WO2019172016A1 - 積層吸音材 - Google Patents
積層吸音材 Download PDFInfo
- Publication number
- WO2019172016A1 WO2019172016A1 PCT/JP2019/007271 JP2019007271W WO2019172016A1 WO 2019172016 A1 WO2019172016 A1 WO 2019172016A1 JP 2019007271 W JP2019007271 W JP 2019007271W WO 2019172016 A1 WO2019172016 A1 WO 2019172016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound absorption
- sound
- fiber layer
- layer
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
- B32B5/262—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/02—Layered products comprising a layer of synthetic resin in the form of fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/028—Net structure, e.g. spaced apart filaments bonded at the crossing points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
- B32B5/265—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
- B32B5/265—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
- B32B5/266—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
- B32B5/265—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
- B32B5/271—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer characterised by separate non-woven fabric layers that comprise chemically different strands or fibre material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4318—Fluorine series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4358—Polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/20—All layers being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0223—Vinyl resin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0223—Vinyl resin fibres
- B32B2262/023—Aromatic vinyl resin, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0223—Vinyl resin fibres
- B32B2262/0238—Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0246—Acrylic resin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0292—Polyurethane fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
Definitions
- the present invention relates to a sound absorbing material having a laminated structure in which at least two kinds of fiber layers are laminated.
- Sound absorbing material is a product that has the function of absorbing sound, and is widely used in the construction and automobile fields. It is known to use a nonwoven fabric as a material constituting the sound absorbing material.
- Patent Document 1 discloses a composite nonwoven web including submicron fibers having a median diameter of less than 1 ⁇ m and microfibers having a median diameter of at least 1 ⁇ m.
- the composite nonwoven web of Patent Document 1 is a mixture of two types of fibers having different median diameters, submicron fibers and microfibers.
- By changing the mixing ratio a gradient of the mixing ratio is formed in the thickness direction. ing.
- a microfiber stream and a submicron fiber stream can be formed separately and a submicron fiber stream can be added to the microfiber stream to form a web of different fibers mixed together. ing.
- Patent Document 2 discloses a laminated sound-absorbing nonwoven fabric that absorbs low-frequency and high-frequency sounds, and includes a resonance film and at least one other fiber material layer.
- the resonance film has a surface weight of up to 600 nm in diameter ( What is formed by a nanofiber layer having a basis weight of 0.1 to 5 g / m 2 is disclosed.
- the nanofiber layer is typically created by electrospinning, while the substrate layer is a fiber fabric having a diameter of 10 ⁇ m to 45 ⁇ m and a basis weight of 5 to 100 g / m 2 , and further layers may be laminated. Is disclosed. It is also disclosed that this laminate may be further laminated in order to reach an appropriate thickness and basis weight.
- Patent Document 3 as a laminated sound-absorbing material having a sound absorption coefficient at 2000 Hz of 0.85 or more, (1) a layer composed of nanofibers made of a thermoplastic resin having a single fiber diameter of 1 to 500 nm, and (2 ) A laminate in which a nonwoven fabric A including a layer composed of fibers having a single fiber diameter larger than that and a nonwoven fabric B having a specific basis weight and fiber diameter is laminated.
- the laminated sound-absorbing material of Patent Document 3 is a nonwoven fabric A provided with shape retention and dimensional stability by supporting a layer having ultrafine voids composed of nanofibers with a layer having a short fiber diameter larger than that. It is disclosed that (surface layer part) and a non-woven fabric B (base part) having sufficient air permeability and large basis weight are bonded to each other, and has high sound absorption and heat insulation.
- Patent Document 4 discloses a nonwoven fabric structure including nanofibers and excellent in sound absorption characteristics.
- the nonwoven fabric structure of Patent Document 4 includes a fibrous body containing nanofibers having a fiber diameter of less than 1 ⁇ m, and the thickness of the fibrous body is 10 mm or more. Further, it is disclosed that the fibrous body may be supported by a support, or may have a structure in which the fibrous body and the support are repeatedly laminated.
- the nanofibers are formed by, for example, a melt blown method.
- a nanofiber body layer having a fiber diameter of 0.5 ⁇ m and a basis weight of 350 g / m 2 is formed on a polypropylene spunlace nonwoven fabric as a support. Has been.
- nonwoven fabric laminates with various configurations have been studied as sound-absorbing materials, characterized by the use of ultrafine fibers called nanofibers and submicron fibers in combination with other fibers, and the combination and configuration of layers. It is known to exhibit excellent sound absorption characteristics. However, it exhibits excellent sound absorption performance not only in the low frequency range of 500 to 1000 Hz, the medium frequency range of 800 to 2000 Hz, but also in the high frequency range of 2000 to 5000 Hz and the ultra high frequency range of 5000 to 11000 Hz, and There is a need for a sound-absorbing material with excellent space-saving properties, but it has not been developed yet. In view of this situation, an object of the present invention is to provide a sound-absorbing material that exhibits excellent sound-absorbing properties in all regions of a low frequency region, a medium frequency region, a high frequency region, and an ultrahigh frequency region.
- the laminated sound-absorbing material including the base material layer and the fiber layer includes at least two fiber layers having a specific range of air permeability (average flow pore size), and has a specific range of porosity and density therebetween.
- a laminated sound-absorbing material including a base material layer, with two fiber layers having a specific arrangement has been found to exhibit excellent sound-absorbing properties in a low-frequency region to an ultra-high-frequency region, and is excellent in space saving.
- the present invention has been completed.
- the present invention has the following configuration.
- a laminated sound-absorbing material including at least a first fiber layer, a second fiber layer, and at least one base material layer present between the first fiber layer and the second fiber layer.
- the first fiber layer has an average flow pore size of 0.5 to 10 ⁇ m and a basis weight of 0.1 to 200 g / m 2 .
- the second fiber layer has an average flow pore size of 0.5 to 10 ⁇ m and is equal to or less than the average flow pore size of the first fiber layer, and has a basis weight of 0.1 to 200 g / m 2 .
- the base material layer has an air permeability of 40 cc / cm 2 ⁇ s or more according to the Frazier method, and has a basis weight of 1 to 700 g / m 2 .
- a laminated sound-absorbing material wherein the first fiber layer is disposed on the sound incident side, and the second fiber layer is disposed on the sound transmission side.
- the base material layer includes at least one type of fiber selected from the group consisting of polyethylene phthalate, polybutylene terephthalate, polyethylene, and polypropylene, or a fiber in which at least two types are combined.
- the fiber layer and the second fiber layer are independently from the group consisting of polyvinylidene fluoride, nylon 6,6, polyacrylonitrile, polystyrene, polyurethane, polysulfone, polyvinyl alcohol, polyethylene phthalate, polybutylene terephthalate, polyethylene, and polypropylene.
- the laminated sound-absorbing material according to [1] or [2], including at least one selected fiber.
- the average sound absorption coefficient ( ⁇ ) is calculated by measuring the sound absorption coefficient from 900 Hz to 1120 Hz, and the average sound absorption coefficient ( ⁇ ) satisfies the following formula.
- the average sound absorption coefficient ( ⁇ ) of the sound absorption coefficient is calculated by measuring the sound absorption coefficient from 2800 Hz to 3550 Hz, and the value of the average sound absorption coefficient ( ⁇ ) satisfies the following formula:
- the average sound absorption coefficient ( ⁇ ) of the sound absorption coefficient is calculated by measuring the sound absorption coefficient from 4500 Hz to 5600 Hz, and the value of the average sound absorption coefficient ( ⁇ ) satisfies the following formula:
- the average sound absorption coefficient ( ⁇ ) of the sound absorption coefficient is calculated by measuring the sound absorption coefficient at a frequency of 9000 Hz to 11200 Hz, and the value of the average sound absorption coefficient ( ⁇ ) satisfies the following formula:
- the laminated sound-absorbing material of the present invention has a sound absorption characteristic peak higher than that of the conventional sound-absorbing material, and is particularly excellent in sound-absorbing performance in a region of 500 Hz or higher.
- the range of wind noise is about 1,000 to 3,000 Hz.
- the laminated sound absorbing material of the present invention is useful for countermeasures against such noise.
- the laminated sound absorbing material of the present invention is lighter and thinner than a sound absorbing material made of a porous material, glass fiber, or the like, so that the weight of the member can be reduced and the space can be saved.
- the point is particularly useful as a sound absorbing material for the automobile field.
- the laminated sound-absorbing material of the present invention has a specific range of average flow pore diameter or air permeability, and includes a base material layer and a fiber layer, which are weights of the specific range. Two or more fiber layers are included in the laminated sound-absorbing material, and a base material layer is interposed between the fiber layers. Both the average flow pore size and the air permeability are measures indicating the degree of density of the layer.
- the laminated sound-absorbing material of the present invention generally has a structure in which a dense fiber layer sandwiches a sparse base material layer, and the fiber layers have a specific density (average flow pore diameter) and an average flow rate. It has a structure arranged so as to satisfy the relationship of pore diameter (incident side) ⁇ average flow pore diameter (transmission side).
- the laminated sound-absorbing material of the present invention includes at least a first fiber layer and a second fiber layer, and the fiber layer may further include two to six layers.
- Each of the first fiber layer and the second fiber layer may be composed of one fiber structure, or may be a form in which a plurality of fiber structures are stacked in one fiber layer.
- at least one base material layer is interposed between the first fiber layer and the second fiber layer.
- a base material layer may consist of one base material, and the form formed by laminating a plurality of base material layers in one base material layer may be sufficient.
- the laminated sound absorbing material includes two fiber layers of the first fiber layer and the second fiber layer, the laminated sound absorbing material has a configuration of first fiber layer / base material layer / second fiber layer. .
- the laminated sound-absorbing material is a three-layered structure in which a third fiber layer is added in addition to the first fiber layer and the second fiber layer
- the laminated sound-absorbing material has the first fiber layer / base material layer / first layer.
- 3 fiber layer / base material layer / second fiber layer, and the average flow pore diameter of the third fiber layer is the average flow pore diameter of the first fiber layer ⁇ the third average flow pore diameter It is preferable that ⁇ second average flow pore diameter.
- the fiber layer and the base material layer included in the laminated sound-absorbing material may contain a configuration other than the fiber layer and the base material layer as long as the effects of the present invention are not impaired.
- Further layers for example, a protective layer, which may be one layer or two or more layers), a printing layer, a foam, a foil, a mesh, a woven fabric, and the like may be included.
- an adhesive layer, a clip, a suture thread and the like for connecting the respective layers may be included.
- the layers of the laminated sound absorbing material may be physically and / or chemically bonded or not bonded unless the air permeability is significantly reduced.
- a part of the plurality of layers of the laminated sound-absorbing material may be bonded and a part may not be bonded.
- Adhesion is performed, for example, by heating in the formation process of the fiber layer or as a subsequent process, melting a part of the fibers constituting the fiber layer, and fusing the fiber layer to the base material layer.
- the layers may be adhered. It is also preferable to bond the layers by applying an adhesive between the base material layers or the fiber layers.
- the thickness of the laminated sound-absorbing material is not particularly limited as long as the effects of the present invention can be obtained.
- it can be 1 to 50 mm, preferably 3 to 30 mm, and space saving is 3 to 20 mm. From the viewpoint of sex.
- the thickness of the laminated sound-absorbing material typically means the total thickness of the fiber layer and the base material layer. When other layers such as a protective layer are included, the other layers are It means the thickness including. When an exterior body such as a cartridge or a lid is attached, the thickness of that portion is not included.
- the average flow pore size of the first fiber layer and the second fiber layer used in the laminated sound absorbing material is not particularly limited as long as the desired sound absorbing performance is obtained.
- a range of 0.5 to 10 ⁇ m can be used, and a range of 0.5 to 10 ⁇ m can be used as the second fiber layer, and the average flow pore size of the second fiber layer is equal to that of the first fiber layer.
- the average flow pore diameter of the second fiber layer is smaller than the average flow pore diameter of the first fiber layer.
- the laminated sound-absorbing material of the present invention reduces the reflection of sound by controlling the average flow pore diameters of the fiber layers arranged on both sides of the base material layer, and further has a layer structure with excellent sound-absorbing properties. By adopting, high sound absorption is obtained.
- the laminated sound-absorbing material has a laminated structure in which a base material layer is sandwiched between a first fiber layer and a second fiber layer denser than the first fiber layer.
- the distance between the first fiber layer and the second fiber layer is preferably 2.5 to 30 mm. More preferably, it is ⁇ 15 mm. If the interlayer distance is 2.5 mm or more, the sound absorption performance from the low frequency region to the ultra-high frequency region will be good, and if the interlayer distance is 30 mm or less, the thickness as the sound absorbing material will not be too large, Suitable for space saving.
- the air permeability of the base material layer is not particularly limited as long as the desired sound absorption performance can be obtained.
- the air permeability according to the Frazier method is 40 cc / cm 2 ⁇ s or more, and 40 to 250 cc / cm 2 ⁇ s is preferable, and 40 to 150 cc / cm 2 ⁇ s is more preferable.
- the laminated sound-absorbing material of the present invention has a high air-absorbing property, reduces reflection of sound, and further adopts a layer structure excellent in sound-absorbing property, thereby obtaining a high sound-absorbing property.
- the air permeability can be measured by a known method, for example, the Gurley tester method or the Frazier tester method.
- the first fiber layer and the second fiber layer included in the laminated sound-absorbing material of the present invention have a porosity of 85% to 96% and a density of 0.04 g / cm 3 to 0.5 g / cm. It is preferable that it is 3 or less. If the porosity is 85% or more, it is preferable in that the rigidity of the material serving as the outer layer is suppressed, so that the increase of reflected waves can be suppressed and sound waves can be guided into the sound absorbing material.
- the porosity is 96% or less
- the sound inside the sound absorbing material is repeatedly reflected by the density difference between the outer layer and the inner layer, and the sound absorbing material.
- the internal sound can be attenuated, which is preferable.
- the density is 0.04 g / cm 3 or more, it is preferable in that it has rigidity capable of maintaining a constant interlayer distance, and if it is 0.5 g / cm 3 or less, the weight can be maintained as a sound absorbing material. preferable.
- the fibers constituting the first fiber layer and the second fiber layer are preferably fibers having a fiber diameter of less than 10 ⁇ m.
- a fiber diameter of less than 10 ⁇ m means that the average fiber diameter is within this numerical range. If the fiber diameter is less than 10 ⁇ m, a dense and thin film having a low porosity and a high density can be obtained, and if it is less than 1 ⁇ m, a dense and thin film having a low porosity and a high density can be obtained. Further preferred.
- the fiber diameter can be measured by a known method. For example, the fiber diameter is a value obtained by measurement or calculation from an enlarged photograph of the fiber layer surface, and a detailed measurement method will be described in detail in Examples.
- the first fiber layer and the second fiber layer are preferably nonwoven fabrics, and the average flow pore size is preferably less than 10 ⁇ m. If the average flow pore size is less than 10 ⁇ m, the flow resistance between the fiber layer and the base material layer can be controlled, and the sound inside the sound absorbing material is repeatedly reflected, so the sound inside the sound absorbing material is attenuated. It can be good.
- the first fiber layer and the second fiber layer included in the laminated sound-absorbing material of the present invention may be composed of one fiber layer, and a plurality of fiber layers in one fiber layer.
- the fiber aggregates of the fiber aggregates may be combined to form a single fiber layer.
- a fiber assembly means the fiber assembly used as one continuous body.
- the average flow pore diameter of the first fiber layer is 0.5 to 10 ⁇ m, preferably 0.9 to 10 ⁇ m.
- the basis weight of the first fiber layer is 0.1 to 200 g / m 2 , and preferably 0.3 to 100 g / m 2 . If the basis weight is 0.1 g / m 2 or more, a resonant space can be formed by forming a partition as a dense film, and sound absorption can be improved. If it is less than 200 g / m 2 , the reflection of sound can be suppressed and the sound absorption rate can be increased without increasing the rigidity of the film.
- the average flow pore size of the first fiber layer is greater than or equal to the average flow pore size of the second fiber layer.
- the average flow pore diameter of the second fiber layer is 0.5 to 10 ⁇ m, preferably 0.5 to 5.0 ⁇ m, particularly preferably 0.5 to 3.0 ⁇ m.
- the basis weight of the second fiber layer is 0.1 to 200 g / m 2 , and preferably 0.3 to 100 g / m 2 . If the basis weight is 0.1 g / m 2 or more, it is possible to form a resonance space by forming a partition wall as a fine film, improve sound absorption, and if it is less than 200 g / m 2. The reflection of sound can be suppressed and the sound absorption rate can be increased without increasing the rigidity of the film.
- the first fiber layer is disposed on the sound incident side, and the second fiber layer is disposed on the sound transmission side with the base material layer interposed therebetween.
- the second fiber layer is a denser layer than the first fiber layer.
- the fiber structure constituting the first fiber layer and the second fiber layer is preferably a non-woven fabric, and the first fiber layer and the second fiber layer have an average flow pore size and a basis weight within the above ranges.
- it is preferably a melt blown nonwoven fabric, a nonwoven fabric formed by an electrospinning method, or the like. According to the electrospinning method or the melt blown method, ultrafine fibers can be efficiently laminated on a substrate, and a layer having a desired range of porosity and density can be obtained. Details of the electrospinning method will be described in detail in the manufacturing method.
- the raw material resin for the fibers constituting the first fiber layer and the second fiber layer is not particularly limited as long as the effects of the invention can be obtained.
- nylons (amide resins) such as nylon 6, nylon 6, 6, nylon 1, 2, etc.
- polyphenylene sulfide polyvinyl alcohol, polystyrene, polysulfone
- liquid crystal polymers polyethylene-vinyl acetate copolymer
- examples thereof include a compound, polyacrylonitrile, polyvinylidene fluoride, and polyvinylidene fluoride-hexafluor
- polystyrene resin examples include polyethylene and polypropylene.
- polyethylene examples include low density polyethylene (LDPE), high density polyethylene (HDPE), and linear low density polyethylene (LLDPE).
- polypropylene examples include propylene homopolymers and propylene and other single units.
- a copolymer, a copolymerized polypropylene obtained by polymerizing ethylene, butene and the like can be exemplified.
- the fiber assembly preferably contains one kind of the above-mentioned resins, and may contain two or more kinds.
- the first fiber layer and the second fiber layer are nonwoven fabrics formed by electrospinning, among them, polyvinylidene fluoride, nylon 6,6, polyacrylonitrile, polystyrene, polyurethane, polysulfone, and polyvinyl alcohol are included.
- the electrospinning method is more preferable from the viewpoint of being soluble in various solvents.
- a polypropylene is preferable among the above.
- the fiber layer preferably contains one kind of the above-mentioned resins, and may contain two or more kinds.
- the fiber may contain various additives other than the resin.
- additives that can be added to the resin include fillers, stabilizers, plasticizers, adhesives, adhesion promoters (eg, silanes and titanates), silica, glass, clay, talc, pigments, colorants, Antioxidants, fluorescent brighteners, antibacterial agents, surfactants, flame retardants, and fluorinated polymers.
- One or more of the above additives may be used to reduce the weight and / or cost of the resulting fibers and layers, adjust the viscosity, or modify the thermal properties of the fibers.
- various physical properties derived from the properties of the additive may be imparted, including electrical properties, optical properties, density properties, liquid barrier or tack properties.
- the base material layer in the laminated sound-absorbing material has a main sound-absorbing property and also has a function of supporting the fiber layer and maintaining the shape of the entire sound-absorbing material.
- the laminated sound-absorbing material of the present invention has a form in which a base material layer having a high porosity and a low density is sandwiched between the first fiber layer and the second fiber layer, and the average on the sound source side (incident side) By controlling the flow pore diameter, sound can be introduced into the laminated sound absorbing material, and sound can be absorbed by repeating reflection inside the sound absorbing material.
- the base material layer preferably has a feature that the porosity is high and the density is low, while it has rigidity capable of supporting the fiber layer and maintaining a constant interlayer distance.
- the base material layer preferably has a porosity of 93% or more and less than 100% and a density of 0.008 to 0.05 g / cm 3 .
- the porosity is 95% or more
- the sound inside the sound absorbing material is repeatedly reflected due to the difference in density between the outer layer and the inner layer. Sound absorption is improved in that the sound inside the material can be attenuated.
- a fiber layer can be supported and the form of a laminated sound-absorbing material can be hold
- the fiber layer is supported as a sound absorbing material, and preferably has a rigidity that can maintain a constant interlayer distance, and if it is 0.05 g / m 2 or less, the sound absorbing material. It is preferable in that the weight can be maintained.
- the base material layer may be composed of a single base material layer, or may be formed by stacking a plurality of base material layers.
- the material constituting the base material layer is not particularly limited as long as the fiber layer can be laminated on at least one surface thereof.
- Nonwoven fabric, glass fiber, paper, woven fabric, foam (foam layer), mesh, etc. Can be used. In particular, at least one of a nonwoven fabric and a woven fabric is preferable, and a nonwoven fabric is more preferable.
- the base material contained in the laminated sound absorbing material may be one type or two or more types.
- the type of nonwoven fabric can be selected from melt blown nonwoven fabric, spunlace nonwoven fabric, spunbond nonwoven fabric, through-air nonwoven fabric, thermal bond nonwoven fabric, needle punched nonwoven fabric, etc., depending on the desired physical properties and functions. it can.
- thermoplastic resin As a resin constituting the fibers of the nonwoven fabric of the base material layer, a thermoplastic resin can be used, and examples thereof include polyester resins such as polyolefin resins and polyethylene terephthalate, and polyamide resins.
- the polyolefin resin include homopolymers such as ethylene, propylene, butene-1, or 4-methylpentene-1, and other ⁇ -olefins such as ethylene, propylene, butene-1, pentene-1, A random or block copolymer with one or more of hexene-1 and 4-methylpentene-1, or a combination of these, or a mixture thereof.
- Nylon 4 nylon 6, nylon 7, nylon 1,1, nylon 1,2, nylon 6,6, nylon 6,10, polymetaxylidene adipamide, polyparaxylidene decanamide, poly Examples thereof include biscyclohexylmethanedecanamide or a copolyamide thereof.
- the polyester resin include polyethylene terephthalate, polytetramethylene terephthalate, polybutyl terephthalate, polyethyleneoxybenzoate, poly (1,4-dimethylcyclohexane terephthalate), and copolymers thereof.
- polyethylene terephthalate polybutylene terephthalate
- polyethylene and polypropylene from the viewpoint of high versatility and heat fusion.
- the same resin can be used when the base material layer is a woven fabric or a mesh.
- a fiber constituting the nonwoven fabric of the base material layer a fiber composed of a single component can be used, but considering the effect of fusion at the intersection of the fibers, a composite component of a low melting point resin and a high melting point resin It is preferable to use a composite fiber composed of two or more components having different melting points. Examples of the composite form include a sheath core type, an eccentric sheath core type, and a parallel type. Moreover, it is also preferable to use a mixed fiber of two or more components having different melting points as the fiber constituting the nonwoven fabric of the base material layer.
- the mixed fiber means a fiber in which fibers made of a high melting point resin and fibers made of a low melting point resin exist independently and are mixed.
- the average fiber diameter of the fibers constituting the nonwoven fabric of the base material layer is not particularly limited, but those made of fibers having an average fiber diameter of 10 ⁇ m to 1 mm can be used. If the average fiber diameter is 10 ⁇ m or more, the flow resistance due to the density difference between the fiber layer and the base material layer can be controlled, and if it is 1 mm or less, versatility is not lost and is easily available. Become.
- the fiber diameter is more preferably 10 to 100 ⁇ m.
- the measurement of the fiber diameter can be performed by the same method as the measurement of the fiber diameter of the fiber layer.
- the base material layer is interposed between the first fiber layer and the second fiber layer. Further, in addition to being interposed between the first fiber layer and the second fiber layer, the laminated sound-absorbing material may be included as a layer located on the outermost surface.
- a base material layer may comprise a base material layer only by 1 layer, and it is also preferable that 2 or more layers are continuously arrange
- Air permeability of the substrate layer is at 40cc / cm 2 ⁇ s or more, preferably 40 ⁇ 250cc / cm 2 ⁇ s , more preferably 40 ⁇ 150cc / cm 2 ⁇ s .
- the laminated sound-absorbing material of the present invention reduces sound reflection due to the high breathability of the base material layer, and further obtains high sound-absorbing properties by adopting a layer structure excellent in sound-absorbing property. It is believed that.
- the basis weight of the base material layer is 1 to 700 g / m 2 , and preferably 15 to 500 g / m 2 . If the basis weight of the base material layer is 1 g / m 2 or more, the strength necessary for the sound absorbing material can be obtained.
- the base material layer preferably has a thickness of 2.5 mm or more.
- the upper limit of the thickness of the base material layer is not particularly limited, but the thickness range is preferably 2.5 to 25 mm, more preferably 3 to 20 mm from the viewpoint of space saving.
- the thickness per material such as the nonwoven fabric constituting the base material layer can be, for example, 2.5 to 15 mm, and more preferably 3 to 10 mm. If the thickness per substrate is 2.5 m or more, wrinkles are not generated, handling is easy, and productivity is good. Moreover, if the thickness of a base material layer is 15 mm or less, there is no possibility that space-saving property will be prevented.
- various additives such as a colorant, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizer, a nucleating agent, a lubricant, an antibacterial agent are used within the range not impeding the effects of the present invention.
- Agents, flame retardants, plasticizers and other thermoplastic resins may be added.
- the surface may be processed with various finishing agents, and functions, such as water repellency, antistatic property, surface smoothness, and abrasion resistance, may be provided by this.
- the laminated sound-absorbing material of the present invention is characterized by excellent sound absorption in a low frequency region (a frequency region of 1000 Hz), a medium frequency region (3000 Hz), a high frequency region (5000 Hz), and an ultrahigh frequency region (10000 Hz).
- the laminated sound-absorbing material of the present invention has a structure in which a low-density base material layer is sandwiched between fiber layers having controlled average flow pore sizes. It is considered that a closed space between layers is created, and reflection is repeatedly generated in the closed space, so that sound absorption is highly efficient.
- the first fiber layer is transmitted while preventing reflection of sound, and the sound is reflected by the second fiber layer. Since it becomes possible to absorb more efficiently by the material layer, it is considered that a sound absorbing material having a small thickness and a high sound absorbing property can be obtained.
- the sound absorption evaluation method is described in detail in Examples.
- the production method of the laminated sound-absorbing material is not particularly limited.
- a fiber laminated body consists of a protective layer and a fiber layer, it can laminate
- a nonwoven fabric When using a nonwoven fabric as a base material layer, a nonwoven fabric may be manufactured and used by a well-known method, and a commercially available nonwoven fabric can also be selected and used.
- the step of forming the fiber layer on the base material layer or the protective layer preferably uses an electrospinning method or a melt blow method.
- the electrospinning method is a method in which a spinning solution is discharged and an electric field is applied to fiberize the discharged spinning solution to obtain fibers on a collector.
- a method of spinning by spinning the spinning solution from the nozzle and applying an electric field a method of spinning by spinning the spinning solution and applying an electric field, and spinning by directing the spinning solution to the surface of a cylindrical electrode and applying an electric field.
- the nonwoven fabric etc. used as a base material layer (or protective layer) can be inserted on a collector, and a fiber can be integrated
- the spinning solution is not particularly limited as long as it has spinnability, but a solution in which a resin is dispersed in a solvent, a solution in which a resin is dissolved in a solvent, a solution in which a resin is melted by heat or laser irradiation, and the like. Can be used.
- a surfactant may be further added to the spinning solution.
- the surfactant include an anionic surfactant such as sodium dodecyl sulfate, a cationic surfactant such as tetrabutylammonium bromide, and a nonionic surfactant such as polyoxyethylene sorbitamon monolaurate.
- the concentration of the surfactant is preferably in the range of 5% by weight or less with respect to the spinning solution. If it is 5 weight% or less, since the improvement of an effect commensurate with use is obtained, it is preferable.
- components other than those described above may be included as components of the spinning solution as long as the effects of the present invention are not significantly impaired.
- the melt-blowing method is a method of forming a nonwoven fabric by extruding a resin that becomes a fiber layer on a base material layer from a nozzle in a molten state and spraying it with heated compressed air.
- two extruders having a screw, a heating element and a gear pump, a spinneret for blending fibers, a compressed air generator and an air heater, a collecting conveyor equipped with a polyester net, and a nonwoven fabric manufacturing apparatus comprising a winder Can be used to produce a nonwoven fabric.
- the basis weight can be arbitrarily set by adjusting the speed of the conveyor that conveys the base material layer.
- the resin used for spinning is not particularly limited as long as it has thermoplasticity and has spinnability.
- the method of stacking and integrating a plurality of the fiber laminates obtained as described above is not particularly limited, and may be performed without performing bonding, and various bonding methods, that is, heating is performed.
- Thermocompression bonding using a flat roll or an embossing roll, adhesion using a hot melt agent or chemical adhesive, thermal adhesion using circulating hot air or radiant heat, and the like can also be employed. From the viewpoint of suppressing deterioration of physical properties of the fiber layer, heat treatment with circulating hot air or radiant heat is particularly preferable.
- the fiber layer may be melted to form a film, or damage may occur such as tearing around the embossing point, which may make stable production difficult. In addition, performance deterioration such as a decrease in sound absorption characteristics tends to occur. Moreover, in the case of adhesion
- ⁇ Average fiber diameter> The fiber structure (nonwoven fabric) was observed using a scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation, and the diameter of 50 fibers was measured using image analysis software. The average value of the fiber diameters of 50 fibers was defined as the average fiber diameter.
- the sound absorption coefficient is measured according to ASTM E 1050 using a normal incidence sound absorption coefficient measuring device “WinZacMTX manufactured by Nippon Acoustic Engineering Co., Ltd.”
- the normal incident sound absorption coefficient was measured when a plane sound wave was perpendicularly incident on a test piece at a frequency of 500 to 5000 Hz.
- ⁇ Sound absorption in low frequency range was calculated by the following (Equation 1), where f (x) was a curve obtained by measuring the sound absorption coefficient at frequencies from 900 Hz to 1120 Hz at 56 points (3.9 Hz intervals).
- the average sound absorption coefficient ( ⁇ ) indicates sound absorption performance in the frequency range of 900 to 1120 Hz. If the numerical value is high, it is determined that sound absorption is high. When ⁇ was 0.22 or more, the sound absorption in the low frequency region was evaluated as good, and when it was less than 0.22, the sound absorption was evaluated as poor.
