CN113036100A - 一种含刚性颗粒骨架的锂金属复合负极及其制备方法 - Google Patents

一种含刚性颗粒骨架的锂金属复合负极及其制备方法 Download PDF

Info

Publication number
CN113036100A
CN113036100A CN202110214947.2A CN202110214947A CN113036100A CN 113036100 A CN113036100 A CN 113036100A CN 202110214947 A CN202110214947 A CN 202110214947A CN 113036100 A CN113036100 A CN 113036100A
Authority
CN
China
Prior art keywords
lithium metal
metal composite
surface modification
mechanical
modification layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110214947.2A
Other languages
English (en)
Other versions
CN113036100B (zh
Inventor
陆盈盈
张魏栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110214947.2A priority Critical patent/CN113036100B/zh
Publication of CN113036100A publication Critical patent/CN113036100A/zh
Application granted granted Critical
Publication of CN113036100B publication Critical patent/CN113036100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种含刚性颗粒骨架的锂金属复合负极及其制备方法,所述锂金属复合负极由具有表面修饰层的高机械强度颗粒物和锂金属组成。本发明所述具有表面修饰层的高机械强度颗粒物形成多孔刚性颗粒骨架,具有超高的杨氏模量以及较小的泊松比,不均匀的锂金属受到形变时会限域生长在多孔的刚性颗粒骨架内,能使不均匀的锂沉积发生机械变形,稳定锂金属沉积。本发明还提供了所述锂金属复合负极的制备方法,包括以下步骤:在惰性气体保护下,将具有表面修饰层的高机械强度颗粒物加入到熔融锂金属中,熔融搅拌,混合熔浆冷却后经辊压得到锂金属复合负极。制备方法操作简单,工艺稳定。

Description

一种含刚性颗粒骨架的锂金属复合负极及其制备方法
技术领域
本发明涉及二次高能量密度电池技术领域,具体涉及一种含刚性颗粒骨架的锂金属复合负极及其制备方法。
背景技术
锂金属作为最轻的金属(0.534g cm-3),其理论容量为3860mAh g-1,为石墨负极的10倍左右,可大幅度提高锂电池的能量密度。但是,锂金属电池在反复充放电过程中,负极表面易形成枝晶状锂沉积,巨大体积效应易造成内部应力波动,导致锂库伦效率低、循环寿命短,严重时造成电池爆炸。
针对锂金属负极化学活性高以及枝晶状沉积等问题,通过对电解液添加剂的改性可以在锂金属表面形成一层钝化膜,从而物理隔绝锂金属与液态电解液的直接接触,减少两者间的副反应。同时,这一层钝化膜具有一定的机械强度,能够一定程度的抑制锂枝晶的生长。
非专利文献(Fluoroethylene Carbonate Additives to Render Uniform LiDeposits in Lithium Metal Batteries.Adv.Funct.Mater.2017,27,1605989)报道:有机类添加剂氟代碳酸乙烯酯、碳酸亚乙烯酯可以优先在负极表面形成导锂离子的钝化膜,一定程度上延长了锂金属电池的循环寿命,但是并没有从电池失效的根源解决该问题。
此外,非专利文献(Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a GermaniumLayer.Adv.Mater.2017,29,1606042)报道:将固态电解质取代目前广泛使用的液态电解质可以很好的抑制锂枝晶的生长,固态导锂离子的电解质可以物理上提供很大的机械模量,从而抑制锂枝晶生长,防止正负极短路。但是,目前的固态电解质普遍存在室温锂离子电导率低,合成条件复杂、价格昂贵等弊端,所以也一定程度上限制了其目前的发展。
研究表明提高电池隔膜和人工电解质界面膜的机械强度可以有效抑制锂枝晶生长,但是常规的二维改性界面在深度充放电过程中很难应对大幅度的电极体积变化(>3mAh cm-2)。
三维骨架支撑的复合锂金属负极可以有效地将锂金属沉积限域在框架内,此时骨架本身是对不均匀锂金属沉积的唯一物理阻隔,所以对三维框架进行机械强度优化十分必要。
发明内容
本发明提供了一种含刚性颗粒骨架的锂金属复合负极及其制备方法,通过锂金属和具有表面修饰层的高机械强度颗粒物进行复合;具有表面修饰层的高机械强度颗粒物形成多孔刚性颗粒骨架;不均匀的锂金属受到形变时能够限域生长在多孔的刚性颗粒骨架内,抑制锂枝晶生长,从而提升锂金属电池全电池的电化学性能以及循环寿命。
本发明解决上述技术问题所提供的技术方案为:
一种锂金属复合负极,所述的锂金属复合负极由具有表面修饰层的高机械强度颗粒物和锂金属组成。
所述的高机械强度颗粒物为金刚石、蒙脱石、云母、铁、镍、铜、铝、金、银或锡中的一种或任意两种以上的混合物。
所述高机械强度颗粒物的直径为1nm~50μm。直径小的高机械强度颗粒物有利于其在复合负极中的分散,所述高机械强度颗粒物的直径优选为100~200nm。
所述表面修饰层为氧化铝、氧化钛、氧化镁、二氧化硅、氧化铜、氧化锡或氧化铟中的一种或任意两种以上的混合物,其中表面修饰层的厚度为1nm-5μm,优选为1~10nm。
所述锂金属复合负极的厚度为50nm-500μm,优选为50μm~250μm。
高机械强度颗粒物可以机械抑制锂枝晶在复合负极内部的生长,但是是过高质量分数的高机械强度颗粒物会降低复合负极的质量理论容量,所以高机械强度颗粒物在所述锂金属复合负极中的质量分数为5wt%~40wt%。
本发明还提供了所述锂金属复合负极的制备方法,包括以下步骤:在惰性气体保护下,将具有表面修饰层的高机械强度颗粒物加入到熔融锂金属中,并在160~300℃范围内熔融搅拌0.1~3小时;混合熔浆冷却后经辊压得到锂金属复合负极;所述具有表面修饰层的高机械强度颗粒物形成多孔刚性颗粒骨架。
所述的惰性气体优选为氩气。
所述具有表面修饰层的高机械强度颗粒物的制备方法包括如下步骤:将高机械强度颗粒物与前驱体溶液混合搅拌,蒸发溶剂后在100~500℃范围内煅烧0.1~3小时得到具有表面修饰层的高机械强度颗粒物。
所述的前驱体溶液是将醋酸铝、醋酸镁、醋酸铜、醋酸锡、醋酸铟、钛酸四丁酯、正硅酸四乙酯、氯化铝、氯化镁、氯化铜、氯化锡、氯化铟、硝酸铝、硝酸镁、硝酸铜、硝酸锡或硝酸铟的一种或任意两种以上的混合物溶解于溶剂中获得的;所述溶剂为水、乙醇、丙酮、甲醇或乙醚的一种或任意几种的混合物。
所述前驱体溶液的浓度为0.01~10mol L-1;优选为0.4~1.1mol L-1
与现有技术相比,本发明具有如下有益效果:
1、具有表面修饰层的高机械强度颗粒物具有超高的杨氏模量以及较小的泊松比,不均匀的锂金属受到形变时会限域生长在多孔的刚性颗粒骨架内;能使不均匀的锂沉积发生机械变形,稳定锂金属沉积。
2、具有表面修饰层的高机械强度颗粒物对锂金属具有良好的电化学/化学稳定性,颗粒密度小,可以确保高的负极理论比容量。
3、含多孔刚性颗粒骨架的锂金属复合负极循环稳定,配合高电压正极或硫正极使用,可以有效提升全电池性能和循环性能。
附图说明
图1为为实施例1制备得到的具有表面修饰层的纳米金刚石颗粒的高分辨透射电镜图。
图2为实施例1所制锂金属复合负极的扫描电镜图。
图3为实施例1经充放电循环10圈后的复合锂金属负极的扫描电镜图。
图4为实施例1经充放电循环10圈后的纯锂金属负极的扫描电镜图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将0.5g纳米金刚石颗粒(直径为100nm)与10mL醋酸铝水溶液(浓度为0.5M L-1)搅拌,加热烘干溶剂,于马弗炉中350℃煅烧2小时得到具有表面修饰层的纳米金刚石颗粒,高分辨透射电镜图如图1所示。
在氩气手套箱内,将0.5g具有表面修饰层的纳米金刚石颗粒加入到熔融锂金属(1g)中,并在200℃范围内熔融搅拌0.5小时,混合熔浆冷却后经辊压得到厚度为200μm的锂金属复合负极,锂金属复合负极的扫描电镜图如图2所示,锂金属填充在颗粒物堆积的骨架内。
以该锂金属复合负极作为负极,磷酸铁锂为正极(3mAh cm-2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.3C充放电,电池的库伦效率可以达到99.9%,循环寿命300圈,经充放电循环10圈后的锂金属复合负极的扫描电镜图如图3所示,负极表面平整,无枝晶状锂金属沉积。使用纯锂金属作为负极的电池,负极表面锂枝晶生长严重,具体如图4所示。
实施例2
将0.5g纳米金刚石颗粒(直径为100nm)与5mL硝酸镁水溶液(浓度为1.0M L-1)搅拌,加热烘干溶剂,于马弗炉中300℃煅烧2小时得到具有表面修饰层的纳米金刚石颗粒。
在氩气手套箱内,将0.5g具有表面修饰层的纳米金刚石颗粒加入到熔融锂金属(0.75g)中,并在200℃范围内熔融搅拌0.5小时。混合熔浆冷却后经辊压得到厚度为100μm的锂金属复合负极。
以该锂金属复合负极作为负极,硫为正极(3mAh cm-2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.5C充放电,电池的库伦效率可以达到99.9%,循环寿命500圈。
实施例3
将0.5g纳米蒙脱石颗粒(直径为200nm)与10mL钛酸四丁酯乙醇溶液(浓度为1.0ML-1)搅拌,加热烘干溶剂,于马弗炉中300℃煅烧3小时。
在氩气手套箱内,将0.5g具有表面修饰层的纳米蒙脱石颗加入到熔融锂金属(1.0g)中,并在250℃范围内熔融搅拌0.5小时。混合熔浆冷却后经辊压得到厚度为200μm的锂金属复合负极。
以该锂金属复合负极作为负极,镍钴锰酸锂为正极(3mAh cm-2)的全电池测试,以单层聚丙烯膜为隔膜,在电池测试仪上(武汉蓝电公司)恒电流0.5C充放电,电池的库伦效率可以达到99.9%,循环寿命230圈。

Claims (10)

1.一种锂金属复合负极,其特征在于,所述的锂金属复合负极由具有表面修饰层的高机械强度颗粒物和锂金属组成。
2.根据权利要求1所述的锂金属复合负极,其特征在于,所述的高机械强度颗粒物为金刚石、蒙脱石、云母、铁、镍、铜、铝、金、银或锡中的一种或任意两种以上的混合物,所述高机械强度颗粒物的直径为1nm~50μm。
3.根据权利要求1所述的锂金属复合负极,其特征在于,所述表面修饰层为氧化铝、氧化钛、氧化镁、二氧化硅、氧化铜、氧化锡或氧化铟中的一种或任意两种以上的混合物,所述表面修饰层的厚度为1nm~5μm。
4.根据权利要求1所述的锂金属复合负极,其特征在于,所述锂金属复合负极的厚度为50nm~500μm。
5.根据权利要求1所述的锂金属复合负极,其特征在于,所述的锂金属复合负极中具有表面修饰层的高机械强度颗粒物的质量分数为5wt%~40wt%。
6.根据权利要求1~5任意一项所述锂金属复合负极的制备方法,其特征在于,包括以下步骤:在惰性气体保护下,将具有表面修饰层的高机械强度颗粒物加入到熔融锂金属中,并在160~300℃范围内熔融搅拌0.1~3小时;混合熔浆冷却后经辊压得到锂金属复合负极;所述具有表面修饰层的高机械强度颗粒物形成多孔刚性颗粒骨架。
7.根据权利要求6所述锂金属复合负极的制备方法,其特征在于,所以高机械强度颗粒物在所述锂金属复合负极中的质量分数为5wt%~40wt%。
8.根据权利要求6所述锂金属复合负极的制备方法,其特征在于,所述具有表面修饰层的高机械强度颗粒物的制备方法包括如下步骤:将高机械强度颗粒物与前驱体溶液混合搅拌,蒸发溶剂后在100~500℃范围内煅烧0.1~3小时得到具有表面修饰层的高机械强度颗粒物。
9.根据权利要求8所述锂金属复合负极的制备方法,其特征在于,所述的前驱体溶液是将醋酸铝、醋酸镁、醋酸铜、醋酸锡、醋酸铟、钛酸四丁酯、正硅酸四乙酯、氯化铝、氯化镁、氯化铜、氯化锡、氯化铟、硝酸铝、硝酸镁、硝酸铜、硝酸锡或硝酸铟的一种或任意两种以上的混合物溶解于溶剂中获得的;所述溶剂为水、乙醇、丙酮、甲醇或乙醚的一种或任意两种以上的混合物。
10.根据权利要求9所述锂金属复合负极的制备方法,其特征在于,所述前驱体溶液的浓度为0.01~10 molL-1。
CN202110214947.2A 2021-02-25 2021-02-25 一种含刚性颗粒骨架的锂金属复合负极及其制备方法 Active CN113036100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110214947.2A CN113036100B (zh) 2021-02-25 2021-02-25 一种含刚性颗粒骨架的锂金属复合负极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110214947.2A CN113036100B (zh) 2021-02-25 2021-02-25 一种含刚性颗粒骨架的锂金属复合负极及其制备方法

Publications (2)

Publication Number Publication Date
CN113036100A true CN113036100A (zh) 2021-06-25
CN113036100B CN113036100B (zh) 2022-04-29

Family

ID=76462261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110214947.2A Active CN113036100B (zh) 2021-02-25 2021-02-25 一种含刚性颗粒骨架的锂金属复合负极及其制备方法

Country Status (1)

Country Link
CN (1) CN113036100B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659282A (zh) * 2021-08-17 2021-11-16 哈尔滨工业大学 一种用于抑制锂枝晶的具有氧缺陷的氧化物涂层及其制备方法
CN114373891A (zh) * 2021-12-31 2022-04-19 远景动力技术(江苏)有限公司 复合锂负极及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133047A1 (en) * 2014-03-21 2017-02-22 Suzhou Institute of Nano-tech and Nano-bionics (SINANO) Chinese Academy of Sciences Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
CN108110222A (zh) * 2017-12-08 2018-06-01 成都新柯力化工科技有限公司 一种基于锂电池的多层金属-碳负极的制备方法
CN108365200A (zh) * 2018-02-11 2018-08-03 清华大学 一种复合锂金属负极的制备方法
CN109216681A (zh) * 2018-09-21 2019-01-15 合肥工业大学 一种基于TiO2纳米管阵列/泡沫钛的锂金属负极材料及其制备方法
CN109713224A (zh) * 2018-12-28 2019-05-03 蜂巢能源科技有限公司 复合锂金属负极及制备方法、锂离子电池
CN109755476A (zh) * 2019-03-15 2019-05-14 江汉大学 基于氧化锡包覆三维导电骨架的锂金属负极及其制备方法
CN110649267A (zh) * 2019-08-20 2020-01-03 北京泰丰先行新能源科技有限公司 一种复合金属锂负极、制备方法及金属锂电池
CN110890530A (zh) * 2019-10-30 2020-03-17 苏州大学 基于多孔陶瓷复合锂金属负极的锂金属二次电池及其制备方法
CN110957477A (zh) * 2019-10-30 2020-04-03 苏州大学 一种多孔陶瓷复合锂金属负极及其制备方法
WO2020119528A1 (zh) * 2018-12-11 2020-06-18 深圳先进技术研究院 复合负极片及其制备方法和应用
CN211017237U (zh) * 2019-10-30 2020-07-14 苏州大学 多孔陶瓷复合锂金属负极及基于该负极的锂金属二次电池
CN112271272A (zh) * 2020-08-31 2021-01-26 中南大学 一种表面有机修饰层保护的三维多孔锂负极及其制备方法和应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133047A1 (en) * 2014-03-21 2017-02-22 Suzhou Institute of Nano-tech and Nano-bionics (SINANO) Chinese Academy of Sciences Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery
CN108110222A (zh) * 2017-12-08 2018-06-01 成都新柯力化工科技有限公司 一种基于锂电池的多层金属-碳负极的制备方法
CN108365200A (zh) * 2018-02-11 2018-08-03 清华大学 一种复合锂金属负极的制备方法
CN109216681A (zh) * 2018-09-21 2019-01-15 合肥工业大学 一种基于TiO2纳米管阵列/泡沫钛的锂金属负极材料及其制备方法
WO2020119528A1 (zh) * 2018-12-11 2020-06-18 深圳先进技术研究院 复合负极片及其制备方法和应用
CN111312994A (zh) * 2018-12-11 2020-06-19 深圳先进技术研究院 复合负极片及其制备方法和应用
CN109713224A (zh) * 2018-12-28 2019-05-03 蜂巢能源科技有限公司 复合锂金属负极及制备方法、锂离子电池
CN109755476A (zh) * 2019-03-15 2019-05-14 江汉大学 基于氧化锡包覆三维导电骨架的锂金属负极及其制备方法
CN110649267A (zh) * 2019-08-20 2020-01-03 北京泰丰先行新能源科技有限公司 一种复合金属锂负极、制备方法及金属锂电池
CN110890530A (zh) * 2019-10-30 2020-03-17 苏州大学 基于多孔陶瓷复合锂金属负极的锂金属二次电池及其制备方法
CN110957477A (zh) * 2019-10-30 2020-04-03 苏州大学 一种多孔陶瓷复合锂金属负极及其制备方法
CN211017237U (zh) * 2019-10-30 2020-07-14 苏州大学 多孔陶瓷复合锂金属负极及基于该负极的锂金属二次电池
CN112271272A (zh) * 2020-08-31 2021-01-26 中南大学 一种表面有机修饰层保护的三维多孔锂负极及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG LIANG等: ""Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating"", 《PNAS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659282A (zh) * 2021-08-17 2021-11-16 哈尔滨工业大学 一种用于抑制锂枝晶的具有氧缺陷的氧化物涂层及其制备方法
CN114373891A (zh) * 2021-12-31 2022-04-19 远景动力技术(江苏)有限公司 复合锂负极及其应用

Also Published As

Publication number Publication date
CN113036100B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US11380881B2 (en) Anode material of lithium ion battery and non-aqueous electrolyte battery
CN108767263B (zh) 一种改性金属锂负极铜箔集流体的制备方法及应用
CN112670516A (zh) 三维复合集流体及其制备方法
CN111564612B (zh) 一种高导热导电性锂电正极材料及其制备方法
WO2017124439A1 (zh) 三维Na3V2(PO4)3纳米线网络电极材料及其制备方法和应用
CN108321438B (zh) 全石墨锂硫电池及其制备方法
CN111129489B (zh) 一种石墨烯基硫化锑负极材料及其制备方法和应用
CN113036100B (zh) 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN111029560A (zh) 钠离子梯度掺杂的尖晶石结构正极活性材料及其制备方法
CN110518295A (zh) 一种可充锌基电池
CN111180711B (zh) 石墨烯包覆氧化物-硒复合物铝电池正极材料的制备方法
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN110931727A (zh) 一种导电型聚合物包覆硅基负极材料的制备方法
CN112310381B (zh) 一种提高钠离子电池锡负极材料电化学性能的方法
Liu et al. SnO 2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
WO2021212392A1 (zh) 三维复合金属锂负极和金属锂电池与装置
CN110010982A (zh) 电池
CN113809282B (zh) 一种高容量氮掺杂炭包覆SiOx纳米束锂离子电池负极材料的制备方法
CN109273670B (zh) 一种具有高比表面介孔保护膜的金属锂负极及其制备方法
KR101481230B1 (ko) 리튬 공기 전지용 양극, 그 제조방법 및 이를 이용한 리튬 공기 전지
CN111682210B (zh) 正极材料及其制备方法、二次电池
KR101693930B1 (ko) 전기화학 소자용 전극의 제조방법, 전기화학 소자용 전극 슬러리, 및 전기화학 소자용 전극
CN114204009A (zh) 一种锂离子电池正极补锂添加剂及包括其的锂离子电池
WO2018195837A1 (zh) 一种金属 - 硫电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant