WO2023077299A1 - 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置 - Google Patents

正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023077299A1
WO2023077299A1 PCT/CN2021/128404 CN2021128404W WO2023077299A1 WO 2023077299 A1 WO2023077299 A1 WO 2023077299A1 CN 2021128404 W CN2021128404 W CN 2021128404W WO 2023077299 A1 WO2023077299 A1 WO 2023077299A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode slurry
lithium
battery
weight
Prior art date
Application number
PCT/CN2021/128404
Other languages
English (en)
French (fr)
Inventor
张倩倩
赵延杰
李星
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21943315.8A priority Critical patent/EP4207389A1/en
Priority to KR1020237000400A priority patent/KR20230066310A/ko
Priority to JP2023501535A priority patent/JP7476419B2/ja
Priority to PCT/CN2021/128404 priority patent/WO2023077299A1/zh
Priority to CN202180092542.4A priority patent/CN116848671A/zh
Priority to US18/069,975 priority patent/US20230138600A1/en
Publication of WO2023077299A1 publication Critical patent/WO2023077299A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to a positive electrode slurry, a positive electrode sheet containing the same, a lithium ion battery, a battery module, a battery pack and an electrical device.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements have been put forward for their energy density, cycle performance and safety performance.
  • Lithium manganese oxides such as spinel lithium manganese oxide LiMn 2 O 4
  • LiMn 2 O 4 lithium manganese oxides
  • the dissolution of manganese in the electrolyte is considered to be the most important reason for the capacity fading of the cathode material lithium manganese oxide.
  • This application is carried out in view of the above problems, and its purpose is to provide a positive electrode slurry that can effectively improve the service life, high-temperature cycle performance and high-temperature storage performance of lithium manganese oxide-based lithium-ion batteries, and provide the slurry containing the application.
  • the application provides a positive electrode slurry, including: a positive electrode active material containing manganese, an additive for the positive electrode,
  • the positive electrode additive is a compound of formula (I),
  • A B, and is selected from any one of N, O, S atoms,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from hydrogen and an alkyl group with 1-7 carbon atoms.
  • the positive electrode slurry of the present application can greatly reduce the deposition of manganese ions on the surface of the negative electrode material by effectively capturing manganese ions, thereby slowing down the attenuation of the capacity of lithium manganese oxide-based lithium ion batteries during cycling and storage, and improving The service life, high temperature cycle performance and high temperature storage performance of the battery are improved.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 in the positive electrode additive of the formula (I) are each independently selected from hydrogen, the number of carbon atoms is an alkyl group of 1-3, and A and B are N atoms.
  • the positive electrode additive is N,N,N',N'-tetrakis(2-benzimidazolylene)-1,2-ethylenediamine (EDTB).
  • the amount of the positive electrode additive is 0.06 wt%-1.5 wt%, preferably 0.5 wt%-1 wt%, based on the total weight of the positive electrode slurry.
  • the weight ratio of the manganese-containing positive electrode active material to the positive electrode additive is 40:1 to 1000:1, preferably 60:1 to 200:1.
  • the manganese-containing positive electrode active material is selected from lithium manganese oxide, lithium manganese cobalt oxide, lithium aluminum manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide and modified compounds thereof In at least one of them, the amount of the manganese-containing positive electrode active material is 50% by weight to 75% by weight, based on the total weight of the positive electrode slurry.
  • the positive electrode slurry includes a binder selected from the group consisting of styrene, acrylate, vinyl acetate, fatty acid vinyl ester, epoxy resin, linear polyester, polyvinylidene fluoride, poly At least one of styrene, polysulfide rubber, polyacrylic acid, polyacrylate, polyurethane, polyisobutylene, polyvinyl alcohol, polyimide, polyacrylonitrile, polyethylene oxide, polyvinylpyrrolidone, styrene-butadiene rubber and gelatin , the amount of the binder is 0.5% by weight to 1% by weight, based on the total weight of the positive electrode slurry.
  • a binder selected from the group consisting of styrene, acrylate, vinyl acetate, fatty acid vinyl ester, epoxy resin, linear polyester, polyvinylidene fluoride, poly At least one of styrene, polysulfide rubber, polyacrylic acid, polyacrylate
  • the positive electrode slurry includes a conductive agent, and the conductive agent is selected from superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers At least one, the amount of the conductive agent is 0.9% by weight to 1.5% by weight, based on the total weight of the positive electrode slurry.
  • the positive electrode slurry also includes a dispersant
  • the dispersant is selected from polymethyl methacrylate, polyethylene glycol, polyvinylpyrrolidone, sodium linear alkylbenzene sulfonate, alkyl poly At least one of oxyethylene ether, sodium lauryl sulfate and alkyl sulfonate, the amount of the dispersant is 0.05% by weight to 0.1% by weight, based on the total weight of the positive electrode slurry.
  • the second aspect of the present application also provides a positive electrode sheet, including a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector, the positive electrode film layer containing the positive electrode slurry described in any one of the above embodiments .
  • the third aspect of the present application provides a lithium ion battery, comprising a positive electrode whose positive electrode film layer contains the positive electrode slurry described in any one of the above embodiments.
  • the lithium-ion battery of the present application includes the positive electrode containing the above-mentioned positive electrode slurry, so it has improved service life, high-temperature cycle performance and high-temperature storage performance.
  • a fourth aspect of the present application provides a battery module including the lithium-ion battery of the third aspect of the present application.
  • a fifth aspect of the present application provides a battery pack, including the battery module of the fourth aspect of the present application.
  • the sixth aspect of the present application provides an electrical device, including at least one selected from the lithium-ion battery of the third aspect of the present application, the battery module of the fourth aspect of the present application, or the battery pack of the fifth aspect of the present application kind.
  • the battery module, battery pack and electrical device of the present application include the lithium-ion battery provided by the present application, and thus have at least the same advantages as the lithium-ion battery.
  • FIG. 1 is a schematic diagram of forming a complex between an additive for positive electrodes and manganese according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a lithium-ion battery according to an embodiment of the present application.
  • FIG. 3 is an exploded view of the lithium ion battery according to one embodiment of the present application shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 6 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of an electrical device in which a lithium-ion battery is used as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • lithium manganese oxide for example, spinel lithium manganese oxide LiMn 2 O 4
  • the capacity fading of lithium manganese oxides during cycling is mainly caused by Mn 3+ .
  • Mn 3+ in LiMn 2 O 4 interacts with the electrolyte, and Mn 3+ undergoes a disproportionation reaction to generate Mn 4+ and Mn 2+ , Mn 2+ is dissolved in the electrolyte, and the dissolution rate of Mn 2+ will increase at high temperature.