- the average sound absorption coefficient ( ⁇ ) was calculated by the following (Equation 2), where f (x) was a curve obtained by measuring the sound absorption coefficient at frequencies of 2800 Hz to 3550 Hz at 190 points (3.9 Hz intervals).
- the average sound absorption coefficient ( ⁇ ) indicates sound absorption performance in the frequency range of 2800 to 3550 Hz. If the numerical value is high, it is determined that sound absorption is high. When ⁇ was 0.60 or more, the sound absorption in the middle frequency region was evaluated as good, and when it was less than 0.60, the sound absorption was evaluated as poor.
- the average sound absorption coefficient ( ⁇ ) was calculated by the following (Equation 3), where f (x) was a curve obtained by measuring the sound absorption coefficient at frequencies of 4500 Hz to 5600 Hz at 282 points (3.9 Hz intervals).
- the average sound absorption coefficient ( ⁇ ) indicates sound absorption performance in the frequency range of 4500 to 5600 Hz. If the numerical value is high, it is determined that sound absorption is high. When ⁇ was 0.90 or more, the sound absorption in the high frequency region was evaluated as good, and when it was less than 0.90, the sound absorption was evaluated as poor.
- the average sound absorption coefficient ( ⁇ ) was calculated by the following (Equation 4), where f (x) is a curve obtained by measuring the sound absorption coefficient from 9000 Hz to 11200 Hz at 564 points (3.9 Hz intervals).
- the average sound absorption coefficient ( ⁇ ) indicates sound absorption performance in the frequency range of 9000 to 11200 Hz. If the numerical value is high, it is determined that sound absorption is high. When ⁇ was 0.85 or more, the sound absorption in the high frequency region was evaluated as good, and when it was less than 0.85, the sound absorption was evaluated as poor.
- a card method through-air nonwoven fabric having a basis weight of 200 g / m 2 , a thickness of 5 mm, and a width of 1000 mm was produced.
- the card method through-air non-woven fabric was pulverized to about 6 mm with a uniaxial pulverizer (ES3280) manufactured by Shoken Co., Ltd.
- the pulverized nonwoven fabric was heated at a set temperature of 142 ° C.
- a base material layer P having a basis weight of 250 g / m 2 , an air permeability of 95 cc / cm 2 ⁇ s, and a thickness of 5 mm, a basis weight of 373 g / m 2 , and aeration.
- a base material layer N having a thickness of 10 cm / cm 2 / s was obtained.
- a commercially available carded through-air nonwoven fabric made of polyethylene terephthalate (weight per unit area 18 g / m 2 , thickness 60 ⁇ m) was prepared.
- Fiber layer A DIC Bayer Polymer polyurethane (grade name: T1190) was dissolved in N, N-dimethylformamide and acetone co-solvent (60/40 (w / w)) at a concentration of 15% by mass to prepare an electrospinning solution.
- a protective layer was prepared, and the polyurethane solution was subjected to electrospinning thereon to produce a fiber laminate composed of two layers of a protective layer and polyurethane ultrafine fibers.
- the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.5 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
- the basis weight of the layer was 0.5 g / m 2
- the average fiber diameter was 470 nm
- the melting temperature was 175 ° C. This was designated as fiber layer A.
- the average flow pore size was evaluated, it was 8.9 ⁇ m.
- Fiber layer B Kynar (trade name) 3120 which is polyvinylidene fluoride-hexafluoropropylene (hereinafter abbreviated as “PVDF-HFP”) manufactured by Arkema was used as a co-solvent of N, N-dimethylacetamide and acetone (60/40 (w / W)) was dissolved at a concentration of 15% by mass to prepare an electrospinning solution, and 0.01% by mass was added as a conductive aid.
- a protective layer was prepared, and the PVDF-HFP solution was subjected to electrospinning thereon to prepare a fiber laminate composed of two layers of a protective layer and PVDF-HFP ultrafine fibers.
- the electrospinning conditions were as follows: a 24G needle was used, the single-hole solution supply rate was 3.0 mL / h, the applied voltage was 35 kV, and the spinning distance was 17.5 cm.
- the layer basis weight was 3.0 g / m 2 , the average fiber diameter was 80 nm, and the melting temperature was 168 ° C. This was designated as a fiber layer B. When the average flow pore diameter was evaluated, it was 0.7 ⁇ m.
- Fiber layer C Kynar (trade name) 3120 which is polyvinylidene fluoride-hexafluoropropylene (hereinafter abbreviated as “PVDF-HFP”) manufactured by Arkema was used as a co-solvent of N, N-dimethylacetamide and acetone (60/40 (w / W)) was dissolved at a concentration of 15% by mass to prepare an electrospinning solution.
- a protective layer was prepared, and the PVDF-HFP solution was subjected to electrospinning thereon to prepare a fiber laminate composed of two layers of a protective layer and PVDF-HFP ultrafine fibers.
- the electrospinning conditions were as follows: a 24G needle was used, the single-hole solution supply rate was 3.0 mL / h, the applied voltage was 35 kV, and the spinning distance was 17.5 cm.
- the layer basis weight was 1 g / m 2 and the average fiber diameter was 200 nm. This was designated as a fiber layer C. When the average flow pore size was evaluated, it was 2.4 ⁇ m.
- Fiber layer D Kynar (trade name) 3120 which is polyvinylidene fluoride-hexafluoropropylene (hereinafter abbreviated as “PVDF-HFP”) manufactured by Arkema was used as a co-solvent of N, N-dimethylacetamide and acetone (60/40 (w / W)) was dissolved at a concentration of 20% by mass to prepare an electrospinning solution.
- a protective layer was prepared, and the PVDF-HFP solution was subjected to electrospinning thereon to prepare a fiber laminate composed of two layers of a protective layer and PVDF-HFP ultrafine fibers.
- the electrospinning conditions were as follows: a 24G needle was used, the single-hole solution supply rate was 3.0 mL / h, the applied voltage was 35 kV, and the spinning distance was 17.5 cm.
- the layer basis weight was 2 g / m 2 and the average fiber diameter was 400 nm. This was designated as a fiber layer D. When the average flow pore size was evaluated, it was 2.2 ⁇ m.
- Fiber layer E Kynar (trade name) 3120 which is polyvinylidene fluoride-hexafluoropropylene (hereinafter abbreviated as “PVDF-HFP”) manufactured by Arkema was used as a co-solvent of N, N-dimethylacetamide and acetone (60/40 (w / W)) was dissolved at a concentration of 15% by mass to prepare an electrospinning solution.
- a protective layer was prepared, and the PVDF-HFP solution was subjected to electrospinning thereon to prepare a fiber laminate composed of two layers of a protective layer and PVDF-HFP ultrafine fibers.
- the electrospinning conditions were as follows: a 24G needle was used, the single-hole solution supply rate was 3.0 mL / h, the applied voltage was 35 kV, and the spinning distance was 17.5 cm.
- the layer basis weight was 2.2 g / m 2 and the average fiber diameter was 200 nm. This was designated as a fiber layer E. When the average flow pore size was evaluated, it was 1.5 ⁇ m.
- Fiber layer F DIC Bayer Polymer polyurethane (grade name: T1190) was dissolved in N, N-dimethylformamide and acetone co-solvent (60/40 (w / w)) at a concentration of 12.5% by mass and electrospun. A solution was prepared. A protective layer was prepared, and the polyurethane solution was subjected to electrospinning thereon to produce a fiber laminate composed of two layers of a protective layer and polyurethane ultrafine fibers.
- the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
- the basis weight of the layer was 0.5 g / m 2 and the average fiber diameter was 260 nm. This was designated as a fiber layer F.
- the average flow pore size was evaluated, it was 2.8 ⁇ m.
- Fiber layer G DIC Bayer Polymer polyurethane (grade name: T1190) was dissolved in N, N-dimethylformamide and acetone co-solvent (60/40 (w / w)) at a concentration of 12.5% by mass and electrospun. A solution was prepared. A protective layer was prepared, and the polyurethane solution was subjected to electrospinning thereon to produce a fiber laminate composed of two layers of a protective layer and polyurethane ultrafine fibers.
- the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
- the basis weight of the layer was 3 g / m 2 and the average fiber diameter was 270 nm. This was designated as a fiber layer G.
- the average flow pore size was evaluated, it was 0.9 ⁇ m.
- Fiber layer H DIC Bayer Polymer polyurethane (grade name: T1190) was dissolved in a co-solvent of N, N-dimethylformamide and acetone (60/40 (w / w)) at a concentration of 10% by mass to prepare an electrospinning solution.
- a protective layer was prepared, and the polyurethane solution was subjected to electrospinning thereon to produce a fiber laminate composed of two layers of a protective layer and polyurethane ultrafine fibers.
- the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 45 kV, and a spinning distance of 20 cm.
- the fabric weight of the layer was 3 g / m ⁇ 2 >, and the average fiber diameter was 90 nm. This was designated as a fiber layer H.
- the average flow pore diameter was evaluated, it was 0.8 ⁇ m.
- Fiber layer I DIC Bayer Polymer polyurethane (grade name: T1190) was dissolved in N, N-dimethylformamide and acetone co-solvent (60/40 (w / w)) at a concentration of 12.5% by mass and electrospun.
- a solution was prepared.
- a protective layer was prepared, and the polyurethane solution was subjected to electrospinning thereon to produce a fiber laminate composed of two layers of a protective layer and polyurethane ultrafine fibers.
- the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
- the basis weight of the layer was 2 g / m 2 and the average fiber diameter was 270 nm. This was designated as a fiber layer I.
- the average flow pore diameter was evaluated, it was 1.0 ⁇ m.
- Fiber layer J For the formation of the fiber layer, two extruders having a screw (50 mm diameter), a heating element and a gear pump, a spinneret for blending fibers (hole diameter 0.3 mm, holes through which resin is alternately discharged from two extruders)
- a non-woven fabric manufacturing apparatus including an effective width of 500 mm in which several 501 holes are arranged in a line, a compressed air generator and an air heater, a collection conveyor provided with a polyester net, and a winder was used.
