WO2021128001A1 - 二次电池及含有该二次电池的装置 - Google Patents

二次电池及含有该二次电池的装置 Download PDF

Info

Publication number
WO2021128001A1
WO2021128001A1 PCT/CN2019/127983 CN2019127983W WO2021128001A1 WO 2021128001 A1 WO2021128001 A1 WO 2021128001A1 CN 2019127983 W CN2019127983 W CN 2019127983W WO 2021128001 A1 WO2021128001 A1 WO 2021128001A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
organic solvent
electrolyte
battery according
silicon
Prior art date
Application number
PCT/CN2019/127983
Other languages
English (en)
French (fr)
Inventor
吴则利
韩昌隆
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2019/127983 priority Critical patent/WO2021128001A1/zh
Priority to KR1020227010875A priority patent/KR20220054413A/ko
Priority to ES19957782T priority patent/ES2936648T3/es
Priority to EP19957782.6A priority patent/EP3913718B1/en
Priority to PT199577826T priority patent/PT3913718T/pt
Priority to JP2022520578A priority patent/JP7389245B2/ja
Priority to CN201980098815.9A priority patent/CN114175343A/zh
Publication of WO2021128001A1 publication Critical patent/WO2021128001A1/zh
Priority to US17/510,696 priority patent/US20220045365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0054Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a secondary battery and a device containing the secondary battery.
  • secondary batteries Compared with traditional lead-acid batteries, nickel-hydrogen batteries, and nickel-cadmium batteries, secondary batteries have the advantages of high energy density and long cycle life. Therefore, they have been widely used in various fields.
  • the present application provides a secondary battery and a device containing the secondary battery.
  • the secondary battery can also have better high-temperature cycles while having a higher energy density. Performance and high temperature storage performance.
  • a first aspect of the present application provides a secondary battery, including: a negative electrode sheet, the negative electrode sheet includes a negative electrode membrane, the negative electrode membrane includes a negative electrode active material; an electrolyte, the electrolyte It includes an electrolyte salt, an organic solvent, and an additive; wherein the negative active material includes a silicon-based material; the organic solvent includes dimethyl carbonate (DMC); and the additive includes one of the compounds represented by the following formula 1. Or several
  • R 1 is selected from one of C2-C4 alkylene or halogenated alkylene, C2-C4 alkenylene or halogenated alkenylene, C6-C18 arylene and its derivatives, or Several kinds.
  • a device which includes the secondary battery according to the first aspect of the present application.
  • the negative electrode includes a silicon-based active material
  • the organic solvent in the electrolyte includes dimethyl carbonate (DMC)
  • the additive includes the compound shown in Formula 1, so that the secondary battery has a higher energy density.
  • DMC dimethyl carbonate
  • the device of the present application includes the secondary battery, and thus has at least the same advantages as the secondary battery.
  • FIG. 1 is a schematic diagram of an embodiment of a secondary battery.
  • Fig. 2 is a schematic diagram of an embodiment of a battery module.
  • Fig. 3 is a schematic diagram of an embodiment of a battery pack.
  • Fig. 4 is an exploded view of Fig. 3.
  • Fig. 5 is a schematic diagram of an embodiment of a device in which a secondary battery is used as a power source.
  • the secondary battery according to the present application includes a negative electrode piece and an electrolyte, the negative electrode piece including a negative electrode current collector and a negative electrode membrane provided on at least one surface of the negative electrode current collector and including a negative electrode active material, the negative electrode active material including Silicon-based material;
  • the electrolyte includes an electrolyte salt, an organic solvent, and an additive, the organic solvent includes dimethyl carbonate (DMC), and the additive includes one or more of the compounds shown in Formula 1, wherein, R 1 is selected from one or more of C2-C4 alkylene or halogenated alkylene, C2-C4 alkenylene or halogenated alkenylene, C6-C18 arylene and their derivatives ;
  • the silicon-based material has a larger theoretical specific capacity.
  • the capacity of the secondary battery can be significantly increased.
  • the silicon-based material is During the process, the volume will be severely expanded, resulting in a decrease in the porosity of the negative electrode membrane, which in turn affects the performance of the secondary battery.
  • the additive shown in formula 1 can form a dense and uniform passivation film on the surface of the silicon-based material, which can effectively prevent the direct contact between the electrolyte solvent and the silicon-based material, and reduce the side reaction of the electrolyte solvent on the surface of the negative electrode.
  • the passivation film formed by the additive shown in Formula 1 on the surface of the negative electrode has a large film formation resistance, which affects the high-temperature cycle performance of the battery.
  • the inventor found through a lot of research that when the organic solvent includes dimethyl carbonate (DMC) and the additive of Formula 1 used together, the film formation resistance on the surface of the negative electrode can be effectively reduced. Under the synergistic effect of the above-mentioned substances, the secondary battery of the present application can take into account both good high-temperature cycle performance and high-temperature storage performance under the premise of higher energy density.
  • DMC dimethyl carbonate
  • R 1 is selected from C2-C4 alkylene, C2-C4 alkenylene, C6-C18 One of arylene or halogenated arylene.
  • the compound represented by Formula 1 is selected from one or more of the following compounds:
  • the content of the compound represented by formula 1 accounts for ⁇ 1% by mass in the electrolyte; more preferably, the compound represented by formula 1
  • the content of the electrolyte is less than or equal to 0.8% by mass.
  • the mass ratio of the dimethyl carbonate (DMC) in the organic solvent is ⁇ 20%; more preferably, the dimethyl carbonate The mass ratio of (DMC) in the organic solvent is ⁇ 10%.
  • the content of dimethyl carbonate (DMC) is within the given range, the high-temperature storage performance of the secondary battery will be further improved.
  • the organic solvent further includes at least two of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) .
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the organic solvent further includes ethylene carbonate (EC)
  • the mass ratio of the ethylene carbonate (EC) in the organic solvent is ⁇ 15%; more preferably, the mass ratio of the ethylene carbonate (EC) in the organic solvent is ⁇ 10%.
  • the mass ratio of ethylene carbonate (EC) in the organic solvent is within the given range, which can further improve the high-temperature storage performance of the battery.
  • the organic solvent further includes ethyl methyl carbonate (EMC)
  • EMC ethyl methyl carbonate
  • the mass of the ethyl methyl carbonate (EMC) in the organic solvent is The proportion is 65%-95%; more preferably, the mass proportion of the ethyl methyl carbonate (EMC) in the organic solvent is 75%-95%.
  • EMC ethyl methyl carbonate
  • the organic solvent further includes diethyl carbonate (DEC)
  • the mass of the diethyl carbonate (DEC) in the organic solvent is The proportion is ⁇ 30%; more preferably, the mass proportion of the diethyl carbonate (DEC) in the organic solvent is ⁇ 20%.
  • the mass ratio of diethyl carbonate (DEC) in the organic solvent is within the given range, the high-temperature storage performance of the battery can also be further improved.
  • the additives further include fluoroethylene carbonate (FEC), vinyl sulfate (DTD), 1,3-propane sultone (PS), 1,3-propenyl-sultone (PST), lithium difluorooxalate borate (LiDFOB), lithium difluorobisoxalate phosphate (LiDFOP), tris(trimethylsilyl) phosphate (TMSP), tris( One or more of trimethylsilyl) borate (TMSB).
  • FEC fluoroethylene carbonate
  • DTD vinyl sulfate
  • PS 1,3-propane sultone
  • PST 1,3-propenyl-sultone
  • LiDFOB lithium difluorooxalate borate
  • LiDFOP lithium difluorobisoxalate phosphate
  • TMSP tris(trimethylsilyl) borate
  • TMSB trimethylsilyl borate
  • the electrolyte salt LiPF 6 comprises one or several, in LiFSI; preferably, the electrolyte salt include LiPF 6 and LiFSI simultaneously, and the LiFSI The concentration in the electrolyte is greater than LiPF 6 .
  • the concentration of the electrolyte salt in the electrolyte is 1.05mol/L to 1.4mol/L, more preferably 1.1mol/L to 1.3mol /L.
  • the electrolytic solution has a conductivity of 8 mS/cm to 10 mS/cm at 25° C., more preferably 8.3 mS/cm to 9.0 mS/cm.
  • the viscosity of the electrolyte at 25° C. is 3.5 mPa ⁇ s to 5 mPa ⁇ s, more preferably 4.0 mPa ⁇ s to 4.5 mPa ⁇ s.
  • the type of the negative electrode current collector is not particularly limited, and can be selected according to actual needs.
  • the negative electrode current collector can be selected from metal foils, such as copper foil.
  • the silicon-based material includes one or more of elemental silicon, silicon-carbon composite, silicon-oxygen compound, silicon-nitrogen compound, and silicon alloy;
  • the silicon-based material includes a silicon-oxygen compound.
  • the negative electrode active material further includes a carbon material, and the carbon material includes one or more of natural graphite, artificial graphite, hard carbon, and soft carbon. ; More preferably, the carbon material includes one or more of natural graphite and artificial graphite.
  • the compacted density of the negative electrode film is 1.6 g/cm 3 to 1.8 g/cm 3 , more preferably 1.65 g/cm 3 to 1.75 g /cm 3 .
  • the secondary battery further includes a positive pole piece, the positive pole piece including a positive electrode current collector and a positive electrode active material disposed on at least one surface of the positive electrode current collector Positive diaphragm.
  • the type of the positive electrode current collector is not specifically limited, and can be selected according to actual needs.
  • the positive electrode current collector may be selected from metal foils, such as aluminum foil.
  • the positive electrode active material includes one or more of lithium nickel cobalt manganese oxide compound and lithium nickel cobalt aluminum oxide.
  • Lithium nickel cobalt manganese oxide compound and lithium nickel cobalt aluminum oxide have the advantages of high specific capacity and long cycle life as the positive electrode active material of the secondary battery.
  • the electrochemistry of the battery is further improved. performance.
  • the positive electrode active material includes Li a Ni b Co c M d M'e O f A g or Li a Ni b Co c M d M'e O f A g or Li a with a coating layer provided on at least a part of the surface.
  • M is selected from one or more of Mn and Al
  • M' is selected from Zr, Al, Zn, Cu, Cr, Mg, Fe, V, Ti
  • B is selected from one or more of N, F, S, and Cl.
  • the coating layer of the above-mentioned positive electrode active material may be a carbon layer, an oxide layer, an inorganic salt layer, or a conductive polymer layer.
  • the high temperature cycle performance of the secondary battery can be further improved by coating and modifying the surface of the positive electrode active material.
  • the carbon layer may include one or more of graphite, graphene, mesocarbon microbeads (MCMB), hydrocarbon pyrolysis carbon, hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • the oxide layer may include Al oxide, Ti oxide, Mn oxide, Zr oxide, Mg oxide, Zn oxide, Ba oxide, Mo oxide, and B oxide. One or more of oxides.
  • the inorganic salt layer may include one or more of Li 2 ZrO 3 , LiNbO 3 , Li 4 Ti 5 O 12 , Li 2 TiO 3 , Li 3 VO 4 , LiSnO 3 , Li 2 SiO 3 and LiAlO 2 .
  • the conductive polymer layer may include one or more of polypyrrole (PPy), poly3,4-ethylenedioxythiophene (PEDOT), and polyamide (PI).
  • PPy polypyrrole
  • PEDOT poly3,4-ethylenedioxythiophene
  • PI polyamide
  • the positive electrode active material may also include lithium nickel oxide (for example, lithium nickelate), lithium manganese oxide (for example, spinel lithium manganate, layered manganese Lithium oxide), lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate, lithium cobaltate, and modified compounds of the above materials.
  • the modifying compound may be doping modification and/or coating modification of the material.
  • the secondary battery further includes a separator.
  • the type of the isolation film is not particularly limited, and it may be various isolation films suitable for lithium ion batteries in the field.
  • the isolation film can be selected from one or more of polyethylene film, polypropylene film, polyvinylidene fluoride film and their multilayer composite film.
  • the secondary battery may include an outer package for packaging the positive pole piece, the negative pole piece, and the electrolyte.
  • the positive pole piece, the negative pole piece and the separator can be laminated or wound to form an electrode assembly with a laminated structure or an electrode assembly with a wound structure, the electrode assembly is packaged in an outer package; the electrolyte is infiltrated in the electrode assembly .
  • the number of electrode assemblies in the secondary battery can be one or several, which can be adjusted according to requirements.
  • the outer packaging of the secondary battery may be a soft bag, such as a pouch-type soft bag.
  • the material of the soft bag can be plastic, for example, it can include one or more of polypropylene PP, polybutylene terephthalate PBT, polybutylene succinate PBS, and the like.
  • the outer packaging of the secondary battery may also be a hard case, such as an aluminum case.
  • Fig. 1 shows a secondary battery 5 with a square structure as an example.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • Fig. 2 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4. Of course, it can also be arranged in any other manner. Furthermore, the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having an accommodating space, and a plurality of secondary batteries 5 are accommodated in the accommodating space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • Figures 3 and 4 show the battery pack 1 as an example. 3 and 4, the battery pack 1 may include a battery box and a plurality of battery modules 4 provided in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3.
  • the upper box body 2 can be covered on the lower box body 3 and forms a closed space for accommodating the battery module 4.
  • a plurality of battery modules 4 can be arranged in the battery box in any manner.
  • a second aspect of the present application provides a device, which includes the secondary battery described in the first aspect of the present application.
  • the secondary battery can be used as a power source of the device, and can also be used as an energy storage unit of the device.
  • the device includes, but is not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the device can select a secondary battery, a battery module, or a battery pack according to its usage requirements.
  • Figure 5 is a device as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle, etc.
  • a battery pack or a battery module can be used.
  • the device may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • the device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • the secondary batteries of Examples 1-18 and Comparative Examples 1-5 were prepared according to the following methods
  • the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • the binder polyvinylidene fluoride, and the conductive agent acetylene black are mixed in a weight ratio of 98:1:1, and N-methylpyrrolidone (NMP) is added.
  • NMP N-methylpyrrolidone
  • the negative electrode active material silicon oxide and artificial graphite After mixing the negative electrode active material silicon oxide and artificial graphite at a mass ratio of 2:8, they are then mixed with the conductive agent Super P, the thickener sodium carboxymethyl cellulose (CMC-Na), and the binder styrene butadiene rubber (SBR) Mix according to the mass ratio of 92:2:2:4, add deionized water, and obtain the negative electrode slurry under the action of a vacuum mixer; evenly coat the negative electrode slurry on the copper foil of the negative current collector; dry the copper foil at room temperature After that, it is transferred to an oven for drying, and then cold-pressed and slit to obtain the negative pole piece.
  • the conductive agent Super P the thickener sodium carboxymethyl cellulose (CMC-Na), and the binder styrene butadiene rubber (SBR) Mix according to the mass ratio of 92:2:2:4, add deionized water, and obtain the negative electrode slurry under the action of
  • the organic solvents are mixed, and then the fully dried electrolyte salt is dissolved in the organic solvent, and then additive 1 and other additives are added to the organic solvent, and the mixture is evenly mixed to obtain electrolysis liquid.
  • the composition of other additives is: 8% FEC + 0.5% SA + 0.5% TMSP.
  • the content of each additive component is the weight percentage calculated based on the total weight of the electrolyte; the content of each organic solvent component is the weight percentage calculated based on the total weight of the organic solvent.
  • the specific type and concentration of the electrolyte salt, the weight ratio of each organic solvent, and the specific type and content of the additive 1 are shown in Table 1.
  • a polyethylene film is used as the isolation film.
  • volume expansion rate of secondary battery after storage at 60°C for 30 days (%) [(V 2 -V 1 )/V 1 ] ⁇ 100%
  • the capacity retention rate of the secondary battery after 800 cycles at 45°C (%) (discharge capacity after 800 cycles of the secondary battery/discharge capacity at the first cycle of the secondary battery) ⁇ 100%
  • Example 1 18.7 87.3
  • Example 2 19.4 87.9
  • Example 3 21.5 88.6
  • Example 4 21.4 90.1
  • Example 5 17.4 86.9
  • Example 6 18.7 87.1
  • Example 7 19.5 88.1
  • Example 8 20.3 89.1
  • Example 9 18.9 89.1
  • Example 10 17.9 88.7
  • Example 11 14.8 84.9
  • Example 12 13.1 83.1
  • Example 13 17.1 86.6
  • Example 14 16.8 86.1
  • Example 15 15.3 87.9
  • Example 16 15.6 88.1
  • Example 17 15.1 90.1
  • Example 18 16.7 88.6 Comparative example 1 35.1 82.3
  • Comparative example 2 30.1 80.1 Comparative example 3 46.1 78.1 Comparative example 4 10.1 71.1 Comparative example 5 35.1 80.6
  • the negative active material of the secondary battery of Examples 1-18 includes silicon-based materials, and the electrolyte contains both dimethyl carbonate and the additive shown in Formula 1.
  • the lithium ion battery can simultaneously Both good high-temperature storage performance and high-temperature cycle performance are taken into account.
  • the electrolyte in Comparative Example 1 does not contain dimethyl carbonate and does not contain additives of formula 1, and the high-temperature storage performance and high-temperature cycle performance of the secondary battery are both poor; the electrolyte of Comparative Example 2 contains additives of formula 1 but does not contain organic The solvent dimethyl carbonate has poor high-temperature cycle performance of the secondary battery; when the electrolyte of Comparative Example 3 contains dimethyl carbonate but does not contain the formula 1 additive, the high-temperature storage performance and high-temperature cycle performance of the lithium ion battery are both poor; In comparative example 4, when the content of the additive of formula 1 contained in the electrolyte is too high, the high temperature cycle performance of the secondary battery is seriously deteriorated; in comparative example 5, when the content of dimethyl carbonate contained in the electrolyte is too high, The high temperature storage performance of the secondary battery is significantly deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)

Abstract

本申请提供了一种二次电池及含有该二次电池的装置,所述二次电池包括:负极极片,包括负极膜片,负极膜片包括负极活性材料;电解液,包括电解质盐、有机溶剂以及添加剂;其中,所述负极活性材料包括硅基材料;所述有机溶剂包括碳酸二甲酯(DMC);所述添加剂包括下述式1所示的化合物中的一种或几种;其中,R1选自C2~C4的亚烷基或卤代亚烷基、C2~C4的亚烯基或卤代亚烯基、C6~C18的亚芳基及其衍生物中的一种。本申请的二次电池及含有该二次电池的装置在具有较高能量密度的前提下,还可以兼顾较好的高温循环性能和高温存储性能。

Description

二次电池及含有该二次电池的装置 技术领域
本申请涉及电池技术领域,尤其涉及一种二次电池及含有二次电池的装置。
背景技术
二次电池相对于传统的铅酸电池、镍氢电池、镍镉电池具有能量密度高、循环寿命长等优点,因此目前已广泛应用于各个领域。
对于电动汽车的应用来说,其往往要求二次电池具有高能量密度及长循环寿命等特点。硅基材料由于其理论克容量较高,目前被广泛研究。但是当负极活性材料使用硅基材料时,二次电池的电化学性能较差。
为满足电动汽车对二次电池的性能需要,确有必要提供一种具有良好综合性能的二次电池。
发明内容
鉴于背景技术中存在的问题,本申请提供一种二次电池及含有该二次电池的装置,所述二次电池在具有较高能量密度的前提下,还可以同时兼具较好的高温循环性能和高温存储性能。
为了达到上述目的,本申请第一方面提供一种二次电池,包括:负极极片,所述负极极片包括负极膜片,所述负极膜片包括负极活性材料;电解液,所述电解液包括电解质盐、有机溶剂以及添加剂;其中,所述负极活性材料包括硅基材料;所述有机溶剂包括碳酸二甲酯(DMC);所述添加剂包括下述式1所示的化合物中的一种或几种;
Figure PCTCN2019127983-appb-000001
其中,R 1选自C2~C4的亚烷基或卤代亚烷基、C2~C4的亚烯基或卤代亚烯基、C6~C18的亚芳基及其衍生物中的一种或几种。
在本申请的第二方面,提供一种装置,其包括本申请第一方面所述的二次电池。
本申请至少包括下述的有益效果为:
本申请的二次电池,负极包括硅基活性材料,且电解液中的有机溶剂包括碳酸二甲酯(DMC),添加剂包括式1所示的化合物,使得二次电池在具有较高能量密度的前提下,还可以兼顾较好的高温循环性能和高温存储性能。本申请的装置包括所述的二次电池,因而至少具有与所述二次电池相同的优势。
附图说明
图1是二次电池的一实施方式的示意图。
图2是电池模块的一实施方式的示意图。
图3是电池包的一实施方式的示意图。
图4是图3的分解图。
图5是二次电池用作电源的装置的一实施方式的示意图。
其中,附图标记说明如下:
1电池包
2上箱体
3下箱体
4电池模块
5二次电池
具体实施方式
下面详细说明根据本申请的二次电池及含有该二次电池的装置。
根据本申请的二次电池包括负极极片及电解液,所述负极极片包括负极集流体以及设置于负极集流体至少一个表面上且包括负极活性材料的负极膜片,所述负极活性材料包括硅基材料;所述电解液包括电解质盐、有机溶 剂以及添加剂,所述有机溶剂包括碳酸二甲酯(DMC),所述添加剂包括式1所示的化合物中的一种或几种,其中,R 1选自C2~C4的亚烷基或卤代亚烷基、C2~C4的亚烯基或卤代亚烯基、C6~C18的亚芳基及其衍生物中的一种或几种;
Figure PCTCN2019127983-appb-000002
在本申请第一方面所述的二次电池中,硅基材料具有较大的理论比容量,作为负极活性材料使用时可以显著地增大二次电池的容量,但硅基材料在充放电的过程中体积会严重膨胀,导致负极膜片的孔隙率下降,进而影响二次电池的性能。发明人发现,式1所示的添加剂能够在硅基材料表面形成致密且均匀的钝化膜,可以有效地阻止电解液溶剂与硅基材料的直接接触,减少电解液溶剂在负极表面的副反应,进而减少二次电池的产气,改善二次电池的高温存储性能,但是式1所示的添加剂在负极表面形成的钝化膜的成膜阻抗较大,影响电池的高温循环性能。发明人通过大量研究发现,当有机溶剂中包括碳酸二甲酯(DMC)与式1的添加剂同时使用时,可以有效地降低负极表面的成膜阻抗。在上述物质的相互协同作用下,本申请的二次电池可以在较高能量密度的前提下,同时兼顾较好的高温循环性能和高温存储性能。
在本申请第一方面所述的二次电池中,优选地,在式1所示的化合物中,R 1选自C2~C4的亚烷基、C2~C4的亚烯基、C6~C18的亚芳基或卤代亚芳基中的一种。
在本申请第一方面所述的二次电池中,更优选地,所述式1所示的化合物选自下述化合物中的一种或几种:
Figure PCTCN2019127983-appb-000003
Figure PCTCN2019127983-appb-000004
在本申请第一方面所述的二次电池中,优选地,式1所示的化合物的含量在所述电解液中的质量占比≤1%;更优选地,式1所示的化合物的含量在所述电解液中的质量占比≤0.8%。当式1所示的化合物的含量在所给范围内时,二次电池的高温循环性能会得到进一步改善。
在本申请第一方面所述的二次电池中,优选地,所述碳酸二甲酯(DMC)在所述有机溶剂中的质量占比≤20%;更优选地,所述碳酸二甲酯(DMC)在所述有机溶剂中的质量占比≤10%。当碳酸二甲酯(DMC)的含量在所给范围内时,二次电池的高温存储性能会得到进一步改善。
在本申请第一方面所述的二次电池中,优选地,所述有机溶剂还包括碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)中的至少两种。
在本申请第一方面所述的二次电池中,当所述有机溶剂还包括碳酸乙烯酯(EC)时,优选地,所述碳酸乙烯酯(EC)在所述有机溶剂中的质量占比≤15%;更优选地,所述碳酸乙烯酯(EC)在所述有机溶剂中的质量占比≤10%。碳酸乙烯酯(EC)在所述有机溶剂中的质量占比在所给范围内,可以进一步改善电池的高温存储性能。
