CN111312994A - 复合负极片及其制备方法和应用 - Google Patents

复合负极片及其制备方法和应用 Download PDF

Info

Publication number
CN111312994A
CN111312994A CN201811508674.7A CN201811508674A CN111312994A CN 111312994 A CN111312994 A CN 111312994A CN 201811508674 A CN201811508674 A CN 201811508674A CN 111312994 A CN111312994 A CN 111312994A
Authority
CN
China
Prior art keywords
film layer
solid electrolyte
metal foil
foil
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811508674.7A
Other languages
English (en)
Inventor
唐永炳
闫家肖
蒋春磊
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201811508674.7A priority Critical patent/CN111312994A/zh
Priority to PCT/CN2019/122748 priority patent/WO2020119528A1/zh
Publication of CN111312994A publication Critical patent/CN111312994A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种复合负极片,所述复合负极片包括同时作为负极集流体和负极活性材料的金属箔,设置在所述金属箔一表面的固态电解质薄膜层,以及在所述固态电解质薄膜层背离所述金属箔的表面设置的类金刚石薄膜层。所述固态电解质层具有较好的导锂性能,提高复合金属负极/电解液界面离子扩散速率,提高电池倍率性能;且所述固态电解质层在可以有效隔离复合金属表面与电解液的接触,减少副反应过程,提高电池库伦效率;且所述固态电解质层还可以对复合金属负极提供有效的机械保护作用,改善复合金属负极在电化学反应过程中因体积变化造成的粉化问题,从而有效提高电池循环性能。

Description

复合负极片及其制备方法和应用
技术领域
本发明属于电池负极技术领域,尤其涉及一种复合负极片,一种复合负极片的制备方法,以及一种复合负极片的应用。
背景技术
目前采用的锂离子电池制造成本较高,电池废弃会造成严重的环境问题。特别是新能源汽车用的动力电池都存在成本和续航里程的挑战。而唐永炳团队发明了一种新型高能量密度铝-石墨双离子电池技术,可制造全新的高效、低本储能电池。这种新型电池把传统锂离子电池的正负极进行了调整,用廉价且易得的石墨替代目前已批量应用于锂离子电池的钴酸锂、锰酸锂、三元或磷酸铁锂作为电池的正极材料;采用金属箔同时作为电池负极材料和负极集流体;电解液由常规锂盐和碳酸酯类有机溶剂组成(关于双离子电池中铝负极保护的具体技术内容,参见如唐永炳等人的中国发明专利,CN201711439546.7)。该电池工作原理有别于传统锂离子电池,充电过程中,正极石墨发生阴离子插层反应,而铝负极发生铝-锂合金化反应,放电过程则相反。这种新型反应机理不仅显著提高了电池的工作电压(3.8V-4.6V),同时大幅降低电池的质量、体积及制造成本,从而全面提升了全电池的能量密度。
然而,这种新型金属-石墨双离子电池在金属负极发生铝-锂合金化反应时,由于锂支晶的生长导致体积的膨胀,铝负极会粉碎破裂,使电池的循环性能大大降低。
发明内容
本发明的目的在于提供一种复合负极片,一种二次电池,旨在解决现有的双离子电池的金属负极发生金属-锂合金化反应时,金属负极容易粉碎破裂,导致电池循环性能降低的问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明第一方面提供一种复合负极片,所述复合负极片包括同时作为负极集流体和负极活性材料的金属箔,设置在所述金属箔一表面的固态电解质薄膜层,以及在所述固态电解质薄膜层背离所述金属箔的表面设置的类金刚石薄膜层。。
优选的,所述复合负极片由所述金属箔、所述固态电解质薄膜层和所述类金刚石薄膜层组成,且所述金属箔为基底、所述固态电解质薄膜层为中间层、所述类金刚石薄膜层为最外层。
优选的,所述金属箔选自铝箔、铜箔、铁箔、锡箔、银箔、金箔、铂箔、锌箔、铅箔、镍箔中的一种或者多种。
优选的,所述固态电解质薄膜层选自锂膦氧氮层、聚丙烯腈层、聚偏二氟乙烯层、聚氧乙烯层、聚硅氧烷层、硫化物电解质层中的一种或者多种。
优选的,所述金属箔的厚度为20~150μm。
优选的,所述金属箔的厚度为40~60μm。
优选的,所述固态电解质薄膜层的厚度为20~300nm。
优选的,所述固态电解质薄膜层的厚度为80~120nm。
优选的,所述类金刚石薄膜的层厚度为10~50nm。
优选的,所述类金刚石薄膜的层厚度为15~20nm。
本发明第二方面提供一种复合负极片的制备方法,包括以下步骤:
提供金属箔,对所述金属箔依次进行预处理、辉光清洗和离子刻蚀清洗;
在所述金属箔的表面沉积固态电解质薄膜层;
在所述固态电解质薄膜层的表面沉积类金刚石薄膜层。
优选的,所述固态电解质薄膜层采用气相沉积法制备。
优选的,所述类金刚石薄膜层采用气相沉积法制备。
优选的,所述气相沉积法包括磁控溅射法、真空蒸镀法、电弧等离子镀膜法、离子镀膜法、分子束外延法、气体中蒸发法、化学气相反应法、溅射源法、流动油面上真空沉积法、金属蒸汽合成法。
优选的,所述金属箔为铝箔,所述固态电解质薄膜层为锂磷氧氮薄膜层,且在所述金属箔的表面沉积固态电解质薄膜层的方法为:将经清洗后的金属箔置于沉积室中,通入氮气,调节真空室压强为0.2~1.3Pa,开启固态电解质靶,且控制所述固态电解质靶的靶功率为30~70W,在基底偏压为100~300V的条件下,在所述金属箔的表面沉积固态电解质薄膜层。
优选的,在所述金属箔的表面沉积固态电解质薄膜层的步骤中,所述磷酸锂电弧靶与所述铝箔之间的距离为5厘米~15厘米。
优选的,在所述金属箔的表面沉积固态电解质薄膜层的步骤中,通入氮气,调节所述氮气的流量为50~400sccm。
优选的,在所述固态电解质薄膜层的表面沉积类金刚石薄膜层的步骤中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述固态电解质薄膜层的表面沉积类金刚石薄膜层。
本发明第三方面提供一种二次电池,包括正极、负极,设置在所述正极和所述负极之间的隔膜,以及电解液,其中,所述负极为本发明所述的复合铝负极片,或所述负极为本发明所述的方法制备得到的复合铝负极片。
本发明提供的复合铝负极片,在同时作为负极集流体和负极活性材料的金属箔表面依次设置固态电解质薄膜层和类金刚石薄膜层。其中,复合负极片,在同时作为负极集流体和负极活性材料的金属箔表面依次设置固态电解质薄膜层和类金刚石薄膜层。其中,所述固态电解质层具有较好的导锂性能,能够提高复合金属负极/电解液界面离子扩散速率,提高电池倍率性能;且所述固态电解质层在可以有效隔离复合金属表面与电解液的接触,减少副反应过程,提高电池库伦效率;且所述固态电解质层还可以对复合金属负极提供有效的机械保护作用,改善复合金属负极在电化学反应过程中因体积变化造成的粉化问题,从而有效提高电池循环性能。基于此,在所述固态电解质薄膜层背离所述金属箔的表面设置类金刚石薄膜层,可以通过类金刚石薄膜层隔绝水氧渗入对固态电解质薄膜层的影响,确保所述固态电解质薄膜层充分发挥其功能;同时,类金刚石薄膜层具有高硬度的优点,从而在较薄的条件下,可以实现对固态电解质薄膜层的保护,进而赋予复合铝负极片较好的任性,且避免对离子电导率的影响。
本发明提供的复合铝负极片的制备方法,通过制备固态电解质薄膜层,可以实现固态电解质薄膜层、类金刚石薄膜层在金属箔上的沉积,且具有较好的附着力,膜层不易脱落。最终得到的复合铝负极片,可以防止铝负极片即金属箔因粉碎破裂导致的脱落,进而保证电池的循环性能。
本发明提供的二次电池,负极为上述复合铝负极片,由于所述负极具有较好的稳定性,因此,可以提高二次电池的循环性能。
附图说明
图1是本发明实施例提供的复合负极片的结构示意图;
图2是本发明实施例提供的磁控溅射镀膜设备示意图;
图3是本发明实施例提供的磁控溅射制备锂磷氧氮层时,靶功率与沉积速率效果、离子电导率之间的关系图;
图4是本发明实施例提供的磁控溅射制备锂磷氧氮层时,靶功率与沉积速率效果、离子电导率之间的关系图;
图5是本发明实施例提供的磁控溅射制备锂磷氧氮层时,磷酸锂靶与所述铝箔之间的距离与离子电导率之间的关系图;
图6是本发明实施例1提供的电池电压与倍率曲线图;
图7是本发明实施例1提供的电池倍率性能曲线图;
图8是本发明实施例1提供的电池循环性能图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
结合图1,本发明实施例一方面提供一种复合负极片,所述复合负极片包括同时作为负极集流体和负极活性材料的金属箔10,设置在铝箔10一表面的固态电解质薄膜层20,以及设置在固态电解质薄膜层20背离金属箔10的表面的类金刚石薄膜层30。
所述复合负极片包括三层结构,具体的,包括铝箔10,设置在铝箔10一表面的叠层结构,所述叠层结构包括直接结合在铝箔10表面的固态电解质薄膜层20,以及设置在固态电解质薄膜层20背离铝箔10的表面的类金刚石薄膜层30。作为一个具体优选实施例,所述复合负极片由金属箔10、固态电解质薄膜层20和类金刚石薄膜层30组成,且金属箔10为基底、固态电解质薄膜层20为中间层、类金刚石薄膜层30为最外层。
下面对各层进行详细描述。
金属箔10
本发明实施例中,金属箔10同时作为负极集流体和负极活性材料,即所述金属箔10作为电池负极时,不需要在金属箔10上再形成其他负极活性材料。
在一些实施例中,金属箔10选自铝箔、铜箔、铁箔、锡箔、银箔、金箔、铂箔、锌箔、铅箔、镍箔中的一种或者多种。列举的金属箔均能同时作为电池的负极集流体和负极活性材料使用。
金属箔10的厚度为20微米~150微米,从而满足其同时作为负极集流体和负极活性材料的要求。在优选实施例中,金属箔10的厚度为40微米~60微米。最为最优选实施例,金属箔10的厚度为50微米。
固态电解质薄膜层20
金属箔10特别是铝箔作为负极时,在与锂离子合金化的过程中发生体积膨胀,造成电极粉化引起电池容量衰减,降低电池循环稳定性。本发明实施例将固态电解质薄膜层20形成于金属箔10上,覆盖金属箔10表面,形成保护层。固态电解质材料具有较好的导锂性能,且能作为保护层将所述金属箔10进行封固。
在一些实施例中,所述固态电解质薄膜层选自锂膦氧氮层、聚丙烯腈层、聚偏二氟乙烯层、聚氧乙烯层、聚硅氧烷层、硫化物电解质层中的一种或者多种。上述固态电解质薄膜层不仅具有较好的导锂性能,而且能够有效封固金属箔1,避免金属负极粉碎破裂而脱离。
作为具体优选实施例,所述固态电解质薄膜层为锂膦氧氮层。锂磷氧氮材料本身具有较好的导锂性能,不会影响电池工作时的锂离子的导电率;同时,固态电解质薄膜层作为保护层材料将所述金属箔10进行封固,能抑制金属-锂合金化反应特别是铝-锂合金化反应时金属箔10体积膨胀过程中的粉化,避免负极粉碎破裂而脱离,提高电池库伦效率,减少不可逆容量,提高电池的循环稳定性。本发明实施例中,固态电解质薄膜层20的厚度设置,以能够将所述金属箔10进行封固,防止作为电池负极(同时作为负极集流体和负极活性材料)的金属箔10粉化为宜,太薄则对则金属箔10的保护作用小,不能发挥上述效果。但尽管如此,也并非固态电解质薄膜层20的厚度越厚越好。优选的,固态电解质薄膜层20的厚度为20nm~300nm。若固态电解质薄膜层20过厚,则固态电解质和金属之间物质属性差异,两者结合力变差,固态电解质薄膜层20容易从金属箔10上脱落,进而不能发挥防止金属箔10粉化的效果。进一步优选的,所述固态电解质薄膜层20的厚度为80nm~120nm。在具体优选实施例中,固态电解质薄膜层20的厚度为100nm。
类金刚石薄膜层30
固态电解质薄膜层20对水氧敏感,若直接在金属箔10表面形成固态电解质薄膜层20,则在存在水氧的条件下,固态电解质薄膜层20会受到破坏,不能发挥防止金属箔10粉化的效果。基于此,需要在固态电解质薄膜层20背离所述金属箔10的表面设置类金刚石薄膜层30,可以通过类金刚石薄膜层30来保护固态电解质薄膜层20,隔绝水氧,防止其渗入固态电解质薄膜层20,确保固态电解质薄膜层20充分发挥其功能。同时,类金刚石具有高硬度的优点,能够在超薄的条件下保护固态电解质薄膜层20,并赋予复合电极优异的韧性和强度,此外,由于类金刚石薄膜层30在较薄的条件下可以实现上述效果,避免过厚的类金刚石薄膜层30(本身不到点)对电池导电效果的影响。
本发明实施例中,固态电解质薄膜层20的厚度设置,在能够有效保护固态电解质薄膜层20免受水氧渗透、且不影响电池导电效果即可。优选的,类金刚石薄膜层30的厚度为10nm~50nm。若类金刚石薄膜层30的厚度过薄,则不能有效隔绝水氧,进而不能确保固态电解质薄膜层20充分发挥其功能;若类金刚石薄膜层30的厚度过厚,会降低锂离子在负极的迁移率,甚至造成锂离子迁移困难,影响电池的电学性能。此外,类金刚石薄膜层30的厚度过厚,超过50nm后,类金刚石薄膜层30在固态电解质薄膜层20的结合力下降明显,容易从固态电解质薄膜层20脱落。进一步优选的,类金刚石薄膜层30的厚度为15nm~20nm。在具体优选实施例中,类金刚石薄膜层30的厚度为15nm。
在上述实施例的基础上,作为较佳实施例,复合负极片中,包括同时作为负极集流体和负极活性材料的铝箔,设置在所述铝箔一表面的锂磷氧氮薄膜层,以及在所述锂磷氧氮薄膜层背离所述铝箔的表面设置的类金刚石薄膜层。此时,得到的复合负极片具有最佳的电化学性能。其中,所述锂磷氧氮薄膜层具有较好的导锂性能,能够用作电池材料;且所述锂磷氧氮薄膜层在电池反应体系中的稳定性强,能够作为保护层将所述铝箔进行封固,使得即便在铝负极发生铝-锂合金化反应时,铝负极也不会粉碎破裂而脱离,从而提高电池的倍率性能和循环性能。但是,锂磷氧氮薄膜层对水氧敏感。基于此,在锂磷氧氮薄膜层背离铝箔的表面设置类金刚石薄膜层30,可以通过类金刚石薄膜层30隔绝水氧渗入对锂磷氧氮薄膜层的影响,确保锂磷氧氮薄膜层充分发挥其功能;同时,类金刚石薄膜层30具有高硬度的优点,从而在较薄的条件下,可以实现对锂磷氧氮薄膜层的保护,进而赋予复合铝负极片较好的任性,且避免对离子电导率的影响。
优选的,所述锂磷氧氮薄膜层的厚度为50nm~150nm,所述类金刚石薄膜层的厚度为10nm~40nm,所述铝箔的厚度为30μm~90μm。
更优选的,所述锂磷氧氮薄膜层的厚度为80nm~120nm,所述类金刚石薄膜层的厚度为15nm~20nm,所述金属箔的厚度为40μm~60μm。
进一步优选的,固态电解质薄膜层薄膜层的厚度为100nm,类金刚石薄膜层30的厚度为15nm~20nm,铝箔的厚度为50微米。此时,各层厚度合适,不仅能够形成层层保护屏障(固态电解质薄膜层锂磷氧氮薄膜层保护铝箔,类金刚石薄膜层30保护固态电解质薄膜层锂磷氧氮薄膜层),而且各层之间具有较好的结合力。此外,厚度满足上述要求的复合铝负极片,具有更佳的锂离子导通效果。
本发明实施例提供的复合铝负极片,在同时作为负极集流体和负极活性材料的金属箔10表面依次设置固态电解质薄膜层20和类金刚石薄膜层30。其中,所述固态电解质层20具有较好的导锂性能,能够提高复合金属负极/电解液界面离子扩散速率,提高电池倍率性能;且所述固态电解质层20在可以有效隔离复合金属表面与电解液的接触,减少副反应过程,提高电池库伦效率;且所述固态电解质层20还可以对复合金属负极提供有效的机械保护作用,改善复合金属负极在电化学反应过程中因体积变化造成的粉化问题,从而有效提高电池循环性能。
本发明实施例提供的复合铝负极片,可以通过下述方法制备获得。
本发明实施例另一方面提供一种复合铝负极片的制备方法,包括以下步骤:
S01.提供金属箔,对所述金属箔依次进行预处理、辉光清洗和离子刻蚀清洗;
S02.固态电解质靶固态电解质靶在所述金属箔的表面沉积固态电解质薄膜层;
S03.在所述固态电解质薄膜层的表面沉积类金刚石薄膜层。
具体的,上述步骤S01中,所述金属箔及其厚度选择如前文所述。如所述金属箔的厚度为20微米~150微米,优选的,所述金属箔的厚度为40微米~60微米,更优选为50微米。
对提供的金属箔依次进行预处理、辉光清洗和离子刻蚀清洗,通过预处理去除金属箔表面的有机物,特别是油渍;通过辉光清洗和离子刻蚀清洗去除基板表面不平整处如刮痕中残留的水分、气体等,从而为提高涂层的附着效果。通过逐步清洗,达到最佳的清洗效果,涂层在清洗后的金属箔上具有最好的结合力。
在一些实施例中,对所述金属箔进行预处理的方法为:依次使用蒸馏水、丙酮、无水乙醇对所述金属箔进行超声清洗,将所述金属箔表面的有机物特别是油渍充分去除,然后干燥烘干。
在具体实施例中,将所述金属箔放入蒸馏水中超声清洗5~30min,再将所述金属箔放入丙酮溶液中超声清洗5~30min,之后再将所述金属箔放入无水乙醇溶液中超声清洗5~30min;清洗结束后,用干燥氮气将衬底表面吹干,最后再将样品放入鼓风干燥箱中80~150℃烘干。
将所述金属箔进行预处理后,进一步进行辉光清洗。在一些实施例中,采用纯氩气对所述金属箔进行辉光清洗。
在进行辉光清洗之前,调整设备参数,具体的,将烘干后的所述金属箔固定在磁控溅射镀膜设备中的转架上;关闭真空室门,打开水冷机将离子源、多弧靶、分子泵、真空腔室的水路接通,打开空压机和复合镀膜机总电源,然后开启机械泵和旁抽阀以及分子泵,使分子泵进入爬升状态;当分子泵达到全速以后,关闭旁抽阀,打开粗抽阀,对真空室进行粗抽;当真空室内压强达到10Pa以下后,再次打开旁抽阀;当真空室压强达到3Pa以下后,关闭粗抽阀,开启高阀对真空室抽高真空。当真空室压强抽到5.0×10-3Pa以后,打开加热电源对真空室进行加热烘烤,加热温度为100~500℃,加热过程中开启转架系统,使样品进行公自传;当真空度达到3.0×10-3Pa时,开始进行辉光清洗。
在具体实施例中,所述辉光清洗的方法为:打开氩气瓶主阀、减压阀、离子源阀、弧阀和靶阀以及质量流量计,向真空室内通入氩气,控制氩气流量300~500sccm,工作压强为1.0~1.7Pa,金属箔偏压-500V~-800V,对金属箔进行辉光清洗,清洗时间10~30min。在上述条件下进行辉光清洗,可以将藏留在所述金属箔不平整表面特别是刮痕中的水分、气体快速清除,防止后续通过磁控溅射沉积固态电解质薄膜层时膜层附着力不够,提高膜层在所述金属箔上的结合力。
为了进一步保证所述金属箔不平整表面特别是刮痕中的水分、气体被充分去除,在辉光清洗结束后,对所述金属箔进行离子刻蚀清洗,通过相对柔和的方式,将金属箔不平整表面特别是刮痕中的水分、气体完全去除。
在一些具体实施例中,所述离子刻蚀清洗的方法为:刻蚀清洗结束后,开启离子源对样品进行离子轰击清洗,其中,离子源电压为50~90V,氩气流量70~500sccm,工作压强0.5~1.7Pa,基底偏压为100~800V。在上述条件下,可以将辉光清洗过程中没有去除的水分和气体完全去除。优选的,所述离子轰击清洗的清洗时间为10~30min。
本发明实施例通过对所述金属箔依次进行预处理、辉光清洗和离子刻蚀清洗,可以逐级、不同力度地去除所述金属箔表面的各种附着物,提高涂层在所述金属箔表面的附着力;同时,按照该方法对所述金属箔进行表面清洁,还具有很好的时效性。
上述步骤S02中,在所述金属箔的表面沉积固态电解质薄膜层,所述固态电解质薄膜层的选择如上所述,所述固态电解质薄膜层可以采用气相沉积法制备。其中,所述气相沉积法包括磁控溅射法、真空蒸镀法、电弧等离子镀膜法、离子镀膜法、分子束外延法、气体中蒸发法、化学气相反应法、溅射源法、流动油面上真空沉积法、金属蒸汽合成法。
作为优选实施例,所述金属箔为铝箔,所述固态电解质薄膜层为锂磷氧氮薄膜层,且在所述金属箔的表面沉积固态电解质薄膜层的方法为:将经清洗后的金属箔置于沉积室中,通入氮气,调节真空室压强为0.2~1.3Pa,开启固态电解质靶,且控制所述固态电解质靶的靶功率为30~70W,在基底偏压为100~300V的条件下,在所述金属箔的表面沉积固态电解质薄膜层。
本发明实施例提供的复合负极片的制备方法,采用磁控溅射方式,在铝箔金属箔表面制备锂磷氧氮薄膜层,进而在锂磷氧氮薄膜层制备类金刚石薄膜层。该方法通过制备锂磷氧氮薄膜层,不仅可以实现锂磷氧氮薄膜层在铝箔上的沉积,并赋予锂磷氧氮薄膜层在铝箔表面良好的结合力,膜层不易脱落,而且还能够精确控制膜层厚度,满足电池极片的使用要求。最终得到的复合铝负极片,可以防止铝负极片即金属箔因粉碎破裂导致的脱落,进而保证电池的循环性能。
本发明实施例中,将经清洗后的铝箔置于磁控溅射镀膜设备的沉积室中。所述磁控溅射镀膜设备如图2所示。沉积室中通入氮气,调节真空室压强为0.2~1.3Pa,开启磷酸锂靶,且控制所述磷酸锂靶的靶功率为30~70W,在基底偏压为100~300V的条件下,沉积锂磷氧氮层。
制备锂磷氧氮层的步骤中,基底偏压影响锂磷氧氮层在铝箔上的结合力,本发明实施例在基底偏压为100~300V的条件下,沉积锂磷氧氮层,得到的锂磷氧氮层在铝箔上的结合力较好。
制备锂磷氧氮层的步骤中,所述磷酸锂靶的靶电流和氮气流量,共同决定了锂磷氧氮层的质量。若所述靶电流、氮气流量中的任意一项发生变化,都可能影响锂、磷、氧、氮的配比。优选的,在所述铝箔的表面沉积锂磷氧氮层的步骤中,所述氮气的流量为50~400sccm。本发明实施例提供的锂磷氧氮层的方法,所述靶功率和氮气分压在上述范围内,更好的控制锂、磷、氧、氮的配比,得到较快的沉积速率(如图3所示)及较高的离子电导率(如下图4所示)。此外,制备锂磷氧氮层的步骤中,真空室的压强对得到锂磷氧氮层的质量有一定影响。本发明实施例调节真空室压强为0.2~1.3Pa,得到的的锂磷氧氮层中晶粒大小合适,锂磷氧氮层在所述铝箔表面的结合力增强。而若真空室压强过高,沉积速度过快,得到的锂磷氧氮材料晶格混乱、排列不规整,会影响锂磷氧氮层对铝箔的保护效果,此外,还会降低锂磷氧氮层在所述铝箔的结合力。真空室压强偏低时,会影响离子导电率。优选的,在所述铝箔的表面沉积锂磷氧氮层的步骤中,通入氮气,调节真空室压强为0.6~0.8Pa。作为具体实施例,通入氮气,调节真空室压强为0.7Pa。
在一些实施例中,在所述铝箔的表面沉积锂磷氧氮层的步骤中,所述磷酸锂靶与所述铝箔之间的距离为5厘米~15厘米。通过调节磷酸锂靶与所述铝箔在合适的距离范围内,可以调节锂、磷、氧、氮的配比。当所述磷酸锂靶与所述铝箔之间的距离为5厘米~15厘米时,得到的锂磷氧氮层具有较高的离子电导率(如图5所示)。优选的,所述磷酸锂靶与所述铝箔之间的距离为7.5cm。
本发明实施例中,在所述铝箔的表面沉积锂磷氧氮层的步骤中,沉积时间为100-140min,优选但不限于120min,由此获得合适厚度的锂磷氧氮层。具体的,所述锂磷氧氮层的厚度为50nm~150nm。优选的,所述锂磷氧氮层的厚度为80~120nm,更优选为100nm。
上述步骤S03中,在所述固态电解质薄膜层的表面沉积类金刚石薄膜层的步骤中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石薄膜层。
制备类金刚石薄膜层的步骤中,所述真空室压强、离子源电压和基底偏压,共同决定了类金刚石薄膜层的质量。若所述真空室压强、离子源电压和基底偏压中的任意一项变小,则沉积速率过慢,沉积时间过长;而若真空室压强、离子源电压和基底偏压中的任意一项过高,沉积速度过快,形成的晶粒排列不规整,从而会降低类金刚石薄膜层在所述过渡层的结合力。且所述真空室压强、离子源电压和基底偏压之间相互关联,任意参数的变动,都可能导致沉积效果发生变化。本发明实施例提供的过渡层的参数条件,可以使得得到的类金刚石薄膜层的结合力增强,且形成的涂层致密均匀。
涂层沉积结束后,关闭离子源电源以及偏压电源,然后关闭气体质量流量计和气瓶主阀和减压阀;设置降温程序,待温度降到100℃以下后,关闭高阀,打开放气阀,待真空室内压强与外界气压一致时,打开真空室门,然后将样品取出。
本发明实施例中,在所述固态电解质薄膜层的表面沉积类金刚石薄膜层的步骤中,沉积时间为100~150s,优选但不限于2min,由此获得合适厚度的类金刚石薄膜层。具体的,所述类金刚石薄膜层的厚度为10nm~40nm。优选的,所述类金刚石薄膜层的厚度为15nm~20nm。
本发明实施例还提供了一种二次电池,包括正极、负极,设置在所述正极和所述负极之间的隔膜,以及电解液,其中,所述负极为本发明所述的复合铝负极片,或所述负极为本发明所述的方法制备得到的复合铝负极片。
本发明提供的二次电池,负极为上述复合负极片,由于所述负极具有较好的稳定性,因此,可以提高二次电池的循环性能。
优选的,所述正极包括正极活性材料,所述正极活性材料选自膨胀石墨、导电石墨和聚偏氟乙烯中的至少一种。
优选的,所述电解液选自LiPF6的碳酸甲乙酯溶液。具体优选的,所述电解液选自LiPF6浓度为4mol/L的碳酸甲乙酯溶液
优选的,所述隔膜为玻璃纤维。
下面结合具体实施例进行说明。
实施例1
一种复合铝负极片的制备方法,包括以下步骤:
S11.提供铝箔,对所述铝箔依次进行预处理、辉光清洗和离子刻蚀清洗;具体的:
将所述铝箔放入蒸馏水中超声清洗,再将所述铝箔放入丙酮溶液中超声清洗,之后再将所述铝箔放入无水乙醇溶液中超声清洗;清洗结束后,用干燥氮气将衬底表面吹干,最后再将样品放入鼓风干燥箱中80~150℃烘干。在进行辉光清洗之前,调整设备参数,具体的,将烘干后的所述铝箔固定在磁控溅射镀膜设备中的转架上;关闭真空室门,打开水冷机将离子源、多弧靶、分子泵、真空腔室的水路接通,打开空压机和复合镀膜机总电源,然后开启机械泵和旁抽阀以及分子泵,使分子泵进入爬升状态;当分子泵达到全速以后,关闭旁抽阀,打开粗抽阀,对真空室进行粗抽;当真空室内压强达到10Pa以下后,再次打开旁抽阀;当真空室压强达到3Pa以下后,关闭粗抽阀,开启高阀对真空室抽高真空。当真空室压强抽到5.0×10-3Pa以后,打开加热电源对真空室进行加热烘烤,加热温度为100~500℃,加热过程中开启转架系统,使样品进行公自传;当真空度达到3.0×10-3Pa时,开始进行辉光清洗。
打开氩气瓶主阀、减压阀、离子源阀、弧阀和靶阀以及质量流量计,向真空室内通入氩气,控制氩气流量300~500sccm,工作压强为1.0~1.7Pa,基底偏压-500V~-800V,对基底进行辉光清洗。
刻蚀清洗结束后,开启离子源对样品进行离子轰击清洗,其中,离子源电压为50~90V,氩气流量70~500sccm,工作压强0.5~1.7Pa,基底偏压为100~800V。
S12.将经清洗后的铝箔置于沉积室中,通入氮气,流量为200sccm,调节真空室压强为0.2Pa,开启磷酸锂靶,且控制所述磷酸锂靶的靶功率为50W,在基底偏压为-100V的条件下,沉积120min制备锂磷氧氮层。
S13.以乙炔作为工作气体(打开乙炔气瓶的主阀,然后打开减压阀和质量流量计向真空室中通入乙炔),且调节所述真空室内的压强为0.5Pa,离子源电压为50V,基底偏压为50V,在所述刻蚀样品的过渡层表面沉积2min制备类金刚石层。
S14.涂层沉积结束后,关闭离子源电源以及偏压电源,然后关闭气体质量流量计和气瓶主阀和减压阀;设置降温程序,待温度降到100℃以下后,关闭高阀,打开放气阀,待真空室内压强与外界气压一致时,打开真空室门,然后将样品取出。将表面制备双层复合涂层的铝箔进行裁剪,得到复合铝负极片。
实施例2
一种复合铝负极片的制备方法,与实施例1的不同之处在于:锂膦氧氮层功率50W、氮气分压0.5Pa、偏压-150V、时间120min。
实施例3
一种复合铝负极片的制备方法,与实施例1的不同之处在于:锂膦氧氮功率50W、氮气分压0.5Pa、偏压-200V、时间120min。
实施例4
一种复合铝负极片的制备方法,与实施例1的不同之处在于:锂膦氧氮功率50W、氮气分压0.5Pa、偏压-250V、时间120min。
实施例5
一种复合铝负极片的制备方法,与实施例1的不同之处在于:锂膦氧氮功率50W、氮气分压0.5Pa、偏压-100V、时间60min。
实施例6
一种复合铝负极片的制备方法,与实施例1的不同之处在于:锂膦氧氮功率50W、氮气分压0.5Pa、偏压-100V、时间90min。
实施例7
一种复合铝负极片的制备方法,与实施例1的不同之处在于:类金刚石沉积时间1min。
实施例8
一种复合铝负极片的制备方法,与实施例1的不同之处在于:类金刚石沉积时间1.5min。
实施例9
一种复合铝负极片的制备方法,与实施例1的不同之处在于:类金刚石沉积时间2.5min。
实施例10
一种复合铝负极片的制备方法,与实施例1的不同之处在于:类金刚石沉积时间3min。
对比例1
一种铝负极片,所述铝负极片为与实施例相同的铝箔。
将实施例1-10、对比例1提供的的复合铝负极片作为电池负极,正极使用膨胀石墨,电解液使用LiPF6浓度为4mol/L的碳酸甲乙酯溶液,组装成电池。测试电池的电化学性能参数,测试指标和测试方法如下:
(1)测试指标:循环性能,测试方法:在2C倍率下容量保持率80%的循环圈数;
(2)测试指标:倍率性能,测试方法:在1C~5C~1C倍率下各循环10圈后容量保持率;
测试结果如下表1所示,其中,实施例1的电池电压与倍率曲线图如图6所示,电池倍率车性能曲线如图7所示,电池循环性能如图8所示。
表1
测试电池 循环圈数 倍率性能
实施例1 430 98%
实施例2 421 96%
实施例3 425 97%
实施例4 419 95%
实施例5 308 90%
实施例6 353 93%
实施例7 200 71%
实施例8 235 79%
实施例9 304 82%
实施例10 284 79%
对比例1 200 50%
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种复合负极片,其特征在于,所述复合负极片包括同时作为负极集流体和负极活性材料的金属箔,设置在所述金属箔一表面的固态电解质薄膜层,以及在所述固态电解质薄膜层背离所述金属箔的表面设置的类金刚石薄膜层。
2.如权利要求1所述的复合负极片,其特征在于,所述复合负极片由所述金属箔、所述固态电解质薄膜层和所述类金刚石薄膜层组成,且所述金属箔为基底、所述固态电解质薄膜层为中间层、所述类金刚石薄膜层为最外层。
3.如权利要求1或2所述的复合负极片,其特征在于,所述金属箔选自金属箔、铜箔、铁箔、锡箔、银箔、金箔、铂箔、锌箔、铅箔、镍箔中的一种或者多种;和/或
所述固态电解质薄膜层选自锂膦氧氮层、聚丙烯腈层、聚偏二氟乙烯层、聚氧乙烯层、聚硅氧烷层、硫化物电解质层中的一种或者多种。
4.如权利要求3所述的复合负极片,其特征在于,所述金属箔的厚度为20~150μm;和/或
所述固态电解质薄膜层的厚度为20~300nm;和/或
所述类金刚石薄膜的层厚度为10~50nm。
5.如权利要求4所述的复合负极片,其特征在于,所述金属箔的厚度为50~60μm;和/或
所述固态电解质薄膜层的厚度为80~120nm;和/或
所述类金刚石薄膜的层厚度为15~20nm。
6.一种复合铝负极片的制备方法,其特征在于,包括以下步骤:
提供金属箔,对所述金属箔依次进行预处理、辉光清洗和离子刻蚀清洗;
在所述金属箔的表面沉积固态电解质薄膜层;
在所述固态电解质薄膜层的表面沉积类金刚石薄膜层。
7.如权利要求6所述的复合铝负极片的制备方法,其特征在于,所述固态电解质薄膜层采用气相沉积法制备,和/或
所述类金刚石薄膜层采用气相沉积法制备,
其中,所述气相沉积法包括磁控溅射法、真空蒸镀法、电弧等离子镀膜法、离子镀膜法、分子束外延法、气体中蒸发法、化学气相反应法、溅射源法、流动油面上真空沉积法、金属蒸汽合成法。
8.如权利要求6所述的复合铝负极片的制备方法,其特征在于,所述金属箔为铝箔,所述固态电解质薄膜层为锂磷氧氮薄膜层,且在所述金属箔的表面沉积固态电解质薄膜层的方法为:将经清洗后的金属箔置于沉积室中,通入氮气,调节真空室压强为0.2~1.3Pa,开启固态电解质靶,且控制所述固态电解质靶的靶功率为30~70W,在基底偏压为100~300V的条件下,在所述金属箔的表面沉积固态电解质薄膜层。
9.如权利要求8所述的复合铝负极片的制备方法,其特征在于,在所述金属箔的表面沉积固态电解质薄膜层的步骤中,所述磷酸锂电弧靶与所述铝箔之间的距离为5厘米~15厘米;和/或
在所述金属箔的表面沉积固态电解质薄膜层的步骤中,通入氮气,调节所述氮气的流量为50~400sccm;和/或
在所述固态电解质薄膜层的表面沉积类金刚石薄膜层的步骤中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述固态电解质薄膜层的表面沉积类金刚石薄膜层。
10.一种二次电池,其特征在于,包括正极、负极,设置在所述正极和所述负极之间的隔膜,以及电解液,其中,所述负极为权利要求1至5任一项所述的复合铝负极片,或所述负极为权利要求6至8任一项所述的方法制备得到的复合铝负极片。
CN201811508674.7A 2018-12-11 2018-12-11 复合负极片及其制备方法和应用 Pending CN111312994A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811508674.7A CN111312994A (zh) 2018-12-11 2018-12-11 复合负极片及其制备方法和应用
PCT/CN2019/122748 WO2020119528A1 (zh) 2018-12-11 2019-12-03 复合负极片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811508674.7A CN111312994A (zh) 2018-12-11 2018-12-11 复合负极片及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111312994A true CN111312994A (zh) 2020-06-19

Family

ID=71075422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811508674.7A Pending CN111312994A (zh) 2018-12-11 2018-12-11 复合负极片及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111312994A (zh)
WO (1) WO2020119528A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036100A (zh) * 2021-02-25 2021-06-25 浙江大学 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
CN114551774A (zh) * 2021-08-30 2022-05-27 万向一二三股份公司 一种高倍率锂金属复合负极的制备方法及其在固体电池中的应用
CN114864951A (zh) * 2022-03-04 2022-08-05 上海治臻新能源股份有限公司 一种锂离子电池负极用复合集流体及其制备方法
CN115896722A (zh) * 2022-11-23 2023-04-04 昆明理工大学 一种提高Cu-Ni-Sn合金耐磨性和导电性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100083A (ja) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd 電池用負極とこれを用いた電池
CN101310400A (zh) * 2005-11-17 2008-11-19 无穷动力解决方案股份有限公司 混杂薄膜电池组
CN106684387A (zh) * 2016-12-20 2017-05-17 深圳先进技术研究院 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池
CN108155363A (zh) * 2017-12-26 2018-06-12 深圳先进技术研究院 高分子涂层在铝负极中的应用、铝负极、其制备方法及二次电池
CN108963205A (zh) * 2018-06-12 2018-12-07 天津力神电池股份有限公司 一种新型复合正极及其制备方法和应用的固态锂电池
CN209200066U (zh) * 2018-12-11 2019-08-02 深圳先进技术研究院 复合负极片、二次电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654350A (zh) * 2015-07-14 2017-05-10 宁德时代新能源科技股份有限公司 锂离子电池及其制备方法
CN108630896A (zh) * 2017-03-24 2018-10-09 深圳中科瑞能实业有限公司 一种二次电池负极及其制备方法和二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100083A (ja) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd 電池用負極とこれを用いた電池
CN101310400A (zh) * 2005-11-17 2008-11-19 无穷动力解决方案股份有限公司 混杂薄膜电池组
CN106684387A (zh) * 2016-12-20 2017-05-17 深圳先进技术研究院 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池
CN108155363A (zh) * 2017-12-26 2018-06-12 深圳先进技术研究院 高分子涂层在铝负极中的应用、铝负极、其制备方法及二次电池
CN108963205A (zh) * 2018-06-12 2018-12-07 天津力神电池股份有限公司 一种新型复合正极及其制备方法和应用的固态锂电池
CN209200066U (zh) * 2018-12-11 2019-08-02 深圳先进技术研究院 复合负极片、二次电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036100A (zh) * 2021-02-25 2021-06-25 浙江大学 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
CN113036100B (zh) * 2021-02-25 2022-04-29 浙江大学 一种含刚性颗粒骨架的锂金属复合负极及其制备方法
CN114551774A (zh) * 2021-08-30 2022-05-27 万向一二三股份公司 一种高倍率锂金属复合负极的制备方法及其在固体电池中的应用
CN114864951A (zh) * 2022-03-04 2022-08-05 上海治臻新能源股份有限公司 一种锂离子电池负极用复合集流体及其制备方法
CN114864951B (zh) * 2022-03-04 2024-01-19 苏州臻锂新材科技有限公司 一种锂离子电池负极用复合集流体及其制备方法
CN115896722A (zh) * 2022-11-23 2023-04-04 昆明理工大学 一种提高Cu-Ni-Sn合金耐磨性和导电性的方法

Also Published As

Publication number Publication date
WO2020119528A1 (zh) 2020-06-18

Similar Documents

Publication Publication Date Title
CN111312994A (zh) 复合负极片及其制备方法和应用
US11177479B2 (en) Current collector, electrode plate including the same and electrochemical device
US8691447B2 (en) Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics
Neudecker et al. “Lithium‐Free” thin‐film battery with in situ plated Li anode
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
CN108365169A (zh) 一种锂金属负极结构组合及其制备方法、锂电池电芯
WO2020134732A1 (zh) 一种电极极片和电化学装置
WO2020134649A1 (zh) 一种电极极片、电化学装置、电池模块、电池包和设备
CN111435756A (zh) 锂电池及其制备方法和应用
US8703333B2 (en) Electrode compositions and processes
JP2002289181A (ja) リチウム二次電池用電極の製造方法
US20160181615A1 (en) Solid-State Batteries with Improved Performance and Reduced Manufacturing Costs and Methods for Forming the Same
WO2020134749A1 (zh) 电极极片、电化学装置、电池模块、电池包及设备
EP3506393B1 (en) Separator, method for preparing separator, and electrochemical device containing separator
CN103144393A (zh) 一种三明治结构硅基薄膜材料及其制备方法和应用
CN209200066U (zh) 复合负极片、二次电池
CN115275211A (zh) 一种复合集流体及其制备方法、电极极片、电池和终端
CN108110213A (zh) 一种锂离子电池正极结构和锂离子电池
CN112310367A (zh) 一种锂电池电极用超薄多孔金属材料及其制备方法与应用
CN207624803U (zh) 一种锂离子电池正极结构和锂离子电池
CN113151790B (zh) 离子/电子共导体薄膜及其制备方法、固态电池及电动车
CN110380056A (zh) 一种表面改性集流体、其制备方法及应用
JP5902579B2 (ja) 二次電池およびその製造方法
CN109994690A (zh) 复合隔离膜及其制备方法、使用其的电化学装置
KR20010001828A (ko) 리튬이차전지용 전극의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200619

Assignee: REAL POWER INDUSTRIAL Ltd.

Assignor: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY

Contract record no.: X2022980016102

Denomination of invention: Composite negative electrode and its preparation method and application

License type: Exclusive License

Record date: 20220922

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200619