- the two types of polypropylene are charged into the extruder of the machine, the extruder is heated and melted at 240 ° C., and the mass ratio of the gear pump is set to 50/50, and 0.3 g / min per single hole from the spinneret.
- the molten resin was discharged at a spinning speed of.
- the discharged fiber was sprayed onto the collection conveyor at a distance of 60 cm from the spinneret by compressed air of 98 kPa (gauge pressure) heated to 400 ° C. to form a fiber layer.
- the basis weight was set to 80 g / m 2 by adjusting the speed of the collecting conveyor.
- the average fiber diameter was 1.3 ⁇ m, and this was designated as fiber layer J. When the average flow pore size was evaluated, it was 9.4 ⁇ m.
- Fiber layer L For the formation of the fiber layer, two extruders having a screw (50 mm diameter), a heating element and a gear pump, a spinneret for blending fibers (hole diameter 0.3 mm, holes through which resin is alternately discharged from two extruders)
- a non-woven fabric manufacturing apparatus including an effective width of 500 mm in which several 501 holes are arranged in a line, a compressed air generator and an air heater, a collection conveyor provided with a polyester net, and a winder was used.
- the two types of polypropylene are charged into the extruder of the machine, the extruder is heated and melted at 240 ° C., and the mass ratio of the gear pump is set to 50/50, and 0.3 g / min per single hole from the spinneret.
- the molten resin was discharged at a spinning speed of.
- the discharged fiber was sprayed onto the collection conveyor at a distance of 60 cm from the spinneret with compressed air of 63 kPa (gauge pressure) heated to 400 ° C. to form a fiber layer.
- the basis weight was set to 80 g / m 2 by adjusting the speed of the collecting conveyor.
- the average fiber diameter was 1.9 ⁇ m, and this was designated as the fiber layer L. When the average flow pore size was evaluated, it was 12.6 ⁇ m.
- Example 1 Between the first fiber layer (fiber layer A) and the second fiber layer (fiber layer B), the base material layer M is sandwiched, and the first fiber layer / base so that the outermost layer becomes a protective layer. The material layers M / the second fiber layers were superposed. The obtained sample was used as a sample for measuring sound absorption coefficient. Since there are two fiber layers, the number of fiber layers is “2”. This was punched into a circular shape with a diameter of 16.6 mm to obtain a sample for measuring the sound absorption coefficient.
- the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.42.
- the normal sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- the average sound absorption coefficient ( ⁇ ) from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.98, which was good.
- Example 2 The base material layer M is sandwiched between the first fiber layer (fiber layer C) and the second fiber layer (fiber layer B), and the first fiber layer C / base material layer M / second fiber.
- the samples were stacked so as to be layer B, and a sample for measuring the sound absorption coefficient was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.27, which was favorable.
- the normal incident sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- ⁇ average sound absorption coefficient
- ⁇ average sound absorption coefficient from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.98, which was good.
- ⁇ average sound absorption coefficient from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.96, which was favorable.
- Example 3 The base material layer M is sandwiched between the first fiber layer (fiber layer D) and the second fiber layer (fiber layer B), and the first fiber layer D / base material layer M / second fiber.
- the samples were stacked so as to be layer B, and a sample for measuring the sound absorption coefficient was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.35 and was good.
- the normal incident sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- the average sound absorption coefficient ( ⁇ ) from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.94, which was favorable.
- the average sound absorption coefficient ( ⁇ ) from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.92, which was favorable.
- Example 4 The base material layer M is sandwiched between the first fiber layer (fiber layer E) and the second fiber layer (fiber layer B), and the first fiber layer E / base material layer M / second fiber.
- the samples were stacked so as to be layer B, and a sample for measuring the sound absorption coefficient was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.36 and was good.
- the normal sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- ⁇ average sound absorption coefficient
- ⁇ average sound absorption coefficient from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.94, which was favorable.
- ⁇ average sound absorption coefficient from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.89, which was favorable.
- Example 5 The base material layer M is sandwiched between the first fiber layer (fiber layer E) and the second fiber layer (fiber layer E), and the first fiber layer E / base material layer M / second fiber.
- the samples were stacked so as to be layer E, and a sample for measuring the sound absorption coefficient was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.35 and was good.
- the normal sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- the average sound absorption coefficient ( ⁇ ) from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.93, which was favorable.
- the average sound absorption coefficient ( ⁇ ) from 9000 Hz to 11200 Hz was evaluated as the sound absorption in the ultrahigh frequency region, it was 0.94, which was favorable.
- Example 6 The base material layer M is sandwiched between the first fiber layer (fiber layer C) and the second fiber layer (fiber layer C), and the first fiber layer C / base material layer M / second fiber.
- the samples were stacked so as to be layer C, and a sample for measuring sound absorption was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.29, which was favorable.
- the normal incident sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- ⁇ average sound absorption coefficient
- ⁇ average sound absorption coefficient from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.98, which was good.
- ⁇ average sound absorption coefficient from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.89, which was favorable.
- Table 1 summarizes the configurations and sound absorption characteristics of laminated sound absorbing materials for Examples 1 to 6. The configuration of each layer is also shown collectively.
- laminated sound absorbing materials were prepared using various fiber layers and base material layers in the same manner as in the above examples, and the normal incident sound absorption coefficient was measured.
- Table 2 summarizes the structure and sound absorption rate of the laminated sound absorbing material. The configuration of each layer is also shown collectively.
- Example 2 (reverse arrangement of Example 2) The sound was incident from the second fiber layer side of the sample obtained in Example 2, the normal incidence sound absorption coefficient was measured, the sound absorption coefficient from 900 Hz to 1120 Hz was measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( When ⁇ ) was evaluated, it was 0.39 and was good. The normal incident sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range. When the average sound absorption coefficient ( ⁇ ) from 4500 Hz to 5600 Hz was evaluated as sound absorption in the high frequency region, it was 0.90, which was good.
- Example 5 (reverse arrangement of Example 8) Sound was incident from the second fiber layer side of the sample obtained in Example 8, the normal incident sound absorption coefficient was measured, the sound absorption coefficient from 900 Hz to 1120 Hz was measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( When ⁇ ) was evaluated, it was 0.52, which was favorable.
- the normal incident sound absorption coefficient was measured and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range, it was 0.92, which was favorable.
- the average sound absorption coefficient ( ⁇ ) from 4500 Hz to 5600 Hz was evaluated as the sound absorption in the high frequency region, it was 0.81 and was poor.
- the average sound absorption coefficient ( ⁇ ) from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.67, which was poor.
- Example 9 (Average flow pore diameter of first fiber layer is not less than upper limit)
- the base material layer P is sandwiched between the first fiber layer (fiber layer L) and the second fiber layer (fiber layer B), and the first fiber layer L / base material layer P / second fiber.
- the samples were stacked so as to be layer B, and a sample for measuring the sound absorption coefficient was obtained in the same manner as in Example 1. Sound is incident from the first fiber layer side of the obtained sample, the normal incident sound absorption coefficient is measured, the sound absorption coefficient from 900 Hz to 1120 Hz is measured as the sound absorption property in the low frequency region, and the average sound absorption coefficient ( ⁇ ) is evaluated. As a result, it was 0.30 and it was favorable.
- the normal incident sound absorption coefficient was measured, and the average sound absorption coefficient ( ⁇ ) from 2800 Hz to 3550 Hz was evaluated as the sound absorption property in the middle frequency range.
- ⁇ average sound absorption coefficient
- ⁇ average sound absorption coefficient from 4500 Hz to 5600 Hz was evaluated as the sound absorption in the high frequency region, it was 0.87, which was poor.
- ⁇ average sound absorption coefficient from 9000 Hz to 11200 Hz was evaluated as sound absorption in the ultrahigh frequency region, it was 0.87, which was favorable.
- Table 3 summarizes the configurations and sound absorption characteristics of laminated sound absorbing materials for Comparative Examples 1 to 9. The configuration of each layer is also shown collectively.
- the laminated sound-absorbing material of the present invention has excellent sound-absorbing properties in the low frequency to ultra-high frequency region, and in particular, has excellent sound-absorbing properties in the high frequency region, so that it can be used as a sound absorbing material in a field where sound penetration is a problem.
- sound-absorbing material used for ceilings, walls, floors, etc. of houses sound-proofing walls such as highways and railway lines, sound-proofing materials for home appliances, and sound-absorbing materials arranged in various parts of vehicles such as railways and automobiles Can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Nonwoven Fabrics (AREA)
Abstract
低周波数域から超高周波領域において優れた吸音性を示す吸音材を提供することを課題とする。少なくとも第1の繊維層と第2の繊維層と、前記第1の繊維層と第2の繊維層の間に存在する少なくとも1層の基材層とを含む積層吸音材であって、前記第1の繊維層は、平均流量細孔径が0.5~10μmであり、目付けが0.1~200g/m2であり、前記第2の繊維層は、平均流量細孔径が0.5~10μmであり、かつ、第1の繊維層の平均流量細孔径以下であり、目付けが0.1~200g/m2であり、前記基材層は、フラジール形法による通気度が40cc/cm2・s以上であり、目付けが1~700g/m2であり、前記第1の繊維層が音の入射側、前記第2の繊維層が音の透過側となるように配置される積層吸音材である。
Description
本発明は、少なくとも2種類の繊維層が積層されてなる、積層構造の吸音材に関する。
吸音材とは音を吸収する機能を有する製品であって、建築分野や自動車分野において多用されている。吸音材を構成する材料として、不織布を用いることが公知である。例えば特許文献1には、メジアン直径が1μm未満のサブミクロン繊維と、メジアン直径が少なくとも1μmであるマイクロファイバーとを含む複合不織布ウェブが開示されている。特許文献1の複合不織布ウェブは、サブミクロン繊維及びマイクロファイバーという2種類の異なるメジアン直径を有する繊維が混合されてなり、その混合比を変化させることによって、厚み方向に混合比の勾配を形成している。代表的な実施形態においては、マイクロファイバー流とサブミクロン繊維流とを別々に形成し、サブミクロン繊維流をマイクロファイバー流に加えることによって、異なる繊維が混合されてなるウェブを形成できることが開示されている。
また特許文献2には、低周波及び高周波の音を吸収する積層吸音不織布であって、共振膜と、少なくとも1つの別の繊維材料層とを含み、共振膜は、直径600nmまでで表面重量(目付)が0.1~5g/m2であるナノ繊維層によって形成されるものが開示されている。ナノ繊維層は典型的には電界紡糸によって作り出され、一方、基材層は、直径10μm~45μmで目付け5~100g/m2の繊維織物であり、さらに別の層が積層されてもよいことが開示されている。また、適切な厚さ及び目付けに到達するために、この積層体をさらに積層してもよいことが開示されている。
特許文献3には、2000Hzにおける吸音率が0.85以上である積層吸音材として、(1)単繊維直径が1~500nmの熱可塑性樹脂からなるナノファイバーから構成される層、及び、(2)単繊維直径がそれよりも大きな繊維により構成される層を含む不織布Aと、特定の目付け及び繊維径を有する不織布Bとが積層されたものが開示されている。特許文献3の積層吸音材は、ナノファイバーで構成される極微細な空隙を有する層を、短繊維直径がそれよりも大きな層で支持することによって保形性や寸法安定性を付与した不織布A(表層部)と、充分な通気度を有し、目付けが大きい不織布B(基盤部)とを貼り合わせて作製され、吸音性が高く断熱性も有することが開示されている。
特許文献4には、ナノ繊維を含む、吸音特性に優れる不織布構造体が開示されている。特許文献4の不織布構造体は、繊維径が1μm未満のナノ繊維を含む繊維体を含み、当該繊維体の厚みが10mm以上であることを特徴とする。また、前記繊維体は支持体に支持されていてもよく、繊維体と支持体とが繰り返し積層された構造になっていてもよいことが開示されている。ナノ繊維は例えばメルトブローン法で形成され、実施例においては、支持体であるポリプロピレンスパンレース不織布の上に、繊維径0.5μm、目付け350g/m2のナノ繊維体の層を形成することが開示されている。
上述のとおり、吸音材としてさまざまな構成の不織布積層体が検討されており、ナノ繊維やサブミクロン繊維と称される極細繊維を他の繊維と組み合わせて用いること、層の組み合わせや構成によって特徴的な吸音特性を示すことが知られている。
しかしながら、500~1000Hzの低周波数領域、800~2000Hzの中周波数領域だけでなく、さらに、2000~5000Hzの高周波数領域や5000~11000Hzの超高周波数領域においても、優れた吸音性能を示し、かつ、省スペース性に優れた吸音材が求められているが、未だ開発されていない。この状況に鑑み、本発明は、低周波数領域、中周波数領域、高周波数領域、および超高周波数領域の全ての領域において優れた吸音性を示す吸音材を提供することを課題とする。
しかしながら、500~1000Hzの低周波数領域、800~2000Hzの中周波数領域だけでなく、さらに、2000~5000Hzの高周波数領域や5000~11000Hzの超高周波数領域においても、優れた吸音性能を示し、かつ、省スペース性に優れた吸音材が求められているが、未だ開発されていない。この状況に鑑み、本発明は、低周波数領域、中周波数領域、高周波数領域、および超高周波数領域の全ての領域において優れた吸音性を示す吸音材を提供することを課題とする。
発明者らは上述の課題を解決するために検討を重ねた。その結果、基材層と繊維層とを含む積層吸音材において、特定範囲の通気度(平均流量細孔径)を有する少なくとも2層の繊維層を含み、その間に特定範囲の空隙率及び密度を有する基材層を含む積層吸音材であって、2層の繊維層を特定の配置としたものが、低周波数領域から超高周波数領域において優れた吸音性を示し、省スペース性に優れることを見出し、本発明を完成した。
本発明は、以下の構成を有する。
[1] 少なくとも第1の繊維層と第2の繊維層と、前記第1の繊維層と第2の繊維層の間に存在する少なくとも1層の基材層とを含む積層吸音材であって、
前記第1の繊維層は、平均流量細孔径が0.5~10μmであり、目付けが0.1~200g/m2であり、
前記第2の繊維層は、平均流量細孔径が0.5~10μmであり、かつ、第1の繊維層の平均流量細孔径以下であり、目付けが0.1~200g/m2であり、
前記基材層は、フラジール形法による通気度が40cc/cm2・s以上であり、目付けが1~700g/m2であり、
前記第1の繊維層が音の入射側、前記第2の繊維層が音の透過側となるように配置される、積層吸音材。
[2] 前記第1の繊維層、前記第2の繊維層、および前記基材層が独立して、不織布および織布からなる群より選ばれる少なくとも1つである、前記[1]に記載の積層吸音材。
[3] 前記基材層が、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種の繊維、または、少なくとも2種が複合化された繊維を含み、前記第1の繊維層および第2の繊維層が独立して、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォン、ポリビニルアルコール、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種の繊維を含む、前記[1]または[2]に記載の積層吸音材。
[4] 垂直入射吸音率測定法において、周波数が900Hzから1120Hzまでの吸音率の測定により、平均吸音率(α)を算出し、平均吸音率(α)の値が下記式を満たす範囲である、前記[1]~[3]のいずれか1項に記載の積層吸音材。
1.00 ≧ α ≧ 0.22
[5] 垂直入射吸音率測定法において、周波数が2800Hzから3550Hzまでの吸音率の測定により、吸音率の平均吸音率(β)を算出し、平均吸音率(β)の値が下記式を満たす範囲である、前記[1]~[4]のいずれか1項に記載の積層吸音材。
1.00 ≧ β ≧ 0.60
[6] 垂直入射吸音率測定法において、周波数が4500Hzから5600Hzまでの吸音率の測定により、吸音率の平均吸音率(γ)を算出し、平均吸音率(γ)の値が下記式を満たす範囲である[1]~[5]のいずれか1項に記載の積層吸音材。
1.00 ≧ γ ≧ 0.90
[7] 垂直入射吸音率測定法において、周波数が9000Hzから11200Hzまでの吸音率の測定により、吸音率の平均吸音率(η)を算出し、平均吸音率(η)の値が下記式を満たす範囲である、[1]~[6]のいずれか1項に記載の積層吸音材。
1.00 ≧ η ≧ 0.85
[1] 少なくとも第1の繊維層と第2の繊維層と、前記第1の繊維層と第2の繊維層の間に存在する少なくとも1層の基材層とを含む積層吸音材であって、
前記第1の繊維層は、平均流量細孔径が0.5~10μmであり、目付けが0.1~200g/m2であり、
前記第2の繊維層は、平均流量細孔径が0.5~10μmであり、かつ、第1の繊維層の平均流量細孔径以下であり、目付けが0.1~200g/m2であり、
前記基材層は、フラジール形法による通気度が40cc/cm2・s以上であり、目付けが1~700g/m2であり、
前記第1の繊維層が音の入射側、前記第2の繊維層が音の透過側となるように配置される、積層吸音材。
[2] 前記第1の繊維層、前記第2の繊維層、および前記基材層が独立して、不織布および織布からなる群より選ばれる少なくとも1つである、前記[1]に記載の積層吸音材。
[3] 前記基材層が、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種の繊維、または、少なくとも2種が複合化された繊維を含み、前記第1の繊維層および第2の繊維層が独立して、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォン、ポリビニルアルコール、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種の繊維を含む、前記[1]または[2]に記載の積層吸音材。
[4] 垂直入射吸音率測定法において、周波数が900Hzから1120Hzまでの吸音率の測定により、平均吸音率(α)を算出し、平均吸音率(α)の値が下記式を満たす範囲である、前記[1]~[3]のいずれか1項に記載の積層吸音材。
1.00 ≧ α ≧ 0.22
[5] 垂直入射吸音率測定法において、周波数が2800Hzから3550Hzまでの吸音率の測定により、吸音率の平均吸音率(β)を算出し、平均吸音率(β)の値が下記式を満たす範囲である、前記[1]~[4]のいずれか1項に記載の積層吸音材。
1.00 ≧ β ≧ 0.60
[6] 垂直入射吸音率測定法において、周波数が4500Hzから5600Hzまでの吸音率の測定により、吸音率の平均吸音率(γ)を算出し、平均吸音率(γ)の値が下記式を満たす範囲である[1]~[5]のいずれか1項に記載の積層吸音材。
1.00 ≧ γ ≧ 0.90
[7] 垂直入射吸音率測定法において、周波数が9000Hzから11200Hzまでの吸音率の測定により、吸音率の平均吸音率(η)を算出し、平均吸音率(η)の値が下記式を満たす範囲である、[1]~[6]のいずれか1項に記載の積層吸音材。
1.00 ≧ η ≧ 0.85
上述の構成を有する本発明によれば、低周波数領域から超高周波数領域における吸音特性に特に優れた吸音材が得られる。本発明の積層吸音材は、吸音特性のピークが従来の吸音材よりも高い領域にあり、特に500Hz以上の領域における吸音性能に優れる。自動車分野では、ハイブリッド自動車や電気自動車の増加に伴って、モーター音への対策が課題となるところ、モーター音は、回転速度により低周波数領域から超高周波数領域の音が発生するため、これらの周波数域の対策が必要と言われている。また、風切り音の音域は1,000~3,000Hz程度であると言われている。本発明の積層吸音材は、このような騒音の対策に有用である。また、本発明の積層吸音材は、多孔質材料やガラス繊維等からなる吸音材と比較して軽量で、かつ、厚みを薄くできるため、部材の軽量化と省スペース化が可能であり、この点は特に自動車分野向けの吸音材として有用である。
以下、本発明を詳細に説明する。
(積層吸音材の構造)
本発明の積層吸音材は、それぞれ特定範囲の平均流量細孔径又は通気度を有し、特定範囲の目付けである基材層と繊維層とを含んでなる。積層吸音材の中に、繊維層は2層以上含まれ、繊維層の間に基材層が介在する。
平均流量細孔径及び通気度はいずれも、層の疎密の度合いを示す尺度である。本発明の積層吸音材は、大略的には、緻密な繊維層が疎らな基材層を挟む構造であり、かつ、繊維層は互いに特定の緻密度(平均流量細孔径)をもち、平均流量細孔径(入射側)≧平均流量細孔径(透過側)の関係を満たすように配置された構造を有する。
本発明の積層吸音材は、それぞれ特定範囲の平均流量細孔径又は通気度を有し、特定範囲の目付けである基材層と繊維層とを含んでなる。積層吸音材の中に、繊維層は2層以上含まれ、繊維層の間に基材層が介在する。
平均流量細孔径及び通気度はいずれも、層の疎密の度合いを示す尺度である。本発明の積層吸音材は、大略的には、緻密な繊維層が疎らな基材層を挟む構造であり、かつ、繊維層は互いに特定の緻密度(平均流量細孔径)をもち、平均流量細孔径(入射側)≧平均流量細孔径(透過側)の関係を満たすように配置された構造を有する。
本発明の積層吸音材は、少なくとも第1の繊維層と第2の繊維層を含むが、繊維層はさらに2層~6層を含まれていてもよい。第1の繊維層および第2の繊維層は、それぞれ1つの繊維構造体からなってもよく、1層の繊維層の中に複数の繊維構造体が重ねられた形態であってもよい。
また、第1の繊維層と第2の繊維層の間には、少なくとも1層の基材層が介在する。基材層は、1つの基材からなってもよく、1層の基材層の中に複数の基材層が重ねられてなる形態であってもよい。積層吸音材が、第1の繊維層と第2の繊維層の2層の繊維層を含む場合、積層吸音材は、第1の繊維層/基材層/第2の繊維層という構成を有する。積層吸音材が、第1の繊維層、第2の繊維層に加え、さらに第3の繊維層を加えた3層である場合、積層吸音材は、第1の繊維層/基材層/第3の繊維層/基材層/第2の繊維層という構成を有し、第3の繊維層の平均流量細孔径は、第1の繊維層の平均流量細孔径≧第3の平均流量細孔径≧第2の平均流量細孔径とすることが好ましい。
また、第1の繊維層と第2の繊維層の間には、少なくとも1層の基材層が介在する。基材層は、1つの基材からなってもよく、1層の基材層の中に複数の基材層が重ねられてなる形態であってもよい。積層吸音材が、第1の繊維層と第2の繊維層の2層の繊維層を含む場合、積層吸音材は、第1の繊維層/基材層/第2の繊維層という構成を有する。積層吸音材が、第1の繊維層、第2の繊維層に加え、さらに第3の繊維層を加えた3層である場合、積層吸音材は、第1の繊維層/基材層/第3の繊維層/基材層/第2の繊維層という構成を有し、第3の繊維層の平均流量細孔径は、第1の繊維層の平均流量細孔径≧第3の平均流量細孔径≧第2の平均流量細孔径とすることが好ましい。
積層吸音材に含まれる繊維層及び基材層は、本発明の効果を損なわない限り、繊維層及び基材層以外の構成が含まれていてもよく、例えば、本発明に規定する範囲外のさらなる層(例えば保護層。1層でも2層以上でもよい)、印刷層、発泡体、箔、メッシュ、織布等が含まれていてもよい。また、各層間を連結するための接着剤層、クリップ、縫合糸等を含んでいてもよい。
積層吸音材の各層の間は、通気度を著しく低下させなければ、物理的及び/又は化学的に接着されていてもよいし、接着されていなくてもよい。積層吸音材の複数の層間のうちの一部が接着され、一部は接着されていない形態であってもよい。接着は、例えば、繊維層の形成工程において、または後工程として加熱を行い、繊維層を構成する繊維の一部を融解し、繊維層を基材層に融着させることによって繊維層と基材層とを接着してもよい。また、基材層ないし繊維層の層間に接着剤を付与して層間を接着することも好ましい。
積層吸音材の厚みは、本発明の効果が得られる限り特に制限されないが、例えば、1~50mmとすることができ、3~30mmとすることが好ましく、3~20mmとすることが、省スペース性の観点からより好ましい。なお、積層吸音材の厚みとは、典型的には繊維層及び基材層の厚みの合計のことを意味し、保護層などの他の層が含まれている場合には、他の層を含む厚みのことを意味する。カートリッジや蓋等の外装体が取り付けられている場合、その部分の厚みは含まないものとする。
積層吸音材に用いられる第1の繊維層、第2の繊維層の平均流量細孔径は、所望の吸音性能が得られる限り特に制限されるものではないが、第1の繊維層としては、0.5~10μmの範囲を用いることができ、第2の繊維層としては、0.5~10μmの範囲を用いることができ、第2の繊維層の平均流量細孔径は第1の繊維層の平均流量細孔径以下であり、第2の繊維層の平均流量細孔径は第1の繊維層の平均流量細孔径よりも小さいことが好ましい。従来、吸音性能とともに遮音性能を期待されていた吸音材では、平均流量細孔径が低いほど音が通過しにくく、遮音性に有効であると考えられていた。これに対して、本発明の積層吸音材は、基材層の両側に配置される繊維層の平均流量細孔径をそれぞれ制御することによって音の反射を低減し、さらに吸音性に優れた層構成を採用することによって、高い吸音性を得ている。
積層吸音材は、基材層が、第1の繊維層と、第1の繊維層以上に緻密な第2の繊維層との間に挟まれた積層構造となっている。このような形態であるとき、第1の繊維層と第2の繊維層との間の距離(基材層の厚み、層間距離とも称する)は、2.5~30mmであることが好ましく、3~15mmであることがより好ましい。層間距離が2.5mm以上であれば、低周波数領域から超高周波数領域の吸音性能が良好となり、また、層間距離が30mm以下であれば、吸音材としての厚みが大きくなり過ぎることがなく、省スペース性に適している。
基材層の通気度は、所望の吸音性能が得られる限り特に制限されるものではないが、フラジール形法による通気度において、40cc/cm2・s以上であり、40~250cc/cm2・sが好ましく、40~150cc/cm2・sがより好ましい。従来、吸音性能とともに遮音性能を期待されていた吸音材では、通気性が低いほど音が通過しにくく、すなわち遮音性に有効であると考えられていた。これに対して、本発明の積層吸音材は、高い通気性を有することによって音の反射を低減し、さらに吸音性に優れた層構成を採用することによって、高い吸音性が得られる。なお、通気度の測定は公知の方法によることができ、例えば、ガーレ試験機法やフラジール試験機法で測定できる。
(各層の構成:繊維層)
本発明の積層吸音材に含まれる第1の繊維層および第2の繊維層は、空隙率が85%以上96%以下であり、かつ、密度が0.04g/cm3以上0.5g/cm3以下であることが好ましい。空隙率が85%以上であれば外層となる素材の剛性を抑えることで、反射波の増加を抑え音波を吸音材内部に導くことができる点で好ましい。空隙率が96%以下であれば、繊維層と基材層との密度差による流れ抵抗を制御することで、外層と内層の密度差により、吸音材内部での音が反射を繰り返し、吸音材内部での音を減衰させることができるため、好ましい。また、密度が0.04g/cm3以上であれば、一定の層間距離を維持できる剛性を有する点で好ましく、0.5g/cm3以下であれば、吸音材として軽量化を維持できる点で好ましい。
本発明の積層吸音材に含まれる第1の繊維層および第2の繊維層は、空隙率が85%以上96%以下であり、かつ、密度が0.04g/cm3以上0.5g/cm3以下であることが好ましい。空隙率が85%以上であれば外層となる素材の剛性を抑えることで、反射波の増加を抑え音波を吸音材内部に導くことができる点で好ましい。空隙率が96%以下であれば、繊維層と基材層との密度差による流れ抵抗を制御することで、外層と内層の密度差により、吸音材内部での音が反射を繰り返し、吸音材内部での音を減衰させることができるため、好ましい。また、密度が0.04g/cm3以上であれば、一定の層間距離を維持できる剛性を有する点で好ましく、0.5g/cm3以下であれば、吸音材として軽量化を維持できる点で好ましい。
第1の繊維層および第2の繊維層を構成する繊維は、繊維径が10μm未満である繊維であることが好ましい。繊維径が10μm未満であるとは、平均繊維径がこの数値範囲内であることを意味する。繊維径が10μm未満であれば、空隙率が低く密度が高い、緻密で薄い膜を得られるため好ましく、1μm未満であれば、より空隙率が低く密度が高い、緻密で薄い膜を得られるためさらに好ましい。繊維径の測定は、公知の方法によることができる。例えば、繊維径は、繊維層表面の拡大写真から測定ないし算出することによって得られる値であり、詳細な測定方法は実施例に詳述される。
第1の繊維層および第2の繊維層は不織布であることが好ましく、平均流量細孔径が10μm未満であることが好ましい。平均流量細孔径が10μm未満であれば、繊維層と基材層との流れ抵抗を制御することができ、吸音材内部での音が反射を繰り返すため、吸音材内部での音を減衰させることができ良好である。
本発明の積層吸音材に含まれる第1の繊維層および第2の繊維層は、1層の繊維層が一つの繊維構造体からなっていてもよく、また、1層の繊維層中に複数の繊維集合体を含み、繊維集合体の層が重ね合わされたものが1層の繊維層を形成していてもよい。なお、本明細書において、繊維集合体とは、一つの連続体となった繊維集合体のことを意味している。
第1の繊維層の平均流量細孔径は0.5~10μmであり、0.9~10μmが好ましい。また、第1の繊維層の目付けは、0.1~200g/m2であり、0.3~100g/m2であることが好ましい。目付けが0.1g/m2以上であれば、緻密な膜としての隔壁を形成させることで共鳴空間を形成することができ、吸音性を向上させることができる。200g/m2未満であれば、膜の剛性を高くすることなく、音の反射を抑制することができ、吸音率を高めることができる。第1の繊維層の平均流量細孔径は、第2の繊維層の平均流量細孔径以上である。
第2の繊維層の平均流量細孔径は、0.5~10μmであり、0.5~5.0μmが好ましく、0.5~3.0μmが特に好ましい。また、第2の繊維層の目付けは、0.1~200g/m2であり、0.3~100g/m2であることが好ましい。目付けが0.1g/m2以上であれば、綿密な膜としての隔壁を形成させることで共鳴空間を形成することができ、吸音性を向上させることができ、200g/m2未満であれば、膜の剛性を高くすることなく、音の反射を抑制することができ、吸音率を高めることができる。