  • the dissolution of manganese destroys the structure of LiMn 2 O 4 , leading to the loss of the positive electrode active material LiMn 2 O 4 , with the increase of the proportion of Mn 4+ on the surface of LiMn 2 O 4 , the charge transport ability of the positive electrode material LiMn 2 O decrease, the surface resistance increases, making it more difficult for lithium ions to deintercalate, resulting in a rapid decay of capacity; on the other hand, the dissolution of Mn 3+ produces dissolved Mn 2+ , which can migrate to the negative electrode, on the lithium-intercalated graphite negative electrode It is reduced and deposited on the negative electrode in the form of solid Mn.
  • Mn 2+ will also form fluoride or oxide deposits on the surface of the electrode with the decomposition products of the electrolyte, resulting in an increase in the impedance of the electrode, blocking the diffusion channel of lithium ions, and causing capacity loss. attenuation.
  • This continuous dissolution of manganese ions will seriously damage the reversibility of the negative electrode, deteriorate the battery resistance, produce gas, accelerate the decay of capacity, and eventually lead to the decay of battery life.
  • the manganese accumulated on the negative electrode will form a thicker passivation film (also known as solid electrolyte interfacial film, SEI film) by consuming more active lithium ions, resulting in rapid capacity decay and poor battery cycle and storage performance.
  • SEI film solid electrolyte interfacial film
  • the positive electrode slurry of the present application can be used in lithium ion batteries, for example.
  • the first aspect of the application proposes a positive electrode slurry, including: a manganese-containing positive electrode active material, an additive for positive electrodes,
  • the positive electrode additive is a compound of formula (I),
  • A B, and is selected from any one of N, O, S atoms,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from hydrogen and an alkyl group with 1-7 carbon atoms.
  • manganese ions are "anchored" in the positive electrode material by forming complexes (as shown in Figure 1) with additives for the positive electrode and manganese ions, thereby reducing the number of manganese ions migrating to the negative electrode and reducing the impact of the transition metal manganese on the surface of the negative electrode.
  • the passivation film also known as solid electrolyte interface film, SEI film
  • the atomic species represented by A and B are the same, which has the advantage of stable structure and easy synthesis and acquisition.
  • a and B can be selected from N atoms, because N atoms have lone pairs of electrons and have the ability to coordinate with metals. Strong and easy to form thermodynamically stable complexes.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently selected from hydrogen, and the number of carbon atoms is 1.
  • -3 is an alkyl group, and A and B are N atoms.
  • the alkyl group with 1-7 carbon atoms can be a linear or branched alkyl group with 1-7 carbon atoms, for example, methyl, ethyl, propyl, isopropyl, butyl, iso Butyl, pentyl, etc.
  • the alkyl group having 1-3 carbon atoms may be, for example, methyl, ethyl, propyl, isopropyl.
  • the positive electrode additive is N,N,N',N'-tetrakis(2-benzimidazolylene)-1,2-ethylenediamine (EDTB).
  • EDTB N,N,N',N'-tetrakis(2-benzimidazolylene)-1,2-ethylenediamine
  • the additive is an N-containing multi-dentate ligand, which easily forms a stable complex with manganese, so that the dissolved manganese ions are "anchored" on the surface of the positive electrode, reducing the deposition of manganese ions on the surface of the negative electrode material.
  • the amount of the positive electrode additive is 0.06% by weight to 1.5% by weight, preferably 0.5% by weight to 1% by weight, based on the total weight of the positive electrode slurry. If the amount of additives used in the positive electrode is too low, the unfixed manganese ions will migrate to the negative electrode and be deposited on the surface of the negative electrode, causing negative electrode poisoning and the resulting capacity and service life will be reduced; if the amount of additives used in the positive electrode is too high, then It is impossible to further improve the effect of immobilizing manganese ions, but it takes up too much weight of the positive electrode slurry, which will reduce the energy density of the battery.
  • the weight ratio of the manganese-containing positive electrode active material to the positive electrode additive is 40:1 to 1000:1, preferably 60:1 to 200:1. If the ratio of the two is too low, the content of additives for the positive electrode will be higher than the required value, which will reduce the energy density of the battery; if the ratio is too high, the content of the additives will be too low, and the dissolution of manganese from the positive electrode will not be greatly reduced.
  • the positive electrode active material containing manganese is selected from lithium manganese oxide (such as LiMnO 2 , LiMn 2 O 4 ), lithium manganese cobalt oxide, lithium aluminum manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt Manganese oxides (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also abbreviated as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (also abbreviated as NCM 811 )) and their modifications at least one of the compounds.
  • lithium manganese oxide such as LiMnO 2 , LiMn 2 O 4
  • lithium manganese cobalt oxide lithium aluminum manganese oxide,
  • the amount of the positive electrode active material containing manganese is 50% by weight to 75% by weight, based on the total weight of the positive electrode slurry. These positive electrode active materials may be used alone or in combination of two or more. If the amount of positive electrode active material is too low, the solid content of the positive electrode slurry will be too small, and it will be difficult to dry the pole pieces in the later stage; if the amount of positive electrode active material is too high, the viscosity and stability of the slurry will be difficult to control.
  • the positive electrode slurry includes a binder selected from styrene, acrylate, vinyl acetate, fatty acid vinyl ester, epoxy resin, linear polyester, polyvinylidene fluoride, polystyrene , polysulfide rubber, polyacrylic acid, polyacrylate, polyurethane, polyisobutylene, polyvinyl alcohol, polyimide, polyacrylonitrile, polyethylene oxide, polyvinylpyrrolidone, styrene-butadiene rubber and gelatin at least one.
  • the amount of the binder is 0.5% by weight to 1% by weight, based on the total weight of the positive electrode slurry.
  • the amount of the binder is too low, the stability of the positive electrode slurry and the structural stability of the positive electrode sheet are poor, and the battery cycle performance is poor; if the amount of the binder is too high, the stability of the positive electrode slurry is not easy to control , while reducing the energy density of the battery.
  • the positive electrode slurry includes a conductive agent, and the conductive agent is selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers. kind.
  • the amount of the conductive agent is 0.9% by weight to 1.5% by weight, based on the total weight of the positive electrode slurry. If the amount of the conductive agent is too low, the sheet resistance of the positive electrode sheet will be high; if the amount of the conductive agent is too high, the positive electrode slurry may agglomerate and affect the performance of the battery.
  • the positive electrode slurry also includes a dispersant, the dispersant is selected from polymethyl methacrylate, polyethylene glycol, polyvinylpyrrolidone, sodium linear alkylbenzene sulfonate, alkyl polyoxyethylene At least one of ether, sodium lauryl sulfate and alkylsulfonate.
  • the amount of the dispersant is 0.05 wt%-0.1 wt%, based on the total weight of the positive electrode slurry.
  • the stirring uniformity of the positive electrode slurry will be affected; if the amount of dispersant is too high, the content of other components will be sacrificed, so that the overall performance of the positive electrode slurry will be affected, resulting in a The structure is unstable and the battery cycle performance is poor.
  • the positive electrode slurry further includes a solvent, and the solvent is N-methylpyrrolidone.
  • the amount of the solvent is 20% by weight to 48% by weight. If there is too little solvent, the dispersibility of the positive electrode slurry will be poor; if there is too much solvent, the drying process of the pole piece will be difficult to control, and the performance of the battery will be affected.
  • the second aspect of the present application provides a positive electrode sheet, which includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector, and the positive electrode film layer includes the positive electrode slurry according to the first aspect of the present application.
  • the third aspect of the present application provides a lithium ion battery, which includes the positive electrode slurry of the first aspect of the present application or the positive electrode sheet of the second aspect of the present application.
  • a lithium-ion battery typically includes a positive pole piece, a negative pole piece, an electrolyte, and a separator.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode collector, and the positive electrode film layer includes the positive electrode active material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a manganese-containing positive electrode active material for batteries known in the art.
  • the positive electrode active material containing manganese is selected from lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium manganese cobalt oxides, lithium aluminum manganese oxides, lithium nickel manganese oxides, lithium nickel cobalt manganese oxides (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also referred to as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also referred to as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also referred to as NCM 622 ), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 )), and their modified compounds at least one of .
  • These positive electrode active materials may be
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include styrene, acrylate, vinyl acetate, fatty acid vinyl ester, epoxy resin, linear polyester, polyvinylidene fluoride, polystyrene, polysulfide, polyacrylic acid, polyacrylate , polyurethane, polyisobutylene, polyvinyl alcohol, polyimide, polyacrylonitrile, polyethylene oxide, polyvinylpyrrolidone, styrene-butadiene rubber and gelatin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte may optionally include additives.
  • additives can include negative film-forming additives, positive film-forming additives, and additives that can improve certain performances of the battery, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of batteries, and the like.
  • a separator is also included in the lithium ion battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • a lithium ion battery can include an outer packaging.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the lithium-ion battery can be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the lithium-ion battery can also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 2 shows a lithium-ion battery 5 with a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the lithium-ion battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • lithium-ion batteries can be assembled into a battery module, and the number of lithium-ion batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of lithium ion batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of lithium ion batteries 5 can be fixed by fasteners.
  • the battery module 4 may also include a housing with an accommodating space, and a plurality of lithium-ion batteries 5 are accommodated in the accommodating space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the lithium-ion battery, battery module, or battery pack provided in the present application.
  • the lithium-ion battery, battery module, or battery pack can be used as a power source for the electrical device, and can also be used as an energy storage unit for the electrical device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a lithium-ion battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 7 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module can be used.
  • a device may be a cell phone, tablet, laptop, or the like.
  • the device is usually required to be light and thin, and a lithium-ion battery can be used as a power source.
  • Ethylenediaminetetraacetic acid (CAS: 60-00-4, Shanghai Aladdin Biochemical Technology Co., Ltd.)
  • Acetone (CAS: 598-31-2, Shanghai Aladdin Biochemical Technology Co., Ltd.)
  • Lithium nickel cobalt manganese oxide lithium LiNi 0.5 Co 0.2 Mn 0.3 O 2 , NCM 523 , Ningbo Jinhe New Materials Co., Ltd.
  • Acetylene black (ACET, CAS: 1333-86-4, Qingdao Lianchuang Lida Graphite Co., Ltd.)
  • NMP N-Methylpyrrolidone
  • PVDF Polyvinylidene fluoride
  • Ethylene carbonate (EC, CAS: 96-49-1, Shanghai McLean Biotechnology Co., Ltd.)
  • EMC Ethyl methyl carbonate
  • Lithium hexafluorophosphate LiPF6, CAS: 21324-40-3, Guangzhou Tianci High-tech Materials Co., Ltd.
  • Lithium bisfluorosulfonyl imide LiFSI, CAS: 171611-11-3, Guangzhou Tianci High-tech Materials Co., Ltd.
  • EDTB lithium nickel cobalt manganese oxide (LiNi 0.5 Co 0.2 Mn 0.3 O 2 , NCM 523 ), dispersant polymethyl methacrylate (PMMA), binder polyvinylidene fluoride (PVDF), conductive agent acetylene black (ACET) and solvent N-methylpyrrolidone (NMP) were stirred in a drying room according to the weight ratio of 0.90:65:0.07:0.80:1.23:32 to form a slurry.
  • PMMA dispersant polymethyl methacrylate
  • PVDF binder polyvinylidene fluoride
  • AAT conductive agent acetylene black
  • NMP solvent N-methylpyrrolidone
  • the positive electrode slurry obtained in 2) was evenly coated on the positive electrode current collector aluminum foil with a thickness of 13 ⁇ m in the amount of 0.28 g (dry weight)/1540.25 mm 2 ; the aluminum foil was dried at room temperature and then transferred to an oven at 120 ° C for 1 h , and then cold-pressed and cut to obtain the positive electrode sheet.
  • Negative electrode slurry is mixed with 0.18g (dry weight )/1540.25mm 2 was uniformly coated on the negative electrode current collector copper foil with a thickness of 8 ⁇ m; after the copper foil was dried at room temperature, it was transferred to an oven at 120°C to dry for 1 hour, and then cold pressed and cut to obtain negative electrode sheets.
  • the isolation film was purchased from Cellgard, and the model was Cellgard 2400.
  • the positive electrode, separator, and negative electrode in order, so that the separator is between the positive and negative electrodes for isolation, and then wind the bare cell; the bare cell with a capacity of 4.3Ah Put it in the outer packaging foil, inject 8.6g of the above-mentioned prepared electrolyte into the dried battery, and go through processes such as vacuum packaging, standing, forming, and shaping to obtain a lithium-ion battery.
  • the positive electrode additive of formula (I-2) was purchased from Shanghai Macklin Biotechnology Co., Ltd.
  • the positive electrode additive of formula (I-3) was purchased from Shanghai Macklin Biotechnology Co., Ltd.
  • a lithium ion battery was prepared in the same manner as in Example 1 except that it did not contain any positive electrode additives of the present application.
  • Table 3 Effect of weight ratio of manganese-containing positive electrode active material to positive electrode additives on battery performance
  • the positive electrode slurry of the present application can prolong the service life of the lithium manganese oxide lithium-ion battery, improve the high-temperature cycle performance and high-temperature storage performance of the battery.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提本申请提供了一种正极浆料,并提供包含本申请浆料的正极极片、锂离子电池、电池模块、电池包和用电装置,所述正极浆料包括:含锰的正极活性材料、正极用添加剂,其中,所述正极用添加剂为式(I)的化合物,其中,A=B,且选自N、O、S中的任意一种,R1、R2、R3、R4、R5、R6、R7、R8各自独立地选自氢、碳原子数为1-7的烷基。本申请的正极浆料能够通过有效捕获锰离子而极大地减少锰离子在负极材料表面上的沉积,从而减缓锂锰氧化物系锂离子电池在循环和存储过程中容量的衰减,提高了电池的使用寿命、高温循环性能和高温存储性能。

Description

正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种正极浆料、以及包含其的正极极片、锂离子电池、电池模块、电池包和用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。
锂离子电池的工作电压和能量密度很大程度上取决于正极材料。锂锰氧化物(例如尖晶石锰酸锂LiMn 2O 4)具有资源丰富、能量密度高、成本低、无污染、安全性好等优点,被人们认为是锂离子动力电池理想的正极材料。但是锂锰氧化物系锂离子电池的容量衰减较快,尤其在高温条件下,一直是限制其大规模应用的瓶颈。锰在电解液中的溶解被认为是正极材料锂锰氧化物容量衰减的最主要原因。为了抑制其容量的衰减,人们采取了多元素掺杂和表面包覆的方法,但仅仅只是部分减少了锰的溶解,无法更有效地抑制锰的析出从而减缓电池容量的衰减。因此,需要进一步开发延长锂锰氧化物系锂离子电池使用寿命、提高电池高温循环性能和高温存储性能的有效调控材料或方法。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种能够有效改善锂锰氧化物系锂离子电池使用寿命、高温循环性能和高温存储性能的正极浆料,并提供包含本申请浆料的正极极片、锂离子电池、电池模块、电池包和用电装置。
为了达到上述目的,本申请提供了一种正极浆料,包括:含锰的正极活性材料、正极用添加剂,
其中,所述正极用添加剂为式(I)的化合物,
Figure PCTCN2021128404-appb-000001
其中,A=B,且选自N、O、S原子中的任意一种,
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-7的烷基。
由此,本申请的正极浆料能够通过有效捕获锰离子而极大地减少锰离子在负极材料表面上的沉积,从而减缓锂锰氧化物系锂离子电池在循环和存储过程中容量的衰减,提高了电池的使用寿命、高温循环性能和高温存储性能。
在任意实施方式中,所述式(I)的正极用添加剂中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-3的烷基,且A和B为N原子。
在任意实施方式中,所述正极用添加剂为N,N,N',N'-四(2-苯并咪 唑亚甲基)-1,2-乙二胺(EDTB)。
在任意实施方式中,所述正极用添加剂的量为0.06重量%-1.5重量%,优选为0.5重量%-1重量%,基于正极浆料的总重量计。
在任意实施方式中,所述含锰的正极活性材料与正极用添加剂的重量比为40:1至1000:1,优选为60:1至200:1。
在任意实施方式中,所述含锰的正极活性材料选自锂锰氧化物、锂锰钴氧化物、锂铝锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物及其改性化合物中的至少一种,所述含锰的正极活性材料的量为50重量%-75重量%,基于正极浆料的总重量计。
在任意实施方式中,所述正极浆料包括粘结剂,所述粘结剂选自苯乙烯、丙烯酸酯、醋酸乙烯、脂肪酸乙烯酯、环氧树脂、线性聚酯、聚偏氟乙烯、聚苯乙烯、聚硫橡胶、聚丙烯酸、聚丙烯酸酯、聚氨酯、聚异丁烯、聚乙烯醇、聚酰亚胺、聚丙烯腈、聚氧化乙烯、聚乙烯吡咯烷酮、丁苯橡胶及明胶中的至少一种,所述粘结剂的量为0.5重量%-1重量%,基于正极浆料的总重量计。
在任意实施方式中,所述正极浆料包括导电剂,所述导电剂选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种,所述导电剂的量为0.9重量%-1.5重量%,基于正极浆料的总重量计。
在任意实施方式中,所述正极浆料还包括分散剂,所述分散剂选自聚甲基丙烯酸甲酯、聚乙二醇、聚乙烯吡咯烷酮、直链烷基苯磺酸钠、烷基聚氧乙烯醚、月桂醇硫酸钠及烷基磺酸盐中的至少一种,所述分散剂的量为0.05重量%-0.1重量%,基于正极浆料的总重量计。
本申请的第二方面还提供一种正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层含有上述实 施方案中任一个所述的正极浆料。
本申请的第三方面提供一种锂离子电池,包括其正极膜层含有上述实施方案中任一个所述的正极浆料的正极。
本申请的锂离子电池,包括含有上述正极浆料的正极,因此具有改善的使用寿命、高温循环性能和高温存储性能。
本申请的第四方面提供一种电池模块,包括本申请的第三方面的锂离子电池。
本申请的第五方面提供一种电池包,包括本申请的第四方面的电池模块。
本申请的第六方面提供一种用电装置,包括选自本申请的第三方面的锂离子电池、本申请的第四方面的电池模块或本申请的第五方面的电池包中的至少一种。
本申请的电池模块、电池包和用电装置包括本申请提供的锂离子电池,因此至少具有与所述锂离子电池相同的优势。
附图说明
图1是本申请一实施方式的正极用添加剂与锰形成配合物的示意图。
图2是本申请一实施方式的锂离子电池的示意图。
图3是图2所示的本申请一实施方式的锂离子电池的分解图。
图4是本申请一实施方式的电池模块的示意图。
图5是本申请一实施方式的电池包的示意图。
图6是图5所示的本申请一实施方式的电池包的分解图。
图7是本申请一实施方式的锂离子电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5锂离子电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极浆料、正极极片、锂离子电池、电池模块、电池包和电学装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在充放电过程特别是高温下(55℃以上)锂锰氧化物(例如,尖晶石锰酸锂LiMn 2O 4)的容量衰减较快,严重阻碍了锂锰氧化物作为锂离子电池正极材料的应用。目前公认的引起锂锰氧化物循环过程容量衰减主要是由于Mn 3+引起的。以尖晶石锰酸锂LiMn 2O 4为示例,在电化学循环过程中,LiMn 2O 4中的Mn 3+与电解液作用,Mn 3+发生歧化反应生成Mn 4+和Mn 2+,Mn 2+溶解于电解液中,在高温下Mn 2+ 的溶解速率会加大。一方面锰的溶解破坏了LiMn 2O 4的结构,导致正极活性材料LiMn 2O 4的损失,随着LiMn 2O 4表面Mn 4+比例的升高,正极材料LiMn 2O 4的电荷传输能力下降,表面电阻升高,使得锂离子的脱嵌更加困难,导致容量的快速衰减;另一方面Mn 3+溶解产生溶解化的Mn 2+,它可以迁移到负极,在嵌锂的石墨负极上被还原,以固态Mn的形式沉积到负极上面,Mn 2+也会和电解液的分解产物形成氟化物或者氧化物沉积到电极表面,导致电极的阻抗增加,堵塞锂离子扩散通道,引起容量的衰减。这种持续性的锰离子溶出会严重破坏负极的可逆性,恶化电池电阻、产气,加速容量的衰减,最终导致电池寿命的衰减。同时,积累在负极上的锰会通过消耗更多的活性锂离子形成更厚的钝化膜(又称为固态电解质界面膜,SEI膜),导致容量快速衰减,电池循环和存储性能变差。
针对锂锰氧化物系锂离子电池中锰的溶解-沉积过程,目前主要采用表面包覆和体相掺杂对正极锂锰氧化物进行改性,从而达到抑制锰溶解的效果。然而直接的体相掺杂中使用如Ni、Co等活性阳离子常常会引入安全、成本问题,使用如Al、Ti等活性阳离子,可会导致首次容量损失;表面包覆方法形成了新的界面层,导致锂离子传输电阻升高。此外,锰酸锂的改性也无法达到完全抑制锰溶解的效果。因此,需要在电池中使用这样的材料:能够使溶出的锰离子达到稳定状态来改变沉积反应平衡,以抑制锰离子的溶解并减少锰在负极表面的沉积,以保护负极免于中毒和由此产生的容量和使用寿命降低,从而延长锂锰氧化物系锂离子电池使用寿命、提高电池高温循环性能和高温存储性能。
本申请的正极浆料例如可用于锂离子电池中。
具体而言,本申请的第一方面提出了一种正极浆料,包括:含锰 的正极活性材料、正极用添加剂,
其中,所述正极用添加剂为式(I)的化合物,
Figure PCTCN2021128404-appb-000002
其中,A=B,且选自N、O、S原子中的任意一种,
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-7的烷基。
本申请通过正极用添加剂与锰离子形成配合物(如图1所示)而将锰离子“锚定”在正极材料中,从而减少锰离子迁移到负极的数量,减小过渡金属锰对负极表面钝化膜(又称为固态电解质界面膜,SEI膜)消耗活性锂造成的容量损失,从而改善锂离子电池的寿命,提高电池高温循环性能和高温存储性能。
在一些实施方式中,A与B代表的原子种类相同,其好处是结构稳定,易合成获取,优选地,A与B可选自N原子,因为N原子具有孤对电子,与金属配位能力较强,且易形成热力学稳定的配合物。
可选地,所述式(I)的正极用添加剂中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-3的烷基,且A和B为N原子。
所述碳原子数为1-7的烷基可以为碳原子数为1-7的直链或支链的烷基,例如,甲基、乙基、丙基、异丙基、丁基、异丁基、戊基等。
所述碳原子数为1-3的烷基可以为例如甲基、乙基、丙基、异丙基。
可选地,所述正极用添加剂为N,N,N',N'-四(2-苯并咪唑亚甲基)-1,2-乙二胺(EDTB)。该添加剂为含N多齿配体,与锰容易形成稳定的配合物,使溶出的锰离子被“锚定”在正极表面,减少锰离子在负极材料表面沉积。
可选地,所述正极用添加剂的量为0.06重量%-1.5重量%,优选为0.5重量%-1重量%,基于正极浆料的总重量计。若正极用添加剂的量过低,则未得到固定的锰离子会迁移到负极并沉积在负极表面,造成负极中毒并由此产生的容量和使用寿命降低;若正极用添加剂的量过高,则无法再进一步提高固定锰离子的效果,反而过多占用正极浆料重量,会减小电池能量密度。
可选地,所述含锰的正极活性材料与正极用添加剂的重量比为40:1至1000:1,优选为60:1至200:1。若二者比例过低,则正极用添加剂含量高于所需值,会减小电池能量密度;若比例过高,则添加剂含量过低,不能较大程度上减少正极锰溶出。
可选地,所述含锰的正极活性材料选自锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂锰钴氧化物、锂铝锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811))及其改性化合物中的至少一种。所述含锰的正极活性材料的量为50重量%-75重量%,基于正极浆料的总重量计。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。若正极活性材料的量过低,则正极浆料的固 含量偏小,后期极片烘干较困难;若正极活性材料量过高,则浆料粘度和稳定性不易控制。
可选地,所述正极浆料包括粘结剂,所述粘结剂选自苯乙烯、丙烯酸酯、醋酸乙烯、脂肪酸乙烯酯、环氧树脂、线性聚酯、聚偏氟乙烯、聚苯乙烯、聚硫橡胶、聚丙烯酸、聚丙烯酸酯、聚氨酯、聚异丁烯、聚乙烯醇、聚酰亚胺、聚丙烯腈、聚氧化乙烯、聚乙烯吡咯烷酮、丁苯橡胶及明胶中的至少一种。所述粘结剂的量为0.5重量%-1重量%,基于正极浆料的总重量计。若粘结剂的量过低,则正极浆料的稳定性和正极极片的结构稳定性较差,电池循环性能较差;若粘结剂的量过高,则正极浆料稳定性不易控制,同时会降低电池能量密度。
可选地,所述正极浆料包括导电剂,所述导电剂选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。所述导电剂的量为0.9重量%-1.5重量%,基于正极浆料的总重量计。若导电剂的量过低,则正极极片膜片电阻会偏高;若导电剂的量过高,则正极浆料可能发生团聚,影响电池的性能。
可选地,所述正极浆料还包括分散剂,所述分散剂选自聚甲基丙烯酸甲酯、聚乙二醇、聚乙烯吡咯烷酮、直链烷基苯磺酸钠、烷基聚氧乙烯醚、月桂醇硫酸钠及烷基磺酸盐中的至少一种。所述分散剂的量为0.05重量%-0.1重量%,基于正极浆料的总重量计。若分散剂的量过低,则正极浆料的搅拌均匀性会受到影响;若分散剂的量过高,则会牺牲其他组分含量,使得正极浆料的整体性能受到影响,造成正极极片结构不稳定,电池循环性能较差。
可选地,所述正极浆料还包括溶剂,所述溶剂为N-甲基吡咯烷酮。所述溶剂的量为20重量%-48重量%。若溶剂过少,则正极浆料的分散性较差;若溶剂过多,则极片烘干过程不易控制,电池性能受 影响。
本申请的第二方面提供一种正极极片,其包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极浆料。
本申请的第三方面提供一种锂离子电池,其包括本申请第一方面的正极浆料或本申请第二方面的正极极片。
通常情况下,锂离子电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
以下参照附图对本申请的锂离子电池、电池模块、电池包和用电装置进行说明。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸 乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的含锰正极活性材料。作为示例,含锰的正极活性材料选自锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂锰钴氧化物、锂铝锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811))、及其改性化合物中的至少一种。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括苯乙烯、丙烯酸酯、醋酸乙烯、脂肪酸乙烯酯、环氧树脂、线性聚酯、聚偏氟乙烯、聚苯乙烯、聚硫橡胶、聚丙烯酸、聚丙烯酸酯、聚氨酯、聚异丁烯、聚乙烯醇、聚酰亚胺、聚丙烯腈、聚氧化乙烯、聚乙烯吡咯烷酮、丁苯橡胶及明胶中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选 自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加 剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,锂离子电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,锂离子电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,锂离子电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。锂离子电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对锂离子电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图2是作为一个示例的方形结构的锂离子电池5。
在一些实施方式中,参照图3,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合 形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。锂离子电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,锂离子电池可以组装成电池模块,电池模块所含锂离子电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图4,在电池模块4中,多个锂离子电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个锂离子电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个锂离子电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图5和图6是作为一个示例的电池包1。参照图5和图6,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的锂离子电池、电池模块、或电池包中的至少一种。所述锂离子电 池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择锂离子电池、电池模块或电池包。
图7是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对锂离子电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用锂离子电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请实施例涉及的原材料来源如下:
乙二胺四乙酸(CAS:60-00-4,上海阿拉丁生化科技股份有限公司)
邻苯二胺(CAS:95-54-5,上海阿拉丁生化科技股份有限公司)
乙二醇(CAS:107-21-1,上海麦克林生物科技有限公司)
无水乙醇(CAS:64-17-5,上海麦克林生物科技有限公司)
丙酮(CAS:598-31-2,上海阿拉丁生化科技股份有限公司)
氢氧化钾(CAS:1310-58-3,上海麦克林生物科技有限公司)
溴乙烷(CAS:74-96-4,上海阿拉丁生化科技股份有限公司)
二甲基亚砜(CAS:67-68-5,上海阿拉丁生化科技股份有限公司)
锂镍钴锰氧化物锂(LiNi 0.5Co 0.2Mn 0.3O 2,NCM 523,宁波金和新材料股份有限公司)
人造石墨(青岛联创利达石墨有限公司)
乙炔黑(ACET,CAS:1333-86-4,青岛联创利达石墨有限公司)
N-甲基吡咯烷酮(NMP,CAS:872-50-4,上海阿拉丁生化科技股份有限公司)
聚偏氟乙烯(PVDF,CAS:24937-79-9,上海阿拉丁生化科技股份有限公司)
聚甲基丙烯酸甲酯(PMMA,CAS:9011-14-7,上海阿拉丁生化科技股份有限公司)
碳酸乙烯酯(EC,CAS:96-49-1,上海麦克林生物科技有限公司)
碳酸甲乙酯(EMC,CAS:623-53-0,上海麦克林生物科技有限公司)
六氟磷酸锂(LiPF6,CAS:21324-40-3,广州天赐高新材料股份有限公司)
双氟磺酰亚胺锂盐(LiFSI,CAS:171611-11-3,广州天赐高新材料股份有限公司)
碳黑(广东凯金新能源科技股份有限公司)
丙烯酸酯(CAS:25067-02-1,上海麦克林生物科技有限公司)
一、锂离子电池的制备
实施例1
1)正极用添加剂EDTB的制备
将乙二胺四乙酸与邻苯二胺按照摩尔比为1:4加入带有回流装置的锥形瓶中,随后加入溶剂乙二醇,于160℃下,回流8h,得到红色液体。冷却后,将蒸馏水缓缓地加入至该红色液体的瓶中,下层结块。冷却至室温后加入无水乙醇,静置12h,过滤。加入乙醇重结晶后得到固体,少量丙酮洗涤。真空条件下烘干即得到白色的EDTB固体。
2)正极浆料的制备
将EDTB、锂镍钴锰氧化物(LiNi 0.5Co 0.2Mn 0.3O 2,NCM 523)、分散剂聚甲基丙烯酸甲酯(PMMA)、粘结剂聚偏氟乙烯(PVDF)、导电剂乙炔黑(ACET)和溶剂N-甲基吡咯烷酮(NMP)按照重量比0.90:65:0.07:0.80:1.23:32在干燥房中搅拌制成浆料。
3)锂离子电池的制备
【电解液的制备】
在含水量<10ppm的氩气气氛手套箱中,于烧杯中分别加入32.64g EC、60.84g EMC、6.25g LiPF 6、0.15g LiFSI,充分搅拌溶解后得到本实施例用电解液。
【正极极片的制备】
将2)中获得的正极浆料以0.28g(干重)/1540.25mm 2的量均匀涂敷在厚度为13μm的正极集流体铝箔上;将铝箔在室温晾干后转 移至120℃烘箱干燥1h,然后经过冷压、分切得到正极极片。
【负极极片的制备】
将人造石墨、导电剂碳黑、粘结剂丙烯酸酯按照质量比92:2:6进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料;将负极浆料以0.18g(干重)/1540.25mm 2的量均匀涂覆在厚度为8μm的负极集流体铜箔上;将铜箔在室温晾干后转移至120℃烘箱干燥1h,然后经过冷压、分切得到负极极片。
【隔离膜】
隔离膜采购自Cellgard企业,型号为cellgard 2400。
【锂离子电池的制备】
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极极片之间起到隔离的作用,然后卷绕得到裸电芯;将容量为4.3Ah的裸电芯置于外包装箔中,将上述制备好的8.6g电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,获得锂离子电池。
实施例2
1)式(I-1)的正极用添加剂的制备
将氢氧化钾、EDTB、二甲基亚砜按照摩尔比15:1:0.2混合后,缓慢加入溴乙烷(溴乙烷与EDTB摩尔比为4:1),在25℃下搅拌2h。加入蒸馏水,继续搅拌0.5h后,静置1h,过滤后水洗,烘干得到粗产品。用无水乙醇重结晶后得到式(I-1)的固体粉末。
Figure PCTCN2021128404-appb-000003
除了在“2)正极浆料的制备”中,使用式(I-1)的正极用添加剂之外,其他与实施例1相同。
实施例3
使用式(I-2)的正极用添加剂,其购自于上海麦克林生物科技有限公司。
Figure PCTCN2021128404-appb-000004
除了在“2)正极浆料的制备”中,使用式(I-2)的正极用添加剂之外,其他与实施例1相同。
实施例4
使用式(I-3)的正极用添加剂,其购自于上海麦克林生物科技 有限公司。
Figure PCTCN2021128404-appb-000005
除了在“2)正极浆料的制备”中,使用式(I-3)的正极用添加剂之外,其他与实施例1相同。
实施例5
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.05:50:0.05:0.62:0.95:48.33混合之外,其它与实施例1相同。
实施例6
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.06:55:0.06:0.68:1.04:43.16合之外,其它与实施例1相同。
实施例7
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.50:70:0.08:0.86:1.32:27.24混合之外,其它与实施例1相同。
实施例8
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.90:70:0.08:0.86:1.32:26.84混合之外,之外,其它与实施例1相同。
实施例9
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.0:70:0.08:0.86:1.32:26.74混合之外,其它与实施例1相同。
实施例10
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.60:65.00:0.07:0.80:1.23:31.30混合之外,其它与实施例1相同。
实施例11
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.50:70:0.08:0.86:1.32:26.24混合之外,其它与实施例1相同。
实施例12
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.50:55:0.06:0.68:1.04:41.72混合之外,其它与实施例1相同。
实施例13
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.40:60:0.06:0.74:1.14:36.66混合之外,其它与实施例1相同。
实施例14
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比1.00:60:0.06:0.74:1.14:37.06混合之外,其它与实施例1相同。
实施例15
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.60:60:0.06:0.74:1.14:37.46混合之外,其它与实施例1相同。
实施例16
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.30:60:0.06:0.74:1.14:37.76混合之外,其它与实施例1相同。
实施例17
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.08:75:0.08:0.92:1.42:22.50混合之外,其它与实施例1相同。
实施例18
除了在“2)正极浆料的制备”中,将EDTB、NCM 523、PMMA、PVDF、ACET和NMP按照重量比0.06:73:0.08:0.90:1.38:24.58混合之外,其它与实施例1相同。
对比例1
在正极浆料的制备中,除不含有任何本申请的正极用添加剂之外,以与实施例1相同的方式制备锂离子电池。
二、电池性能测试方法
1.45℃循环性能测试
在45℃下,将电池以1C恒流充电至4.3V,再以4.3V恒定电压充电至电流为0.05C,搁置5min,再以1C恒流放电至2.8V,所得容量记为初始容量C 0。对上述同一个电池重复以上步骤,并同时开始计数,记录循环第1000次后电池的放电容量C 1000,则循环1000次后电池循环容量保持率P=C 1000/C 0*100%。
按照上述过程分别测试实施例和对比例的锂离子电池,具体数值参见表1~表3。
2.60℃存储性能测试
在25℃下,将电池以1C恒流充电至4.3V,再以4.3V恒定电压充电至电流为0.05C,搁置5min后,再以0.5C恒流放电至2.5V,此时放电容量记为初始容量C 0
将上述电池再以1C恒流充电至4.3V,再以4.3V恒定电压充电至电流为0.05C,之后将该电池放入60℃的恒温箱,储存270天后取出。将取出的电池放置于25℃大气环境下,待锂离子电池温度完全降至25℃后,对锂离子电池以1C恒流放电至2.8V,再以1C恒流充 电至4.3V,最后再将锂离子电池以0.05C恒流放电至2.8V,此时的放电容量为C 1,则存储270天后电池的高温存储容量保持率M=C 1/C 0×100%。
按照上述过程分别测试其他实施例和对比例,具体数值参见表1~表3。
表1:正极用添加剂对电池性能的影响
Figure PCTCN2021128404-appb-000006
表2:正极用添加剂的量对电池性能的影响
Figure PCTCN2021128404-appb-000007
表3:含锰的正极活性材料与正极用添加剂重量比对电池性能的影响
Figure PCTCN2021128404-appb-000008
根据上述结果可知,实施例1-18均取得了良好的效果。与对比例相比,本申请的正极浆料能够延长锂锰氧化物系锂离子电池使用寿命、提高电池高温循环性能和高温存储性能。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (14)

  1. 一种正极浆料,包括:含锰的正极活性材料、正极用添加剂,
    Figure PCTCN2021128404-appb-100001
    其中,A=B,且选自N、O、S原子中的任意一种,
    R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-7的烷基。
  2. 根据权利要求1所述的正极浆料,其中,所述式(I)的正极用添加剂中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8各自独立地选自氢、碳原子数为1-3的烷基,且A和B为N原子。
  3. 根据权利要求1所述的正极浆料,其中,所述正极用添加剂为N,N,N',N'-四(2-苯并咪唑亚甲基)-1,2-乙二胺(EDTB)。
  4. 根据权利要求1所述的正极浆料,其中,所述正极用添加剂的量为0.06重量%-1.5重量%,优选为0.5重量%-1重量%,基于正极浆料的总重量计。
  5. 根据权利要求1所述的正极浆料,其中,所述含锰的正极活性材料与正极用添加剂的重量比为40:1至1000:1,优选为60:1至200:1。
  6. 根据权利要求1所述的正极浆料,其中,所述含锰的正极活性材料选自锂锰氧化物、锂锰钴氧化物、锂铝锰氧化物、锂镍锰氧化 物、锂镍钴锰氧化物及其改性化合物中的至少一种,所述含锰的正极活性材料的量为50重量%-75重量%,基于正极浆料的总重量计。
  7. 根据权利要求1所述的正极浆料,其中,所述正极浆料包括粘结剂,所述粘结剂选自苯乙烯、丙烯酸酯、醋酸乙烯、脂肪酸乙烯酯、环氧树脂、线性聚酯、聚偏氟乙烯、聚苯乙烯、聚硫橡胶、聚丙烯酸、聚丙烯酸酯、聚氨酯、聚异丁烯、聚乙烯醇、聚酰亚胺、聚丙烯腈、聚氧化乙烯、聚乙烯吡咯烷酮、丁苯橡胶及明胶中的至少一种,所述粘结剂的量为0.5重量%-1重量%,基于正极浆料的总重量计。
  8. 根据权利要求1所述的正极浆料,其中,所述正极浆料包括导电剂,所述导电剂选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种,所述导电剂的量为0.9重量%-1.5重量%,基于正极浆料的总重量计。
  9. 根据权利要求1所述的正极浆料,其中,所述正极浆料还包括分散剂,所述分散剂选自聚甲基丙烯酸甲酯、聚乙二醇、聚乙烯吡咯烷酮、直链烷基苯磺酸钠、烷基聚氧乙烯醚、月桂醇硫酸钠及烷基磺酸盐中的至少一种,所述分散剂的量为0.05重量%-0.1重量%,基于正极浆料的总重量计。
  10. 一种正极极片,包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层含有权利要求1至9中任一项所述的正极浆料。
  11. 一种锂离子电池,包括其正极膜层含有权利要求1至9中任一项所述的正极浆料的正极极片或包括权利要求10所述的正极极片。
  12. 一种电池模块,其特征在于,包括权利要求11所述的锂离子电池。
  13. 一种电池包,其特征在于,包括权利要求12所述的电池模 块。
  14. 一种用电装置,其特征在于,包括选自权利要求11所述的锂离子电池、权利要求12所述的电池模块或权利要求13所述的电池包中的至少一种。
PCT/CN2021/128404 2021-11-03 2021-11-03 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置 WO2023077299A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21943315.8A EP4207389A1 (en) 2021-11-03 2021-11-03 Positive electrode slurry, positive electrode plate, lithium ion battery, battery module, battery pack, and electrical device
KR1020237000400A KR20230066310A (ko) 2021-11-03 2021-11-03 캐소드 슬러리, 캐소드 극판, 리튬 이온 전지, 전지 모듈, 전지 팩 및 전기 장치
JP2023501535A JP7476419B2 (ja) 2021-11-03 2021-11-03 正極ペースト、正極シート、リチウムイオン電池、電池モジュール、電池パックおよび電力使用装置
PCT/CN2021/128404 WO2023077299A1 (zh) 2021-11-03 2021-11-03 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置
CN202180092542.4A CN116848671A (zh) 2021-11-03 2021-11-03 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置
US18/069,975 US20230138600A1 (en) 2021-11-03 2022-12-21 Positive electrode slurry, positive electrode plate, lithium-ion battery, battery module, battery pack, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128404 WO2023077299A1 (zh) 2021-11-03 2021-11-03 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/069,975 Continuation US20230138600A1 (en) 2021-11-03 2022-12-21 Positive electrode slurry, positive electrode plate, lithium-ion battery, battery module, battery pack, and electrical device

Publications (1)

Publication Number Publication Date
WO2023077299A1 true WO2023077299A1 (zh) 2023-05-11

Family

ID=86147280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128404 WO2023077299A1 (zh) 2021-11-03 2021-11-03 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置

Country Status (6)

Country Link
US (1) US20230138600A1 (zh)
EP (1) EP4207389A1 (zh)
JP (1) JP7476419B2 (zh)
KR (1) KR20230066310A (zh)
CN (1) CN116848671A (zh)
WO (1) WO2023077299A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705245A (zh) * 2009-11-17 2010-05-12 华中师范大学 一种多苯并咪唑金属配合物非病毒基因载体及其制备与应用
JP2010118320A (ja) * 2008-11-14 2010-05-27 Denso Corp 二次電池
JP2012089411A (ja) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2012115759A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 変性物
CN103204882A (zh) * 2013-05-03 2013-07-17 中国科学院化学研究所 一种多苯并咪唑铁配合物,其制备方法及其应用
CN107615522A (zh) * 2015-04-20 2018-01-19 安泰奥科技有限公司 组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118320A (ja) * 2008-11-14 2010-05-27 Denso Corp 二次電池
CN101705245A (zh) * 2009-11-17 2010-05-12 华中师范大学 一种多苯并咪唑金属配合物非病毒基因载体及其制备与应用
JP2012089411A (ja) * 2010-10-21 2012-05-10 Nippon Zeon Co Ltd リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2012115759A (ja) * 2010-11-30 2012-06-21 Sumitomo Chemical Co Ltd 変性物
CN103204882A (zh) * 2013-05-03 2013-07-17 中国科学院化学研究所 一种多苯并咪唑铁配合物,其制备方法及其应用
CN107615522A (zh) * 2015-04-20 2018-01-19 安泰奥科技有限公司 组合物

Also Published As

Publication number Publication date
EP4207389A1 (en) 2023-07-05
JP7476419B2 (ja) 2024-04-30
US20230138600A1 (en) 2023-05-04
JP2023551612A (ja) 2023-12-11
KR20230066310A (ko) 2023-05-15
CN116848671A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2023040687A1 (zh) 一种电解液、包含该电解液的电化学装置和电子装置
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2021023131A1 (zh) 电解液、锂离子电池及装置
WO2023225799A1 (zh) 二次电池以及包含其的电池模块、电池包及用电装置
CN116779966A (zh) 电解液、包含其的电池单体、电池和用电装置
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023071807A1 (zh) 隔膜及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023060554A1 (zh) 电解液、二次电池和用电装置
WO2023137624A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023010927A1 (zh) 二次电池、电池模块、电池包及用电装置
WO2023206405A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2023142024A1 (zh) 一种长寿命二次电池及电池模块、电池包和用电装置
WO2023077299A1 (zh) 正极浆料、正极极片、锂离子电池、电池模块、电池包和用电装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023130249A1 (zh) 电解液及使用其的二次电池、电池模块、电池包以及用电装置
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2023137625A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2024113210A1 (zh) 氟代缩醛类化合物、电解液、二次电池和用电装置
WO2023240593A1 (zh) 预锂化的正极集电体的制备方法、正极集电体和锂离子电池
WO2023082866A1 (zh) 二次电池、用于制备二次电池的方法、电池模块、电池包及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021943315

Country of ref document: EP

Effective date: 20221206

WWE Wipo information: entry into national phase

Ref document number: 2023501535

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092542.4

Country of ref document: CN