在本申请第一方面所述的二次电池中,当所述有机溶剂还包括碳酸甲乙酯(EMC)时,优选地,所述碳酸甲乙酯(EMC)在所述有机溶剂中的质量占比为65%~95%;更优选地,所述碳酸甲乙酯(EMC)在所述有机溶剂中的质量占比为75%~95%。碳酸甲乙酯(EMC)在所述有机溶剂中的质量占比在所给范围内时,可以进一步改善电池的高温存储性能。
在本申请第一方面所述的二次电池中,当所述有机溶剂还包括碳酸二乙酯(DEC)时,优选地,所述碳酸二乙酯(DEC)在所述有机溶剂中的质量占比≤30%;更优选地,所述碳酸二乙酯(DEC)在所述有机溶剂中的质量占比≤20%。碳酸二乙酯(DEC)在所述有机溶剂中的质量占比在所给范围内时,也可以进一步改善电池的高温存储性能。
在本申请第一方面所述的二次电池中,优选地,所述添加剂还包括氟代碳酸乙烯酯(FEC)、硫酸乙烯酯(DTD)、1,3-丙烷磺内酯(PS)、1,3-丙烯基-磺酸内酯(PST)、二氟草酸硼酸锂(LiDFOB)、二氟双草酸磷酸锂(LiDFOP)、三(三甲基甲硅烷)磷酸酯(TMSP)、三(三甲基甲硅烷)硼酸酯(TMSB)中的一种或几种。
在本申请第一方面所述的二次电池中,所述电解质盐包括LiPF 6、LiFSI中的一种或几种;优选地,所述电解质盐同时包括LiPF 6和LiFSI,且LiFSI在所述电解液中的浓度大于LiPF 6
在本申请第一方面所述的二次电池中,优选地,所述电解质盐在所述电解液中的浓度为1.05mol/L~1.4mol/L,更优选为1.1mol/L~1.3mol/L。
在本申请第一方面所述的二次电池中,优选地,所述电解液在25℃时的电导率为8mS/cm~10mS/cm,更优选为8.3mS/cm~9.0mS/cm。
在本申请第一方面所述的二次电池中,优选地,所述电解液在25℃时的粘度为3.5mPa.s-5mPa.s,更优选为4.0mPa.s-4.5mPa.s。
在本申请第一方面所述的二次电池中,所述负极集流体的种类没有特别的限制,可根据实际需求进行选择。具体地,所述负极集流体可选自金属箔,例如:铜箔。
在本申请第一方面所述的二次电池中,优选地,所述硅基材料包括单质硅、硅碳复合物、硅氧化合物、硅氮化合物、硅合金中的一种或几种;更优选地,所述硅基材料包括硅氧化合物。
在本申请第一方面所述的二次电池中,优选地,所述负极活性材料还包括碳材料,所述碳材料包括天然石墨、人造石墨、硬碳、软碳中的一种或几种;更优选地,所述碳材料包括天然石墨、人造石墨中的一种或几种。
在本申请第一方面所述的二次电池中,优选地,所述负极膜片的压实密度为1.6g/cm 3~1.8g/cm 3,更优选为1.65g/cm 3~1.75g/cm 3
在本申请第一方面所述的二次电池中,所述二次电池还包括正极极片,所述正极极片包括正极集流体以及设置于正极集流体至少一个表面上且包括正极活性材料的正极膜片。
在本申请第一方面所述的二次电池中,所述正极集流体的种类没有具体的限制,可根据实际需求进行选择。具体地,所述正极集流体可选自金属箔, 例如:铝箔。
在根据本申请第一方面所述的二次电池中,优选地,所述正极活性材料包括锂镍钴锰氧化合物、锂镍钴铝氧化物中的一种或几种。锂镍钴锰氧化合物、锂镍钴铝氧化物作为二次电池的正极活性材料具有比容量高、循环寿命长等优点,与包括硅基材料的负极活性材料配合使用,进一步改善电池的电化学性能。
在本申请第一方面所述的二次电池中,优选地,所述正极活性材料包括Li aNi bCo cM dM’ eO fA g或表面至少一部分设置有包覆层的Li aNi bCo cM dM’ eO fA g中的一种或几种,其中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,0≤e≤0.1,1≤f≤2,0≤g≤1,M选自Mn、Al中的一种或几种,M’选自Zr、Al、Zn、Cu、Cr、Mg、Fe、V、Ti、B中的一种或几种,A选自N、F、S、Cl中的一种或几种。
上述正极活性材料的包覆层可以是碳层、氧化物层、无机盐层或导电高分子层。通过对正极活性材料表面包覆改性能够进一步改善二次电池的高温循环性能。
优选地,碳层可以包括石墨、石墨烯、中间相微碳球(MCMB)、烃类化合物热解碳、硬碳及软碳中的一种或多种。
优选地,氧化物层可以包括Al的氧化物、Ti的氧化物、Mn的氧化物、Zr的氧化物、Mg的氧化物、Zn的氧化物、Ba的氧化物、Mo的氧化物及B的氧化物中的一种或几种。
优选地,无机盐层可以包括Li 2ZrO 3、LiNbO 3、Li 4Ti 5O 12、Li 2TiO 3、Li 3VO 4、LiSnO 3、Li 2SiO 3及LiAlO 2中的一种或几种。
优选地,导电高分子层可以包括聚吡咯(PPy)、聚3,4-亚乙二氧基噻吩(PEDOT)及聚酰胺(PI)中的一种或几种。
在本申请第二方面的二次电池中,进一步地,所述正极活性材料还可以包括锂镍氧化物(例如镍酸锂)、锂锰氧化物(例如尖晶石锰酸锂、层状锰酸锂)、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、钴酸锂及上述各材料的改性化合物中的一种或几种。改性化合物可以是对材料进行掺杂改性和/或包覆改性。
在本申请第一方面所述的二次电池中,所述二次电池还包括隔离膜。所 述隔离膜的种类没有特别的限制,其可以是本领域中各种适用于锂离子电池的隔离膜。具体地,所述隔离膜可选自聚乙烯膜、聚丙烯膜、聚偏氟乙烯膜以及它们的多层复合膜中的一种或几种。
在一些实施例中,二次电池可以包括外包装,用于封装正极极片、负极极片和电解液。作为一个示例,正极极片、负极极片和隔离膜可经叠片或卷绕形成叠片结构的电极组件或卷绕结构的电极组件,电极组件封装在外包装内;电解液浸润于电极组件中。二次电池中电极组件的数量可以为一个或几个,可以根据需求来调节。
在一些实施例中,二次电池的外包装可以是软包,例如袋式软包。软包的材质可以是塑料,如可包括聚丙烯PP、聚对苯二甲酸丁二醇酯PBT、聚丁二酸丁二醇酯PBS等中的一种或几种。二次电池的外包装也可以是硬壳,例如铝壳等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图1是作为一个示例的方形结构的二次电池5。
在一些实施例中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图2是作为一个示例的电池模块4。参照图2,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的壳体,多个二次电池5容纳于该容纳空间。
在一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图3和图4是作为一个示例的电池包1。参照图3和图4,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
本申请的第二方面提供一种装置,其包括本申请第一方面所述二次电 池。所述二次电池可以用作所述装置的电源,也可以作为所述装置的能量存储单元。所述装置包括但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可以根据其使用需求来选择二次电池、电池模块或电池包。
图5是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
下面结合实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
需要说明的是,在下述实施例和对比例中仅以锂离子二次电池进行说明,但本申请并不限制于此。
实施例1-18和对比例1-5的二次电池均按照下述方法制备
(1)正极极片的制备
将正极活性材料(LiNi 0.8Co 0.1Mn 0.1O 2)、粘结剂聚偏氟乙烯、导电剂乙炔黑按照重量比98:1:1进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌至体系成均一透明状,获得正极浆料;将正极浆料均匀涂覆于铝箔上;将铝箔在室温晾干后转移至烘箱干燥,然后经过冷压、分切得到正极极片。
(2)负极极片的制备
将负极活性材料氧化亚硅与人造石墨按质量比2:8混合后,再与导电剂Super P、增稠剂羧甲基纤维素钠(CMC-Na)、粘结剂丁苯橡胶(SBR)按质量比92:2:2:4进行混合,加入去离子水,在真空搅拌机作用下获得负极浆料;将负极浆料均匀涂覆在负极集流体铜箔上;将铜箔在室温晾干后转移至烘箱干燥,然后经过冷压、分切得到负极极片。
(3)电解液的制备
在含水量<10ppm的氩气气氛手套箱中,将各有机溶剂进行混合,接着将充分干燥的电解质盐溶解于有机溶剂中,然后在有机溶剂中加入添加剂1和其它添加剂,混合均匀,获得电解液。其中,其它添加剂的组成为:8%FEC+0.5%SA+0.5%TMSP。其中,各添加剂组分的含量为基于电解液的总重量计算得到的重量百分数;各有机溶剂组分的含量为基于有机溶剂的总重量计算得到的重量百分数。电解质盐的具体种类及浓度、各有机溶剂的重量比、添加剂1的具体种类以及含量如表1所示。
(4)隔离膜的制备
以聚乙烯膜作为隔离膜。
(5)二次电池的制备:
将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极片之间起到隔离的作用,然后卷绕得到电极组件;将电极组件置于外包装中,将上述制备好的电解液注入到干燥后的电池中,经过真空封装、静置、化成、整形等工序,得到二次电池。
表1实施例1-18和对比例1-5的参数
Figure PCTCN2019127983-appb-000005
Figure PCTCN2019127983-appb-000006
接下来说明二次电池的测试过程
(1)存储性能测试
在60℃下,将二次电池以0.5C恒流充电至4.25V,再恒压充电至电流为0.05C,用排水法测试此时二次电池的体积并记为V 1;之后将二次电池放入60℃的恒温箱,储存30天后取出,测试此时二次电池的体积并记为V 2
二次电池60℃存储30天后的体积膨胀率(%)=[(V 2-V 1)/V 1]×100%
(2)高温循环性能测试
在45℃下,将二次电池以1C恒流充电至4.25V,再以4.25V恒压充电至电流为0.05C,静置5min,再以1C恒流放电至2.5V,此为二次电池的首次充电/放电循环,此次的放电容量记为二次电池首次循环的放电容量,按照上述方法将二次电池进行800次循环充电/放电,得到循环800次后的放电容量。
二次电池45℃循环800次后的容量保持率(%)=(二次电池循环800次后的放电容量/二次电池首次循环的放电容量)×100%
表2实施例1-18和对比例1-5的性能测试结果
序号 60℃存储30天后的体积膨胀率% 45℃循环800次的后容量保持率/%
实施例1 18.7 87.3
实施例2 19.4 87.9
实施例3 21.5 88.6
实施例4 21.4 90.1
实施例5 17.4 86.9
实施例6 18.7 87.1
实施例7 19.5 88.1
实施例8 20.3 89.1
实施例9 18.9 89.1
实施例10 17.9 88.7
实施例11 14.8 84.9
实施例12 13.1 83.1
实施例13 17.1 86.6
实施例14 16.8 86.1
实施例15 15.3 87.9
实施例16 15.6 88.1
实施例17 15.1 90.1
实施例18 16.7 88.6
对比例1 35.1 82.3
对比例2 30.1 80.1
对比例3 46.1 78.1
对比例4 10.1 71.1
对比例5 35.1 80.6
从表2的测试结果分析可知,实施例1-18的二次电池的负极活性材料包括硅基材料,且电解液中同时含有碳酸二甲酯和式1所示的添加剂,锂离子 电池可以同时兼顾较好的高温存储性能和高温循环性能。
对比例1中的电解液不含碳酸二甲酯且不含式1添加剂,二次电池的高温存储性能和高温循环性能均较差;对比例2的电解液中含式1添加剂但不含机溶剂碳酸二甲酯,二次电池高温循环性能较差;对比例3的电解液中含碳酸二甲酯但不含式1添加剂时,锂离子的电池高温存储性能和高温循环性能均较差;对比例4中,当电解液中含有的式1添加剂含量过高时,二次电池的高温循环性能严重恶化;对比例5中,当电解液中含有的碳酸二甲酯含量过高时,二次电池的高温存储性能明显恶化。

Claims (15)

  1. 一种二次电池,包括:
    负极极片,包括负极膜片,负极膜片包括负极活性材料;
    电解液,包括电解质盐、有机溶剂以及添加剂;
    其中,
    所述负极活性材料包括硅基材料;
    所述有机溶剂包括碳酸二甲酯(DMC);
    所述添加剂包括下述式1所示的化合物中的一种或几种;
    Figure PCTCN2019127983-appb-100001
    其中,R 1选自C2~C4的亚烷基或卤代亚烷基、C2~C4的亚烯基或卤代亚烯基、C6~C18的亚芳基及其衍生物中的一种或几种。
  2. 根据权利要求1所述的二次电池,其中,所述式1所示的化合物选自下述化合物中的一种或几种:
    Figure PCTCN2019127983-appb-100002
  3. 根据权利要求1或2所述的二次电池,其中,所述式1所示的化合物在所述电解液中的质量占比≤1%;优选地,所述式1所示的化合物在所述电解液中的质量占比≤0.8%。
  4. 根据权利要求1-3任一项所述的二次电池,其中,所述碳酸二甲酯(DMC)在所述有机溶剂中的质量占比≤20%;优选地,所述碳酸二甲酯(DMC)在所述有机溶剂中的质量占比为≤10%。
  5. 根据权利要求1-4任一项所述的二次电池,其中,所述有机溶剂还包括碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)中的至少两种。
  6. 根据权利要求5所述的二次电池,其中,所述有机溶剂满足下述(1)~(3)中至少两个条件:
    (1)所述有机溶剂还包括碳酸乙烯酯(EC),所述碳酸乙烯酯(EC)在所述有机溶剂中的质量占比≤15%;优选地,所述碳酸乙烯酯(EC)在所述有机溶剂中的质量占比≤10%;
    (2)所述有机溶剂还包括碳酸甲乙酯(EMC),所述碳酸甲乙酯(EMC)在所述有机溶剂中的质量占比为65%~95%;优选地,所述碳酸甲乙酯(EMC)在所述有机溶剂中的质量占比为75%~95%;
    (3)所述有机溶剂还包括碳酸二乙酯(DEC),所述碳酸二乙酯(DEC)在所述有机溶剂中的质量占比≤30%;优选地,所述碳酸二乙酯(DEC)在所述有机溶剂中的质量占比≤20%。
  7. 根据权利要求1-6任一项所述的二次电池,其中,所述电解质盐包括LiPF 6、LiFSI中的一种或几种;优选地,所述电解质盐同时包括LiPF 6和LiFSI,且LiFSI在所述电解液中的浓度大于LiPF 6
  8. 根据权利要求1-7任一项所述的二次电池,其中,所述电解质盐在所述电解液中的浓度为1.05mol/L~1.4mol/L,优选为1.1mol/L~1.3mol/L。
  9. 根据权利要求1-8任一项所述的二次电池,其中,
    所述电解液在25℃时的电导率为8mS/cm~10mS/cm,优选为8.3mS/cm ~9mS/cm;和/或,
    所述电解液在25℃时的粘度为3.5mPa.s~5mPa.s,优选为4.0mPa.s~4.5mPa.s。
  10. 根据权利要求1-9任一项所述的二次电池,其中,所述硅基材料包括单质硅、硅碳复合物、硅氧化合物、硅氮化合物、硅合金中的一种或几种,优选地,所述硅基材料包括硅氧化合物。
  11. 根据权利要求1-10任一项所述的二次电池,其中,所述负极活性材料还包括碳材料,所述碳材料包括人造石墨、天然石墨、硬碳、软碳中的一种或几种;优选地,所述碳材料包括人造石墨、天然石墨中的一种或几种。
  12. 根据权利要求1-11任一项所述的二次电池,其中,所述负极膜片的压实密度为1.6g/cm 3~1.8g/cm 3,优选为1.65g/cm 3~1.75g/cm 3
  13. 根据权利要求1-12任一项所述的二次电池,其中,所述二次电池还包括正极极片,所述正极极片包括正极集流体以及设置于正极集流体至少一个表面上且包括正极活性材料的正极膜片,所述正极活性材料包括锂镍钴锰氧化合物、锂镍钴铝氧化物中的一种或几种;
    优选地,所述正极活性材料包括Li aNi bCo cM dM’ eO fA g或表面至少一部分设置有包覆层的Li aNi bCo cM dM’ eO fA g中的一种或几种,其中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,0≤e≤0.1,1≤f≤2,0≤g≤1,M选自Mn、Al中的一种或几种,M’选自Zr、Al、Zn、Cu、Cr、Mg、Fe、V、Ti、B中的一种或几种,A选自N、F、S、Cl中的一种或几种。
  14. 根据权利要求13所述的二次电池,其中,所述正极活性材料还包括锂镍氧化物、锂锰氧化物、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、钴酸锂及其改性化合物中的一种或几种。
  15. 一种装置,包括根据权利要求1-14任一项所述的二次电池。
PCT/CN2019/127983 2019-12-24 2019-12-24 二次电池及含有该二次电池的装置 WO2021128001A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2019/127983 WO2021128001A1 (zh) 2019-12-24 2019-12-24 二次电池及含有该二次电池的装置
KR1020227010875A KR20220054413A (ko) 2019-12-24 2019-12-24 이차 전지 및 이를 포함하는 장치
ES19957782T ES2936648T3 (es) 2019-12-24 2019-12-24 Batería secundaria y dispositivo que la contiene
EP19957782.6A EP3913718B1 (en) 2019-12-24 2019-12-24 Secondary battery and device containing same
PT199577826T PT3913718T (pt) 2019-12-24 2019-12-24 Bateria secundária e dispositivo que a contém
JP2022520578A JP7389245B2 (ja) 2019-12-24 2019-12-24 二次電池及び該二次電池を備える装置
CN201980098815.9A CN114175343A (zh) 2019-12-24 2019-12-24 二次电池及含有该二次电池的装置
US17/510,696 US20220045365A1 (en) 2019-12-24 2021-10-26 Secondary battery and device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/127983 WO2021128001A1 (zh) 2019-12-24 2019-12-24 二次电池及含有该二次电池的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/510,696 Continuation US20220045365A1 (en) 2019-12-24 2021-10-26 Secondary battery and device comprising the same

Publications (1)

Publication Number Publication Date
WO2021128001A1 true WO2021128001A1 (zh) 2021-07-01

Family

ID=76575015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127983 WO2021128001A1 (zh) 2019-12-24 2019-12-24 二次电池及含有该二次电池的装置

Country Status (8)

Country Link
US (1) US20220045365A1 (zh)
EP (1) EP3913718B1 (zh)
JP (1) JP7389245B2 (zh)
KR (1) KR20220054413A (zh)
CN (1) CN114175343A (zh)
ES (1) ES2936648T3 (zh)
PT (1) PT3913718T (zh)
WO (1) WO2021128001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725392A (zh) * 2022-04-26 2022-07-08 惠州市豪鹏科技有限公司 一种锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110798A (ja) * 2007-10-30 2009-05-21 Sony Corp 電池
CN101789520A (zh) * 2009-01-23 2010-07-28 索尼公司 电解液和二次电池
CN107146911A (zh) * 2017-04-10 2017-09-08 珠海市赛纬电子材料股份有限公司 锂离子电池、非水锂离子电池电解液和氟代磺酸酐在制备非水锂离子电池电解液中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992923B2 (ja) 2009-02-27 2012-08-08 ソニー株式会社 非水電解質二次電池
JP2012256502A (ja) 2011-06-08 2012-12-27 Sony Corp 非水電解質および非水電解質電池、ならびに非水電解質電池を用いた電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013089468A (ja) * 2011-10-18 2013-05-13 Sony Corp 非水電解質電池および非水電解質、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5935318B2 (ja) 2011-12-26 2016-06-15 ソニー株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US10343527B2 (en) * 2014-01-20 2019-07-09 Murata Manufacturing Co., Ltd. Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP6098684B2 (ja) * 2015-08-12 2017-03-22 セントラル硝子株式会社 非水電解液二次電池用電解液及びそれを用いた非水電解液二次電池
CN109417197B (zh) 2016-05-17 2021-10-12 株式会社村田制作所 二次电池、电池组、电动车辆、电力存储系统、电动工具以及电子设备
JP7068851B2 (ja) 2018-02-20 2022-05-17 三星エスディアイ株式会社 リチウムイオン二次電池
JP6718905B2 (ja) 2018-03-22 2020-07-08 太陽誘電株式会社 リチウムイオンキャパシタ
JP6989430B2 (ja) 2018-03-28 2022-01-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110798A (ja) * 2007-10-30 2009-05-21 Sony Corp 電池
CN101789520A (zh) * 2009-01-23 2010-07-28 索尼公司 电解液和二次电池
CN107146911A (zh) * 2017-04-10 2017-09-08 珠海市赛纬电子材料股份有限公司 锂离子电池、非水锂离子电池电解液和氟代磺酸酐在制备非水锂离子电池电解液中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913718A4 *

Also Published As

Publication number Publication date
EP3913718A1 (en) 2021-11-24
CN114175343A (zh) 2022-03-11
EP3913718A4 (en) 2022-03-30
EP3913718B1 (en) 2022-12-28
PT3913718T (pt) 2023-01-24
JP7389245B2 (ja) 2023-11-29
KR20220054413A (ko) 2022-05-02
ES2936648T3 (es) 2023-03-21
US20220045365A1 (en) 2022-02-10
JP2022551273A (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021023137A1 (zh) 锂离子电池及装置
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
US11777134B2 (en) Secondary battery and device including the same
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
US20230411693A1 (en) Non-aqueous electrolyte and secondary battery, battery module, battery pack and electrical device containing the same
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2023070988A1 (zh) 电化学装置和包含其的电子装置
WO2021128002A1 (zh) 二次电池及含有该二次电池的装置
WO2022198651A1 (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
WO2021127997A1 (zh) 二次电池及含有该二次电池的装置
US20220045365A1 (en) Secondary battery and device comprising the same
WO2023050832A1 (zh) 锂离子电池、电池模组、电池包及用电装置
WO2024087389A1 (zh) 二次电池及用电设备
JP7309263B2 (ja) 二次電池及び該二次電池を備える装置
WO2021023265A1 (zh) 一种电解液及其制备方法和锂离子电池
WO2022188163A1 (zh) 电解液、二次电池、电池模块、电池包和装置
WO2023044752A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2024082123A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2024040510A1 (zh) 二次电池的制备方法、二次电池及用电装置
WO2023044753A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023082869A1 (zh) 二次电池、用于制备二次电池的方法、电池模块、电池包及用电装置
WO2024020724A1 (zh) 电极浆料、电极极片及其制备方法、二次电池和用电装置
WO2021128000A1 (zh) 二次电池及含有该二次电池的装置
CN116344826A (zh) 复合导电剂、包含其的负极组合物、负极极片、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019957782

Country of ref document: EP

Effective date: 20210816

ENP Entry into the national phase

Ref document number: 20227010875

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022520578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE