、用电装置。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关 联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请本发明中,术语“烷基”指的是烷烃失去一个氢后形成的基团,例如甲烷失去一个氢后形成甲基。碳原子数可以为1至20,包括1、2、3、4、5、6、7、8、9或10、或20,是指包含1~20个碳原子的烷烃(即C1~10烷烃)失去一个氢后形成的基团,具体实例包括C1烷烃、C2烷烃、C3烷烃、C4烷烃、C5烷烃、C6烷烃、C7链烷烃、C8烷烃、C9烷烃或C10烷烃或C20烷烃失去一个氢后形成的基团,“C1~20烷烃”非限制性实例包括甲烷、乙烷、正丙烷、异丙烷、正丁烷、异丁烷、2-乙基丁烷、3,3-二甲基丁烷、正戊烷、异戊烷、新戊烷、1-甲基戊烷、3-甲基戊烷、2-乙基戊烷、4-甲基-2-戊烷、正己烷、1-甲基己烷、2-乙基己烷、2-丁基己烷、正庚烷、1-甲基庚烷、2,2-二甲基庚烷、2-乙基庚烷、正辛烷、正壬烷、正癸烷。
术语“链烷烃”是指碳原子都以碳碳单键相连且不成环,其余的价键都与氢结合而成的烷烃,包括直链烷烃和支链烷烃。
术语“烷氧基”为上述烷基中的至少一个碳原子被氧原子替换后形成的基团。
本申请一实施方式,提供了一种电解液,该电解液的组分包括电解质盐、式(1)所示的第一添加剂及溶剂:
Figure PCTCN2022108767-appb-000002
其中,各R 1分别独立地选自碳原子数为1~20的烷基、碳原子数为1~20的烷氧基中的任意一种,各R 2分别独立地选自碳原子数为1~20的烷基。
上述溶剂包括低熔点酯类化合物,低熔点酯类化合物的熔点不高于40℃。
上述电解液中引入了低熔点酯类化合物,能降低电解液在低温下的粘度,同时加入式(1)所示的第一添加剂,能与捕捉电解液中的残留水,同时能消耗掉电解质盐在高温下分解形成的HF,同时提升二次电池的低温性能和高温性能,拓宽其适用温度。
可理解,上述低熔点酯类化合物的熔点是指在常压下的熔点;常压即指一个标准大气压,其值为101.325kPa。
其中,式(1)所示的第一添加剂捕捉水或消耗HF的机理如下:
Figure PCTCN2022108767-appb-000003
在本申请任意实施方式中,第一添加剂在所述电解液中的质量占比为0.2%~5%。
通过调控第一添加剂的含量,进一步提高电解液的高温稳定性。
上述“0.2%~5%”中,取值包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值,具体示例包括但不限于实施例中的点值以及:0.2%、0.3%、0.5%、0.6%、0.7%、0.9%、1%、1.2%、1.5%、1.7%、1.9%、2%、2.5%、3%、3.5%、4%、4.5%、5%。
在本申请任意实施方式中,上述低熔点酯类化合物在所述溶剂中的质量占比为5%~60%。
调控低熔点酯类化合物的含量,进一步提高电解液的低温稳定性。
在本申请任意实施方式中,各R 1分别独立地选自碳原子数为1~10的链烷基,各R 2分别独立地选自碳原子数为1~10的链烷基。
在本申请任意实施方式中,各R 1分相同地选自碳原子数为1~10的链烷基,各R 2相同地选自碳原子数为1~10的链烷基。
在本申请任意实施方式中,各R 1分相同地选自碳原子数为1~10的直链烷基,各R 2相同地选自碳原子数为1~10的直链烷基。
在本申请任意实施方式中,各R 1分相同地选自碳原子数为1~5的直链烷基,各R 2相同地选自碳原子数为1~5的直链烷基。
各R 1的具体示例包括但不限于:甲烷基、乙烷基、正丙烷基、异丙烷基、正丁烷基、异丁烷基;各R 2的具体示例包括但不限于:甲烷基、乙烷基、正丙烷基、异丙烷基、正丁烷基、异丁烷基。
在一具体示例中,各R 1均为乙烷基,各R 2均为甲烷基,此时式(1)所示的第一添加剂N,N-二乙基三甲基硅烷基胺。
在本申请任意实施方式中,上述低熔点酯类化合物包括γ-丁内酯、乙酸乙酯、乙酸甲酯、丁酸乙酯、乙酸甲酯、甲酸甲酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯和丙烯酸丁酯中的至少一种。
在本申请任意实施方式中,上述溶剂还包括碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯及氟代碳酸亚乙酯中的至少一种。
在本申请任意实施方式中,上述电解液的组分还包括第二添加剂,第 二添加剂包括含氟锂盐和腈类化合物;
其中,含氟锂盐的LUMO能量低于溶剂中的至少一个组分的LUMO能量,腈类化合物选自被腈基取代的C1~C10烷烃。
LUMO能量较低的含氟锂盐可以优先溶剂被还原,有利于在负极上形成致密稳定的薄膜,进一步抑制电解液的副反应,腈类化合物可以提高电解液的抗氧化性,其含有的C≡N官能团有助于去除电解液中的微量水和副产物HF,进一步提高了二次电池的高温及低温性能。
在本申请任意实施方式中,上述溶剂中除低熔点酯类化合物外的组分为主溶剂,含氟锂盐的LUMO能量低于主溶剂的LUMO能量。
LUMO能量可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。也可以采用量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
在比较含氟锂盐的LUMO能量与溶剂组分的LUMO能量时,采用相同的方法分别对两者进行测量比较。
在本申请任意实施方式中,上述腈类化合物选自被腈基取代的C1~C10直链烷烃。
在本申请任意实施方式中,上述腈类化合物选自被三个腈基取代的C3~C9烷烃。
在本申请任意实施方式中,上述腈类化合物选自被三个腈基取代的C3~C9直链烷烃。
可选地,上述腈类化合物包括1,3,6-己三腈、丁二腈及己二腈中的至少一种。
在本申请任意实施方式中,上述含氟锂盐和上述腈类化合物的质量比为1:(1~4)。
在本申请任意实施方式中,上述第二添加剂在电解液中的质量占比为0.5%~2%。
上述“0.5%~2%”中,取值包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值,具体示例包括但不限于实施例中的点值以及:0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、 1.6%、1.7%、1.8%、1.9%、2%。
在本申请任意实施方式中,在电解液中,电解质盐的浓度为0.1mol/L~0.8mol/L。
本申请的电解液通过各组分的协同,即使将电解质盐的浓度降低到0.1mol/L~0.8mol/L,仍具有优异的高温及低温性能,且电解质盐的浓度降低进一步降低了电解液在低温下的粘度,能反哺提高二次电池的低温性能。
在本申请任意实施方式中,上述电解质盐包括六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
可选地,上述电解质盐为六氟磷酸锂。
在本申请任意实施方式中,上述电解质液的组分还包括防冻剂。
防冻剂可采用本领域常用的防冻剂,包括但不限于:乙二醇、丙二醇和甲醇等。可进一步改善羧酸酯类溶剂在二次电池充放电过程的不稳定性。
本申请的一实施方式提供了一种二次电池,包含本申请第一方面的电解液。
该二次电池在低温及高温状态下放电性能优异,适用温度范围宽,温度应用窗口范围可拓宽至-60℃~70℃。
在本申请任意实施方式中,上述二次电池还包括正极片、负极片及隔离膜。
下述对正极片、负极片及隔离膜进行举例说明。
[正极片]
正极片包括集流体及设于集流体表面的正极活性层,正极活性层的组分包括正极活性材料。
作为示例,正极片中的集流体具有在其自身厚度方向相对的两个表面,正极活性材料层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极片中的集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和 形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
上述正极活性材料可采用本申请中的常用的正极活性材料,例如锂离子正极活性材料;进一步地,作为示例,锂离子活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM333)、
LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))磷酸锰锂(如LiMnPO 4)、磷酸锰铁锂中的至少一种。
在其中一些实施例中,锂离子活性材料的分子式为:LiFe xMn (1-x)PO 4,x取0~1任一数。
可理解,当x取0时,LiFe xMn (1-x)PO 4即为LiMnPO 4磷酸锰锂,当x取1时,LiFePO 4即为LiFePO 4磷酸铁锂。
基于正极活性层的总重量计,正极活性材料在正极活性层中的重量比为80wt%~100wt%。
在其中一些实施例中,正极活性层的组分还包括正极导电剂和正极粘结剂。
上述正极导电剂可以采用本领域常用的导电剂,包括但不限于:石墨、碳纳米管、纳米纤维、炭黑和石墨烯中的至少一种。具体地,可选自SP、KS-6,乙炔黑、有支链结构的科琴黑ECP,SFG-6,气相生长碳纤维VGCF,碳纳米管CNTs和石墨烯及其复合导电剂中的至少一种。
基于正极活性层的总重量计,正极导电剂在正极活性层中的重量比为0~20wt%。
在其中一些实施例中,上述正极粘结剂的粘结剂可以是聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物、氢化丁腈橡胶、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)及含氟丙烯酸酯树脂中的至少一种。
基于正极活性层的总重量计,正极粘结剂在正极活性层中的重量比为0~30wt%。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极片的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在集流体上,经烘干、冷压等工序后,即可得到正极片。正极浆料固含量为40wt%~80wt%,室温下的粘度调整到5000mPa·s~25000mPa·s,将正极浆料涂覆在正极集流体的表面,烘干后经过冷轧机冷压后形成正极极片;正极粉末涂布单位面密度为150~350mg/m 2,正极极片压实密度为3.0~3.6g/cm 3,可选为3.3~3.5g/cm 3。所述压实密度的计算公式为:
压实密度=涂布面密度/(挤压后极片厚度-集流体厚度)。
【负极片】
负极片包括集流体及设于集流体表面的负极活性层。
负极活性层的组分包括负极活性物质、负极导电剂及负极粘结剂。
上述负极活性材料采用本申请中的常用的负极活性材料;进一步地, 作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
基于负极活性层的总重量计,负极活性材料在负极活性层中的重量比为70wt%~100wt%。
在其中一些实施例中,上述负极导电剂可以采用本领域常用的导电材料,包括但不限于:石墨、碳纳米管、纳米纤维、炭黑和石墨烯中的至少一种。具体地,可选自SP、KS-6,乙炔黑、有支链结构的科琴黑ECP,SFG-6,气相生长碳纤维VGCF,碳纳米管CNTs和石墨烯及其复合导电剂中的至少一种。
基于负极活性层的总重量计,负极导电剂在负极活性层中的重量比为0~20wt%。
上述负极粘结剂可采用本领域常用的粘结剂,可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
基于负极活性层的总重量计,负极粘结剂在负极活性层中的重量比为0~30wt%。
在一些实施方式中,负极活性层还可选地包括其他助剂,例如增稠剂,如羧甲基纤维素钠(CMC-Na)等。基于负极活性层的总重量计,其他助剂在负极活性层中的重量比为0~15wt%。
在一些实施方式中,可以通过以下方式制备负极片:将上述用于制备负极片的组分,例如碳材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上, 经烘干、冷压等工序后,即可得到负极片。
其中负极浆料固含量为30wt%~70wt%,室温下的粘度调整到2000mPa·s~10000mPa·s;将所得到的负极浆料涂覆在负极集流体上,经过干燥工序,冷压例如对辊,得到负极片。负极粉末涂布单位面密度为75mg/m 2~220mg/m 2,负极片压实密度1.2g/m 3~2.0g/m 3
[隔离膜]
隔离膜设于正极片和负极片之间。
本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在其中一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
上述二次电池还包括外壳,用于包装正极片、负极片、隔离膜及电解液。
在其中一些实施方式中,上述外壳的可以是硬壳,例如硬塑料壳、铝壳、钢壳等。也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请的二次电池是锂离子电池。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池4。
在一些实施例中,参照图2,外壳可包括壳体41和盖板43。其中,壳体41可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体41具有与容纳腔连通的开口,盖板43能够盖设于所述开口,以封闭所述容纳腔。
正极片、负极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件42。电极组件42封装于容纳腔。电解液浸润于电极组件42中。电池4所含电 极组件42的数量可以为一个或多个,可根据需求来调节。
本申请还提供一种用电装置,该用电装置包括上述的二次电池。
进一步地,在上述用电装置中,二次电池可以电池单体的形式存在,也可以进一步组装成电池包的形式存在。
图3和图4是作为一个示例的电池包1。在电池包1中包括电池箱和设置于电池箱中的一个或多个二次电池4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于二次电池4的封闭空间。
多个二次电池4可以按照任意的方式排布于电池箱中。
上述二次电池或其组装成的电池包可以用作用电装置的电源,也可以作为用电装置的能量存储单元。
上述用电装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
图5是作为一个示例的用电装置5。该用电装置5为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置5对二次电池的高功率和高能量密度的需求,可以采用电池包形式。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用电池作为电源。
下面将结合具体的实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围,在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
以下为具体实施例。
具体实施例
实施例1
(1)正极片的制备:将正极活性材料LiNi 0.5Co 0.2Mn 0.3O 2、导电剂导电 碳黑、粘结剂聚偏氟乙烯(PVDF)按质量比96∶2∶2混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,在真空搅拌机作用下搅拌至体系呈均一状,得到固含量为65wt%的正极浆料,然后将正极浆料均匀涂覆在厚度为13μm的铝箔的一个表面上,120℃条件下烘干,冷压后得到正极片。
(2)负极片的制备:将活性材料石墨、乙炔黑、导电炭黑按照质量比95∶3∶2混合后研磨均匀,加入纯水混合均匀,再加入粘结剂溶液(3wt%的羧甲基纤维素钠溶液),最终调配成固含量50wt%的浆料,并搅拌均匀,得到负极浆料,然后将负极浆料均匀涂覆在厚度为6μm的铜箔的一个表面上,120℃条件下烘干,冷压后得到负极片。
(3)隔离膜的制备:以厚度为12μm的聚乙烯(PE)多孔聚合薄膜作为隔离膜。
(4)电解液的制备:在含水量小于10ppm的环境下,先将碳酸二乙酯(DEC):碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、低熔点酯类化合物(丙烯酸丁酯BA)按照40:30:25:5的质量比混合均匀获得溶剂,低熔点酯类化合物在溶剂中的质量占比记为T0。
再在溶剂中添加第一添加剂(N,N-二乙基三甲基硅烷基胺)(第一添加剂的用量占溶剂的1wt%),再加入LiPF 6锂盐配置成为电解液。
在最终得到的电解液中,LiPF 6锂盐的浓度为0.4M,第一添加剂的质量含量记为T1。具体请见表1。
(5)将正极片、负极片进行依次进行分切,整形,装配,入壳、注入电解液,化成、老化工序,制备得到锂离子电池。
(6)锂离子电池的容量保持率测试:
1、低温容量保持率测试,将制备好的电池通过充放电机先进行常温容量测试,得到常温(25±2℃)容量C0,再调节温度至-30℃,进行低温容量测试,得到低温容量C1;-30℃低温容量保持率T(-30℃)=C1/C0。
2、高温容量保持率测试:将制备好的电池通过充放电机先进行常温容量测试,得到常温(25±2℃)容量C0,将温度调节至高温55℃,进行高温容量测试,得到高温容量C2;55℃高温容量保持率T(55℃)=C2/C0。
具体测试结果请见表1。
实施例2~6
实施例2~6与实施例1基本相同,不同之处在于:步骤(4)中调整低熔点酯类化合物(丙烯酸丁酯BA)的质量,改变T0;或调整LiPF 6锂盐的质量,改变LiPF 6锂盐的浓度;或改变低熔点酯类化合物的种类,具体参数请见表1。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
实施例7~12
实施例7~12与实施例1基本相同,不同之处在于:步骤(4)中在保证电解质锂盐的浓度为0.5M的同时,改变电解质锂盐的种类,具体参数请见表1。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
实施例13~16
实施例13~16与实施例1基本相同,不同之处在于:步骤(4)中调整第一添加剂(N,N-二乙基三甲基硅烷基胺)的含量T1。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
实施例17~20
实施例17~20与实施例1基本相同,不同之处在于:步骤(4)电解液的制备如下:
在含水量小于10ppm的环境下,先将碳酸二乙酯(DEC):碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、低熔点酯类化合物(丙烯酸丁酯BA)按照40:30:25:5的质量比混合均匀获得溶剂,低熔点酯类化合物在溶剂中的质量占比记为T0。
再在溶剂中添加第一添加剂(N,N-二乙基三甲基硅烷基胺)、第二添加剂(二氟磷酸锂和1,3,6-己三腈,其中二氟磷酸锂和1,3,6-己三腈的质量比为1:3),再加入LiPF 6锂盐配置成为电解液;其中,LiPF 6锂盐的浓度为0.4M,第一添加剂的含量记为T1,第二添加剂的质量占比记为T2。
控制实施例17~20与实施例1的LiPF 6锂盐的浓度及T1相同,调控不同的第二添加剂的质量占比T2,具体请见表1。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
对比例1
对比例1与实施例1基本相同,不同之处在于:步骤(4)中电解液的制备方法为:先将碳酸二乙酯(DEC):碳酸亚乙酯(EC):碳酸甲乙酯(EMC)按照质量比40:30:30混合均匀,再加入LiPF 6锂盐配置成为1.0M浓度的电解液。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
对比例2
对比例2与实施例1基本相同,不同之处在于:步骤(4)中电解液的制备方法为:先将碳酸二乙酯(DEC):碳酸亚乙酯(EC):碳酸甲乙酯(EMC)按照质量比40:30:30混合均匀,再加入六氟砷酸锂配置成为1.0M浓度的电解液。
对比例3
对比例3与实施例1基本相同,不同之处在于:步骤(4)中电解液的组分不含第一添加剂。
其余步骤与实施例1相同,具体参数及测试结果请见表1。
各实施例及对比例中相关的参数及测试结果请见表1。
表1
Figure PCTCN2022108767-appb-000004
Figure PCTCN2022108767-appb-000005
其中,“/”代表不存在该组分。
从表1数据分析可知:本申请的电解液能提高二次电池在低温及高温状态下放电性能,拓宽其适用温度范围。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电解液,其特征在于,所述电解液的组分包括电解质盐、式(1)所示的第一添加剂及溶剂:
    Figure PCTCN2022108767-appb-100001
    其中,各R 1分别独立地选自碳原子数为1~20的烷基、碳原子数为1~20的烷氧基中的任意一种,各R 2分别独立地选自碳原子数为1~20的烷基;
    所述溶剂包括低熔点酯类化合物,所述低熔点酯类化合物的熔点不高于40℃。
  2. 如权利要求1所述的电解液,其特征在于,所述第一添加剂在所述电解液中的质量占比为0.2%~5%。
  3. 如权利要求1~2任一项所述的电解液,其特征在于,所述低熔点酯类化合物在所述溶剂中的质量占比为5%~60%。
  4. 如权利要求1~3任一项所述的电解液,其特征在于,各R 1分别独立地选自碳原子数为1~10的链烷基,各R 2分别独立地选自碳原子数为1~10的链烷基。
  5. 如权利要求1~4任一项所述的电解液,其特征在于,所述低熔点酯类化合物包括γ-丁内酯、乙酸乙酯、乙酸甲酯、丁酸乙酯、乙酸甲酯、甲酸甲酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯和丙烯酸丁酯中的至少一种。
  6. 如权利要求1~5任一项所述的电解液,其特征在于,所述溶剂还包括碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯及氟代碳酸亚乙酯中的至少一种。
  7. 如权利要求1~6任一项所述的电解液,其特征在于,所述电解液的组分还包括第二添加剂,所述第二添加剂包括含氟锂盐和腈类化合物;
    其中,所述含氟锂盐的LUMO能量低于所述溶剂中的至少一个组分的LUMO能量,所述腈类化合物选自被腈基取代的C1~C10烷烃。
  8. 如权利要求7所述的电解液,其特征在于,所述含氟锂盐和所述腈类化合物的质量比为1:(1~4)。
  9. 如权利要求7~8任一项所述的电解液,其特征在于,所述第二添加剂在所述电解液中的质量占比为0.5%~2%。
  10. 如权利要求7~9任一项所述的电解液,其特征在于,所述含氟锂盐包括二氟磷酸锂、四氟硼酸锂中的至少一种。
  11. 如权利要求7~10任一项所述的电解液,其特征在于,所述腈类化合物选自被三个腈基取代的C3~C9烷烃;
    可选地,所述腈类化合物包括1,3,6-己三腈、丁二腈和己二腈中的至少一种。
  12. 如权利要求1~11任一项所述的电解液,其特征在于,所述电解质盐包括六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
  13. 如权利要求1~12任一项所述的电解液,其特征在于,在所述电解液中,所述电解质盐的浓度为0.1mol/L~0.8mol/L。
  14. 一种二次电池,其特征在于,所述二次电池包含如权利要求1~13任一项所述的电解液。
  15. 一种用电装置,其特征在于,所述用电装置包括如权利要求14所述的二次电池。
PCT/CN2022/108767 2022-07-29 2022-07-29 电解液、二次电池及用电装置 WO2024020974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108767 WO2024020974A1 (zh) 2022-07-29 2022-07-29 电解液、二次电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/108767 WO2024020974A1 (zh) 2022-07-29 2022-07-29 电解液、二次电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024020974A1 true WO2024020974A1 (zh) 2024-02-01

Family

ID=89704964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108767 WO2024020974A1 (zh) 2022-07-29 2022-07-29 电解液、二次电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024020974A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074736A (zh) * 2010-06-07 2011-05-25 中国科学院广州能源研究所 含聚醚链有机硅胺电解质材料及其在锂电池电解液中的应用
CN107666007A (zh) * 2016-07-29 2018-02-06 比亚迪股份有限公司 一种锂离子电池非水电解液和锂离子电池
CN110828893A (zh) * 2018-08-09 2020-02-21 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074736A (zh) * 2010-06-07 2011-05-25 中国科学院广州能源研究所 含聚醚链有机硅胺电解质材料及其在锂电池电解液中的应用
CN107666007A (zh) * 2016-07-29 2018-02-06 比亚迪股份有限公司 一种锂离子电池非水电解液和锂离子电池
CN110828893A (zh) * 2018-08-09 2020-02-21 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池
CN113299990A (zh) * 2018-08-09 2021-08-24 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池

Similar Documents

Publication Publication Date Title
WO2022267534A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2022267535A1 (zh) 锂金属负极极片、电化学装置及电子设备
CN112467209A (zh) 一种高低温性能兼顾的高电压锂离子电池
CN114068910A (zh) 一种电化学装置及电子装置
CN113067033B (zh) 电化学装置及电子装置
CN115117558A (zh) 一种补钠组合物及钠离子电池
WO2023216473A1 (zh) 一种电化学装置和电子装置
CN112349961B (zh) 电解液及包含其的电化学装置和电子设备
CN116666751A (zh) 一种电解液、包含该电解液的电化学装置和电子装置
JP2011192561A (ja) 非水電解液二次電池の製造方法
CN114420933A (zh) 负极、电化学装置和电子装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
CN116525949A (zh) 二次电池和装置
WO2023071691A1 (zh) 一种电化学装置及电子装置
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
CN112103561B (zh) 一种电解液及电化学装置
CN115275367B (zh) 锂电池及用电设备
WO2023109259A1 (zh) 电解液添加剂、电解液以及包含其的锂离子二次电池
WO2023225897A1 (zh) 电化学装置及包含其的电子装置
WO2023173410A1 (zh) 电化学装置、电子装置和制备负极极片的方法
WO2023141929A1 (zh) 电化学装置及电子装置
CN106941191B (zh) 锂离子电池及其非水电解液
WO2024020974A1 (zh) 电解液、二次电池及用电装置
WO2023077330A1 (zh) 电解液、二次电池及包含该二次电池的用电装置
JP2013229320A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952431

Country of ref document: EP

Kind code of ref document: A1