WO2023040687A1 - 一种电解液、包含该电解液的电化学装置和电子装置 - Google Patents

一种电解液、包含该电解液的电化学装置和电子装置 Download PDF

Info

Publication number
WO2023040687A1
WO2023040687A1 PCT/CN2022/117004 CN2022117004W WO2023040687A1 WO 2023040687 A1 WO2023040687 A1 WO 2023040687A1 CN 2022117004 W CN2022117004 W CN 2022117004W WO 2023040687 A1 WO2023040687 A1 WO 2023040687A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
carbonate
mass percentage
electrochemical device
positive electrode
Prior art date
Application number
PCT/CN2022/117004
Other languages
English (en)
French (fr)
Inventor
徐春瑞
许艳艳
郑建明
唐超
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2023040687A1 publication Critical patent/WO2023040687A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of electrochemistry, in particular to an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution.
  • Lithium-ion batteries have the advantages of high energy storage density, high open circuit voltage, low self-discharge rate, long cycle life, and good safety. They are widely used in various fields such as portable electric energy storage, electronic equipment, and electric vehicles. But it also puts forward higher requirements for the comprehensive performance of lithium-ion batteries, such as high energy density, good high-temperature storage performance and cycle performance at the same time. However, high energy density comes with a decline in high-temperature storage performance and cycle performance.
  • electrolyte additives are often used to improve the high-temperature storage performance and cycle performance of lithium-ion batteries.
  • most additives improve high-temperature storage by forming a film on the positive electrode, but often seriously deteriorate the low-temperature discharge performance and cycle performance of lithium-ion batteries due to too high viscosity or too high resistance of the formed film.
  • some additives with low film forming resistance tend to easily deteriorate the high-temperature storage performance of lithium-ion batteries. Therefore, it is urgent to develop electrolytes that can effectively improve the high-temperature storage performance of lithium-ion batteries.
  • the purpose of the present application is to provide an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution, so as to improve the high-temperature storage performance of the electrochemical device.
  • the first aspect of the present application provides a kind of electrolytic solution, and it comprises ethylene carbonate, propylene carbonate and fluoroethylene carbonate, is based on the quality of electrolytic solution, and the mass percentage of ethylene carbonate is a, the mass percentage content b of propylene carbonate is 12% to 35%, and the mass percentage content c of fluoroethylene carbonate is 0.2% to 2.5%, and satisfy 0.1 ⁇ a/b ⁇ 0.75.
  • the mass percentage content b of propylene carbonate is 12% to 35%
  • the mass percentage content c of fluoroethylene carbonate is 0.2% to 2.5%
  • ethylene carbonate and ethylene carbonate The mass ratio a/b of propyl ester is 0.1 to 0.75, which is beneficial to improve the high-temperature storage performance and cycle performance of the electrochemical device.
  • the electrolytic solution can also include chain carbonates, based on the quality of the electrolytic solution, the mass percentage of the chain carbonates is d, and the chain carbonates include dimethyl carbonate, At least one of ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, dipropyl carbonate or dibutyl carbonate, and the electrolyte satisfies 0.04 ⁇ a/d ⁇ 0.35.
  • the value of a/d within the above range, it is beneficial for the synergistic effect of ethylene carbonate and chain carbonate to improve the cycle performance and high-temperature storage performance of the electrochemical device under high voltage.
  • 30% ⁇ d ⁇ 60% By adjusting the mass percentage of the chain carbonate within the above range, it is beneficial to improve the comprehensive performance of the electrochemical device under high voltage, such as cycle performance and rate performance.
  • the electrolyte solution may also include a sultone compound, and the sultone compound includes 1,3-propane sultone, 2,4-butane sultone or 1,4-butane
  • the mass percentage e of the sultone compound is 0.5% to 5%.
  • the positive electrode may refer to the positive electrode sheet
  • the negative electrode may refer to the negative electrode sheet.
  • the electrolyte solution may also include additive A, and additive A includes at least one of vinylene carbonate, vinyl ethylene carbonate, ethylene sulfate, lithium difluorophosphate or lithium boron salt kind.
  • additive A includes at least one of vinylene carbonate, vinyl ethylene carbonate, ethylene sulfate, lithium difluorophosphate or lithium boron salt kind.
  • the electrolyte satisfies at least one of the following relationships: (a) Additive A includes vinylene carbonate, based on the quality of the electrolyte, the mass percentage of vinylene carbonate A1 0.01% to 2%; (b) additive A includes ethylene sulfate, based on the quality of the electrolyte, the mass percentage A2 of ethylene sulfate is 0.01% to 2%; (c) additive A includes boron Lithium salt, boron lithium salt includes at least one of lithium tetrafluoroborate, lithium difluorooxalate borate or lithium dioxalate borate, based on the quality of the electrolyte, the mass percentage content A3 of boron lithium salt is 0.01% to 2 %; (d) The electrolyte contains vinylene carbonate and ethylene sulfate, based on the quality of the electrolyte, the mass percentage of vinylene carbonate is A1, and the mass
  • the mass percentage of vinylene carbonate is A1, and that of ethylene sulfate The mass percentage content is A2, satisfying 0.02% ⁇ A1+A2 ⁇ 3%;
  • the electrolyte contains vinylene carbonate and boron lithium salt, based on the quality of the electrolyte, the mass percentage of vinylene carbonate A1, the mass percentage of boron lithium salt is A3, satisfying 0.01% ⁇ A1+A3 ⁇ 3%;
  • the electrolyte contains vinylene carbonate and boron lithium salt, based on the quality of the electrolyte, the The mass percentage of vinyl ester is A1, and the mass percentage of boron-lithium salt is A3, satisfying 0.1 ⁇ A1/A3 ⁇ 10.
  • the electrolyte solution satisfies at least one of the above relationships, which is conducive to the formation of a solid electrolyte interface (SEI) film and a positive electrode electrolyte interface (CEI) film with strong stability under high voltage, so that a good synergy is formed between the substances , thereby improving the high-temperature storage performance and cycle performance of the electrochemical device.
  • SEI solid electrolyte interface
  • CEI positive electrode electrolyte interface
  • the additive A may include vinylene carbonate, and based on the mass of the electrolyte, the mass percentage A1 of the vinylene carbonate is 0.01% to 2%.
  • the additive A may include ethylene sulfate, and based on the mass of the electrolyte, the mass percentage A2 of the ethylene sulfate is 0.01% to 2%.
  • additive A may include vinylene carbonate and ethylene sulfate, satisfying 0.1 ⁇ A2/A1 ⁇ 12 and/or 0.02% ⁇ A1+A2 ⁇ 3%.
  • the additive A may include boron-lithium salt, and the boron-lithium salt includes at least one of lithium tetrafluoroborate, lithium difluorooxalate borate, and lithium dioxalate borate, based on the quality of the electrolyte , the mass percentage content A3 of the boron-lithium salt is 0.01% to 2%.
  • additive A may include vinylene carbonate and boron lithium salt satisfying 0.01% ⁇ A1+A3 ⁇ 3% and/or 0.1 ⁇ A1/A3 ⁇ 10.
  • boron-lithium salt satisfying 0.01% ⁇ A1+A3 ⁇ 3% and/or 0.1 ⁇ A1/A3 ⁇ 10.
  • SEI solid electrolyte interface
  • CEI catholyte interface
  • the electrolytic solution can also include additive B, based on the quality of the electrolytic solution, the mass percentage of additive B is 0.5% to 4%, and additive B includes succinonitrile, adiponitrile , pimelonitrile, suberonitrile, 1,4-dicyano-2-butene, 1,4-dicyano-2-methyl-2-butene, 1,4-dicyano-2- Ethyl-2-butene, 1,4-dicyano-2,3-dimethyl-2-butene, 1,4-dicyano-2,3-diethyl-2-butene, 1,6-dicyano-3-hexene, 1,6-dicyano-2-methyl-3-hexene, 1,6-dicyano-2-methyl-5-methyl-3 - At least one of hexene, ethylene glycol diethyl cyanide ether, 1,3,6-hexanetricarbonitrile or 1,2,3-tris(2-cyano
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, lithium tetrafluoroborate, and 1,3,6-hexanetricarbonitrile.
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, lithium dioxalate borate, and 1,3,6-hexanetricarbonitrile.
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, vinyl sulfate, and 1,3,6-hexanetricarbonitrile.
  • the electrolyte comprises ethylene carbonate, propylene carbonate, fluoroethylene carbonate, 1,3-propane sultone and vinylene carbonate, satisfying c ⁇ 2A1, And c+2A1 ⁇ 2.5.
  • the composition of the protective film formed on the surface of the positive electrode sheet and the negative electrode sheet can be diversified to form a protective film.
  • the film is stable and the thickness is within an appropriate range, which is conducive to further improving the high-temperature storage performance and cycle performance of the electrochemical device.
  • the electrolyte may also include a compound represented by formula (I), based on the mass of the electrolyte, the mass percentage g of the compound of formula (I) is 0.01% to 2%:
  • R is selected from unsubstituted or substituted C 1 to C 8 fluoroalkyl, unsubstituted or substituted C 2 to C 10 fluoroalkenyl, unsubstituted or substituted C 6 to C 10 fluoroaryl;
  • the substituent Ra of each group independently includes at least one of a cyano group, a carboxyl group or a sulfate group.
  • the compound of formula (I) includes any one of the following structural compounds I-1 to I-9.
  • the electrolyte solution may also include at least one of the following structural compounds I-1 to I-9:
  • the second aspect of the present application provides an electrochemical device, and the electrochemical device includes a positive pole piece, a negative pole piece, a separator, and the electrolyte in any one of the foregoing embodiments.
  • the electrochemical device further includes a positive electrode sheet, the positive electrode sheet includes a positive electrode material layer, the positive electrode material layer includes a positive electrode active material, and the particle size of the positive electrode active material satisfies 0.4 ⁇ m ⁇ DV50 ⁇ 20 ⁇ m , 2 ⁇ m ⁇ D V 90 ⁇ 40 ⁇ m.
  • the positive electrode active material is less likely to have side reactions with the electrolyte, the cycle performance and safety performance of the electrochemical device are improved, and the gas production during the cycle is reduced.
  • the DV of the positive electrode active material is f ⁇ m
  • the electrochemical device satisfies at least one of the conditions (i) to (iii): (i) 0.05 ⁇ c/f ⁇ 100 ⁇ 1
  • the electrolyte includes a sultone compound, based on the quality of the electrolyte, the mass percentage of the sultone compound is e, 0.08 ⁇ e/f ⁇ 100 ⁇ 3
  • the electrolyte includes the formula ( I) compound, based on the mass of the electrolyte, the mass percentage of the compound of formula (I) is g, 0.02 ⁇ g/f ⁇ 100 ⁇ 1.
  • the electrolyte solution includes the sultone compound
  • adjusting the value of e/f ⁇ 100 within the above range is beneficial to improve the cycle performance and high-temperature storage performance of the electrochemical device.
  • the electrolyte contains the compound of formula (I)
  • adjusting the value of g/f ⁇ 100 within the above range is beneficial to improve the high-temperature storage performance, cycle performance and safety performance of the electrochemical device.
  • the positive electrode active material includes element M, and element M includes at least one of Al, Mg, Ti, Cr, B, Fe, Zr, Y, Na, W, F or S, and Based on the mass of metal elements except lithium in the positive electrode active material, the mass percentage of element A is less than or equal to 0.5%.
  • the positive electrode active material includes a lithium-containing nickel transition metal oxide.
  • the charge cut-off voltage of the electrochemical device is greater than or equal to 4.2V.
  • the application provides an electrolytic solution, an electrochemical device and an electronic device comprising the electrolytic solution, an electrolytic solution comprising ethylene carbonate, propylene carbonate and fluoroethylene carbonate, and the quality of the electrolytic solution is Benchmark, the mass percentage composition of ethylene carbonate is a, the mass percentage composition b of propylene carbonate is 12% to 35%, the mass percentage composition c of fluoroethylene carbonate is 0.2% to 2.5%, And satisfy 0.1 ⁇ a/b ⁇ 0.75.
  • the present application also provides an electronic device comprising any one of the electrochemical devices described in the present application.
  • a lithium-ion battery is used as an example of an electrochemical device to explain the present application, but the electrochemical device of the present application is not limited to the lithium-ion battery.
  • the purpose of the present application is to provide an electrolytic solution, an electrochemical device and an electronic device containing the electrolytic solution, so as to improve the high-temperature storage performance of the electrochemical device.
  • the first aspect of the present application provides a kind of electrolytic solution, and it comprises ethylene carbonate, propylene carbonate and fluoroethylene carbonate, is based on the quality of electrolytic solution, and the mass percentage of ethylene carbonate is a, the mass percentage content b of propylene carbonate is 12% to 35%, and the mass percentage content c of fluoroethylene carbonate is 0.2% to 2.5%, and satisfy 0.1 ⁇ a/b ⁇ 0.75.
  • the mass percentage content b of propylene carbonate is 12% to 35%
  • the mass percentage content c of fluoroethylene carbonate is 0.2% to 2.5%
  • ethylene carbonate and ethylene carbonate The mass ratio a/b of propyl ester is 0.1 to 0.75, which is beneficial to improve the high-temperature storage performance and cycle performance of the electrochemical device.
  • the mass percentage b of propylene carbonate can be 12%, 15%, 18%, 20%, 23%, 25%, 28%, 30%, 35%, or any range therebetween.
  • the mass percentage of propylene carbonate is too low (for example, less than 12%), the improvement of the kinetic performance of the electrochemical device is not obvious.
  • the mass percentage of propylene carbonate increases, since propylene carbonate has a higher dielectric constant (69c/v.m), it is beneficial to improve the kinetic performance of the electrochemical device.
  • the mass percentage of propylene carbonate is too high (for example, higher than 35%), the content of other components will decrease, which will affect the cycle performance and high-temperature storage performance of the electrochemical device.
  • By adjusting the mass percentage of propylene carbonate within the above range it is beneficial to improve the cycle performance and high-temperature storage performance of the electrochemical device.
  • the value of a/b can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75 or any range therebetween.
  • the mass percentage c of fluoroethylene carbonate can be 0.2%, 0.5%, 0.8%, 1%, 1.4%, 1.8%, 2%, 2.5%, or any range therebetween.
  • the mass percentage of fluoroethylene carbonate is too low (for example, less than 0.2%), the improvement of the performance of the electrochemical device is not obvious. As the mass percentage of the fluoroethylene carbonate increases, it is beneficial to improve the cycle performance and capacity retention rate of the electrochemical device.
  • the mass percentage of fluoroethylene carbonate is too high (such as higher than 2.5%), the residual amount of fluoroethylene carbonate in the electrochemical device is more after the formation, which will easily cause the electrochemical device to cycle under high voltage Gas is produced during storage and storage, which increases the expansion rate of the electrochemical device. Therefore, by adjusting the mass percentage of fluoroethylene carbonate within the above range, it is beneficial to improve the capacity retention rate of the electrochemical device, as well as the cycle performance and high-temperature storage performance under high voltage.
  • the high voltage in this application means that the charging cut-off voltage is greater than or equal to 4.2V.
  • 0.1 ⁇ a/b ⁇ 0.5, and the mass percentage c of fluoroethylene carbonate is 0.2% to 1.8%.
  • the overall anti-oxidation performance of the electrolyte is better, and the residual amount of fluoroethylene carbonate after the electrochemical device is formed is within an appropriate range, so that the overall electrolyte is more matched, and the cycle and High temperature storage performance is better.
  • the mass percentage content a of ethylene carbonate can be 1.0%, 2%, 5%, 8%, 10%, 12%, 15%, 18%, 20%, or any range therebetween.
  • the mass percentage of ethylene carbonate is too low (for example, less than 1.0%), the side reaction between the negative electrode active material and the electrolyte cannot be effectively suppressed, and the cycle performance and high temperature of the electrochemical device are deteriorated. storage performance.
  • the negative electrode As the mass percentage of ethylene carbonate increases, it is beneficial for the negative electrode to form a stable solid electrolyte interface (SEI) film, thereby inhibiting the reaction between the negative electrode active material and the electrolyte, and improving the cycle performance and capacity retention of the electrochemical device. Rate.
  • SEI solid electrolyte interface
  • the mass percentage of ethylene carbonate is too high (for example, greater than 20%), under high voltage, it is easy to cause serious flatulence in the electrochemical device during circulation, storage and float charge, etc., so that the volume of the electrochemical device expands rate increases.
  • By regulating the mass percentage of ethylene carbonate within the above range it is beneficial to improve the cycle performance and capacity retention rate of the electrochemical device, and reduce the volume expansion rate of the electrochemical device.
  • the electrolytic solution can also include chain carbonates, based on the quality of the electrolytic solution, the mass percentage of the chain carbonates is d, and the chain carbonates include dimethyl carbonate, At least one of ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, dipropyl carbonate or dibutyl carbonate, and the electrolyte satisfies 0.04 ⁇ a/d ⁇ 0.35 and/or 30% ⁇ d ⁇ 60%.
  • the value of a/d can be 0.04, 0.08, 0.1, 0.13, 0.17, 0.2, 0.23, 0.27, 0.3, 0.35 or any range therebetween.
  • the mass percentage content d of the chain carbonate may be 30%, 35%, 40%, 45%, 50%, 55%, 60%, or any range therebetween.
  • the mass percentage of the chain carbonate is too low (for example, less than 30%), the performance improvement of the electrochemical device is not obvious.
  • the mass percentage of the chain carbonate due to its good chemical stability, it can be used to improve the overall performance of the electrochemical device under high voltage.
  • the mass percentage of the chain carbonate is too high (for example, higher than 60%), the viscosity of the electrolyte will increase sharply, affecting the transmission of lithium ions and deteriorating the kinetic performance of the electrochemical device. Therefore, by adjusting the mass percentage of the chain carbonate within the above range, it is beneficial to improve the comprehensive performance of the electrochemical device under high voltage, such as cycle performance and rate performance.
  • the electrolyte solution may also include a sultone compound, and the sultone compound includes 1,3-propane sultone, 2,4-butane sultone or 1,4-butane
  • the mass percentage e of the sultone compound is 0.5% to 5%, and c ⁇ e.
  • the mass percent content of the sultone compound is 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, or any range therebetween, and greater than The mass percentage of fluoroethylene carbonate.
  • the mass percentage of the sultone compound when the mass percentage of the sultone compound is too low (for example, less than 0.5%), the performance of the electrochemical device will not be significantly improved. As the mass percentage of the sultone compound increases, it is beneficial for the negative electrode to form a stable SEI film to suppress the side reaction between the electrolyte and the negative electrode active material, and it is beneficial for the positive electrode to form a stable positive electrode electrolyte interface (CEI) film To inhibit the phase transition of the positive electrode, thereby improving the cycle performance, cycle gas production and high-temperature storage performance of the electrochemical device. When the mass percentage of the sultone compound is too high (for example, higher than 5%), both the kinetic performance and cycle performance of the electrochemical device deteriorate.
  • CEI positive electrode electrolyte interface
  • the positive electrode may refer to the positive electrode sheet
  • the negative electrode may refer to the negative electrode sheet.
  • the electrolyte solution may also include additive A, and additive A includes at least one of vinylene carbonate, vinyl ethylene carbonate, ethylene sulfate, lithium difluorophosphate or lithium boron salt kind.
  • additive A includes at least one of vinylene carbonate, vinyl ethylene carbonate, ethylene sulfate, lithium difluorophosphate or lithium boron salt kind.
  • the electrolyte satisfies at least one of the following relationships: (a) Additive A includes vinylene carbonate, based on the quality of the electrolyte, the mass percentage of vinylene carbonate A1 0.01% to 2%; (b) additive A includes ethylene sulfate, based on the quality of the electrolyte, the mass percentage A2 of ethylene sulfate is 0.01% to 2%; (c) additive A includes boron Lithium salt, boron lithium salt includes at least one of lithium tetrafluoroborate, lithium difluorooxalate borate or lithium dioxalate borate, based on the quality of the electrolyte, the mass percentage content A3 of boron lithium salt is 0.01% to 2 %; (d) The electrolyte contains vinylene carbonate and ethylene sulfate, based on the quality of the electrolyte, the mass percentage of vinylene carbonate is A1, and the mass
  • the mass percentage of vinylene carbonate is A1, and that of ethylene sulfate The mass percentage content is A2, satisfying 0.02% ⁇ A1+A2 ⁇ 3%;
  • the electrolyte contains vinylene carbonate and boron lithium salt, based on the quality of the electrolyte, the mass percentage of vinylene carbonate A1, the mass percentage of boron lithium salt is A3, satisfying 0.01% ⁇ A1+A3 ⁇ 3%;
  • the electrolyte contains vinylene carbonate and boron lithium salt, based on the quality of the electrolyte, the The mass percentage of vinyl ester is A1, and the mass percentage of boron-lithium salt is A3, satisfying 0.1 ⁇ A1/A3 ⁇ 10.
  • the electrolyte solution satisfies at least one of the above relationships, which is conducive to the formation of SEI film and CEI film with strong stability under high voltage, so that a good synergy is formed between the various substances, thereby improving the high-temperature storage performance of the electrochemical device and cycle performance.
  • the additive A may include vinylene carbonate, and based on the mass of the electrolyte, the mass percentage A1 of the vinylene carbonate is 0.01% to 2%.
  • the mass percentage content A1 of vinylene carbonate can be 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, or therebetween any range.
  • Phase change thereby improving the cycle performance, cycle gas production and high-temperature storage performance of electrochemical devices.
  • mass percentage of ethylene carbonate within the above range, it is possible to reduce the excessive thickness of the protective film formed due to the high content of ethylene carbonate, which affects the battery impedance, and the excessively low content of ethylene carbonate. Insufficient protection of positive or negative poles.
  • the additive A may include ethylene sulfate, and based on the mass of the electrolyte, the mass percentage of ethylene sulfate is 0.01% to 2% of A2.
  • the mass percentage content A2 of ethylene sulfate can be 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, or therebetween any range.
  • Additive A may include vinylene carbonate and ethylene sulfate, based on the quality of the electrolyte, the mass percentage of vinylene carbonate is A1, the mass of ethylene sulfate The percentage content is A2, and the electrolyte satisfies 0.1 ⁇ A2/A1 ⁇ 12 and/or 0.02% ⁇ A1+A2 ⁇ 3%.
  • the value of A2/A1 may be 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or any range therebetween.
  • the value of A1+A2 can be 0.02%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, or any range therebetween.
  • the additive A may include vinylene carbonate and boron lithium salt
  • the boron lithium salt includes at least one of lithium tetrafluoroborate, lithium difluorooxalate borate, lithium dioxalate borate, and
  • the mass percentage A3 of the boron-lithium salt is 0.01% to 2%, and the electrolyte satisfies 0.01% ⁇ A1+A3 ⁇ 3% and/or 0.1 ⁇ A1/A3 ⁇ 10.
  • the mass percentage content A3 of boron lithium salt can be 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2%, or any scope.
  • the value of A1+A3 can be 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, or any range therebetween.
  • the value of A1/A3 may be 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or any range therebetween.
  • boron-lithium salt when the above-mentioned boron-lithium salt is selected and its mass percentage content is adjusted within the above-mentioned range, and at the same time satisfying 0.01% ⁇ A1+A3 ⁇ 3% and/or 0.1 ⁇ A1/A3 ⁇ 10, it can be formed at a high SEI film and CEI film with strong stability under voltage, and form a good synergistic effect with ethylene carbonate and propylene carbonate, thereby improving the high-temperature storage performance and cycle performance of electrochemical devices.
  • the electrolytic solution can also include additive B, based on the quality of the electrolytic solution, the mass percentage of additive B is 0.5% to 4%, and additive B includes succinonitrile, adiponitrile , pimelonitrile, suberonitrile, 1,4-dicyano-2-butene, 1,4-dicyano-2-methyl-2-butene, 1,4-dicyano-2- Ethyl-2-butene, 1,4-dicyano-2,3-dimethyl-2-butene, 1,4-dicyano-2,3-diethyl-2-butene, 1,6-dicyano-3-hexene, 1,6-dicyano-2-methyl-3-hexene, 1,6-dicyano-2-methyl-5-methyl-3 - At least one of hexene, ethylene glycol diethyl cyanide ether, 1,3,6-hexanetricarbonitrile or 1,2,3-tris(2-cyano
  • the mass percentage of the additive B when the mass percentage of the additive B is too low (for example, less than 0.5%), the effect of improving the structural stability of the CEI film is not obvious.
  • the mass percentage of additive B is in an appropriate range, the synergistic effect produced by the complexation of additive B and the transition metal in the positive electrode active material is conducive to the formation of a more stable CEI film, thereby inhibiting the side reactions at the positive electrode interface and improving High-temperature storage performance and cycling performance of electrochemical devices.
  • the mass percentage of the additive B is too high (for example, higher than 4%), the performance of the electrochemical device cannot be further improved, resulting in waste of the additive B, resulting in increased production costs.
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, lithium tetrafluoroborate, and 1,3,6-hexanetricarbonitrile.
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, lithium dioxalate borate, and 1,3,6-hexanetricarbonitrile.
  • the electrolytic solution includes a sultone compound, lithium difluorophosphate, vinyl sulfate, and 1,3,6-hexanetricarbonitrile.
  • the electrolyte contains the above components, the sultone compound, lithium difluorophosphate, vinyl sulfate and 1,3,6-hexanetricarbonitrile compound work together to improve the stability of the SEI film and CEI film, which is beneficial to further Improving the high-temperature storage performance and cycle performance of electrochemical devices.
  • the electrolyte comprises ethylene carbonate, propylene carbonate, fluoroethylene carbonate, 1,3-propane sultone and vinylene carbonate, satisfying c ⁇ 2A1, And c+2A1 ⁇ 2.5%.
  • the value of c+2A1 can be 0.22%, 0.5%, 0.75%, 1%, 1.25%, 1.5%, 1.75%, 2.%, 2.25%, 2.5%, or any range therebetween.
  • the composition of SEI film and CEI film can be diversified, and the stability and thickness are in a suitable range It is beneficial to further improve the high-temperature storage performance and cycle performance of the electrochemical device.
  • the electrolyte can also include the compound shown in formula (I), based on the quality of the electrolyte, the mass percentage g of the compound of formula (I) is 0.01% to 2%:
  • R is selected from unsubstituted or substituted C 1 to C 8 fluoroalkyl, unsubstituted or substituted C 2 to C 8 fluoroalkenyl, unsubstituted or substituted C 6 to C 10 fluoroaryl;
  • the substituent Ra of each group independently includes at least one of a cyano group, a carboxyl group or a sulfate group.
  • the compound of formula (I) includes any one of the following structural compounds I-1 to I-9.
  • the electrolyte solution may also include at least one of the following structural compounds I-1 to I-9:
  • the mass percentage content g of the compound of formula (I) can be 0.01%, 0.05%, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 1.2%, 1.5%, 1.8%, 2% or between any range of .
  • the mass percentage of the compound of formula (I) due to its strong high-pressure stability and oxidation resistance, it is beneficial to form a stable SEI film on the negative electrode to inhibit the electrolyte from interacting with the electrolyte.
  • the side reaction between the negative electrode active materials is conducive to the formation of a stable CEI film on the positive electrode to inhibit the phase transition of the positive electrode, and it can continuously repair the SEI film and CEI film during the cycle of the electrochemical device, which is conducive to improving the electrochemical device.
  • the electrolyte solution may also include ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, Ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, methyl valerate, ethyl valerate, methyl pivalate, ethyl pivalate At least one of esters and butyl pivalate.
  • the electrolyte solution may also include lithium salts, including lithium hexafluorophosphate (LiPF 6 ), lithium bisfluorosulfonimide (LiFSI), lithium bistrifluoromethanesulfonylimide (LiTFSI) At least one of, preferably, the lithium salt includes LiPF 6 .
  • the present application has no special limitation on the concentration of the lithium salt, as long as the purpose of the present application can be achieved, for example, based on the quality of the electrolyte, the mass percentage of the lithium salt can be 8% to 18%, preferably 10% to 15% %.
  • the second aspect of the present application provides an electrochemical device, including a positive electrode sheet, a negative electrode sheet, a separator, and the electrolyte in any of the above-mentioned embodiments of the application, and the obtained electrochemical device has good high-temperature storage performance and cycle performance .
  • the electrochemical device further includes a positive electrode sheet, the positive electrode sheet includes a positive electrode material layer, the positive electrode material layer includes a positive electrode active material, and the particle size of the positive electrode active material satisfies 0.4 ⁇ m ⁇ DV50 ⁇ 20 ⁇ m , 2 ⁇ m ⁇ D V 90 ⁇ 40 ⁇ m.
  • the Dv50 of the positive electrode active material may be 0.4 ⁇ m, 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 13 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m or any range therebetween.
  • the Dv90 of the positive electrode active material may be 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m or any range therebetween.
  • the positive electrode active material is not easy to have side reactions with the electrolyte, which can inhibit the gas production of the electrochemical device during the cycle, and can also reduce the concentration of additives in the electrolyte. Content, and form a stable CEI film, further inhibit the generation of side reactions, improve the cycle performance and safety performance of the electrochemical device, and reduce the gas production during the cycle.
  • the DV of the positive electrode active material is f ⁇ m
  • the electrochemical device satisfies at least one of the conditions (i) to (iii): (i) 0.05 ⁇ c/f ⁇ 100 ⁇ 1
  • the electrolyte includes a sultone compound, based on the quality of the electrolyte, the mass percentage of the sultone compound is e, 0.08 ⁇ e/f ⁇ 100 ⁇ 3
  • the electrolyte includes the formula ( I) compound, based on the mass of the electrolyte, the mass percentage of the compound of formula (I) is g, 0.02 ⁇ g/f ⁇ 100 ⁇ 1.
  • the value of c/f ⁇ 100 can be 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 or any range therebetween.
  • the value of e/f ⁇ 100 can be 0.08, 0.1, 0.5, 1, 1.5, 2, 2.5, 3 or any range therebetween.
  • the value of g/f ⁇ 100 can be 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 9, 1 or any range therebetween.
  • adjusting the value of c/f ⁇ 100 within the above range it is beneficial to improve the cycle performance and high-temperature storage performance of the electrochemical device, and reduce the expansion rate of the electrochemical device.
  • the electrolyte solution includes the sultone compound
  • adjusting the value of e/f ⁇ 100 within the above range is beneficial to improve the cycle performance and high-temperature storage performance of the electrochemical device.
  • the electrolyte contains the compound of formula (I)
  • adjusting the value of g/f ⁇ 100 within the above range is beneficial to improve the high-temperature storage performance, cycle performance and safety performance of the electrochemical device.
  • the positive electrode active material includes element M
  • element M includes at least one of Al, Mg, Ti, Cr, B, Fe, Zr, Y, Na, W, F or S
  • the mass percentage of the element M is less than or equal to 0.5% based on the mass of metal elements except lithium in the positive electrode active material.
  • the mass percentage of element M is 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%.
  • the mass percentage of the element M is too high (for example, higher than 0.5%), it is easy to cause side reactions between the positive electrode active material and the electrolyte and gas generation, thereby affecting the cycle performance and capacity retention of the electrochemical device efficiency and safety performance.
  • the positive electrode active material includes a lithium-containing nickel transition metal oxide.
  • the positive electrode active material includes lithium nickel cobalt manganese oxide.
  • the positive electrode active material further includes other elements, such as at least one of P, Si, Cu, and the like.
  • the charge cut-off voltage of the electrochemical device in any of the foregoing embodiments is greater than or equal to 4.2V.
  • the charging cut-off voltage of the electrochemical device is 4.2V-5.0V.
  • the positive electrode sheet generally includes a positive electrode current collector and a positive electrode material layer.
  • the positive electrode current collector is not particularly limited, as long as the purpose of the present application can be achieved, for example, it may include but not limited to aluminum foil, aluminum alloy foil or composite current collector.
  • the thickness of the positive electrode current collector is 6 ⁇ m to 18 ⁇ m.
  • the positive electrode material layer may also include a conductive agent, and the present application has no special limitation on the conductive agent, as long as the purpose of the application can be achieved, for example, it may include but not limited to conductive carbon black (SuperP), carbon nanotube ( At least one of CNTs), carbon fiber, flake graphite, Ketjen black, graphene, metal material or conductive polymer.
  • the aforementioned carbon nanotubes may include, but are not limited to, single-walled carbon nanotubes and/or multi-walled carbon nanotubes.
  • the aforementioned carbon fibers may include, but are not limited to, vapor grown carbon fibers (VGCF) and/or carbon nanofibers.
  • the above-mentioned metal material may include but not limited to metal powder and/or metal fiber, specifically, the metal may include but not limited to at least one of copper, nickel, aluminum or silver.
  • the aforementioned conductive polymer may include but not limited to at least one of polyphenylene derivatives, polyaniline, polythiophene, polyacetylene or polypyrrole.
  • the positive electrode material layer may also include a binder.
  • the present application has no special restrictions on the binder, as long as the purpose of the application can be achieved, for example, it may include but not limited to polyacrylic acid, sodium polyacrylate, polyacrylic acid At least one of potassium, lithium polyacrylate, polyimide, polyvinyl alcohol, carboxymethylcellulose, sodium carboxymethylcellulose, polyimide, polyamideimide, styrene-butadiene rubber or polyvinylidene fluoride A sort of.
  • the surface of the positive electrode material layer can also have a coating, wherein the coating can include but not limited to the oxide of the coating element, the hydroxide of the coating element, the oxyhydroxide of the coating element, the At least one of an oxycarbonate or a hydroxycarbonate of the coating element.
  • the above coating elements may include but not limited to at least one of Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As or Zr.
  • the present application has no special limitation on the preparation method of the coating, as long as the purpose of the present application can be achieved, such as spraying or dipping.
  • the present application has no particular limitation on the thickness of the coating, as long as the purpose of the present application can be achieved, for example, the thickness is 1 ⁇ m to 10 ⁇ m.
  • the positive electrode sheet may further include a conductive layer located between the positive electrode current collector and the positive electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field, for example, may include but not limited to the above-mentioned conductive agent and the above-mentioned binder.
  • the electrochemical device of the present application also includes a negative electrode sheet.
  • the negative electrode sheet in the present application is not particularly limited as long as the purpose of the application can be achieved.
  • the negative electrode sheet usually includes a negative electrode collector and a negative electrode material layer.
  • the negative electrode current collector is not particularly limited, as long as the purpose of this application can be achieved, for example, it can include but not limited to copper foil, copper alloy foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam or composite current collector wait.
  • the thickness of the current collector of the negative electrode there is no particular limitation on the thickness of the current collector of the negative electrode, as long as the purpose of the present application can be achieved, for example, the thickness is 4 ⁇ m to 18 ⁇ m.
  • the negative electrode material layer includes negative electrode active materials, wherein the negative electrode active material is not particularly limited, as long as the purpose of the application can be achieved, for example, it can include but not limited to natural graphite, artificial graphite, mesophase micro carbon spheres, hard Carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , lithiated TiO 2 -Li 4 Ti 5 O 12 with spinel structure, Li - at least one of Al alloys.
  • the negative electrode active material is not particularly limited, as long as the purpose of the application can be achieved, for example, it can include but not limited to natural graphite, artificial graphite, mesophase micro carbon spheres, hard Carbon, soft carbon, silicon, silicon-carbon composite, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , lithiated TiO 2 -Li 4 Ti 5 O 12 with spinel structure, Li
  • the negative electrode material layer may also include a conductive agent.
  • the present application has no special limitation on the conductive agent, as long as the purpose of the present application can be achieved, for example, it may include but not limited to at least one of the above-mentioned conductive agents.
  • the negative electrode material layer may also include a binder, and the present application has no special restrictions on the binder, as long as the purpose of the application can be achieved, for example, it may include but not limited to at least one of the above-mentioned binders .
  • the negative electrode sheet may further include a conductive layer, and the conductive layer is located between the negative electrode current collector and the negative electrode material layer.
  • the present application has no particular limitation on the composition of the conductive layer, which may be a commonly used conductive layer in the field, and the conductive layer may include but not limited to the above-mentioned conductive agent and the above-mentioned binder.
  • the electrochemical device of the present application also includes a separator, which is not particularly limited in the present application, as long as the purpose of the application can be achieved, such as but not limited to polyethylene (PE), polypropylene (PP), polytetrafluoroethylene Ethylene-based polyolefin (PO) separator, polyester film (such as polyethylene terephthalate (PET) film), cellulose film, polyimide film (PI), polyamide film (PA) , at least one of spandex or aramid film, woven film, non-woven film (non-woven fabric), microporous film, composite film, separator paper, rolled film or spun film, etc.
  • a separator which is not particularly limited in the present application, as long as the purpose of the application can be achieved, such as but not limited to polyethylene (PE), polypropylene (PP), polytetrafluoroethylene Ethylene-based polyolefin (PO) separator, polyester film (such as polyethylene terephthalate (PET)
  • the separator of the present application may have a porous structure, and the pore size is not particularly limited as long as the purpose of the present application can be achieved, for example, the pore size may be 0.01 ⁇ m to 1 ⁇ m.
  • the thickness of the isolation film is not particularly limited, as long as the purpose of the present application can be achieved, for example, the thickness may be 5 ⁇ m to 100 ⁇ m.
  • a separator may include a substrate layer and a surface treatment layer.
  • the substrate layer can be a non-woven fabric, film or composite film with a porous structure, and the material of the substrate layer can include but not limited to polyethylene, polypropylene, polyethylene terephthalate or polyimide, etc. at least one of .
  • a polypropylene porous film, a polyethylene porous film, a polypropylene non-woven fabric, a polyethylene non-woven fabric, or a polypropylene-polyethylene-polypropylene porous composite film may be used.
  • at least one surface of the substrate layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic material layer may include but not limited to inorganic particles and binders, and the present application has no particular limitation on inorganic particles, for example, may include but not limited to aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, At least one of ceria, nickel oxide, zinc oxide, calcium oxide, zirconia, yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide or barium sulfate.
  • the present application has no special limitation on the binder, for example, it may include but not limited to polyvinylidene fluoride, copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate , polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the polymer layer contains a polymer, and the polymer material may include but not limited to polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinyl pyrrolidone, polyvinyl ether, polyvinylidene fluoride At least one of ethylene, poly(vinylidene fluoride-hexafluoropropylene), and the like.
  • the preparation process of electrochemical devices is well known to those skilled in the art, and the present application is not particularly limited.
  • it may include but not limited to the following steps: stack the positive electrode sheet, separator and negative electrode sheet in sequence, and as required Put it into the casing after winding, folding, etc., inject the electrolyte into the casing and seal it.
  • anti-overcurrent elements, guide plates, etc. can also be placed in the casing as needed, so as to prevent pressure rise and overcharge and discharge inside the electrochemical device.
  • the third aspect of the present application provides an electronic device, including the electrochemical device in any one of the above embodiments of the present application.
  • the electronic device of the present application is not particularly limited, and it may be used in any electronic device known in the prior art.
  • electronic devices may include, but are not limited to, notebook computers, pen-based computers, mobile computers, e-book players, cellular phones, portable fax machines, portable copiers, portable printers, headsets, VCRs, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic organizers, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, cars, motorcycles, power-assisted bicycles, bicycles, Lighting appliances, toys, game consoles, clocks, electric tools, flashlights, cameras, large household storage batteries and lithium-ion capacitors, etc.
  • the application provides an electrolytic solution, an electrochemical device and an electronic device comprising the electrolytic solution, an electrolytic solution comprising ethylene carbonate, propylene carbonate and fluoroethylene carbonate, and the quality of the electrolytic solution is Standard, the mass percentage composition of ethylene carbonate is a, the mass percentage composition b of propylene carbonate is 12% to 35%, the mass percentage composition c of fluoroethylene carbonate is 0.1% to 2.5%, And satisfy 0.1 ⁇ a/b ⁇ 0.75.
  • the mass percent content of propylene carbonate is 12% to 35%
  • the mass percent composition of fluoroethylene carbonate is 0.1% to 2.5%
  • the ratio of ethylene carbonate and propylene carbonate is 0.1 To 0.75, it is beneficial to improve the high-temperature storage performance and cycle performance of the electrochemical device.
  • Thickness expansion ratio (thickness after cycle - initial thickness)/initial thickness x 100%.
  • 60°C storage 90D thickness expansion rate (thickness after storage - initial thickness) / initial thickness ⁇ 100%
  • 90D capacity retention rate at 60°C storage (initial discharge capacity - recoverable capacity)/initial discharge capacity ⁇ 100%.
  • the passing standard is Lithium-ion batteries do not catch fire, burn, or explode. 10 lithium-ion batteries prepared in each example or comparative example were tested, and the numbers that passed were recorded.
  • Floating capacity retention rate (initial discharge capacity - recoverable capacity) / initial discharge capacity ⁇ 100%.
  • ITC thickness expansion ratio (thickness after cycle - initial thickness)/initial thickness x 100%.
  • the positive electrode slurry was uniformly coated on one surface of a positive electrode current collector aluminum foil with a thickness of 10 ⁇ m, and the aluminum foil was dried at 85° C. to obtain a positive electrode sheet with a coating thickness of 60 ⁇ m coated with a positive electrode material layer on one side.
  • the positive electrode sheet coated with positive active material on both sides. Then, after cold pressing, cutting into pieces, slitting, welding the tabs, and drying at 85° C. for 4 hours under vacuum conditions, the positive pole pieces were obtained.
  • the Dv50 of the positive electrode active material is 1 ⁇ m.
  • the lithium nickel manganese cobalt ternary material (NCM613) contains Al, and based on the mass of metal elements except lithium in the positive electrode active material, the mass percentage of Al is 0.1%.
  • Negative electrode active material artificial graphite, conductive agent SuperP, thickener sodium carboxymethylcellulose (CMC), binder styrene-butadiene rubber (SBR) were mixed according to the mass ratio of 96.4:1.5:0.5:1.6, and deionized water, under the action of a vacuum mixer to obtain negative electrode slurry, wherein the solid content of the negative electrode slurry is 54%. Apply the negative electrode slurry evenly on one surface of the negative electrode current collector copper foil with a thickness of 10 ⁇ m, and dry the copper foil at 85° C. to obtain a negative electrode with a coating thickness of 70 ⁇ m on one side coated with a negative electrode material layer piece.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • LiPF 6 lithium salt LiPF 6
  • FEC fluoroethylene carbonate
  • the mass percentage of LiPF 6 in the electrolyte is 12%
  • the mass percentage of FEC in the electrolyte is 2%
  • the balance is the mass percentage of the organic solvent in the electrolyte.
  • the mass percentage of EC in the electrolyte is 5.2%
  • the mass percentage of PC in the electrolyte is 29.2%
  • the mass percentage of EMC in the electrolyte is 17.2%
  • the mass percentage of DEC in the electrolyte is Min content is 34.4%.
  • PE polyethylene
  • the electrode assembly is obtained by winding.
  • Example 2 In Example 2 to Example 12, except that the mass percentages of EC, PC, EMC, DEC, and FEC are adjusted according to Table 1, the rest are the same as in Example 1.
  • Example 31 to Example 53 in addition to adding additive A and additive B optionally according to Table 4 while adding FEC, and adjusting the mass percentage c of FEC and adaptively adjusting the mass percentage of organic solvent according to Table 4 Except content (the mass ratio of EC, PC, EMC, DEC is identical with embodiment 2), all the other are identical with embodiment 2.
  • Comparative Example 1 In Comparative Example 1 to Comparative Example 3, except that the mass percentages of EC, PC, EMC, DEC, and FEC were adjusted according to Table 1, the rest were the same as in Example 1.
  • Example 1 to Example 12 Comparative Example 1 to Comparative Example 3
  • the obtained electrochemical device has good cycle performance and high-temperature storage performance at the same time.
  • Example 13 to Example 19 it can be seen that when the chain carbonate in the application is included in the electrolyte, by regulating the mass percentage d of the chain carbonate, and/or the value of a/d within the scope of the present application, the obtained electrochemical device has good cycle performance, high-temperature storage performance, float charge performance and safety performance.
  • Additives in the electrolyte usually affect the performance of the electrochemical device.
  • the electrochemical device provided by the application can optionally add a sultone compound, additive A, additive B, and a compound of formula (I) in the electrolyte, which can improve the electrochemical performance of the electrochemical device.
  • the cycle performance, high temperature storage performance, floating charge performance and safety performance of the device have been improved to varying degrees.
  • Example 2 Example 20 to Example 30 it can be seen that when the sultone compound of the present application is included in the electrolyte, the cycle performance, high-temperature storage performance, floating charge performance and safety performance. From Example 20 to Example 30, it can be seen that by regulating the mass percent content of the sultone compound within the scope of the present application, the obtained electrochemical device has good cycle performance, high-temperature storage performance, floating charge performance and safety performance.
  • Example 2 Example 31 to Example 53, it can be seen that when additive A and/or additive B are included in the electrolyte, the cycle performance, high-temperature storage performance, calendar life, and floatation performance of the electrochemical device can be further improved. Charging performance and safety performance.
  • Example 2 Example 54 to Example 59, it can be seen that when the electrolyte includes the compound of formula (I) and its content is within the scope of the application, the cycle performance and calendar life of the electrochemical device can be further improved , high temperature storage performance, float performance and safety performance.
  • the mass percentage content c of FEC, the particle size f of the positive electrode active material, the mass percentage content e of the sultone compound (1,3-propane sultone), and the mass percentage content g of the compound of formula (I) are usually also It will affect the comprehensive performance of the electrochemical device, such as cycle performance, high temperature storage performance, float performance and safety performance. From Table 6, Example 60 to Example 75, it can be seen that when the relationship between f and c, e, and g is within the scope of the present application, the obtained electrochemical device has good cycle performance, high-temperature storage performance, calendar life, float performance and safety performance.

Abstract

本申请提供了一种电解液、包含该电解液的电化学装置和电子装置,电解液包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以电解液的质量为基准,碳酸亚乙酯的质量百分含量a,碳酸亚丙酯的质量百分含量b为12%至35%,氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%,且满足0.1≤a/b≤0.75。具有本申请的电解液的电化学装置具有良好的高温存储性能和循环性能。

Description

一种电解液、包含该电解液的电化学装置和电子装置
本申请要求于2021年9月16日提交中国专利局、申请号为202111087759.4、发明名称为“一种电解液、包含该电解液的电化学装置和电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电化学技术领域,特别是涉及一种电解液、包含该电解液的电化学装置和电子装置。
背景技术
锂离子电池具有储能密度大、开路电压高、自放电率低、循环寿命长、安全性好等优点,广泛应用于便携式电能储存、电子设备、电动汽车等各个领域。但也对锂离子电池的综合性能提出更高的要求,例如同时具有高的能量密度、良好的高温存储性能和循环性能等。然而,随着高能量密度而来的是高温存储性能和循环性能的下降。
在相关技术中,多采用电解液添加剂来改善锂离子电池的高温存储性能和循环性能。然而,大多数添加剂通过在正极成膜来改善高温存储,但往往因为粘度太大或所成膜阻抗太大,严重恶化了锂离子电池的低温放电性能和循环性能。而部分成膜阻抗较低的添加剂,往往很容易恶化锂离子电池的高温存储性能。因此,亟待开发能够有效改善锂离子电池高温存储性能的电解液。
发明内容
本申请的目的在于提供一种电解液、包含该电解液的电化学装置和电子装置,以提高电化学装置的高温存储性能。
本申请的第一方面提供了一种电解液,其包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以电解液的质量为基准,碳酸亚乙酯的质量百分含量为a,碳酸亚丙酯的质量百分含量b为12%至35%,氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%,且满足0.1≤a/b≤0.75。不限于任何理论,通过调控碳酸亚丙酯的质量百分含量b为12%至35%、氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%、碳酸亚乙酯和碳酸亚丙酯的质量比例a/b为0.1至0.75,有利于提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,1.0%≤a≤20%。通过调控碳酸亚乙酯的质量百分含量a在上述范围内,有利于提高电化学装置的循环性能和容量保持率、降低电化学装置的体积 膨胀率。在本申请的一种实施方案中,电解液还可以包括链状碳酸酯,以电解液的质量为基准,链状碳酸酯的质量百分含量为d,链状碳酸酯包括碳酸二甲酯、碳酸甲乙酯、碳酸甲丙酯、碳酸甲基异丙酯、碳酸甲丁酯、碳酸二乙酯、碳酸二丙酯或碳酸二丁酯中的至少一种,电解液满足0.04≤a/d≤0.35。通过调控a/d的值在上述范围内,有利于碳酸亚乙酯和链状碳酸酯产生协同作用,提高电化学装置在高电压下的循环性能和高温存储性能。
在本申请的一种实施方案中,30%≤d≤60%。通过调控链状碳酸酯的质量百分含量在上述范围内,有利于提高电化学装置在高电压下的综合性能,例如循环性能、倍率性能等。
在本申请的一种实施方案中,电解液还可以包括磺内酯化合物,磺内酯化合物包括1,3-丙烷磺内酯、2,4-丁烷磺酸内酯或1,4-丁磺酸内酯中的至少一种,以电解液的质量为基准,磺内酯化合物的质量百分含量e为0.5%至5%。
在本申请的一种实施方案中,c≤e。通过调控磺内酯化合物的质量百分含量在上述范围内且大于氟代碳酸亚乙酯的质量百分含量,有利于提高电化学装置的循环性能和高温存储性能、减少循环产气量。本申请的正极可以指正极极片,负极可以指负极极片。
在本申请的一种实施方案中,电解液还可以包括添加剂A,添加剂A包括碳酸亚乙烯酯、乙烯基碳酸亚乙酯、硫酸亚乙酯、二氟磷酸锂或硼锂盐中的至少一种。不限于任何理论,通过选择上述添加剂A,有利于提高电化学装置在高电压下的循环性能、高温存储性能和安全性能。
在本申请的一种实施方案中,电解液满足如下关系中的至少一者:(a)添加剂A包括碳酸亚乙烯酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量A1为0.01%至2%;(b)添加剂A包括硫酸亚乙酯,以电解液的质量为基准,硫酸亚乙酯的质量百分含量A2为0.01%至2%;(c)添加剂A包括硼锂盐,硼锂盐包括四氟硼酸锂、二氟草酸硼酸锂或二草酸硼酸锂中的至少一种,以电解液的质量为基准,硼锂盐的质量百分含量A3为0.01%至2%;(d)电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硫酸亚乙酯的质量百分含量为A2,满足0.1<A2/A1≤12;(e)电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硫酸亚乙酯的质量百分含量为A2,满足0.02%≤A1+A2≤3%;(f)电解液包含碳酸亚乙烯酯和硼锂盐,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硼锂盐的质量百分含量为A3,满足0.01%≤A1+A3≤3%;(g)电解液包含碳酸亚乙烯酯和硼锂盐,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硼锂盐的质量百 分含量为A3,满足0.1≤A1/A3≤10。电解液满足上述关系中的至少一者,有利于在高电压下形成稳定性较强的固体电解质界面(SEI)膜和正极电解液界面(CEI)膜,使得各物质之间形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量A1为0.01%至2%。
在本申请的一种实施方案中,添加剂A可以包括硫酸亚乙酯,以电解液的质量为基准,硫酸亚乙酯的质量百分含量A2为0.01%至2%。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯和硫酸亚乙酯,满足0.1<A2/A1≤12和/或0.02%≤A1+A2≤3%。通过调控硫酸亚乙酯的质量百分含量在上述范围内,而且满足0.1<A2/A1≤12和/或0.02%≤A1+A2≤3%时,能够形成在高电压下稳定性较强的SEI和CEI,并与碳酸亚乙酯和碳酸亚丙酯形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,添加剂A可以包括硼锂盐,硼锂盐包括四氟硼酸锂、二氟草酸硼酸锂、二草酸硼酸锂中的至少一种,以电解液的质量为基准,硼锂盐的质量百分含量A3为0.01%至2%。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯和硼锂盐满足0.01%≤A1+A3≤3%和/或0.1≤A1/A3≤10。当选择上述硼锂盐且调控其质量百分含量在上述范围内,同时满足0.01%≤A1+A3≤3%和/或0.1≤A1/A3≤10时,能够形成在高电压下稳定性较强的固体电解质界面(SEI)和正极电解液界面(CEI),并与碳酸亚乙酯和碳酸亚丙酯形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液还可以包括添加剂B,以电解液的质量为基准,添加剂B的质量百分含量为0.5%至4%,添加剂B包括丁二腈、己二腈、庚二腈、辛二腈、1,4-二氰基-2-丁烯、1,4-二氰基-2-甲基-2-丁烯、1,4-二氰基-2-乙基-2-丁烯、1,4-二氰基-2,3-二甲基-2-丁烯、1,4-二氰基-2,3-二乙基-2-丁烯、1,6-二氰基-3-己烯、1,6-二氰基-2-甲基-3-己烯、1,6-二氰基-2-甲基-5-甲基-3-己烯、乙二醇二乙氰醚、1,3,6-己烷三甲腈或1,2,3-三(2-氰氧基)丙烷中的至少一种,优选地,添加剂B包括丁二腈、己二腈、1,4-二氰基-2-丁烯、乙二醇二乙氰醚、1,3,6-己烷三甲腈或1,2,3-三(2-氰氧基)丙烷中的至少一种。通过调控添加剂B的质量百分含量在上述范围内,有利于提高电化学装置的高温存储性能和循环性能,并控制生产成本。当选择上述添加剂B,有利于进一步提高电化学装置的高温存储性能和 循环性能。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、四氟硼酸锂和1,3,6-己烷三甲腈。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、二草酸硼酸锂和1,3,6-己烷三甲腈。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、硫酸乙烯酯和1,3,6-己烷三甲腈。
在本申请的一种实施方案中,电解液包含碳酸碳酸亚乙酯、碳酸亚丙酯、氟代碳酸亚乙酯、1,3-丙烷磺内酯和碳酸亚乙烯酯,满足c≥2A1,且c+2A1≤2.5。当选电解液包含上述成份且控制氟代碳酸亚乙酯和碳酸亚乙烯酯的质量百分含量在上述范围内,可以使正极极片和负极极片表面形成的保护膜成分多元化,形成的保护膜稳定且厚度在适合的范围内,有利于进一步提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液还可以包括式(I)所示化合物,以电解液的质量为基准,式(I)化合物的质量百分含量g为0.01%至2%:
Figure PCTCN2022117004-appb-000001
其中,R选自未取代或被Ra取代的C 1至C 8的氟代烷基、未取代或被Ra取代的C 2至C 10的氟代烯基、未取代或被Ra取代的C 6至C 10的氟代芳基;
各个基团的取代基Ra各自独立地包括氰基、羧基或硫酸基中的至少一种。
例如,式(I)化合物包括下述结构化合物I-1至I-9中的任意一个。在本申请的一种实施方案中,电解液还可以包括下述结构化合物I-1至I-9中的至少一种:
Figure PCTCN2022117004-appb-000002
Figure PCTCN2022117004-appb-000003
本申请的第二方面提供了一种电化学装置,电化学装置包括正极极片、负极极片、隔离膜和前述任一实施方案中的电解液。
在本申请的一种实施方案中,电化学装置还包括正极极片,正极极片包括正极材料层,正极材料层包括正极活性材料,正极活性材料的粒径满足0.4μm≤D V50≤20μm,2μm≤D V90≤40μm。通过调控正极活性材料的Dv50和Dv90在上述范围内,正极活性材料不易与电解液发生副反应,提高电化学装置的循环性能和和安全性能、减少循环过程中的产气量。
在本申请的一种实施方案中,正极活性材料的D V50为fμm,电化学装置满足条件(ⅰ)至(ⅲ)中的至少一者:(ⅰ)0.05≤c/f×100≤1;(ⅱ)电解液包括磺内酯化合物,以电解液的质量为基准,磺内酯化合物的质量百分含量为e,0.08≤e/f×100≤3;(ⅲ)电解液包括式(I)化合物,以电解液的质量为基准,式(I)化合物的质量百分含量为g,0.02≤g/f×100≤1。当电解液中包括磺内酯化合物时,通过调控e/f×100的值在上述范围内,有利于提高电化学装置的循环性能和高温存储性能。当电解液中包括式(I)化合物,通过调控g/f×100的值在上述范围内,有利于提高电化学装置的高温存储性能、循环性能和安全性能。
在本申请的一种实施方案中,正极活性材料包括元素M,元素M包括Al、Mg、Ti、Cr、B、Fe、Zr、Y、Na、W、F或S中的至少一种,以正极活性材料中除锂之外的金属元素的质量为基准,元素A的质量百分含量小于或等于0.5%。通过调控元素M的质量百分含量在上述范围内,有利于提高电化学装置的循环性能、容量保持率以及安全性能。选择上述范 围内的元素M,有利于提高电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,正极活性材料包括含锂镍过渡金属氧化物。
在本申请的一种实施方案中,电化学装置的充电截止电压大于或等于4.2V。
本申请提供一种电解液、包含该电解液的电化学装置和电子装置,一种电解液,其包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以电解液的质量为基准,碳酸亚乙酯的质量百分含量为a,碳酸亚丙酯的质量百分含量b为12%至35%,氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%,且满足0.1≤a/b≤0.75。通过调控碳酸亚丙酯的质量百分含量为12%至35%、氟代碳酸亚乙酯的质量百分含量为0.2%至2.5%,以及碳酸亚乙酯和碳酸亚丙酯的比例为0.1至0.75,有利于提高电化学装置的高温存储性能和循环性能。
本申请还提供一种电子装置,其包含本申请中所描述的任意一种电化学装置。
本申请实施例的额外层面及优点将部分地在后续说明中描述、显示、或是经由本申请实施例的实施而阐释。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池。
本申请的目的在于提供一种电解液、包含该电解液的电化学装置和电子装置,以提高电化学装置的高温存储性能。
本申请的第一方面提供了一种电解液,其包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以电解液的质量为基准,碳酸亚乙酯的质量百分含量为a,碳酸亚丙酯的质量百分含量b为12%至35%,氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%,且满足0.1≤a/b≤0.75。不限于任何理论,通过调控碳酸亚丙酯的质量百分含量b为12%至35%、氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%、碳酸亚乙酯和碳酸亚丙酯的质量比例a/b为0.1至0.75,有利于提高电化学装置的高温存储性能和循环性能。
例如,碳酸亚丙酯的质量百分含量b可以为12%、15%、18%、20%、23%、25%、28%、30%、35%或为其间的任意范围。当碳酸亚丙酯的质量百分含量过低时(例如低于12%), 对电化学装置动力学性能改善不明显。随着碳酸亚丙酯的质量百分含量增加,由于碳酸亚丙酯具有较高的介电常数(69c/v.m),有利于提高电化学装置的动力学性能。当碳酸亚丙酯的质量百分含量过高时(例如高于35%),导致其它组分含量降低,影响电化学装置的循环性能和高温存储性能。通过调控碳酸亚丙酯的质量百分含量在上述范围内,有利于提高电化学装置的循环性能和高温存储性能。
例如,a/b的值可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.75或为其间的任意范围。通过调控a/b的值在上述范围内,有利于碳酸亚乙酯和碳酸亚丙酯产生协同作用,提高电解液的耐氧化性,减少电化学装置在循环过程中的产气量,提高电化学装置的循环性能和高温存储性能。
例如,氟代碳酸亚乙酯的质量百分含量c可以为0.2%、0.5%、0.8%、1%、1.4%、1.8%、2%、2.5%或为其间的任意范围。不限于任何理论,当氟代碳酸亚乙酯的质量百分含量过低时(例如低于0.2%),对电化学装置性能的改善不明显。随着氟代碳酸亚乙酯的质量百分含量增加,有利于提高电化学装置的循环性能和容量保持率。当氟代碳酸亚乙酯的质量百分含量过高时(例如高于2.5%),电化学装置在化成后氟代碳酸亚乙酯残余量较多,容易导致电化学装置在高电压下循环和存储时产气,使得电化学装置的膨胀率增大。因此,通过调控氟代碳酸亚乙酯的质量百分含量在上述范围内,有利于提高电化学装置的容量保持率,以及在高电压下的循环性能和高温存储性能。在本申请中的高电压是指充电截止电压大于或等于4.2V。
在本申请的一种实施方案中,0.1≤a/b≤0.5,且氟代碳酸亚乙酯的质量百分含量c为0.2%至1.8%。在此范围内电解液整体抗氧化性能较好,且电化学装置化成之后氟代碳酸亚乙酯酯的残留量在合适的范围内,使电解液整体更为匹配,在高电压下的循环和高温存储性能更好。
在本申请的一种实施方案中,1.0%≤a≤20%。例如,碳酸亚乙酯的质量百分含量a可以为1.0%、2%、5%、8%、10%、12%、15%、18%、20%或为其间的任意范围。不限于任何理论,当碳酸亚乙酯的质量百分含量过低时(例如低于1.0%),不能有效抑制负极活性材料与电解液之间的副反应,恶化电化学装置的循环性能和高温存储性能。随着碳酸亚乙酯的质量百分含量增加,有利于负极形成稳定的固体电解质界面(SEI)膜,从而抑制负极活性材料与电解液之间的反应,提高电化学装置的循环性能和容量保持率。当碳酸亚乙酯的质量百分含量过高时(例如大于20%),在高电压下容易导致电化学装置在循环、 存储和浮充等过程中出现严重胀气,使得电化学装置的体积膨胀率增大。通过调控碳酸亚乙酯的质量百分含量在上述范围内,有利于提高电化学装置的循环性能和容量保持率、降低电化学装置的体积膨胀率。
在本申请的一种实施方案中,电解液还可以包括链状碳酸酯,以电解液的质量为基准,链状碳酸酯的质量百分含量为d,链状碳酸酯包括碳酸二甲酯、碳酸甲乙酯、碳酸甲丙酯、碳酸甲基异丙酯、碳酸甲丁酯、碳酸二乙酯、碳酸二丙酯或碳酸二丁酯中的至少一种,电解液满足0.04≤a/d≤0.35和/或30%≤d≤60%。
例如,a/d的值可以为0.04、0.08、0.1、0.13、0.17、0.2、0.23、0.27、0.3、0.35或为其间的任意范围。不限于任何理论,通过调控a/d的值在上述范围内,有利于碳酸亚乙酯和链状碳酸酯产生协同作用,提高电化学装置在高电压下的循环性能和高温存储性能。
例如,链状碳酸酯的质量百分含量d可以为30%、35%、40%、45%、50%、55%、60%或为其间的任意范围。不限于任何理论,当链状碳酸酯的质量百分含量过低时(例如低于30%),对电化学装置的性能改善不明显。随着链状碳酸酯的质量百分含量增加,由于其具有良好的化学稳定性,从而有利用改善电化学装置在高电压下的综合性能。当链状碳酸酯的质量百分含量过高时(例如高于60%),会导致电解液的粘度急剧增大,影响锂离子的传输,恶化电化学装置的动力学性能。因此,通过调控链状碳酸酯的质量百分含量在上述范围内,有利于提高电化学装置在高电压下的综合性能,例如循环性能、倍率性能等。
在本申请的一种实施方案中,电解液还可以包括磺内酯化合物,磺内酯化合物包括1,3-丙烷磺内酯、2,4-丁烷磺酸内酯或1,4-丁磺酸内酯中的至少一种,以电解液的质量为基准,磺内酯化合物的质量百分含量e为0.5%至5%,且c≤e。例如,磺内酯化合物的质量百分含量为0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%或为其间的任意范围,且大于氟代碳酸亚乙酯的质量百分含量。
不限于任何理论,当磺内酯化合物的质量百分含量过低时(例如低于0.5%),对电化学装置的性能改善不明显。随着磺内酯化合物的质量百分含量增加,有利于负极形成稳定的SEI膜以抑制电解液与负极活性材料之间的副反应,同时有利于正极形成稳定的正极电解液界面(CEI)膜以抑制正极产生相变,从而改善电化学装置的循环性能、循环产气和高温存储性能等。当磺内酯化合物的质量百分含量过高时(例如高于5%),电化学装置的动力学性能和循环性能均恶化。此外,当磺内酯化合物的含量小于氟代碳酸亚乙酯的含量时,无法形成稳定的SEI膜,以抑制氟代碳酸亚乙酯在负极的氧化分解,从而影响电化学 装置的高温存储性能、循环性能和循环产气。通过调控磺内酯化合物的质量百分含量在上述范围内且大于氟代碳酸亚乙酯的质量百分含量,有利于提高电化学装置的循环性能和高温存储性能、减少循环产气量。本申请的正极可以指正极极片,负极可以指负极极片。
在本申请的一种实施方案中,电解液还可以包括添加剂A,添加剂A包括碳酸亚乙烯酯、乙烯基碳酸亚乙酯、硫酸亚乙酯、二氟磷酸锂或硼锂盐中的至少一种。不限于任何理论,通过选择上述添加剂A,有利于提高电化学装置在高电压下的循环性能、高温存储性能和安全性能。
在本申请的一种实施方案中,电解液满足如下关系中的至少一者:(a)添加剂A包括碳酸亚乙烯酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量A1为0.01%至2%;(b)添加剂A包括硫酸亚乙酯,以电解液的质量为基准,硫酸亚乙酯的质量百分含量A2为0.01%至2%;(c)添加剂A包括硼锂盐,硼锂盐包括四氟硼酸锂、二氟草酸硼酸锂或二草酸硼酸锂中的至少一种,以电解液的质量为基准,硼锂盐的质量百分含量A3为0.01%至2%;(d)电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硫酸亚乙酯的质量百分含量为A2,满足0.1<A2/A1≤12;(e)电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硫酸亚乙酯的质量百分含量为A2,满足0.02%≤A1+A2≤3%;(f)电解液包含碳酸亚乙烯酯和硼锂盐,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硼锂盐的质量百分含量为A3,满足0.01%≤A1+A3≤3%;(g)电解液包含碳酸亚乙烯酯和硼锂盐,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硼锂盐的质量百分含量为A3,满足0.1≤A1/A3≤10。电解液满足上述关系中的至少一者,有利于在高电压下形成稳定性较强的SEI膜和CEI膜,使得各物质之间形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量A1为0.01%至2%。例如,碳酸亚乙烯酯的质量百分含量A1可以为0.01%、0.05%、0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%或为其间的任意范围。通过调控碳酸亚乙酯的质量百分含量在上述范围内,有利于负极形成稳定的SEI膜以抑制电解液与负极活性材料之间的副反应,有利于正极形成稳定的CEI膜以抑制正极产生相变,从而改善电化学装置的循环性能、循环产气和高温存储性能等。同时通过调控碳酸亚乙酯的质量百分含量在上述范围内,可以减少由于碳酸亚乙酯含量过高 导致的形成的保护膜厚度过厚影响电池阻抗,以及由于碳酸亚乙酯含量过低导致的对正极或负极保护不充分的情况。
在本申请的一种实施方案中,添加剂A可以包括硫酸亚乙酯,以电解液的质量为基准,硫酸亚乙酯的质量百分含量为A2为0.01%至2%。例如,硫酸亚乙酯的质量百分含量A2可以为0.01%、0.05%、0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%或为其间的任意范围。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯和硫酸亚乙酯,以电解液的质量为基准,碳酸亚乙烯酯的质量百分含量为A1,硫酸亚乙酯的质量百分含量为A2,电解液满足0.1<A2/A1≤12和/或0.02%≤A1+A2≤3%。例如,A2/A1的值可以为0.1、1、2、3、4、5、6、7、8、9、10、11、12或为其间的任意范围。例如,A1+A2的值可以为0.02%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%或为其间的任意范围。
通过调控碳酸亚乙烯酯和硫酸亚乙酯的质量百分含量在上述范围内,而且满足0.1<A2/A1≤12和/或0.02%≤A1+A2≤3%时,能够形成在高电压下稳定性较强的SEI膜和CEI膜,并与碳酸亚乙酯和碳酸亚丙酯形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,添加剂A可以包括碳酸亚乙烯酯和包括硼锂盐,硼锂盐包括四氟硼酸锂、二氟草酸硼酸锂、二草酸硼酸锂中的至少一种,以电解液的质量为基准,硼锂盐的质量百分含量A3为0.01%至2%,电解液满足0.01%≤A1+A3≤3%和/或0.1≤A1/A3≤10。例如,硼锂盐的质量百分含量A3可以为0.01%、0.05%、0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%或为其间的任意范围。例如,A1+A3的值可以为0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%或为其间的任意范围。例如,A1/A3的值可以为0.1、1、2、3、4、5、6、7、8、9、10或为其间的任意范围。
不限于任何理论,当选择上述硼锂盐且调控其质量百分含量在上述范围内,同时满足0.01%≤A1+A3≤3%和/或0.1≤A1/A3≤10时,能够形成在高电压下稳定性较强的SEI膜和CEI膜,并与碳酸亚乙酯和碳酸亚丙酯形成良好的协同作用,从而提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液还可以包括添加剂B,以电解液的质量为基准,添加剂B的质量百分含量为0.5%至4%,添加剂B包括丁二腈、己二腈、庚二腈、辛二腈、1,4-二氰基-2-丁烯、1,4-二氰基-2-甲基-2-丁烯、1,4-二氰基-2-乙基-2-丁烯、1,4-二氰基-2,3-二 甲基-2-丁烯、1,4-二氰基-2,3-二乙基-2-丁烯、1,6-二氰基-3-己烯、1,6-二氰基-2-甲基-3-己烯、1,6-二氰基-2-甲基-5-甲基-3-己烯、乙二醇二乙氰醚、1,3,6-己烷三甲腈或1,2,3-三(2-氰氧基)丙烷中的至少一种,优选地,添加剂B包括丁二腈、己二腈、1,4-二氰基-2-丁烯、乙二醇二乙氰醚、1,3,6-己烷三甲腈或1,2,3-三(2-氰氧基)丙烷中的至少一种。例如,添加剂B的质量百分含量可以为0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%或为其间的任意范围。
不限于任何理论,当添加剂B的质量百分含量过低时(例如低于0.5%),对CEI膜的结构稳定性改善效果不明显。当添加剂B的质量百分含量在合适的范围内时,添加剂B与正极活性材料中的过渡金属络合产生的协同作用有利于形成更稳定的CEI膜,从而抑制在正极界面的副反应,提高电化学装置的高温存储性能和循环性能。当添加剂B的质量百分含量过高时(例如高于4%),并不能进一步改善电化学装置的性能,造成添加剂B的浪费,导致生产成本提高。通过调控添加剂B的质量百分含量在上述范围内,有利于提高电化学装置的高温存储性能和循环性能,并控制生产成本。不限于任何理论,当选择上述添加剂B,有利于进一步提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、四氟硼酸锂和1,3,6-己烷三甲腈。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、二草酸硼酸锂和1,3,6-己烷三甲腈。
在本申请的一种实施方案中,电解液包含磺内酯化合物、二氟磷酸锂、硫酸乙烯酯和1,3,6-己烷三甲腈。当电解液包含上述成份时,磺内酯化合物、二氟磷酸锂、硫酸乙烯酯和1,3,6-己烷三甲腈化合物共同作用,能够提高SEI膜和CEI膜的稳定性,有利于进一步提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液包含碳酸碳酸亚乙酯、碳酸亚丙酯、氟代碳酸亚乙酯、1,3-丙烷磺内酯和碳酸亚乙烯酯,满足c≥2A1,且c+2A1≤2.5%。例如,c+2A1的值可以为0.22%、0.5%、0.75%、1%、1.25%、1.5%、1.75%、2.%、2.25%、2.5%或为其间的任意范围。当电解液包含上述成份且控制氟代碳酸亚乙酯和碳酸亚乙烯酯的质量百分含量在上述范围内,可以使SEI膜和CEI膜的成分多元化,且稳定性和厚度在适合的范围内,有利于进一步提高电化学装置的高温存储性能和循环性能。
在本申请的一种实施方案中,电解液还可以包括式(I)所示化合物,以电解液的质量 为基准,式(I)化合物的质量百分含量g为0.01%至2%:
Figure PCTCN2022117004-appb-000004
其中,R选自未取代或被Ra取代的C 1至C 8的氟代烷基、未取代或被Ra取代的C 2至C 8的氟代烯基、未取代或被Ra取代的C 6至C 10的氟代芳基;
各个基团的取代基Ra各自独立地包括氰基、羧基或硫酸基中的至少一种。
例如,式(I)化合物包括下述结构化合物I-1至I-9中的任意一个。在本申请的一种实施方案中,电解液还可以包括下述结构化合物I-1至I-9中的至少一种:
Figure PCTCN2022117004-appb-000005
例如,式(I)化合物的质量百分含量g可以为0.01%、0.05%、0.1%、0.3%、0.5%、0.8%、1%、1.2%、1.5%、1.8%、2%或为其间的任意范围。不限于任何理论,通过调控式(I)化合物的质量百分含量在上述范围内,由于其具有较强的高压稳定性和抗氧化性,既有利于负极形成稳定的SEI膜以抑制电解液与负极活性材料之间的副反应,又有利于正极形成稳定的CEI膜以抑制正极产生相变,而且在电化学装置的循环过程中能够持续修复 SEI膜和CEI膜,从而有利于提高电化学装置在高电压下的高温存储性能、循环性能和安全性能。
在本申请的一种实施方案中,电解液还可以包括碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、戊酸甲酯、戊酸乙酯、新戊酸甲酯、新戊酸乙酯、新戊酸丁酯中的至少一种。
在本申请的一种实施方案中,电解液还可以包括锂盐,锂盐包括六氟磷酸锂(LiPF 6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲烷磺酰亚胺锂(LiTFSI)中的至少一种,优选地,锂盐包括LiPF 6。本申请对锂盐的浓度没有特别限制,只要能实现本申请的目的即可,例如,基于电解液的质量,锂盐的质量百分含量可以为8%至18%,优选为10%至15%。
本申请第二方面提供一种电化学装置,包括正极极片、负极极片、隔离膜和本申请上述任一实施方案中的电解液,得到的电化学装置具有良好的高温存储性能和循环性能。
在本申请的一种实施方案中,电化学装置还包括正极极片,正极极片包括正极材料层,正极材料层包括正极活性材料,正极活性材料的粒径满足0.4μm≤D V50≤20μm,2μm≤D V90≤40μm。例如,正极活性材料的Dv50可以为0.4μm、1μm、5μm、8μm、10μm、13μm、15μm、18μm、20μm或为其间的任意范围。正极活性材料的Dv90可以为2μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm或为其间的任意范围。不限于任何理论,通过调控正极活性材料的Dv50和Dv90在上述范围内,正极活性材料不易与电解液发生副反应,可以抑制电化学装置在循环过程中产气,同时还可以降低电解液中添加剂的含量,并形成稳定的CEI膜,进一步抑制副反应的产生,提高电化学装置的循环性能和和安全性能、减少循环过程中的产气量。
在本申请的一种实施方案中,正极活性材料的D V50为fμm,电化学装置满足条件(ⅰ)至(ⅲ)中的至少一者:(ⅰ)0.05≤c/f×100≤1;(ⅱ)电解液包括磺内酯化合物,以电解液的质量为基准,磺内酯化合物的质量百分含量为e,0.08≤e/f×100≤3;(ⅲ)电解液包括式(I)化合物,以电解液的质量为基准,式(I)化合物的质量百分含量为g,0.02≤g/f×100≤1。例如,c/f×100的值可以为0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1或为其间的任意范围。例如,e/f×100的值可以为0.08、0.1、0.5、1、1.5、2、2.5、3或为其间的任意范围。例如,g/f×100的值可以为0.02、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、9、1或为其间的任意范围。
不限于任何理论,通过调控c/f×100的值在上述范围内,有利于提高电化学装置的循环性能和高温存储性能、降低电化学装置的膨胀率。当电解液中包括磺内酯化合物时,通过调控e/f×100的值在上述范围内,有利于提高电化学装置的循环性能和高温存储性能。当电解液中包括式(I)化合物,通过调控g/f×100的值在上述范围内,有利于提高电化学装置的高温存储性能、循环性能和安全性能。
在本申请的一种实施方案中,正极活性材料包括元素M,元素M包括Al、Mg、Ti、Cr、B、Fe、Zr、Y、Na、W、F或S中的至少一种,以正极活性材料中除锂之外的金属元素的质量为基准,元素M的质量百分含量小于或等于0.5%。例如,元素M的质量百分含量为0.05%、0.1%、0.2%、0.3%、0.4%、0.5%。不限于任何理论,当元素M的质量百分含量过高时(例如高于0.5%),容易导致正极活性材料与电解液发生副反应并产气,从而影响电化学装置的循环性能、容量保持率以及安全性能。因此,通过调控元素M的质量百分含量在上述范围内,有利于提高电化学装置的循环性能、容量保持率以及安全性能。选择上述范围内的元素M,有利于提高电化学装置的循环性能和高温存储性能。
在本申请的一种实施方案中,正极活性材料包括含锂镍过渡金属氧化物。
在本申请的一种实施方案中,正极活性材料包括镍钴锰酸锂。
在本申请的一种实施方案中,正极活性材料还包含其它元素,例如P、Si、Cu等中的至少一种。
在本申请的一种实施方案中,前述任一实施方案中的电化学装置的充电截止电压大于或等于4.2V。
在本申请的一种实施方案中,电化学装置的充电截止电压为4.2V-5.0V。
本申请中,正极极片通常包括正极集流体和正极材料层。其中,正极集流体没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于铝箔、铝合金箔或复合集流体等。在本申请中,对正极集流体的厚度没有特别限制,只要能够实现本申请目的即可,例如厚度为6μm至18μm。
在本申请中,正极材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于导电炭黑(SuperP)、碳纳米管(CNTs)、碳纤维、鳞片石墨、科琴黑、石墨烯、金属材料或导电聚合物中的至少一种。上述碳纳米管可以包括但不限于单壁碳纳米管和/或多壁碳纳米管。上述碳纤维可以包括但不限于气相生长碳纤维(VGCF)和/或纳米碳纤维。上述金属材料可以包括但不限于金属粉和/或金属 纤维,具体地,金属可以包括但不限于铜、镍、铝或银中的至少一种。上述导电聚合物可以包括但不限于聚亚苯基衍生物、聚苯胺、聚噻吩、聚乙炔或聚吡咯中的至少一种。
在本申请中,正极材料层中还可以包括粘结剂,本申请对粘结剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于聚丙烯酸、聚丙烯酸钠、聚丙烯酸钾、聚丙烯酸锂、聚酰亚胺、聚乙烯醇、羧甲基纤维素、羧甲基纤维素钠、聚酰亚胺、聚酰胺酰亚胺、丁苯橡胶或聚偏氟乙烯中的至少一种。
任选地,正极材料层表面还可以具有涂层,其中,涂层可以包括但不限于涂覆元素的氧化物、涂覆元素的氢氧化物、涂覆元素的羟基氧化物、涂覆元素的碳酸氧盐或涂覆元素的羟基碳酸盐中的至少一种。上述涂覆元素可以包括但不限于Mg、Al、Co、K、Na、Ca、Si、Ti、V、Sn、Ge、Ga、B、As或Zr中的至少一种。本申请对涂层的制备方法没有特别限制,只要能实现本申请的目的即可,例如喷涂或浸渍。本申请对涂层的厚度没有特别限制,只要能实现本申请的目的即可,例如厚度为1μm至10μm。
任选地,正极极片还可以包括导电层,导电层位于正极集流体和正极材料层之间。本申请对导电层的组成没有特别限制,可以是本领域常用的导电层,例如可以包括但不限于上述导电剂和上述粘结剂。
本申请的电化学装置还包括负极极片,本申请中的负极极片没有特别限制,只要能实现本申请的目的即可,例如负极极片通常包括负极集流体和负极材料层。其中,负极集流体没有特别限制,只要能实现本申请的目的即可,例如可以包括但不限于铜箔、铜合金箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或复合集流体等。在本申请中,对负极的集流体的厚度没有特别限制,只要能够实现本申请目的即可,例如厚度为4μm至18μm。
本申请中,负极材料层包括负极活性材料,其中,负极活性材料没有特别限制,只要能实现本申请的目的即可,例如可以包括但不限于天然石墨、人造石墨、中间相微碳球、硬碳、软碳、硅、硅-碳复合物、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金中的至少一种。
在本申请中,负极材料层中还可以包括导电剂,本申请对导电剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于上述导电剂中的至少一种。
在本申请中,负极材料层中还可以包括粘结剂,本申请对粘结剂没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于上述粘结剂中的至少一种。
任选地,负极极片还可以包括导电层,导电层位于负极集流体和负极材料层之间。本 申请对导电层的组成没有特别限制,可以是本领域常用的导电层,导电层可以包括但不限于上述导电剂和上述粘结剂。
本申请的电化学装置还包括隔离膜,本申请对隔离膜没有特别限制,只要能够实现本申请目的即可,例如可以包括但不限于聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯为主的聚烯烃(PO)类隔膜、聚酯膜(例如聚对苯二甲酸二乙酯(PET)膜)、纤维素膜、聚酰亚胺膜(PI)、聚酰胺膜(PA),氨纶或芳纶膜、织造膜、非织造膜(无纺布)、微孔膜、复合膜、隔膜纸、碾压膜或纺丝膜等中的至少一种。本申请的隔离膜可以具有多孔结构,孔径的尺寸没有特别限制,只要能实现本申请的目的即可,例如,孔径的尺寸可以为0.01μm至1μm。在本申请中,隔离膜的厚度没有特别限制,只要能实现本申请的目的即可,例如厚度可以为5μm至100μm。
例如,隔离膜可以包括基材层和表面处理层。基材层可以为具有多孔结构的无纺布、膜或复合膜,基材层的材料可以包括但不限于聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯或聚酰亚胺等中的至少一种。任选地,可以使用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。任选地,基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层可以包括但不限于无机颗粒和粘结剂,本申请对无机颗粒没有特别限制,例如,可以包括但不限于氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡等中的至少一种。本申请对粘结剂没有特别限制,例如,可以包括但不限于聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。聚合物层中包含聚合物,聚合物的材料可以包括但不限于聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)等中的至少一种。
电化学装置的制备过程为本领域技术人员所熟知的,本申请没有特别的限制,例如,可以包括但不限于以下步骤:将正极极片、隔离膜和负极极片按顺序堆叠,并根据需要将其卷绕、折叠等操作后放入壳体内,将电解液注入壳体并封口。此外,也可以根据需要将防过电流元件、导板等置于壳体中,从而防止电化学装置内部的压力上升、过充放电。
本申请第三方面提供一种电子装置,包括本申请上述任一实施方案中的电化学装置。
本申请的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
本申请提供一种电解液、包含该电解液的电化学装置和电子装置,一种电解液,其包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以电解液的质量为基准,碳酸亚乙酯的质量百分含量为a,碳酸亚丙酯的质量百分含量b为12%至35%,氟代碳酸亚乙酯的质量百分含量c为0.1%至2.5%,且满足0.1≤a/b≤0.75。通过调控碳酸亚丙酯的质量百分含量为12%至35%、氟代碳酸亚乙酯的质量百分含量为0.1%至2.5%,以及碳酸亚乙酯和碳酸亚丙酯的比例为0.1至0.75,有利于提高电化学装置的高温存储性能和循环性能。
实施例
以下,举出实施例及对比例来对本申请的实施方式进行更具体地说明。各种的试验及评价按照下述的方法进行。另外,只要无特别说明,“份”、“%”为质量基准。
测试方法和设备:
循环性能测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以1C电流恒流充电至电压为4.45V,然后以4.45V恒压充电至电流为0.05C,用千分尺测试并记录此时锂离子电池的厚度为初始厚度。接着以1C电流恒流放电至电压为2.8V,此为一个充放电循环,记录此次循环的放电容量,记为首次放电容量。以首次放电容量为100%,反复进行充放电循环,至放电容量衰减至80%时,停止测试,记录循环圈数,并测试锂离子电池的厚度,记为循环后厚度。
锂离子电池在45℃的循环性能测试方法,除了将锂离子电池置于45℃恒温箱中,其余测试方法同上述25℃循环性能测试。
厚度膨胀率=(循环后厚度-初始厚度)/初始厚度×100%。
高温存储性能测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。以1C电流恒流充电至电压为4.45V,恒压充电至电流为0.05C,然后用1C电流恒流放电至电压为2.8V,记录放电容量,记做初始容量。然后以0.5C电流恒流充电至电压为4.45V,恒压充电至电流为0.05C,用千分尺测试并记录锂离子电池的厚度为初始厚度。将测试锂离子电池转至60℃恒温箱中进行存储90天(D),期间每隔3天测试并记录锂离子电池厚度一次,90天存储结束后将电池转移至25℃恒温箱中,静置60分钟,以1C电流恒流放电至电压为2.8V,记录放电容量,记做存储后放电容量。然后以1C电流恒流充电至电压为4.45V,恒压充电至电流为0.05C,然后用1C电流恒流放电至电压为2.8V,记录放电容量,记做可恢复容量,测量锂离子电池的厚度,记做存储后厚度。
60℃存储90D厚度膨胀率=(存储后厚度-初始厚度)/初始厚度×100%
60℃存储90D容量保持率=(初始放电容量-可恢复容量)/初始放电容量×100%。
0℃直流阻抗(DCR)测试:
在0℃下,将锂离子电池以0.1C电流恒流充电至电压为4.4V,再以4.45V恒压充电至电流为0.05C,静置10分钟。以0.1C电流放电至电压为3.4V,静置5分钟。再以0.1C电流恒流充电至电压为4.4V,再以4.45V恒压充电至电流为0.05C,静置10分钟。以0.1C恒流放电7秒,记录电压值为U 1,再以1C电流放电1秒,记录电压值为U 2
通过下式计算锂离子电池在0℃下的直流电阻R=(U 2-U 1)/(1C-0.1C),其中,“1C”是指在1小时内将锂离子电池容量完全放完的电流值。
过充测试:
将锂离子电池在25℃下以0.5C电流恒流放电至电压为2.8V,再以3C恒流充电至电压为5.7V,再恒压充电2h,监控锂离子电池表面温度变化,通过标准为锂离子电池不起火、不燃烧、不爆炸。每个实施例或对比例制得的锂离子电池均各测试10个,记录通过的个数。
浮充性能测试:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。以1C恒流充电至电压为4.45V,恒压充电至电流为0.05C,然后用1C恒流放电至电压为2.8V,记录放电容量,作为锂离子电池初始容量。之后以0.5C恒流充电至电压为4.45V,恒压充电至电流为0.05C,用千分尺测试并记录电池的厚度为初始厚度。将测试锂离子电池转移至45℃ 恒温箱中,再4.45V恒压充电60天,60天后将电池转移至25℃恒温箱中,静置60分钟,以1C恒流放电至电压为2.8V,记录放电容量,作为锂离子电池存储后放电容量。然后以1C恒流充电至电压为4.45V,恒压充电至电流为0.05C,然后用1C恒流放电至2.8V,记录放电容量,作为锂离子电池可恢复容量,测量锂离子电池的厚度,作为浮充后厚度。
浮充厚度膨胀率=(浮充后厚度-初始厚度)/初始厚度×100%
浮充容量保持率=(初始放电容量-可恢复容量)/初始放电容量×100%。
日历寿命性能(ITC)测试:
将锂离子电池置于45℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以1C恒流充电至电压为4.45V,然后以4.45V恒压充电至电流为0.05C,用千分尺测试并记录此时电池的厚度为初始厚度,在该状态下静置24h,接着以1C恒流放电至电压为2.8V,此为一个充放电循环。以首次放电的容量为100%,反复进行充放电循环,至放电容量衰减至80%时,停止测试,记录循环圈数为日历寿命,并测试锂离子电池的厚度记为循环后的厚度。
ITC厚度膨胀率=(循环后厚度-初始厚度)/初始厚度×100%。
实施例1
<正极极片的制备>
将正极活性材料锂镍锰钴三元材料(NCM613)、导电剂导电炭黑(SuperP)、粘结剂聚偏二氟乙烯按照质量比为97∶1.4∶1.6进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌均匀,获得正极浆料,其中正极浆料的固含量为72%。将正极浆料均匀涂覆于厚度为10μm的正极集流体铝箔的一个表面上,将铝箔在85℃下烘干,得到涂层厚度为60μm的单面涂覆有正极材料层的正极极片。在铝箔的另一个表面上重复以上步骤,即得到双面涂布正极活性材料的正极极片。然后经过冷压、裁片、分切、焊接极耳后,在85℃的真空条件下干燥4h,得到正极极片。其中,正极活性材料的Dv50为1μm。其中锂镍锰钴三元材料(NCM613)中包含Al,基于正极活性材料中除锂之外的金属元素的质量,Al的质量百分含量为0.1%。
<负极极片的制备>
将负极活性材料人造石墨、导电剂SuperP、增稠剂羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按照质量比为96.4∶1.5∶0.5∶1.6进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料,其中负极浆料的固含量为54%。将负极浆料均匀涂覆于厚度为 10μm的负极集流体铜箔的一个表面上,将铜箔在85℃下烘干,得到涂层厚度为70μm的单面涂覆有负极材料层的负极极片。在铜箔的另一个表面上重复以上步骤,即得到双面涂布负极活性材料的负极极片。然后经过冷压、裁片、分切、焊接极耳后,在120℃的真空条件下干燥12h,得到负极极片。
<电解液的制备>
在干燥的氩气气氛手套箱中,将有机溶剂碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照质量比EC∶PC∶EMC∶DEC=6∶34∶20∶40混合,然后向有机溶剂中加入锂盐LiPF 6溶解并混合均匀,再加入氟代碳酸亚乙酯(FEC)溶解,得到电解液。其中,LiPF 6在电解液中的质量百分含量为12%,FEC在电解液中的质量百分含量为2%,余量为有机溶剂在电解液中的质量百分含量。EC在电解液中的质量百分含量为5.2%,PC在电解液中的质量百分含量为29.2%,EMC在电解液中的质量百分含量为17.2%,DEC在电解液中的质量百分含量为34.4%。
<隔离膜的制备>
采用厚度为7μm的聚乙烯(PE)薄膜(Celgard公司提供)。
<锂离子电池的制备>
将上述制备得到的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间已起到隔离的作用,卷绕得到电极组件。将电极组件置于铝塑膜包装袋中,干燥后注入电解液,经过真空封装、静置、化成、脱气、切边等工序得到锂离子电池。
实施例2至实施例12中,除了按照表1调整EC、PC、EMC、DEC、FEC的质量百分含量以外,其余与实施例1相同。
实施例13至实施例19中,除了按照表2调整EC、PC、EMC、DEC的质量百分含量以外,其余与实施例1相同。
实施例20至实施例30中,除了在加入FEC的同时按照表3还加入磺内酯化合物、按照表3调整FEC的质量百分含量c、适应性调整有机溶剂的质量百分含量(EC、PC、EMC、DEC的质量比与实施例2相同)以外,其余与实施例2相同。
实施例31至实施例53中,除了在加入FEC的同时按照表4可选地加入添加剂A、添加剂B,并按照表4调整FEC的质量百分含量c、适应性调整有机溶剂的质量百分含量(EC、PC、EMC、DEC的质量比与实施例2相同)以外,其余与实施例2相同。
实施例54至实施例59中,除了在加入FEC的同时按照表5加入式(I)化合物、适 应性调整有机溶剂的质量百分含量(EC、PC、EMC、DEC的质量比与实施例2相同)以外,其余与实施例2相同。
实施例60至实施例75中,除了按照表6调整FEC的质量百分含量c、正极活性材料的Dv50粒径f、磺内酯化合物的质量百分含量e、式(I)化合物的质量百分含量g、适应性调整有机溶剂的质量百分含量(EC、PC、EMC、DEC的质量比与实施例2相同)以外,其余与实施例2相同。
对比例1至对比例3中,除了按照表1调整EC、PC、EMC、DEC、FEC的质量百分含量以外,其余与实施例1相同。
表1
Figure PCTCN2022117004-appb-000006
表2
Figure PCTCN2022117004-appb-000007
表3
Figure PCTCN2022117004-appb-000008
Figure PCTCN2022117004-appb-000009
注:表3中的“/”表示不存在该对应制备参数。
表4
Figure PCTCN2022117004-appb-000010
Figure PCTCN2022117004-appb-000011
Figure PCTCN2022117004-appb-000012
Figure PCTCN2022117004-appb-000013
Figure PCTCN2022117004-appb-000014
注:表4中的“/”表示不存在该对应制备参数。
表5
Figure PCTCN2022117004-appb-000015
注:表5中的“/”表示不存在该对应制备参数。
表6
Figure PCTCN2022117004-appb-000016
Figure PCTCN2022117004-appb-000017
注:表6中的“/”表示不存在该对应制备参数。
从表1实施例1至实施例12、对比例1至对比例3可以看出,通过调控PC的质量百分含量、a/b的值和FEC的质量百分含量在本申请的范围内,得到的电化学装置则同时具有良好的循环性能和高温存储性能。
从表2实施例13至实施例19可以看出,当电解液中包括本申请中的链状碳酸酯时,通过调控链状碳酸酯的质量百分含量d,和/或a/d的值在本申请的范围内,得到的电化学装置则具有良好的循环性能、高温存储性能、浮充性能和安全性能。
电解液中的添加剂通常会影响电化学装置的性能,本申请提供的电化学装置,在电解液中可选地加入磺内酯化合物、添加剂A、添加剂B、式(I)化合物,对电化学装置的循环性能、高温存储性能、浮充性能和安全性能有不同程度的改善。
从表3实施例2、实施例20至实施例30可以看出,当电解液中包括本申请的磺内酯化合物时,可以进一步提高电化学装置的循环性能、高温存储性能、浮充性能和安全性能。从实施例20至实施例30可以看出,通过调控磺内酯化合物的质量百分含量在本申请的范围内,得到的电化学装置则具有良好的循环性能、高温存储性能、浮充性能和安全性能。
从表4实施例2、实施例31至实施例53可以看出,当电解液中包括添加剂A和/或添加剂B时,可以进一步提高电化学装置的循环性能、高温存储性能、日历寿命、浮充性能和安全性能。
从表5实施例2、实施例54至实施例59可以看出,当电解液中包括式(I)化合物且其含量在本申请的范围内,可以进一步提高电化学装置的循环性能、日历寿命、高温存储性能、浮充性能和安全性能。
FEC的质量百分含量c、正极活性材料的粒径f、磺内酯化合物(1,3-丙烷磺内酯)的质量百分含量e、式(I)化合物的质量百分含量g通常也会影响电化学装置的综合性能,例如循环性能、高温存储性能、浮充性能和安全性能。从表6实施例60至实施例75可以看出,通过调控f与c、e、g之间的关系在本申请范围内时,得到的电化学装置具有良好的循环性能、高温存储性能、日历寿命、浮充性能和安全性能。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (14)

  1. 一种电解液,其包括碳酸亚乙酯、碳酸亚丙酯和氟代碳酸亚乙酯,以所述电解液的质量为基准,所述碳酸亚乙酯的质量百分含量为a,所述碳酸亚丙酯的质量百分含量b为12%至35%,所述氟代碳酸亚乙酯的质量百分含量c为0.2%至2.5%,且满足0.1≤a/b≤0.75。
  2. 根据权利要求1所述的电解液,其中,1.0%≤a≤20%。
  3. 根据权利要求1所述的电解液,其还包括链状碳酸酯,以所述电解液的质量为基准,所述链状碳酸酯的质量百分含量为d,所述链状碳酸酯包括碳酸二甲酯、碳酸甲乙酯、碳酸甲丙酯、碳酸甲基异丙酯、碳酸甲丁酯、碳酸二乙酯、碳酸二丙酯或碳酸二丁酯中的至少一种,所述电解液满足0.04≤a/d≤0.35和/或30%≤d≤60%。
  4. 根据权利要求1所述的电解液,其还包括磺内酯化合物,所述磺内酯化合物包括1,3-丙烷磺内酯、2,4-丁烷磺酸内酯或1,4-丁磺酸内酯中的至少一种,以所述电解液的质量为基准,所述磺内酯化合物的质量百分含量e为0.5%至5%,且c≤e。
  5. 根据权利要求1所述的电解液,其还包括添加剂A,所述添加剂A包括碳酸亚乙烯酯、乙烯基碳酸亚乙酯、硫酸亚乙酯、二氟磷酸锂或硼锂盐中的至少一种。
  6. 根据权利要求5所述的电解液,其满足如下关系中的至少一者:
    (a)所述添加剂A包括碳酸亚乙烯酯,以所述电解液的质量为基准,所述碳酸亚乙烯酯的质量百分含量A1为0.01%至2%;
    (b)所述添加剂A包括硫酸亚乙酯,以所述电解液的质量为基准,所述硫酸亚乙酯的质量百分含量A2为0.01%至2%;
    (c)所述添加剂A包括硼锂盐,所述硼锂盐包括四氟硼酸锂、二氟草酸硼酸锂或二草酸硼酸锂中的至少一种,以所述电解液的质量为基准,所述硼锂盐的质量百分含量A3为0.01%至2%;
    (d)所述电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以所述电解液的质量为基准,所述碳酸亚乙烯酯的质量百分含量为A1,所述硫酸亚乙酯的质量百分含量为A2,满足0.1<A2/A1≤12;
    (e)所述电解液包含碳酸亚乙烯酯和硫酸亚乙酯,以所述电解液的质量为基准,所述碳酸亚乙烯酯的质量百分含量为A1,所述硫酸亚乙酯的质量百分含量为A2,满足0.02%≤A1+A2≤3%;
    (f)所述电解液包含碳酸亚乙烯酯和硼锂盐,以所述电解液的质量为基准,所述碳酸 亚乙烯酯的质量百分含量为A1,所述硼锂盐的质量百分含量为A3,满足0.01%≤A1+A3≤3%;
    (g)所述电解液包含碳酸亚乙烯酯和硼锂盐,以所述电解液的质量为基准,所述碳酸亚乙烯酯的质量百分含量为A1,所述硼锂盐的质量百分含量为A3,满足0.1≤A1/A3≤10。
  7. 根据权利要求1所述的电解液,其还包括添加剂B,以所述电解液的质量为基准,所述添加剂B的质量百分含量为0.5%至4%,所述添加剂B包括丁二腈、己二腈、1,4-二氰基-2-丁烯、乙二醇二乙氰醚、1,3,6-己烷三甲腈或1,2,3-三(2-氰氧基)丙烷中的至少一种。
  8. 根据权利要求1所述的电解液,其还包括式(I)所示化合物,以所述电解液的质量为基准,所述式(I)化合物的质量百分含量g为0.01%至2%:
    Figure PCTCN2022117004-appb-100001
    其中,R选自未取代或被Ra取代的C 1至C 8的氟代烷基、未取代或被Ra取代的C 2至C 10的氟代烯基、未取代或被Ra取代的C 6至C 10的氟代芳基;
    各个基团的取代基Ra各自独立地包括氰基、羧基或硫酸基中的至少一种。
  9. 根据权利要求1所述的电解液,其还包括下述结构化合物I-1至I-9中的至少一种:
    Figure PCTCN2022117004-appb-100002
    Figure PCTCN2022117004-appb-100003
  10. 一种电化学装置,其包括权利要求1至9中任一项所述的电解液。
  11. 根据权利要求10所述的电化学装置,其还包括正极极片,所述正极极片包括正极材料层,所述正极材料层包括正极活性材料,所述正极活性材料的粒径满足0.4μm≤D V50≤20μm,2μm≤D V90≤40μm。
  12. 根据权利要求11所述的电化学装置,其中,所述正极活性材料的D V50为fμm,所述电化学装置满足条件(ⅰ)至(ⅲ)中的至少一者:
    (ⅰ)0.05≤c/f×100≤1;
    (ⅱ)所述电解液包括磺内酯化合物,以所述电解液的质量为基准,所述磺内酯的质量百分含量为e,0.08≤e/f×100≤3;
    (ⅲ)所述电解液包括式(I)化合物,以所述电解液的质量为基准,所述式(I)化合物的质量百分含量为g,0.02≤g/f×100≤1。
  13. 根据权利要求11所述的电化学装置,其中,所述正极活性材料包括元素M,所述元素M包括Al、Mg、Ti、Cr、B、Fe、Zr、Y、Na、W、F或S中的至少一种,以所述正极活性材料中除锂之外的金属元素的质量为基准,所述元素M的质量百分含量小于或等于0.5%。
  14. 一种电子装置,其包括权利要求10至13中任一项所述的电化学装置。
PCT/CN2022/117004 2021-09-16 2022-09-05 一种电解液、包含该电解液的电化学装置和电子装置 WO2023040687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111087759.4 2021-09-16
CN202111087759.4A CN113809399B (zh) 2021-09-16 2021-09-16 一种电解液、包含该电解液的电化学装置和电子装置

Publications (1)

Publication Number Publication Date
WO2023040687A1 true WO2023040687A1 (zh) 2023-03-23

Family

ID=78895603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117004 WO2023040687A1 (zh) 2021-09-16 2022-09-05 一种电解液、包含该电解液的电化学装置和电子装置

Country Status (2)

Country Link
CN (6) CN113809399B (zh)
WO (1) WO2023040687A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116417569A (zh) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 二次电池和装置
CN116487706A (zh) * 2023-06-19 2023-07-25 蔚来电池科技(安徽)有限公司 二次电池和装置
CN117219867A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809399B (zh) * 2021-09-16 2023-06-13 宁德新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052996A1 (en) * 2009-08-28 2011-03-03 Tdk Corporation Lithium-ion secondary battery
CN105098244A (zh) * 2015-08-06 2015-11-25 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105826600A (zh) * 2016-05-18 2016-08-03 东莞市凯欣电池材料有限公司 一种锂离子电池用非水电解质溶液及其锂离子电池
CN111740163A (zh) * 2020-03-23 2020-10-02 杉杉新材料(衢州)有限公司 一种高电压锂离子电池电解液及使用该电解液的锂离子电池
CN112582676A (zh) * 2020-12-09 2021-03-30 宁德新能源科技有限公司 电化学装置和电子装置
CN113206296A (zh) * 2021-04-30 2021-08-03 宁德新能源科技有限公司 电解液、电化学装置和电子装置
CN113809399A (zh) * 2021-09-16 2021-12-17 宁德新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514483A (zh) * 2014-05-26 2016-04-20 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN106099174A (zh) * 2016-08-26 2016-11-09 东莞市凯欣电池材料有限公司 一种硅基负极高电压锂离子电池
CN107069090A (zh) * 2017-01-23 2017-08-18 合肥国轩高科动力能源有限公司 一种三元正极材料锂离子电池电解液
US20210226251A1 (en) * 2020-01-22 2021-07-22 Enevate Corporation Silicon-based energy storage devices with electrolyte containing crown ether based compounds
CN112531207B (zh) * 2019-09-17 2022-06-03 杉杉新材料(衢州)有限公司 高电压锂离子电池用电解液及含该电解液的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110052996A1 (en) * 2009-08-28 2011-03-03 Tdk Corporation Lithium-ion secondary battery
CN105098244A (zh) * 2015-08-06 2015-11-25 宁德新能源科技有限公司 电解液以及包括该电解液的锂离子电池
CN105826600A (zh) * 2016-05-18 2016-08-03 东莞市凯欣电池材料有限公司 一种锂离子电池用非水电解质溶液及其锂离子电池
CN111740163A (zh) * 2020-03-23 2020-10-02 杉杉新材料(衢州)有限公司 一种高电压锂离子电池电解液及使用该电解液的锂离子电池
CN112582676A (zh) * 2020-12-09 2021-03-30 宁德新能源科技有限公司 电化学装置和电子装置
CN113206296A (zh) * 2021-04-30 2021-08-03 宁德新能源科技有限公司 电解液、电化学装置和电子装置
CN113809399A (zh) * 2021-09-16 2021-12-17 宁德新能源科技有限公司 一种电解液、包含该电解液的电化学装置和电子装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116417569A (zh) * 2023-06-12 2023-07-11 蔚来电池科技(安徽)有限公司 二次电池和装置
CN116417569B (zh) * 2023-06-12 2023-08-22 蔚来电池科技(安徽)有限公司 二次电池和装置
CN116487706A (zh) * 2023-06-19 2023-07-25 蔚来电池科技(安徽)有限公司 二次电池和装置
CN116487706B (zh) * 2023-06-19 2023-09-05 蔚来电池科技(安徽)有限公司 二次电池和装置
CN117219867A (zh) * 2023-11-09 2023-12-12 宁德时代新能源科技股份有限公司 电解液、钠二次电池和用电装置

Also Published As

Publication number Publication date
CN116365036A (zh) 2023-06-30
CN116387625A (zh) 2023-07-04
CN116417676A (zh) 2023-07-11
CN116525946A (zh) 2023-08-01
CN113809399A (zh) 2021-12-17
CN113809399B (zh) 2023-06-13
CN116666751A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN113809399B (zh) 一种电解液、包含该电解液的电化学装置和电子装置
CN113437366B (zh) 一种电解液及电化学装置
CN111697266B (zh) 电解液和包括其的电化学装置及电子装置
WO2023087937A1 (zh) 一种电化学装置及电子装置
CN112400249A (zh) 一种电解液及电化学装置
CN109830749B (zh) 一种电解液及电化学装置
CN112005418A (zh) 一种电解液及电化学装置
WO2022089280A1 (zh) 电化学装置及包括其的电子装置
WO2023098268A1 (zh) 一种电解液、包含该电解液的电化学装置及电子装置
WO2023071691A1 (zh) 一种电化学装置及电子装置
CN111697267A (zh) 电解液和包含电解液的电化学装置及电子装置
CN112103561B (zh) 一种电解液及电化学装置
KR20220138006A (ko) 전기화학 디바이스 및 전자 디바이스
CN116053591A (zh) 一种二次电池的电解液、二次电池及电子装置
WO2023039748A1 (zh) 一种电化学装置和电子装置
WO2022198667A1 (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
CN111600065B (zh) 电解液和使用其的电化学装置
WO2022087830A1 (zh) 电解液及包括其的电化学装置和电子装置
CN114221034A (zh) 一种电化学装置及包含该电化学装置的电子装置
CN112086682A (zh) 电解液、电化学装置和电子装置
CN116053567A (zh) 一种电解液及电化学装置
CN116053461B (zh) 电化学装置和包括其的电子装置
CN111477951B (zh) 复合电解质及使用其的电化学和电子装置
CN116830340A (zh) 电化学装置和电子装置
CN114597490A (zh) 电化学装置及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869058

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024005180

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022869058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869058

Country of ref document: EP

Effective date: 20240416