WO2023141954A1 - 锂离子电池、电池模块、电池包和用电装置 - Google Patents

锂离子电池、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023141954A1
WO2023141954A1 PCT/CN2022/074647 CN2022074647W WO2023141954A1 WO 2023141954 A1 WO2023141954 A1 WO 2023141954A1 CN 2022074647 W CN2022074647 W CN 2022074647W WO 2023141954 A1 WO2023141954 A1 WO 2023141954A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
layer
battery
carbon
Prior art date
Application number
PCT/CN2022/074647
Other languages
English (en)
French (fr)
Inventor
孙信
李璇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/074647 priority Critical patent/WO2023141954A1/zh
Priority to EP22922794.7A priority patent/EP4276936A1/en
Publication of WO2023141954A1 publication Critical patent/WO2023141954A1/zh
Priority to US18/448,907 priority patent/US20230395776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to a lithium ion battery, a battery module, a battery pack and an electrical device.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements have been put forward for their energy density, cycle performance and safety performance.
  • lithium will be deposited on the surface of the negative electrode current collector. During the deposition process, some sites will deposit too fast, and then form The sharp lithium dendrite structure may penetrate the separator when the lithium dendrite grows to a certain extent, causing safety problems. In addition, when the lithium dendrite grows to a certain extent, it will break and form "dead lithium", resulting in loss of battery capacity, resulting in poor cycle performance, short service life and poor safety performance of the battery. Therefore, certain strategies need to be adopted to optimize the anode of Li-ion batteries, so as to improve the safety of Li-ion batteries, improve the battery energy density and cycle stability.
  • the present application is made in view of the above-mentioned problems, and its purpose is to provide a lithium-ion battery that can effectively reduce the formation of lithium dendrites, thereby having high energy density, improved cycle stability and safety, and provides a lithium-ion battery comprising the present invention.
  • the first aspect of the present application provides a lithium-ion battery, wherein the lithium-ion battery has a discharge negative electrode capacity/discharge positive electrode capacity ⁇ 1 (that is, Nd/Pd ⁇ 1), and includes a A laminated composite negative electrode, the negative electrode includes a current collector and a lithium-philic layer, a main body layer and a lithium-repellent layer arranged in sequence along the current collector.
  • the lithium-ion battery has a discharge negative electrode capacity/discharge positive electrode capacity ⁇ 1 (that is, Nd/Pd ⁇ 1), and includes a A laminated composite negative electrode, the negative electrode includes a current collector and a lithium-philic layer, a main body layer and a lithium-repellent layer arranged in sequence along the current collector.
  • the material of the lithium-philic layer comprises a carbon material modified by doping
  • the carbon material is artificial graphite, natural graphite, carbon nanotubes, carbon fibers, mesocarbon microspheres, graphene, graphite oxide
  • At least one of alkenes, the doping element in the doped modified carbon material is at least one of O, N, S, B, P, F, Cl, Br, I, the doping element The amount is 0.2-2 wt.%, preferably 0.8-1.5 wt.%, based on the doped modified carbon material.
  • the material of the main body layer includes at least one of natural graphite, artificial graphite, mesocarbon microspheres, soft carbon, and hard carbon.
  • the material of the lithium repellent layer comprises a carbon material without functional groups or defects, and the carbon material is artificial graphite, natural graphite, carbon nanotubes, carbon fibers, mesocarbon microspheres, and graphene. at least one.
  • the lithium-philic layer has a thickness of 0.2-15 ⁇ m, preferably 2-10 ⁇ m, more preferably 5-8 ⁇ m.
  • the thickness of the main body layer is 80-200 ⁇ m, preferably 100-180 ⁇ m, more preferably 120-150 ⁇ m.
  • the lithium ion battery according to claim 1 or 2 characterized in that, the thickness of the lithium repellent layer is 0.2-15 ⁇ m, preferably 2-10 ⁇ m.
  • the present application makes the discharge negative electrode capacity/discharge positive electrode capacity ⁇ 1 (that is, Nd/Pd ⁇ 1) through the overall design of the battery, thereby increasing the energy density of the battery; Lithophilic layer, main body layer, and lithium repellent layer are arranged upwards in order, thereby effectively reducing the influence of current density on the negative electrode working surface, inhibiting the growth of lithium dendrites, and greatly improving the cycle life and safety of lithium metal batteries.
  • a second aspect of the present application provides a battery module including the lithium-ion battery of the first aspect of the present application.
  • a third aspect of the present application provides a battery pack, including the battery module of the second aspect of the present application.
  • the fourth aspect of the present application provides an electric device, including at least one selected from the lithium ion battery of the first aspect of the present application, the battery module of the second aspect of the present application, or the battery pack of the third aspect of the present application kind.
  • the battery module, battery pack and electrical device of the present application include the lithium-ion battery provided by the present application, and thus have at least the same advantages as the lithium-ion battery.
  • FIG. 1 is a schematic diagram of a lithium ion battery according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the lithium ion battery according to one embodiment of the present application shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • lithium-ion batteries In order to increase the energy density of lithium-ion batteries, it is necessary to increase the voltage and capacity of the positive electrode active material in the battery as much as possible, and the negative electrode active material needs to reduce the voltage and increase the capacity as much as possible.
  • the negative electrode active material needs to reduce the voltage and increase the capacity as much as possible.
  • lithium will be deposited on the surface of the negative electrode current collector. During the deposition process, some sites will deposit too fast, and then form The sharp lithium dendrite structure may penetrate the separator when the lithium dendrite grows to a certain extent, causing safety problems.
  • the lithium dendrite grows to a certain extent it will break and form "dead lithium", resulting in loss of battery capacity, resulting in poor cycle performance, short service life and poor safety performance of the battery.
  • the application provides a lithium ion battery, wherein the lithium ion battery has a discharge negative electrode capacity/discharge positive electrode capacity ⁇ 1 (that is, Nd/Pd ⁇ 1), and includes a laminated composite negative electrode,
  • the negative electrode includes a current collector and a lithiophilic layer, a host layer and a lithium repellent layer arranged upwards along the current collector in sequence.
  • the present application designs the lithium-ion battery as a whole so that the capacity of the negative electrode of the discharge/the capacity of the positive electrode of the discharge is ⁇ 1 (that is, Nd/Pd ⁇ 1), thereby increasing the energy density of the battery;
  • the lithiophilic layer can induce lithium ions to deposit toward the current collector, reduce the nucleation overpotential of lithium metal on the electrode, and avoid the irregular accumulation of lithium on the surface.
  • the main layer can be adapted to provide storage space for lithium ions, can adapt to the volume change in the process of charging and discharging, and its high specific surface area can reduce the current density
  • the lithium repellent layer can effectively improve the electronic conductivity of the electrode surface, Make the surface current density more uniform and promote the diffusion of lithium ions. Therefore, the lithium-ion battery with the above negative electrode can effectively avoid the growth of dendrites, and greatly improve the energy density and cycle life of the lithium-ion battery.
  • the lithium ion battery of the present application includes a stacked composite negative electrode, the negative electrode includes a current collector and a lithium-philic layer, a main body layer and a lithium-repellent layer arranged in sequence along the current collector.
  • the material of the lithium-philic layer comprises carbon materials modified by doping, and the carbon materials are artificial graphite, natural graphite, carbon nanotubes, carbon fibers, mesocarbon microspheres, graphene, oxide At least one of graphene, the doping element in the doped modified carbon material is at least one of O, N, S, B, P, F, Cl, Br, I, and the doping element The amount is 0.5-2wt%, preferably 0.8-1.5wt.%, based on the weight of the doped modified carbon material.
  • the material of the lithium-philic layer is artificial graphite modified by O-doping, graphene oxide modified by N-doping, carbon nanotubes modified by P-doping, and the elements doped therein
  • the amount is 0.8-1.5 wt.%.
  • the amount of the doping element in the carbon material modified by doping in the present application can be obtained by means of detection known in the prior art based on the type of the doping element and the carbon material, such as by X-ray energy spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) or X-ray fluorescence spectroscopy (XRF).
  • EDS X-ray energy spectrometer
  • XPS X-ray photoelectron spectroscopy
  • XRF X-ray fluorescence spectroscopy
  • the amount of the doped modified carbon material is greater than 97wt.%, based on the total weight of the lithium-philic layer material.
  • the lithium-philic layer formed by the doped modified carbon material can effectively improve the conductivity of the negative electrode and make the current density on the surface of the pole piece more uniform, so that lithium ions can be evenly dispersed in the negative electrode; the modified carbon material contains The functional group with strong electronegativity can enhance the lithium affinity of the negative electrode, thereby inducing the deposition of lithium ions toward the current collector.
  • the lithiophilic layer also optionally includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the lithiophilic layer also optionally includes a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the lithium-philic layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • the material of the main body layer includes at least one of natural graphite, artificial graphite, mesocarbon microspheres, soft carbon, and hard carbon, and its amount is greater than 97wt.%, based on the total amount of the main body layer material weighing scale.
  • the main layer can provide a certain storage space for lithium ions released from the positive electrode, so that lithium ions can be effectively and evenly deposited in the main material, thereby reducing the deposition of lithium metal on the surface of the negative electrode sheet and avoiding the formation of lithium dendrites.
  • the chassis layer also optionally includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the bulk layer optionally also includes a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the main body layer may also optionally contain other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the material of the lithium repellent layer comprises a carbon material without functional groups or defects
  • the carbon material is artificial graphite, natural graphite, carbon nanotubes, carbon fibers, mesocarbon microspheres, and graphene. at least one.
  • the amount of the carbon material without functional groups or defects is greater than 97wt.%, based on the total weight of the lithium repellent layer material.
  • Carbon materials without functional groups or defects have poor compatibility with lithium metal.
  • the resulting lithium repellent layer can effectively improve the electronic conductivity of the electrode surface, make the surface current density more uniform, and promote the diffusion of lithium ions to the main layer.
  • the lithophobic layer also optionally includes a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the lithium repellent layer also optionally includes a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the lithium repellent layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na) and the like.
  • the thickness of the lithium-philic layer is 0.2-15 ⁇ m.
  • the thickness of the lithium-philic layer is 2-10 ⁇ m. More preferably, the thickness of the lithium-philic layer is 5-8 ⁇ m. If the thickness of the lithiophilic layer is less than 0.2 ⁇ m, it will not be able to effectively induce the deposition of lithium ions toward the current collector; if the thickness of the lithiophilic layer is greater than 15 ⁇ m, the overall energy density of the battery will be reduced.
  • the host layer has a thickness of 80-200 ⁇ m.
  • the thickness of the main body layer is 100-180 ⁇ m. More preferably, the thickness of the main body layer is 120-150 ⁇ m.
  • the lithium repellent layer has a thickness of 0.2-15 ⁇ m.
  • the thickness of the lithium-philic layer is 2-10 ⁇ m. If the thickness of the lithium-phobic layer is less than 0.2 ⁇ m, the diffusion of lithium ions to the main layer cannot be effectively promoted, resulting in poor cycle performance of the battery; if the thickness of the lithium-phobic layer is greater than 15 ⁇ m, the overall energy density of the battery is reduced.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode provided by the application can be prepared using a method comprising the following steps:
  • the lithium ion battery also includes a positive electrode sheet, an electrolyte and a separator.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode collector, and the positive electrode film layer includes the positive electrode active material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1 /3Co 1 /3Mn 1 /3O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi 0.8 Co 0.1 At least one of Mn 0.1 O 2 (also abbreviated as NCM 811 ), lithium nickel cobalt aluminum
  • Lithium-containing phosphate with olivine structure examples may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also referred to as LFP)), a composite material of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), a composite material of lithium manganese phosphate and carbon, At least one of lithium manganese iron phosphate and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also referred to as LFP)
  • LiMnPO 4 lithium manganese phosphate
  • LiMnPO 4 lithium manganese phosphate and carbon
  • At least one of lithium manganese iron phosphate and a composite material of lithium manganese iron phosphate and carbon At least one of lithium manganese iron phosphate and a composite material of lithium manganese iron phosphate and carbon.
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte may optionally include additives.
  • additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of batteries, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of batteries, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 1 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating cavity. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may also include a case having a housing space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 6 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • a device may be a cell phone, tablet, laptop, or the like.
  • the device is generally required to be light and thin, and a secondary battery can be used as a power source.
  • Carbon nanotubes (purchased from Guangdong Kaijin New Energy Technology Co., Ltd.)
  • Graphene oxide (the doping amount of O is 0.95wt.%, based on the weight of graphene oxide, purchased from Qingdao Lianchuang Lida Graphite Co., Ltd.)
  • Natural graphite (purchased from Qingdao Lianchuang Lida Graphite Co., Ltd.)
  • Carbon black (purchased from Guangdong Kaijin New Energy Technology Co., Ltd.)
  • SBR Styrene-butadiene rubber
  • CMC-Na Sodium carboxymethylcellulose
  • Lithium nickel cobalt manganese oxide lithium LiNi 0.5 Co 0.2 Mn 0.3 O 2 , NCM 523 , purchased from Ningbo Jinhe New Materials Co., Ltd.
  • PVDF Polyvinylidene fluoride
  • NMP N-Methylpyrrolidone
  • Ethylene carbonate (EC, CAS: 96-49-1, purchased from Shanghai McLean Biotechnology Co., Ltd.)
  • EMC Ethyl methyl carbonate
  • Diethyl carbonate (DEC, CAS: 105-58-8, purchased from Shanghai Macklin Biotechnology Co., Ltd.)
  • LiPF 6 LiPF 6 , CAS: 21324-40-3, purchased from Guangzhou Tianci High-tech Materials Co., Ltd.
  • Graphene oxide was placed in a furnace body, and reacted for 2 hours at 400° C. under an atmosphere of ammonia gas (purity: 99%).
  • the amount of N in the obtained modified graphene oxide was 1.23 wt.%, based on the weight of the modified graphene oxide.
  • the artificial graphite modified by O doping, the graphene oxide modified by N doping, the conductive agent carbon black, and the binder styrene-butadiene rubber are mixed in an appropriate amount of deionized water according to the weight ratio of 73:24:0.5:2.5 Thoroughly stir and mix to form a homogeneous slurry of the lithiophilic layer. Then, the lithium-philic layer slurry was coated on one surface of the negative electrode current collector copper foil to obtain a lithium-philic layer, and the thickness of the lithium-philic layer was 5 ⁇ m.
  • the main layer slurry Mix natural graphite, conductive agent carbon black, binder styrene-butadiene rubber, and thickener sodium carboxymethylcellulose in an appropriate amount of deionized water in a weight ratio of 97:0.5:1.25:1.25 to form a uniform
  • the main layer slurry was coated on the surface of the above-mentioned lithium-philic layer to obtain a main body layer, and the thickness of the main body layer was 120 ⁇ m.
  • the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM 523 ), the conductive agent carbon black, and the binder polyvinylidene fluoride (PVDF) were mixed in an appropriate amount of N-methylpyrrolidone ( NMP) was fully stirred and mixed to form a uniform positive electrode slurry.
  • NMP N-methylpyrrolidone
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the isolation film was purchased from Cellgard, and the model was Cellgard 2400.
  • the positive electrode, separator, and negative electrode in order, so that the separator is between the positive and negative electrodes for isolation, and then wind the bare cell; the bare cell with a capacity of 4.3Ah Put it in the outer packaging foil, inject 8.6g of the above-mentioned prepared electrolyte into the dried battery, and go through processes such as vacuum packaging, standing, chemical formation, and shaping to obtain a lithium ion with a discharge negative electrode capacity/discharge positive electrode capacity of 0.7 Battery.
  • Examples 4-18 were prepared in a manner similar to Example 3, and the corresponding discharge negative electrode capacity/discharge positive electrode capacity and the thicknesses and materials of the lithium-philic layer, the main layer, and the lithium-phobic layer are shown in Table 1. Equally, prepare the lithium-ion battery in the comparative example 1-3 in a manner similar to Example 3, the corresponding discharge negative electrode capacity/discharge positive electrode capacity and the thickness of lipophilic layer, main body layer, lithium repellent layer and materials used are shown in the table 2.
  • a charge-discharge cycle process is as follows: 1C current constant current charge to 4.25V, then constant voltage charge at 4.3V to a current of 0.05C, rest for 5min, and then 1C constant current discharge to 2.5V, record the battery capacity at this time as C1, the above is a charge and discharge cycle of the battery. Cycle according to the above process until the capacity decays to 80% of the first cycle, and record the number of cycles at this time as the cycle life of the battery. See Table 1 and Table 2 for measurement data.

Abstract

本申请提供一种锂离子电池,所述锂离子电池的放电负极容量/放电正极容量<1,且包括一种叠层复合负极,所述负极包括集流体以及沿集流体向上依次设置的亲锂层、主体层和疏锂层。本申请的锂离子电池的能够有效降低锂枝晶的形成,具有高的能量密度,改善的循环稳定性和安全性。本申请还提供包含本申请锂离子电池的电池模块、电池包和用电装置。

Description

锂离子电池、电池模块、电池包和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种锂离子电池、电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。
锂离子电池在循环过程中,由于电流密度以及电解液中锂离子浓度的不均匀性,锂会在负极集流体表面沉积,沉积过程中会出现某些位点沉积速度过快的现象,进而形成尖锐的锂枝晶结构,当锂枝晶生长到一定程度的时候就可能穿透隔膜,引发安全问题。此外,当锂枝晶生长到一定程度会发生断裂而形成“死锂”,造成电池容量损失,导致电池循环性能差、使用寿命短和安全性能差等问题。因此,需要采取一定策略来优化锂离子电池的负极,从而改善锂离子电池安全性,提高电池能量密度和循环稳定性。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种能够有效降低锂枝晶的形成,从而具有高的能量密度,改善的循环稳定性和安全性的锂离子电池,并提供包含本申请锂离子电池的电池模块、电池包和用电装置。
为了达到上述目的,本申请的第一方面提供了一种锂离子电池,其中,所述锂离子电池的放电负极容量/放电正极容量<1(即,Nd/Pd<1),且包括一种叠层复合负极,所述负极包括集流体以及沿集流体向上依 次设置的亲锂层、主体层和疏锂层。
在任意实施方式中,述亲锂层的材料包含经掺杂改性的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯、氧化石墨烯中的至少一种,经掺杂改性的碳材料中的掺杂元素为O、N、S、B、P、F、Cl、Br、I中的至少一种,所述掺杂元素的量为0.2-2wt.%、优选为0.8-1.5wt.%,基于经掺杂改性的碳材料计。
在任意实施方式中,所述主体层的材料包含天然石墨、人造石墨、中间相碳微球、软碳、硬炭中的至少一种。
在任意实施方式中,所述疏锂层的材料包含不含官能团或缺陷的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯中的至少一种。
在任意实施方式中,所述亲锂层的厚度为0.2-15μm、优选为2-10μm、更优选为5-8μm。
在任意实施方式中,所述主体层的厚度为80-200μm、优选为100-180μm、更优选为120-150μm。
在任意实施方式中,根据权利要求1或2所述的锂离子电池,其特征在于,所述疏锂层的厚度为0.2-15μm、优选为2-10μm。
由此,本申请一方面通过对电池的整体设计使放电负极容量/放电正极容量<1(即,Nd/Pd<1),从而提高电池的能量密度;另一方面使电池中负极沿集流体向上依次设置有亲锂层、主体层、疏锂层,从而有效降低负极工作表面的电流密度的影响,抑制锂枝晶的生长,大幅提高锂金属电池的循环寿命和安全性。
本申请的第二方面提供一种电池模块,包括本申请的第一方面的锂离子电池。
本申请的第三方面提供一种电池包,包括本申请的第二方面的电池模块。
本申请的第四方面提供一种用电装置,包括选自本申请的第一方面的锂离子电池、本申请的第二方面的电池模块或本申请的第三方面的电池包中的至少一种。
本申请的电池模块、电池包和用电装置包括本申请提供的锂离子电 池,因此至少具有与所述锂离子电池相同的优势。
附图说明
图1是本申请一实施方式的锂离子电池的示意图。
图2是图1所示的本申请一实施方式的锂离子电池的分解图。
图3是本申请一实施方式的电池模块的示意图。
图4是本申请一实施方式的电池包的示意图。
图5是图4所示的本申请一实施方式的电池包的分解图。
图6是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的锂离子电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的 整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
为了提升锂离子电池的能量密度,就必须尽可能地提高电池中正极活性物质材料的电压和容量,负极活性物质材料则需要尽可能地降低电压和提高容量。锂离子电池在循环过程中,由于电流密度以及电解液中锂离子浓度的不均匀性,锂会在负极集流体表面沉积,沉积过程中会出现某些位点沉积速度过快的现象,进而形成尖锐的锂枝晶结构,当锂枝晶生长到一定程度的时候就可能穿透隔膜,引发安全问题。此外,当锂枝晶生长到一定程度会发生断裂而形成“死锂”,造成电池容量损失,导致电池循环性能差、使用寿命短和安全性能差等问题。
针对上述问题,本申请提供了一种锂离子电池,其中,所述锂离子电池的放电负极容量/放电正极容量<1(即,Nd/Pd<1),且包括一种叠层复合负极,所述负极包括集流体以及沿集流体向上依次设置的亲锂层、主体层和疏锂层。
一方面,本申请通过对锂离子电池整体进行设计使放电负极容量/放电正极容量<1(即,Nd/Pd<1),从而提高电池的能量密度;另一方面使电池中负极沿集流体向上依次有亲锂层、主体层、疏锂层,a)亲锂层可以诱导锂离子向集流体方向沉积,降低锂金属在电极上的成核过电势,避免了锂在表面的不规则堆积,b)主体层可以适应给锂离子提供存储空间,可适应在充放电过程中的体积变化且其高比表面积可以降低电流密度,c)疏锂层可以有效提高极片表面的电子电导率,使得表面电流密度更加均匀,促进锂离子的扩散。因此,具有以上负极的锂离子电池,有效避免了枝晶的生长,大幅度提高锂离子电池的能量密度和循环寿命。
[负极极片]
本申请的锂离子电池包括一种叠层复合负极,所述负极包括集流体以及沿集流体向上依次设置的亲锂层、主体层和疏锂层。
在一些实施方式中,所述亲锂层的材料包含经掺杂改性的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯、氧化石墨烯中的至少一种,经掺杂改性的碳材料中的掺杂元素为O、N、S、B、P、F、Cl、Br、I中的至少一种,所述掺杂元素的量为0.5-2wt%、优选为0.8-1.5wt.%,基于经掺杂改性的碳材料的重量计。优选地,所述亲锂层的材料为经O掺杂改性的人造石墨、经N掺杂改性的氧化石墨烯、经P掺杂改性的碳纳米管,且其中掺杂的元素的量为0.8-1.5wt.%。本申请中经掺杂改性的碳材料中的掺杂元素的量可基于掺杂元素和碳材料的类型通过现有技术中公知的检测手段获得,例如通过X射线能谱仪(EDS)、X射线光电子能谱(XPS)或X射线荧光光谱仪(XRF)获得。所述经掺杂改性的碳材料的量为大于97wt.%,基于亲锂层材料的总重量计。由经掺杂改性的碳材料形成的亲锂层,能够有效提高负极的导电性,使极片表面的电流密度更加均匀,从而使得锂离子能够均匀分散在负极;经改性的碳材料含有电负性较强的官能团,能够增强负极的亲锂性,从而诱导锂离子向集流体方向沉积。
在一些实施方式中,亲锂层还可选地包含粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,亲锂层还可选地包含导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,亲锂层还可选地包含其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,所述主体层的材料包含天然石墨、人造石墨、中间相碳微球、软碳、硬炭中的至少一种,其量为大于97wt.%,基于主体层材料的总重量计。主体层能够给正极脱出的锂离子提供一定的储存空间,使锂离子有效的均匀沉积在主体材料中,从而减少锂金属在负极极片表面的沉积,避免形成锂枝晶。
在一些实施方式中,主体层还可选地包含粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,主体层还可选地包含导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,主体层还可选地包含其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,所述疏锂层的材料包含不含官能团或缺陷的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯中的至少一种。所述不含官能团或缺陷的碳材料的量为大于97wt.%,基于疏锂层材料的总重量计。不含官能团或缺陷的碳材料与锂金属的相容性差,由此形成的疏锂层可以有效提高极片表面的电子电导率,使得表面电流密度更加均匀,促进锂离子向主体层扩散。
在一些实施方式中,疏锂层还可选地包含粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,疏锂层还可选地包含导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中 的至少一种。
在一些实施方式中,疏锂层还可选地包含其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na)等。
在一些实施方式中,所述亲锂层的厚度为0.2-15μm。优选地,所述亲锂层的厚度为2-10μm。更优选地,所述亲锂层的厚度为5-8μm。若亲锂层的厚度小于0.2μm,则无法有效诱导锂离子向集流体方向沉积;若亲锂层的厚度大于15μm,则使得电池的整体能量密度降低。
在一些实施方式中,所述主体层的厚度为80-200μm。优选地,所述主体层的厚度为100-180μm。更优选地,所述主体层的厚度为120-150μm。
在一些实施方式中,所述疏锂层的厚度为0.2-15μm。优选地,所述亲锂层的厚度为2-10μm。若疏锂层的厚度小于0.2μm,则无法有效促进锂离子向主体层扩散,导致电池的循环性能变差;若疏锂层的厚度大于15μm,则使得电池的整体能量密度降低。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
本申请提供的负极可使用包括以下步骤的方法制备:
(1)将经掺杂改性的碳材料、导电剂、粘接剂和任意其他组分按一定的重量比在适量的去离子水中充分搅拌混合,使其形成均匀的亲锂层浆料,将该亲锂层浆料涂覆于负极集流体的表面上,作为亲锂层;
(2)将主体层的碳材料、导电剂、粘接剂和任意其他组分按一定的重量比在适量的去离子水中充分搅拌混合,使其形成均匀的主体层浆料,将该主体层浆料涂覆于亲锂层的表面上,作为主体层;
(3)将不含官能团或缺陷的碳材料、导电剂、粘接剂和任意其他组分按一定的重量比在适量的去离子水中充分搅拌混合,使其形成均匀的疏锂层浆料,将该疏锂层浆料涂覆于主体层的表面上,作为疏锂层。
(4)将上述极片经干燥、冷压后,得到负极极片。
通常情况下,除上述本申请提供的负极之外,锂离子电池还包括正极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含 锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可 以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
另外,以下适当参照附图对本申请的锂离子电池、电池模块、电池包和用电装置进行说明。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二 次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图6是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
I.原材料
石墨烯(购自于广东凯金新能源科技股份有限公司)
碳纳米管(购自于广东凯金新能源科技股份有限公司)
氧化石墨烯(O的掺杂量为0.95wt.%,基于氧化石墨烯的重量计,购自于青岛联创利达石墨有限公司)
天然石墨(购自于青岛联创利达石墨有限公司)
人造石墨(购自于青岛联创利达石墨有限公司)
中间相碳微球(购自于广东凯金新能源科技股份有限公司)
碳黑(购自于广东凯金新能源科技股份有限公司)
丁苯橡胶(SBR,CAS:9003-55-8,购自于上海阿拉丁生化科技股份有限公司)
羧甲基纤维素钠(CMC-Na,9004-32-4,购自于上海阿拉丁生化科技股份有限公司)
锂镍钴锰氧化物锂(LiNi 0.5Co 0.2Mn 0.3O 2,NCM 523,购自于宁波金和新材料股份有限公司)
聚偏氟乙烯(PVDF,CAS:24937-79-9,购自于上海阿拉丁生化科技股份有限公司)
N-甲基吡咯烷酮(NMP,CAS:872-50-4,购自于上海阿拉丁生化科技股份有限公司)
碳酸乙烯酯(EC,CAS:96-49-1,购自于上海麦克林生物科技有限公司)
碳酸甲乙酯(EMC,CAS:623-53-0,购自于上海麦克林生物科技有限公司)
碳酸二乙酯(DEC,CAS:105-58-8,购自于上海麦克林生物科技 有限公司)
六氟磷酸锂(LiPF 6,CAS:21324-40-3,购自于广州天赐高新材料股份有限公司)
II.经掺杂改性的碳材料的制备
1、经O掺杂改性的人造石墨的制备
将1g人造石墨加入到在冰浴下的400mL浓硫酸和浓磷酸(体积比为9:1)中,缓慢加入6g高锰酸钾,冰浴搅拌30min,在50℃下进行反应8h。然后在冰浴下缓慢加入1mL浓度为30%的过氧化氢,反应20min,最后将产物离心洗涤多次至pH=7。所获得的经改性的人造石墨中的O的量为1.35wt.%,基于经改性的人造石墨的重量计。
2、经N掺杂改性的氧化石墨烯的制备
将氧化石墨烯置于炉体中,氨气(纯度为99%)氛围下,在400℃下,反应2h。所获得的经改性的氧化石墨烯中N的量为1.23wt.%,基于经改性的氧化石墨烯的重量计。
3、经P掺杂改性的碳纳米管的制备
将碳纳米管、磷酸以及水混合,在400℃下,在惰性氛围下反应2h,然后将产物烘干。所获得的经改性的碳纳米管中P的量为1.28wt.%,基于经改性的碳纳米管的重量计。
一、锂离子电池的制备
实施例1
【负极极片】
(1)亲锂层的制备
将经O掺杂改性的人造石墨、经N掺杂改性的氧化石墨烯、导电剂炭黑、粘结剂丁苯橡胶按照重量比为73:24:0.5:2.5在适量的去离子水中充分搅拌混合,使其形成均匀的亲锂层浆料。然后将该亲锂层浆料涂覆在负极集流体铜箔的一个表面上,得到亲锂层,亲锂层的厚度为5μm。
(2)主体层的制备
将天然石墨、导电剂炭黑、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照重量比为97:0.5:1.25:1.25在适量的去离子水中充分搅拌混合,使其形成均匀的主体层浆料。然后将该主体层浆料涂覆在上述亲锂层表面上,得到主体层,主体层的厚度为120μm。
(3)疏锂层的制备
将不含任何缺陷的人造石墨、导电剂炭黑、粘结剂丁苯橡胶按照重量比为97:0.5:2.5,在适量的去离子水中充分搅拌混合,使其形成均匀的疏锂层浆料。然后将该疏锂层浆料涂覆在上述主体层表面上,得到疏锂层,疏锂层的厚度为5μm。
将上述极片经干燥、冷压后,得到负极极片。
【正极极片】
将正极活性物质LiNi 0.5Co 0.2Mn 0.3O 2(NCM 523)、导电剂炭黑、粘接剂聚偏氟乙烯(PVDF)按97:1:2的重量比在适量的N-甲基吡咯烷酮(NMP)中充分搅拌混合,使其形成均匀的正极浆料。将该正极浆料涂覆于正极集流体铝箔的表面上,经干燥、冷压后,得到正极极片。
【电解液】
将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)体积比1:1:1混合,然后将LiPF 6均匀溶解在上述溶液中得到电解液,其中LiPF 6的浓度为1mol/L。
【隔离膜】
隔离膜采购自Cellgard企业,型号为cellgard 2400。
【锂离子电池的制备】
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间起到隔离的作用,然后卷绕得到裸电芯;将容量为4.3Ah的裸电芯置于外包装箔中,将上述制备好的8.6g电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,获得放电负极容量/放电正极容量为0.7的锂离子电池。
实施例2
除了经O掺杂改性的人造石墨、经P掺杂改性碳纳米管、导电剂炭黑、 粘结剂丁苯橡胶按照重量比为73:24:0.5:2.5形成亲锂层浆料之外,其他与实施例1相同。
实施例3
除了经O掺杂改性的人造石墨、氧化石墨烯、导电剂炭黑、粘结剂丁苯橡胶按照重量比为73:24:0.5:2.5形成亲锂层浆料之外,其他与实施例1相同。
实施例4-18和对比例1-3
以类似于实施例3的方式制备实施例4-18,相应的放电负极容量/放电正极容量以及亲锂层、主体层、疏锂层的厚度及所用的材料参见表1。同样,以类似于实施例3的方式制备对比例1-3中的锂离子电池,相应的放电负极容量/放电正极容量以及亲锂层、主体层、疏锂层的厚度及所用的材料参见表2。
二、锂离子电池性能的测试
(1)电池能量密度测试
在25℃下,将二次电池以1/3C进行恒流充电到4.3V,然后在4.3V下恒压充电至电流0.05C,静置5min,然后以1/3C电流恒流放电到2.8V,记录此时电池放电能量。电池放电能量除以电池的重量即为电池的重量能量密度,单位为Wh/kg。测量数据参见表1和表2。
(2)电池循环寿命测试
在25℃下,对所有实施例和对比例的锂离子电池进行充放电测试。一个充放电循环过程如下:1C电流恒流充电到4.25V,然后在4.3V下恒压充电至电流0.05C,静置5min,然后以1C电流恒流放电到2.5V,记录此时电池容量为C1,以上为电池的一个充放电循环。按照上述过程循环,直至容量衰减到首圈的80%,记录此时的循环次数为电池的循环寿命。测量数据参见表1和表2。
Figure PCTCN2022074647-appb-000001
Figure PCTCN2022074647-appb-000002

Claims (10)

  1. 一种锂离子电池,其特征在于,所述锂离子电池的放电负极容量/放电正极容量<1且包括一种叠层复合负极,所述负极包括集流体以及沿集流体向上依次设置的亲锂层、主体层和疏锂层。
  2. 根据权利要求1所述的锂离子电池,其特征在于,所述亲锂层的材料包含经掺杂改性的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯、氧化石墨烯中的至少一种,经掺杂改性的碳材料中的掺杂元素为O、N、S、B、P、F、Cl、Br、I中的至少一种,所述掺杂元素的量为0.2-2wt.%、优选为0.8-1.5wt.%,基于经掺杂改性的碳材料的重量计。
  3. 根据权利要求1或2所述的锂离子电池,其特征在于,所述主体层的材料包含天然石墨、人造石墨、中间相碳微球、软碳、硬炭中的至少一种。
  4. 根据权利要求1或2所述的锂离子电池,其特征在于,所述疏锂层的材料包含不含官能团或缺陷的碳材料,所述碳材料为人造石墨、天然石墨、碳纳米管、碳纤维、中间相碳微球、石墨烯中的至少一种。
  5. 根据权利要求1或2所述的锂离子电池,其特征在于,所述亲锂层的厚度为0.2-15μm、优选为2-10μm、更优选为5-8μm。
  6. 根据权利要求1或2所述的锂离子电池,其特征在于,所述主体层的厚度为80-200μm、优选为100-180μm、更优选为120-150μm。
  7. 根据权利要求1或2所述的锂离子电池,其特征在于,所述疏锂层的厚度为0.2-15μm、优选为2-10μm。
  8. 一种电池模块,其特征在于,包括权利要求1至7中任一项所述的锂离子电池。
  9. 一种电池包,其特征在于,包括权利要求8所述的电池模块。
  10. 一种用电装置,其特征在于,包括权利要求1至7中任一项所述的锂离子电池、权利要求8所述的电池模块或权利要求9所述的电池包中的至少一种。
PCT/CN2022/074647 2022-01-28 2022-01-28 锂离子电池、电池模块、电池包和用电装置 WO2023141954A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/074647 WO2023141954A1 (zh) 2022-01-28 2022-01-28 锂离子电池、电池模块、电池包和用电装置
EP22922794.7A EP4276936A1 (en) 2022-01-28 2022-01-28 Lithium-ion battery, battery module, battery pack, and electric apparatus
US18/448,907 US20230395776A1 (en) 2022-01-28 2023-08-12 Lithium-ion battery, battery module, battery pack, and power consumption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074647 WO2023141954A1 (zh) 2022-01-28 2022-01-28 锂离子电池、电池模块、电池包和用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/448,907 Continuation US20230395776A1 (en) 2022-01-28 2023-08-12 Lithium-ion battery, battery module, battery pack, and power consumption apparatus

Publications (1)

Publication Number Publication Date
WO2023141954A1 true WO2023141954A1 (zh) 2023-08-03

Family

ID=87469998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074647 WO2023141954A1 (zh) 2022-01-28 2022-01-28 锂离子电池、电池模块、电池包和用电装置

Country Status (3)

Country Link
US (1) US20230395776A1 (zh)
EP (1) EP4276936A1 (zh)
WO (1) WO2023141954A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427074A (zh) * 2012-05-18 2013-12-04 信越化学工业株式会社 锂离子二次电池
CN110010852A (zh) * 2018-01-05 2019-07-12 中南大学 一种二次电池用金属锂负极、制备方法及其应用
CN110190287A (zh) * 2019-06-25 2019-08-30 珠海冠宇电池有限公司 一种多孔亲锂铜箔集流体材料及其制备方法
CN111129504A (zh) * 2020-01-17 2020-05-08 清华大学深圳国际研究生院 改性集流体的制备方法、改性集流体、电极片及锂电池
CN111599983A (zh) * 2020-05-18 2020-08-28 中山大学 一种具有亲疏锂梯度结构的锂金属复合负极及其制备方法
CN111916682A (zh) * 2020-09-17 2020-11-10 天目湖先进储能技术研究院有限公司 一种复合金属锂负极及其制备方法和锂电池
CN113437253A (zh) * 2021-06-26 2021-09-24 宁德时代新能源科技股份有限公司 锂金属负极极片、电化学装置及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427074A (zh) * 2012-05-18 2013-12-04 信越化学工业株式会社 锂离子二次电池
CN110010852A (zh) * 2018-01-05 2019-07-12 中南大学 一种二次电池用金属锂负极、制备方法及其应用
CN110190287A (zh) * 2019-06-25 2019-08-30 珠海冠宇电池有限公司 一种多孔亲锂铜箔集流体材料及其制备方法
CN111129504A (zh) * 2020-01-17 2020-05-08 清华大学深圳国际研究生院 改性集流体的制备方法、改性集流体、电极片及锂电池
CN111599983A (zh) * 2020-05-18 2020-08-28 中山大学 一种具有亲疏锂梯度结构的锂金属复合负极及其制备方法
CN111916682A (zh) * 2020-09-17 2020-11-10 天目湖先进储能技术研究院有限公司 一种复合金属锂负极及其制备方法和锂电池
CN113437253A (zh) * 2021-06-26 2021-09-24 宁德时代新能源科技股份有限公司 锂金属负极极片、电化学装置及电子设备

Also Published As

Publication number Publication date
EP4276936A1 (en) 2023-11-15
US20230395776A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2020177624A1 (zh) 负极片、二次电池及其装置
WO2021008429A1 (zh) 二次电池及其相关的电池模块、电池包和装置
WO2023029002A1 (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
WO2024012166A1 (zh) 二次电池及用电装置
WO2021189423A1 (zh) 二次电池和含有该二次电池的装置
WO2023071807A1 (zh) 隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023050842A1 (zh) 复合隔离膜、电化学储能装置及用电装置
WO2023137624A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023087218A1 (zh) 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023142024A1 (zh) 一种长寿命二次电池及电池模块、电池包和用电装置
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
WO2023122890A1 (zh) 二次电池以及包含其的用电装置
WO2023070516A1 (zh) 二次电池、电池模块、电池包以及用电装置
CN115832640A (zh) 负极极片及其制备方法、二次电池及其制备方法、电池模块、电池包和用电装置
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置
WO2024044961A1 (zh) 负极极片、二次电池及其制备方法、电池模块、电池包和用电装置
WO2023159385A1 (zh) 正极极片及二次电池、电池模块、电池包和用电装置,及平衡电池内部电压差的方法
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023023984A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置
WO2023077299A1 (zh) 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2023065128A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022922794

Country of ref document: EP

Effective date: 20230808

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922794

Country of ref document: EP

Kind code of ref document: A1