WO2023045379A1 - 一种电解液、包括其的二次电池及该二次电池的制备方法 - Google Patents

一种电解液、包括其的二次电池及该二次电池的制备方法 Download PDF

Info

Publication number
WO2023045379A1
WO2023045379A1 PCT/CN2022/095497 CN2022095497W WO2023045379A1 WO 2023045379 A1 WO2023045379 A1 WO 2023045379A1 CN 2022095497 W CN2022095497 W CN 2022095497W WO 2023045379 A1 WO2023045379 A1 WO 2023045379A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
battery
electrolyte solution
electrolyte salt
Prior art date
Application number
PCT/CN2022/095497
Other languages
English (en)
French (fr)
Inventor
彭畅
陈培培
李丽叶
张立美
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237016551A priority Critical patent/KR20230088783A/ko
Priority to JP2023530841A priority patent/JP2023549974A/ja
Priority to EP22871440.8A priority patent/EP4231407A1/en
Publication of WO2023045379A1 publication Critical patent/WO2023045379A1/zh
Priority to US18/331,665 priority patent/US20230335799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to an electrolyte, a secondary battery including the same, and a preparation method of the secondary battery.
  • secondary batteries have been widely used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, as well as electric tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of secondary batteries, higher requirements have been placed on their energy density and cycle storage life.
  • the present application is made in view of the above-mentioned problems, and its purpose is to provide a secondary battery with better cycle storage life, and at the same time, the production efficiency of the electrolyte is equivalent to that of the conventional electrolyte system.
  • the first aspect of the present application provides an electrolyte solution
  • the electrolyte solution includes an electrolyte salt and an additive
  • the concentration of the electrolyte salt is greater than or equal to 1.4mol/L
  • the additive includes MSO 3 F (fluorosulfonate), wherein M At least one selected from Li + , Na + , K + , Rb + , and Cs + .
  • This application not only has a stable solvation structure, but also makes the electrolyte have better oxidation resistance by using the high lithium salt concentration electrolyte in combination with the fluorosulfonate additive, which is less oxidatively decomposed under high voltage, thus effectively Improve battery cycle and storage performance.
  • the concentration of the electrolyte salt is 1.7-2.9 mol/L.
  • the electrolyte salt includes one of (M y+ ) x/y R1(SO 2 N) x SO 2 R2, LiPF 6 , LiBF 4 , LiBOB, LiAsF 6 , LiCF 3 SO 3 , LiFSI and LiClO 4 R1 and R2 independently represent a fluorine atom, a fluoroalkyl group with 1-20 carbon atoms, a fluoroalkoxy group with 1-20 carbon atoms, or a fluoroalkoxy group with 1-20 carbon atoms An alkyl group, and x is an integer of 1-3; in some embodiments, the electrolyte salt includes one or more of LiFSI, LiPF 6 , LiCF 3 SO 2 NSO 2 F.
  • the fluorosulfonate includes one or more of LiSO 3 F, NaSO 3 F, KSO 3 F, RbSO 3 F, and CsSO 3 F.
  • the mass ratio of the fluorosulfonate in the electrolyte is 0.1-5wt%; it can be optionally 0.2%-4%.
  • the additives also include organic compound film-forming additives, inorganic salt film-forming additives, and organic compound film-forming additives include one or Several types; inorganic salt film-forming additives include one or more of fluorine oxalate borate, difluorophosphate, difluorodioxalate phosphate, and difluorodioxalate.
  • the second aspect of the present application provides a method for preparing a secondary battery, which includes: providing an electrolyte solution, the electrolyte solution includes an electrolyte salt and an additive, the concentration of the electrolyte salt is greater than or equal to 1.4mol/L, and the additive includes MSO 3 F, wherein M is selected from one or more of Li + , Na + , K + , Rb + , and Cs + ; the electrolyte solution is injected into the battery.
  • the third aspect of the present application provides a secondary battery, comprising the electrolyte solution of the first aspect of the present application or a secondary battery manufactured by using the preparation method provided in the second aspect of the present application.
  • a fourth aspect of the present application provides a battery module including the secondary battery of the third aspect of the present application.
  • a fifth aspect of the present application provides a battery pack, including the battery module of the fourth aspect of the present application.
  • a sixth aspect of the present application provides an electric device, including at least one selected from the secondary battery of the third aspect of the present application, the battery module of the fourth aspect of the present application, or the battery pack of the fifth aspect of the present application.
  • the secondary battery of the present application includes the electrolyte provided in the first aspect of the present application and the secondary battery prepared by using the preparation method provided in the second aspect of the present application, so it has excellent cycle storage performance.
  • FIG. 1 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 2 is an exploded schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • ⁇ 2 when a certain parameter is expressed as an integer ⁇ 2, it is equivalent to disclosing that the parameter is an integer such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • a method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, or may include steps (b) and (a) performed in sequence.
  • the above-mentioned method may also include step (c), indicating that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c), and may also include the step (a), (c) and (b), may also include steps (c), (a) and (b) and the like.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • Secondary batteries also known as rechargeable batteries or accumulators, refer to batteries that can be activated by charging the active materials and continue to be used after the battery is discharged.
  • a secondary battery typically includes a positive pole piece, a negative pole piece, a separator, and an electrolyte.
  • active ions such as lithium ions
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows active ions to pass through.
  • the electrolyte is between the positive pole piece and the negative pole piece, and mainly plays the role of conducting active ions.
  • Electrolyte is the bridge for the passage of active ions in the secondary battery. It plays the role of transporting active ions between the positive and negative electrodes in the battery, and plays a vital role in the rapid charging performance, specific capacity, cycle efficiency and safety performance of the battery. important role.
  • the currently commonly used electrolyte is an electrolyte system composed of conventional carbonate solution and LiPF 6 , usually with a lithium salt concentration of 0.6-1.3mol/L, but the system is electrolyzed under a high voltage (>4.35V) system. Liquid is easy to oxidize and decompose, thus affecting the cycle and storage performance of the battery.
  • the application provides an electrolyte solution
  • the electrolyte solution includes an electrolyte salt and an additive
  • the concentration of the electrolyte salt is greater than or equal to 1.4mol/L
  • the additive includes MSO 3 F (fluorosulfonate), wherein M is selected from One or more of Li + , Na + , K + , Rb + , Cs + .
  • the inventor found through a lot of research that when the electrolyte solution satisfies the electrolyte salt concentration greater than or equal to 1.4mol/L, and at the same time cooperates with the use of fluorosulfonate film-forming additives, the cycle and storage performance of the battery under high voltage can be effectively improved.
  • the inventor speculates that the concentration of electrolyte salt within the above range can reduce the content of free solvent, so that the solvation structure is stable, so that the electrolyte has better oxidation resistance and less oxidative decomposition under high voltage; at the same time, through the combination of Use fluorosulfonate film-forming additives, among which fluorosulfonate can strengthen the positive and negative film formation, effectively reduce the catalytic oxidation reaction of the electrolyte on the surface of the positive electrode, and reduce the side reaction at the interface between the electrolyte and the positive electrode under high voltage, thereby Effectively improve the cycle and storage performance of the battery, in addition to promote the desolvation process of lithium ions and reduce the transmission resistance of lithium ions.
  • the concentration of the electrolyte salt is 1.7-2.9 mol/L.
  • the concentration of the electrolyte salt in an appropriate range can further improve the stability of the solvated structure, thereby further improving the cycle and storage performance of the battery.
  • the electrolyte salt includes one of (M y+ ) x/y R1(SO 2 N) x SO 2 R2, LiPF 6 , LiBF 4 , LiBOB, LiAsF 6 , LiCF 3 SO 3 , LiFSI, and LiClO 4 R1 and R2 independently represent a fluorine atom, a fluoroalkyl group with 1-20 carbon atoms, a fluoroalkoxy group with 1-20 carbon atoms, or a fluoroalkoxy group with 1-20 carbon atoms An alkyl group, and x is an integer of 1-3; in some embodiments, the electrolyte salt includes one or more of LiFSI, LiPF 6 , LiCF 3 SO 2 NSO 2 F.
  • the fluorosulfonate additive includes one or more of LiSO 3 F, NaSO 3 F, KSO 3 F, RbSO 3 F, and CsSO 3 F.
  • the mass ratio of the fluorosulfonate in the electrolyte is 0.1-5 wt%, optionally 0.2%-4%.
  • the content of the fluorosulfonate within the given range can further take into account the lower battery impedance while improving the battery cycle and storage performance.
  • the additives also include an organic compound film-forming additive, an inorganic salt film-forming additive, and the organic compound film-forming additive is one or Various; inorganic salt film-forming additives are MDFOB (difluorooxalate borate), MPO 2 F 2 (difluorophosphate), MDFOP (difluorodifluorooxalate phosphate), MDFOP (difluorodioxalate) One or more of, specifically, lithium difluorooxalate phosphate, lithium difluorophosphate, lithium difluorodioxalate phosphate, lithium difluorodioxalate, etc. Adding other additives such as fluorine-containing salts can inhibit the oxidation and reduction reactions of the electrolyte under high voltage, and further reduce the increase in the interface impedance of the positive and negative electrodes.
  • inorganic salt film-forming additives are MDFOB (difluorooxalate borate), MPO 2 F 2 (
  • Embodiments of the present application also provide a method for preparing a secondary battery.
  • the preparation method includes:
  • the electrolyte solution includes electrolyte salt and additives, the concentration of the electrolyte salt is greater than or equal to 1.4mol/L, and the additive includes MSO 3 F (fluorosulfonate), wherein M is selected from Li + , Na + , K + , Rb + , one or more of Cs + ; the electrolyte is injected into the battery for formation.
  • MSO 3 F fluorosulfonate
  • the preparation method of the secondary battery includes: respectively preparing the first electrolyte solution and the second electrolyte solution; the first electrolyte solution includes the first electrolyte salt and the fluorosulfonate additive, and the concentration of the first electrolyte salt is 0.8 -2 mol/L, the second electrolyte solution contains a second electrolyte salt, and the concentration of the second electrolyte salt is greater than or equal to 2 mol/L.
  • the first electrolyte solution is injected into the battery first, and after the first formation, the second electrolyte solution is injected into the battery after the first formation to carry out cycle charge and discharge.
  • the inventors found that, under the condition that the electrolyte salt concentration in the electrolyte solution is similar, the second injection has a better infiltration rate than the first injection. Injecting the first electrolytic solution containing fluorosulfonate additive and having a lower concentration of lithium salt in the first electrolyte for formation, can use a larger charge rate, reduce the time for formation, and improve production efficiency. After that, a second electrolyte with a higher concentration is added to ensure that it is less decomposed under high voltage, and its unique solvation structure can improve the oxidation resistance of the battery and prevent corrosion of the current collector.
  • the mass proportion of the fluorosulfonate in the first electrolyte is 0.1%-5%, optionally 0.2%-4%. If the content of fluorosulfonate is too low, the cycle performance of the battery under high voltage will not be significantly improved; if the content of fluorosulfonate is too high, the battery will not be completely consumed when the SEI film is formed, resulting in an increase in battery impedance and a decrease in the secondary battery capacity. In addition, it will deteriorate the conductivity of the electrolyte, resulting in easy lithium precipitation during the cycle.
  • the first electrolyte salt and the second electrolyte salt are each independently selected from (M y+ ) x/y R1(SO 2 N) x SO 2 R2, LiPF 6 , LiBF 4 , LiBOB, LiAsF 6 , LiCF 3 One or more of SO 3 , LiFSI, LiTFSI and LiClO 4 , wherein R1 and R2 independently represent a fluorine atom, a fluoroalkyl group with 1-20 carbon atoms, and a fluoroalkyl group with 1-20 carbon atoms. 20 fluoroalkoxy or alkyl having 1-20 carbon atoms, and x is an integer of 1-3; in some embodiments, including LiFSI, LiPF 6 , LiTFSI, LiCF 3 SO 2 NSO 2 F.
  • the second electrolyte solution further includes an organic film-forming additive, wherein the organic film-forming additive is one or more of carbonates, sulfates, sulfonates, phosphates, borates, and acid anhydrides. Adding an organic film-forming additive can form a film on the surface of the positive or negative electrode, reducing the oxidative decomposition of the solvent on the electrode surface.
  • the positive electrode sheet generally includes a positive electrode current collector and a positive electrode film layer arranged on at least one surface of the positive electrode current collector, and the positive electrode film layer includes a positive electrode active material.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • a metal foil or a composite current collector can be used as the positive electrode current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of meta-copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • a metal foil or a composite current collector can be used as the negative electrode current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material can be selected from at least one of simple tin, tin oxide and tin alloy.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), At least one of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag can be plastic, and examples of plastic include polypropylene, polybutylene terephthalate, and polybutylene succinate.
  • FIG. 1 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may further include a case having an accommodation space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • a secondary battery, a battery module, or a battery pack can be used as a power source of a power consumption device, and can also be used as an energy storage unit of the power consumption device.
  • Electric devices can include mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • secondary batteries, battery modules, or battery packs can be selected according to their usage requirements.
  • FIG. 6 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • the negative electrode slurry is prepared by uniformly mixing with the solvent deionized water; then the negative electrode slurry is evenly coated on the copper foil of the negative electrode current collector, and the negative electrode diaphragm is obtained after drying, and then the negative electrode sheet is obtained by cold pressing and cutting.
  • a conventional polypropylene film is used as the separator.
  • the step of injecting electrolyte is as follows:
  • Step 1 inject the first electrolyte solution into the secondary battery, the liquid injection volume is 70% of the total liquid injection volume of the battery, and carry out high-temperature standing and formation of the secondary battery;
  • Step 2 Inject the second electrolyte solution into the secondary battery formed in step 1, and perform cycle charge and discharge on the secondary battery.
  • the preparation method is similar to that of Example 1, except that the electrolyte salt concentration, liquid injection sequence, additives, and liquid injection times during the preparation process are changed to obtain a corresponding secondary battery, see Table 1 for details.
  • the total concentration of electrolyte salt refers to the concentration of electrolyte salt in the secondary battery electrolyte prepared through the above steps.
  • Example 4 Through the comparison of Example 4, Example 6 and Comparative Examples 4-5, it can be seen that the order of injecting the first electrolyte and the second electrolyte will affect the wetting rate of the first electrolyte to the positive pole piece, and the first electrolyte is injected first.
  • the second electrolyte When the second electrolyte is formed, the lithium-free ratio of the interface is significantly reduced after being fully charged, and the polarization is too large during the charging process, so only a small charging ratio can be used during the formation, and the formation time is longer, resulting in a decrease in the production efficiency of the battery.
  • Example 11 From the comparison of Example 11 and Example 12, it can be seen that the wettability of the electrolyte to the positive electrode sheet and the lithium-free ratio of the interface after the first full charge of the electrolyte have decreased compared with the second injection. , the formation time increases, reducing production efficiency.

Abstract

本申请提供了一种电解液、二次电池、电池包和用电装置。电解液包括摩尔浓度大于等于1.4mol/L的电解质盐以及包括MSO 3F(氟磺酸盐)的添加剂,其中M为金属离子,金属离子选自Li +,Na +,K +,Rb +,Cs +中的一种或几种;二次电池的具体制备方法为配制电解质盐浓度大于等于1.4mol/L的电解液,加入添加剂进行化成。

Description

一种电解液、包括其的二次电池及该二次电池的制备方法
相关申请的交叉引用
本申请要求享有于2021年09月26日提交的名称为“一种电解液、包括其的二次电池及该二次电池的制备方法”的中国专利申请202111131748.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及锂电池技术领域,尤其涉及一种电解液、包括其的二次电池及该二次电池的制备方法。
背景技术
近年来,随着二次电池的应用范围越来越广泛,二次电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于二次电池取得了极大的发展,因此对其能量密度和循环存储寿命等也提出了更高的要求。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种具有较好的循环存储寿命的二次电池,同时生产效率与常规电解液体系相当的电解液。
为了达到上述目的,本申请第一方面提供一种电解液,电解液包括电解质盐和添加剂,电解质盐的浓度大于等于1.4mol/L,且添加剂包括 MSO 3F(氟磺酸盐),其中M选自Li +,Na +,K +,Rb +,Cs +中的至少一种。
本申请通过将高锂盐浓度电解液与氟磺酸盐添加剂配合使用,不仅具有稳定的溶剂化结构,还使得电解液具有较好的耐氧化性,在高电压下氧化分解较少,从而有效改善电池的循环和存储性能。
在任意实施方式中,电解质盐的浓度为1.7-2.9mol/L。
在任意实施方式中,电解质盐包括(M y+) x/y R1(SO 2N) xSO 2R2、LiPF 6、LiBF 4、LiBOB、LiAsF 6、LiCF 3SO 3、LiFSI以及LiClO 4中的一种或几种,R1、R2各自独立地单独表示氟原子、碳原子数为1-20的氟代烷基、碳原子数为1-20的氟代烷氧基或碳原子数为1-20的烷基,并且x为1-3的整数;在一些实施例中,电解质盐包括LiFSI,LiPF 6,LiCF 3SO 2NSO 2F中的一种或几种。
在任意实施方式中,氟磺酸盐包括LiSO 3F,NaSO 3F,KSO 3F,RbSO 3F,CsSO 3F中的一种或几种。
在任意实施方式中,氟磺酸盐在电解液中的质量占比0.1-5wt%;可选为0.2%-4%。
在任意实施方式中,添加剂还包括有机化合物成膜添加剂、无机盐成膜添加剂,有机化合物成膜添加剂包括碳酸酯、硫酸酯、磺酸酯、磷酸酯、硼酸酯、酸酐中的一种或几种;无机盐成膜添加剂包括氟草酸硼酸盐、二氟磷酸盐、二氟二草酸磷酸盐、二氟二草酸盐中的一种或几种。
本申请的第二方面提供一种二次电池的制备方法,其包括:提供电解液,电解液包括电解质盐和添加剂,电解质盐的浓度大于等于1.4mol/L,且添加剂包括MSO 3F,其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种;将电解液注入电池。
本申请的第三方面提供一种二次电池,包括本申请第一方面的电解液或使用本申请第二方面提供的制备方法制成的二次电池。
本申请的第四方面提供一种电池模块,包括本申请的第三方面的二次电池。
本申请的第五方面提供一种电池包,包括本申请的第四方面的电池模块。
本申请的第六方面提供一种用电装置,包括选自本申请第三方面的二次电池、本申请第四方面的电池模块或本申请第五方面的电池包中的至少一种。
本申请的二次电池包括本申请第一方面提供的电解液及使用本申请第二方面提供的制备方法制备的二次电池,因此具有优异的循环存储性能。
附图说明
为了更清楚地说明本申请实施方式的技术方案,下面将对本申请实施方式中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施方式的二次电池的示意图。
图2是本申请一实施方式的二次电池的分解示意图。
图3是本申请一实施方式的电池模块的示意图。
图4是本申请一实施方式的电池包的示意图。
图5是图4所示的本申请一实施方式的电池包的分解图。
图6是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53盖板。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极极片、负极极片、二次电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥ 2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行。例如,某方法包括步骤(a)和(b),表示该方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,上述的提到方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到方法,例如,该方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[二次电池]
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。
通常情况下,二次电池包括正极极片、负极极片、隔离膜及电解液。在电池充放电过程中,活性离子(例如锂离子)在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。电解液在正极极片和负极极片之间,主要起到传导活性离子的作用。
[电解液]
电解液是二次电池中活性离子通行的桥梁,在电池中承担着正负极之间输送活性离子的作用,对电池的快速充电性能、比容量、循环效率及安全性能等都起着至关重要的作用。
发明人发现,目前常用的电解液为常规碳酸酯溶液与LiPF 6组成的电解液体系,通常锂盐浓度为0.6-1.3mol/L,但该体系在高电压(>4.35V)体系下,电解液容易氧化分解,从而影响电池的循环和存储性能。
为了解决上述技术问题,本申请提供一种电解液,电解液包括电解质盐和添加剂,电解质盐的浓度大于等于1.4mol/L,且添加剂包括MSO 3F(氟磺酸盐),其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种。
发明人通过大量的研究发现,当电解液满足电解质盐的浓度大于等于1.4mol/L,且同时配合使用氟磺酸盐成膜添加剂,可以有效改善电池在高电压下的循环和存储性能。发明人推测,电解质盐的浓度在上述范围内可以降低游离溶剂的含量,使得溶剂化结构稳定,从而使电解液具有较好的耐氧化性,在高电压下氧化分解较少;同时,通过配合使用氟磺酸盐成膜添加剂,其中氟磺酸盐可以加强正负极成膜,有效减少电解液在正极表面的催化氧化反应,降低在高电压下电解液与正极的界面的副反应,从而有效改善电池的循环和存储性能,此外还能促进锂离子的去溶剂化过程, 减少锂离子传输阻抗。
在一些实施方式中,电解质盐的浓度为1.7-2.9mol/L。电解质盐的浓度在适当范围内,可以进一步提高溶剂化结构的稳定性,从而进一步提高电池的循环和存储性能。
在一些实施方式中,电解质盐包括(M y+) x/y R1(SO 2N) xSO 2R2、LiPF 6、LiBF 4、LiBOB、LiAsF 6、LiCF 3SO 3、LiFSI以及LiClO 4中的一种或几种,R1、R2各自独立地单独表示氟原子、碳原子数为1-20的氟代烷基、碳原子数为1-20的氟代烷氧基或碳原子数为1-20的烷基,并且x为1-3的整数;在一些实施例中,电解质盐包括LiFSI,LiPF 6,LiCF 3SO 2NSO 2F中的一种或几种。
在一些实施方式中,氟磺酸盐添加剂包括LiSO 3F,NaSO 3F,KSO 3F,RbSO 3F,CsSO 3F的一种或几种。
在一些实施方式中,氟磺酸盐在电解液中的质量占比0.1-5wt%,可选为0.2%-4%。氟磺酸盐的含量在所给范围内,可以在改善电池循环和存储性能的同时,进一步兼顾较低的电池阻抗。
在一些实施方式中,添加剂还包括有机化合物成膜添加剂、无机盐成膜添加剂,有机化合物成膜添加剂为碳酸酯、硫酸酯、磺酸酯、磷酸酯、硼酸酯、酸酐中的一种或多种;无机盐成膜添加剂为MDFOB(二氟草酸硼酸盐)、MPO 2F 2(二氟磷酸盐)、MDFOP(二氟二草酸磷酸盐)、MDFOP(二氟二草酸盐)中的一种或多种,具体地,可为二氟草酸磷酸锂、二氟磷酸锂、二氟二草酸磷酸锂、二氟二草酸锂等。加入其他添加剂如含氟盐类可抑制高电压下电解液的氧化和还原反应,进一步降低正极和负极界面阻抗增加。
[二次电池的制备方法]
本申请的实施方式还提供一种二次电池的制备方法。该制备方法包括:
配制电解液,电解液包括电解质盐和添加剂,电解质盐的浓度大于等于1.4mol/L,且添加剂包括MSO 3F(氟磺酸盐),其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种;将电解液注入电池中进行化成。
在一些实施方式中,二次电池的制备方法包括:分别配制第一电解液和第二电解液;第一电解液包含第一电解质盐和氟磺酸盐添加剂,第一电解质盐的浓度为0.8-2mol/L,第二电解液包含第二电解质盐,第二电解质盐的浓度大于等于2mol/L。先将第一电解液注入电池,经第一次化成后,再将第二电解液注入第一次化成后的电池,进行循环充放电。
发明人经过深入研究发现,在电解液中电解质盐浓度相仿的情况下,采用二次注液比一次注液具有更好的浸润速率。先注入含有氟磺酸盐添加剂且第一电解质锂盐浓度较低的第一电解液进行化成,能够使用较大的充电倍率,减少了化成的时间,从而提高了生产效率。之后加入浓度较高的第二电解液,保障了其在高电压下分解较少,并且其独特的溶剂化结构可以提升电池的耐氧化性能并防止集流体腐蚀。
在一些实施方式中,氟磺酸盐在第一电解液中的质量占比为0.1%-5%,可选为0.2%-4%。若氟磺酸盐含量过低,对高电压下电池的循环性能改善不明显;若氟磺酸盐含量过高,电池在化成形成SEI膜时无法完全消耗,导致电池阻抗增加,降低二次电池的循环和存储性能,此外还会恶化电解液的电导率,导致循环过程中容易析锂。
在一些实施方式中,第一电解质盐和第二电解质盐各自独立地选自(M y+) x/y R1(SO 2N) xSO 2R2、LiPF 6、LiBF 4、LiBOB、LiAsF 6、LiCF 3SO 3、LiFSI、LiTFSI以及LiClO 4中的一种或几种,其中,R1、R2各自独立地单 独表示氟原子、碳原子数为1-20的氟代烷基、碳原子数为1-20的氟代烷氧基或碳原子数为1-20的烷基,并且x为1-3的整数;在一些实施例中,包括LiFSI,LiPF 6,LiTFSI,LiCF 3SO 2NSO 2F。
在一些实施方式中,第二电解液还包括有机成膜添加剂,其中,有机成膜添加剂为碳酸酯、硫酸酯、磺酸酯、磷酸酯、硼酸酯、酸酐中的一种或者多种。加入有机成膜添加剂,可以在正极或负极表面成膜,减少溶剂在电极表面的氧化分解。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,正极膜层包括正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上 组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软 包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于开口,以封闭容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
在一些实施例中,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。二次电池、电池模块、或电池包可以用作用电装置的电源,也可以用作用电装置的能量存储单元。用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图6是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
[实施例]
下面结合具体实施例,进一步阐述本发明。应理解,下文的示例性实施例仅用于举例说明,并非对本发明进行限定。除非另有声明,实施例中使用的所有试剂都可商购或按照常规方法进行合成获得,并且可直接使用而无需进一步处理。实施例中未注明的实验条件采用常规条件、或采用材料供应商或设备供应商推荐的条件。
实施例1
正极极片的制备
将正极活性材料NCM 523、导电剂乙炔黑、粘结剂聚偏二氟乙烯(PVDF)按重量比为96.5:1.5:2溶于溶剂N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀后得到正极浆料;之后将正极浆料均匀涂覆于正极集流体上,之后经过烘干、冷压、分切,得到正极极片。
负极极片的制备
将活性物质人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照重量比为95:2:2:1溶于溶剂去离子水中与溶剂去离子水均匀混合后制备成负极浆料;然后将负极浆料均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
电解液的制备
用EC/EMC=3/7(质量比)为溶剂,加入1%LiSO 3F,再加入LiFSI,使得电解质盐盐浓度为1mol/L,得到第一电解液;用EC/EMC=3/7(质量比)为溶剂,加入LiFSI,使电解质盐浓度为2.4mol/L,得到第二电解液。
隔离膜的制备
以常规的聚丙烯膜作为隔离膜。
二次电池的制备
将正极极片、隔离膜、负极极片按顺序堆叠并卷绕,得到电极组件,将电极组件置于外包装中,干燥后注入电解液,再经过高温静置、化成等工艺制得二次电池。其中,注入电解液的步骤如下:
步骤1:将第一电解液注入到二次电池中,注液量为电池总注液量的70%,并对二次电池进行高温静置和化成;
步骤2:在步骤1化成后的二次电池中注入第二电解液,并对二次电池进行循环充放电。
实施例2-14及对比例1-5
制备方法与实施例1类似,不同的是:改变制备过程中的电解质盐浓度、注液顺序、添加剂、注液次数,得到相应的二次电池,详见表1。
表1:各实施例和对比例制备相关参数
Figure PCTCN2022095497-appb-000001
电解质盐总浓度指经过上述步骤制成的二次电池电解液中的电解质盐浓度。
测试部分
(1)满充后界面不析锂倍率测试
在25℃下,将实施例和对比例中的二次电池按下述方法测试:
1)以xC恒流充电至4.45V,之后以4.45V恒压充电至电流小于0.05C,再以xC放电到2.8V,循环10圈。
2)以xC恒流充电至4.45V,然后以4.45V恒压充电至电流小于0.05C得到满充二次电池。
3)将二次电池拆解,观察负极析锂情况。
4)重复以上操作直至不析锂,取电池完全不析锂时的x值作为第一电解液满充不析锂的倍率。
(2)45℃循环性能测试
在45℃下,将二次电池以0.1C恒流充电至4.45V,然后以4.45V恒压充电至电流小于0.05C,然后将二次电池以0.2C恒流放电至2.8V,此为一个充放电过程,得到放电容量C(Ah)。如此反复进行充电和放电,计算二次电池容量保持圈数。
表2:各实施例及对比例对应性能测试
Figure PCTCN2022095497-appb-000002
从表2的测试结果可以看出,当电解液同时满足电解质盐的浓度大于等于1.4mol/L,且添加剂包括MSO 3F,其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种时,电池在高电压下的循环性能得到明显改善。
同时,通过实施例1-6与对比例3比较可知,第一电解液中的第一电解质盐浓度越高,电池化成时的倍率越小(即:化成所需时间越长),从而降低化成产能,影响电池生产效率。
通过实施例4、实施例6和对比例4-5比较可知,第一电解液和第二电解液的注液顺序除了会影响第一电解液对正极极片的浸润速率之外,先注入第二电解液时,化成满充后的界面不析锂倍率明显降低,充电过程中极化太大,化成时只能采用较小的充电倍率,化成时间较长,从而导致电池的生产效率降低。
通过实施例8与实施例11比较可知,增加LiPO 2F 2添加剂之后, 二次电池的循环性能得到了进一步提高。
通过实施例11和实施例12比较可知,一次注液相比于二次注液,电解液对正极极片的浸润性和电解液第一次化成满充后界面不析锂倍率均有所下降,化成时间增长,降低了生产效率。
通过实施例3与对比例4比较可知,当不添加氟磺酸盐添加剂时,二次电池的循环性能显著下降。
根据上述说明书的揭示和教导,本领域技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (15)

  1. 一种电解液,包括电解质盐和添加剂,所述电解质盐的浓度大于等于1.4mol/L,且所述添加剂包括MSO 3F,其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种。
  2. 根据权利要求1所述的电解液,其中,所述电解质盐的浓度为1.7-2.9mol/L。
  3. 根据权利要求1或2所述的电解液,其中,所述电解质盐包括(M y+) x/yR1(SO 2N) xSO 2R2,LiPF 6,LiBF 4,LiBOB,LiAsF 6,LiCF 3SO 3,LiFSI,LiTFSI以及LiClO 4中的一种或几种,所述R1、R2各自独立地单独表示氟原子、碳原子数为1-20的氟代烷基、碳原子数为1-20的氟代烷氧基或碳原子数为1-20的烷基,并且x为1-3的整数;可选地,所述电解质盐包括LiFSI,LiTFSI,LiPF 6,LiCF 3SO 2NSO 2F中的一种或几种。
  4. 根据权利要求1至3中任一项所述的电解液,其中,所述氟磺酸盐包括LiSO 3F,NaSO 3F,KSO 3F,CsSO 3F以及RbSO 3F的一种或几种。
  5. 根据权利要求1至4中任一项所述的电解液,其中,所述氟磺酸盐在所述电解液中的质量占比0.1-5wt%,可选为0.2%-4%。
  6. 根据权利要求1至5中任一项所述的电解液,其中,所述添加剂还包括有机化合物成膜添加剂、无机盐成膜添加剂,所述有机化合物成膜添加剂包括碳酸酯,硫酸酯,磺酸酯,磷酸酯,硼酸酯,酸酐中的一种或几种;所述无机盐成膜添加剂包括氟草酸硼酸盐,二氟磷酸盐,二氟二草酸磷酸盐,二氟二草酸盐中的一种或几种。
  7. 一种二次电池,包括权利要求1至6中任一项所述的电解液。
  8. 一种二次电池的制备方法,包括如下步骤:
    步骤S1:提供电解液,包括电解质盐和添加剂,所述电解质盐的浓度 大于等于1.4mol/L,且所述添加剂包括MSO 3F,其中M选自Li +,Na +,K +,Rb +,Cs +中的一种或几种;
    步骤S2:将所述电解液注入电池。
  9. 根据权利要求8所述的二次电池的制备方法,其中,
    步骤S1:分别配制第一电解液和第二电解液;所述第一电解液包括第一电解质盐,所述第一电解质盐的浓度为0.8-2mol/L;所述第二电解液包括第二电解质盐,所述第二电解质盐的浓度大于等于2mol/L;
    步骤S2:先将所述第一电解液注入所述电池,加入MSO 3F添加剂,经第一次化成后,再将所述第二电解液注入所述电池。
  10. 根据权利要求9所述的二次电池的制备方法,其中,所述氟磺酸盐在第一电解液中的质量占比0.1%-5%,可选为0.2%-4%。
  11. 根据权利要求9或10所述的二次电池的制备方法,其中,所述第一电解质盐和所述第二电解质盐各自独立地选自(M y+) x/yR1(SO 2N) xSO 2R2,LiPF 6,LiBF 4,LiBOB,LiAsF 6,LiCF 3SO 3,LiFSI以及LiClO 4中的一种或几种,所述R1、R2各自独立地单独表示氟原子、碳原子数为1-20的氟代烷基、碳原子数为1-20的氟代烷氧基或碳原子数为1-20的烷基,并且x为1-3的整数;可选地,所述第一电解质盐和所述第二电解质盐各自独立地包括LiFSI,LiPF 6,LiCF 3SO 2NSO 2F中的一种或几种。
  12. 根据权利要求9至11中任一项所述的二次电池的制备方法,其中,所述第二电解液还包括添加剂,所述添加剂为有机化合物成膜添加剂,所述有机化合物成膜添加剂为碳酸酯,硫酸酯,磺酸酯,磷酸酯,硼酸酯,酸酐中的一种或者多种。
  13. 一种电池模块,包括权利要求7所述的二次电池或权利要求8至12中任一项所述的制备方法得到的二次电池。
  14. 一种电池包,包括权利要求13所述的电池模块。
  15. 一种用电装置,包括选自权利要求7所述的二次电池、权利要求13所述的电池模块或权利要求14所述的电池包中的至少一种。
PCT/CN2022/095497 2021-09-26 2022-05-27 一种电解液、包括其的二次电池及该二次电池的制备方法 WO2023045379A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237016551A KR20230088783A (ko) 2021-09-26 2022-05-27 전해액, 이를 포함하는 이차전지 및 이 이차전지의 제조방법
JP2023530841A JP2023549974A (ja) 2021-09-26 2022-05-27 電解液、それを含む二次電池及びこの二次電池の製造方法
EP22871440.8A EP4231407A1 (en) 2021-09-26 2022-05-27 Electrolyte solution, secondary battery comprising same, and preparation method for secondary battery
US18/331,665 US20230335799A1 (en) 2021-09-26 2023-06-08 Electrolyte, secondary battery including such electrolyte, and preparation method of such secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111131748.1 2021-09-26
CN202111131748.1A CN115810796B (zh) 2021-09-26 2021-09-26 一种电解液、包括其的二次电池及该二次电池的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,665 Continuation US20230335799A1 (en) 2021-09-26 2023-06-08 Electrolyte, secondary battery including such electrolyte, and preparation method of such secondary battery

Publications (1)

Publication Number Publication Date
WO2023045379A1 true WO2023045379A1 (zh) 2023-03-30

Family

ID=85481100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095497 WO2023045379A1 (zh) 2021-09-26 2022-05-27 一种电解液、包括其的二次电池及该二次电池的制备方法

Country Status (6)

Country Link
US (1) US20230335799A1 (zh)
EP (1) EP4231407A1 (zh)
JP (1) JP2023549974A (zh)
KR (1) KR20230088783A (zh)
CN (1) CN115810796B (zh)
WO (1) WO2023045379A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219867A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置
CN117334917A (zh) * 2023-12-01 2024-01-02 宁德时代新能源科技股份有限公司 二次电池和用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754268A (zh) * 2010-02-12 2012-10-24 三菱化学株式会社 非水电解液及非水电解质二次电池
CN103492319A (zh) * 2011-04-11 2014-01-01 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
CN108598589A (zh) * 2018-05-10 2018-09-28 江西安驰新能源科技有限公司 一种锂离子电池的注液方法
CN110137432A (zh) * 2018-02-09 2019-08-16 丰田自动车株式会社 非水电解液二次电池和电池组装体
CN112234252A (zh) * 2019-07-15 2021-01-15 杉杉新材料(衢州)有限公司 一种高电压用宽温型锂离子电池非水电解液及锂离子电池
CN112928349A (zh) * 2021-01-21 2021-06-08 中国科学院宁波材料技术与工程研究所 一种富锂电池的化成方法
CN113348569A (zh) * 2019-01-31 2021-09-03 松下知识产权经营株式会社 非水电解质二次电池及其中使用的电解液

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754268A (zh) * 2010-02-12 2012-10-24 三菱化学株式会社 非水电解液及非水电解质二次电池
CN103492319A (zh) * 2011-04-11 2014-01-01 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
CN110137432A (zh) * 2018-02-09 2019-08-16 丰田自动车株式会社 非水电解液二次电池和电池组装体
CN108598589A (zh) * 2018-05-10 2018-09-28 江西安驰新能源科技有限公司 一种锂离子电池的注液方法
CN113348569A (zh) * 2019-01-31 2021-09-03 松下知识产权经营株式会社 非水电解质二次电池及其中使用的电解液
CN112234252A (zh) * 2019-07-15 2021-01-15 杉杉新材料(衢州)有限公司 一种高电压用宽温型锂离子电池非水电解液及锂离子电池
CN112928349A (zh) * 2021-01-21 2021-06-08 中国科学院宁波材料技术与工程研究所 一种富锂电池的化成方法

Also Published As

Publication number Publication date
KR20230088783A (ko) 2023-06-20
CN115810796B (zh) 2024-04-09
EP4231407A1 (en) 2023-08-23
CN115810796A (zh) 2023-03-17
JP2023549974A (ja) 2023-11-29
US20230335799A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2023045379A1 (zh) 一种电解液、包括其的二次电池及该二次电池的制备方法
WO2021023131A1 (zh) 电解液、锂离子电池及装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
US20230411693A1 (en) Non-aqueous electrolyte and secondary battery, battery module, battery pack and electrical device containing the same
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023206216A1 (zh) 非水电解液、二次电池、电池模块、电池包和用电装置
WO2023050406A1 (zh) 锂离子电池及包含其的电池模块、电池包和用电装置
WO2023070516A1 (zh) 二次电池、电池模块、电池包以及用电装置
JP2023550220A (ja) 電解液、二次電池及び電力消費装置
WO2023087168A1 (zh) 电解液、二次电池、电池模块、电池包以及用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023216052A1 (zh) 一种电解液、二次电池、电池模块、电池包和用电装置
WO2023082866A1 (zh) 二次电池、用于制备二次电池的方法、电池模块、电池包及用电装置
JP7463532B2 (ja) リチウムイオン二次電池、電池モジュール、電池パック及び電力消費装置
WO2023000214A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023039845A1 (zh) 快充长寿命型二次电池、电池模块、电池包、用电装置
WO2023216130A1 (zh) 一种电解液、二次电池、电池模块、电池包和用电装置
US20230299357A1 (en) Electrolyte and secondary battery using same, and battery module, battery pack, and power consuming device
WO2024077514A1 (zh) 电解液、电池单体、电池和用电装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2024016097A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置
WO2023123413A1 (zh) 电解液、二次电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237016551

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023530841

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022871440

Country of ref document: EP

Effective date: 20230519