また、本発明の積層吸音材は、第1の繊維層が音の入射側に配置され、基材層を挟んで、前記第2の繊維層が音の透過側となるように配置されるという特徴を有する。前述のとおり、第2の繊維層は第1の繊維層以上に緻密な層である。特定の理論に拘束されるものではないが、本発明では、第1の繊維層を通じて積層吸音材の内部に音を取り込み、取り込まれた音は緻密な第2の繊維層で一部反射し、反射した音が吸音材内部の基材層部分にあたる閉鎖空間内で共鳴、反射、干渉を生じ、基材層の繊維の振動から熱への変換によるエネルギー消失が生じることによって、優れた吸音性能が実現されるものと考えられている。
第1の繊維層および第2の繊維層を構成する繊維構造体は、好ましくは不織布であり、第1の繊維層および第2の繊維層が前記の範囲の平均流量細孔径及び目付けを有している限り特に制限されないが、例えば、メルトブローン不織布、電界紡糸法によって形成される不織布等であることが好ましい。電界紡糸法ないしメルトブローン法によれば、極細繊維を基材上に効率よく積層させることができ、所望の範囲の空隙率及び密度を有する層が得られる。電界紡糸法の詳細は製造方法に詳述する。
第1の繊維層および第2の繊維層を構成する繊維の原料樹脂としては、発明の効果を得られる限り特に制限されないが、例えば、ポリオレフィン系樹脂、ポリウレタン、ポリ乳酸、アクリル樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル類、ナイロン6、ナイロン6,6、ナイロン1,2等のナイロン(アミド樹脂)類、ポリフェニレンスルフィド、ポリビニルアルコール、ポリスチレン、ポリスルフォン、液晶ポリマー類、ポリエチレン-酢酸ビニル共重合体、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン等が挙げられる。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンが例示できる。ポリエチレンとしては、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等を挙げることができ、ポリプロピレンとしては、プロピレンの単独重合体や、プロピレンと他の単量体、エチレンやブテン等が重合した共重合ポリプロピレン等を挙げることができる。繊維集合体は、前記の樹脂の1種を含むことが好ましく、2種類以上を含んでいてもよい。
第1の繊維層および第2の繊維層が電界紡糸法によって形成される不織布である場合、前記の中でも、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォンおよびポリビニルアルコールが、電界紡糸法においては、各種溶剤に可溶である観点から、より好ましい。また、第1繊維層および第2の繊維層がメルトブローン不織布である場合、前記の中でも、ポリプロピレンが好ましい。繊維層は、前記の樹脂の1種を含むことが好ましく、2種類以上を含んでいてもよい。
また、前記の繊維には、樹脂以外の各種の添加剤を含んでもよい。樹脂に添加されうる添加剤としては例えば、充填剤、安定化剤、可塑剤、粘着剤、接着促進剤(例えば、シランおよびチタン酸塩)、シリカ、ガラス、粘土、タルク、顔料、着色剤、酸化防止剤、蛍光増白剤、抗菌剤、界面活性剤、難燃剤、およびフッ化ポリマーが挙げられる。前記添加物のうち1つ以上を用いて、得られる繊維および層の重量および/またはコストを軽減してもよく、粘度を調整してもよく、または繊維の熱的特性を変性してもよく、あるいは電気特性、光学特性、密度に関する特性、液体バリアもしくは粘着性に関する特性を包含する、添加物の特性に由来する様々な物理特性を付与してもよい。
(各層の構成:基材層)
積層吸音材における基材層は、主な吸音性を担うとともに、繊維層を支持して吸音材全体の形状を保持する機能も有している。本発明の積層吸音材は、第1の繊維層と第2の繊維層の間に、空隙率が高く密度が低い基材層が挟み込まれた形態を有し、音源側(入射側)の平均流量細孔径を制御することで積層吸音材の内部へ音を導入することができ、吸音材の内部で反射を繰り返すことで吸音させることができる。基材層は、空隙率が高く密度が低いという特徴を有する一方で、繊維層を支持し、一定の層間距離を維持できる剛性を有することが好ましい。
積層吸音材における基材層は、主な吸音性を担うとともに、繊維層を支持して吸音材全体の形状を保持する機能も有している。本発明の積層吸音材は、第1の繊維層と第2の繊維層の間に、空隙率が高く密度が低い基材層が挟み込まれた形態を有し、音源側(入射側)の平均流量細孔径を制御することで積層吸音材の内部へ音を導入することができ、吸音材の内部で反射を繰り返すことで吸音させることができる。基材層は、空隙率が高く密度が低いという特徴を有する一方で、繊維層を支持し、一定の層間距離を維持できる剛性を有することが好ましい。
具体的には、基材層は、空隙率が93%以上100%未満であり、かつ、密度が0.008~0.05g/cm3であることが好ましい。空隙率が95%以上であると、繊維層と基材層との密度差による流れ抵抗を制御することで、外層と内層に密度差により、吸音材内部での音が反射を繰り返すため、吸音材内部での音を減衰させることができる点で吸音性が向上する。また空隙率を100%未満とすることで、繊維層を支持し、積層吸音材の形態を保持することができる。また、密度が0.008g/m3以上であれば吸音材として繊維層を支持し、一定の層間距離を維持できる剛性を有する点で好ましく、0.05g/m2以下であれば、吸音材として軽量化を維持できる点で好ましい。
基材層は、1層の基材層からなってもよく、または、複数の基材層が重ねられてなる形態であってもよい。基材層を構成する材料は、その少なくとも一方の表面上に繊維層を積層できるものであれば特に制限されず、不織布、ガラス繊維、紙、織布、フォーム(発泡体層)、メッシュ等を用いることができる。特に、不織布、織布のいずれか1種以上であることが好ましく、不織布であることがより好ましい。積層吸音材に含まれる基材は、1種であってもよく、2種以上であってもよい。
基材層が不織布である場合、不織布の種類は、メルトブロー不織布、スパンレース不織布、スパンボンド不織布、スルーエア不織布、サーマルボンド不織布、ニードルパンチ不織布等を用いることができ、所望の物性や機能によって適宜選択できる。
基材層の不織布の繊維を構成する樹脂としては、熱可塑性樹脂を用いることができ、例えば、ポリオレフィン系樹脂、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリアミド系樹脂が例示できる。ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン-1、若しくは4-メチルペンテン-1等の単独重合体、及びこれらと他のα-オレフィン、即ち、エチレン、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1あるいは4-メチルペンテン-1などのうちの1種以上とのランダム若しくはブロック共重合体あるいはこれらを組み合わせた共重合体のことであり、またはこれらの混合物などを挙げることができる。ポリアミド系樹脂としてはナイロン4、ナイロン6、ナイロン7、ナイロン1,1、ナイロン1,2、ナイロン6,6、ナイロン6,10、ポリメタキシリデンアジパミド、ポリパラキシリデンデカンアミド、ポリビスシクロヘキシルメタンデカンアミドもしくはこれらのコポリアミド等を挙げることができる。ポリエステル系樹脂としては、ポリエチレンテレフタレートの他、ポリテトラメチレンテレフタレート、ポリブチルテレフタレート、ポリエチレンオキシベンゾエート、ポリ(1,4-ジメチルシクロヘキサンテレフタレート)若しくはこれらの共重合体を挙げることができる。これらの中でも、汎用性が高く熱融着できるとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン及びポリプロピレンの1種、又は2種以上を組み合わせて用いることが好ましい。
基材層が、織布やメッシュである場合にも同様の樹脂を用いることができる。
基材層が、織布やメッシュである場合にも同様の樹脂を用いることができる。
また、基材層の不織布を構成する繊維としては、単成分からなる繊維を使用することもできるが、繊維同士の交点の融着の効果を考慮すると、低融点樹脂と高融点樹脂の複合成分からなる繊維、すなわち、融点が異なる2成分以上からなる複合繊維を用いることが好ましい。複合形態は例えば鞘芯型、偏心鞘芯型、並列型を挙げることができる。また、基材層の不織布を構成する繊維として、融点が異なる2成分以上の混繊繊維を用いることも好ましい。なお、混繊繊維とは、高融点樹脂からなる繊維と低融点樹脂からなる繊維とが独立して存在し、混合されてなる繊維を意味している。
基材層の不織布を構成する繊維の平均繊維径は、特に制限されるものではないが、平均繊維径が10μm~1mmである繊維からなるものを用いることができる。平均繊維径が10μm以上であれば、繊維層と基材層との密度差による流れ抵抗を制御することができ、1mm以下であれば、汎用性が失われることがなく、また入手も容易となる。繊維径は、10~100μmであればより好ましい。繊維径の測定は、繊維層の繊維径の測定と同様の方法で行うことができる。
基材層は、第1の繊維層と第2の繊維層との間に介在する。また、第1の繊維層と第2の繊維層との間に介在するのに加えて、積層吸音材において最外面に位置する層として含まれてもよい。基材層は、1層のみで基材層を構成してもよく、2層以上が連続して配置されて1層の基材層を構成していることも好ましい。基材層を2層以上連続して配置することで、基材層の厚みによって、繊維層の層間距離を制御できるという利点がある。
基材層の通気度は、フラジール形法による通気度において、40cc/cm2・s以上であり、40~250cc/cm2・sが好ましく、40~150cc/cm2・sがより好ましい。従来、吸音性能とともに遮音性能を期待されていた吸音材では、通気性が低いほど音が通過しにくく、すなわち遮音性に有効であると考えられていた。これに対して、本発明の積層吸音材は、基材層が高い通気性を有することによって音の反射を低減し、さらに吸音性に優れた層構成を採用することによって高い吸音性が得られると考えられている。
また、基材層の目付けは、1~700g/m2であり、15~500g/m2であることが好ましい。基材層の目付けが1g/m2以上であれば、吸音材として必要な強度を得ることができる。
本発明において、基材層は2.5mm以上の厚みを有することが好ましい。基材層の厚みの上限は特に制限されるものではないが、省スペース性の観点から、厚みの範囲は2.5~25mmであることが好ましく、3~20mmであることがより好ましい。
また、基材層を構成する不織布などの材料1枚あたりの厚みは、例えば、2.5~15mmとすることができ、3~10mmとすることがより好ましい。基材の1枚あたりの厚みが2.5m以上であれば、皺の発生がなく取り扱いが容易で、生産性が良好である。また、基材層の厚みが15mm以下であれば、省スペース性を妨げる恐れがない。
また、基材層を構成する不織布などの材料1枚あたりの厚みは、例えば、2.5~15mmとすることができ、3~10mmとすることがより好ましい。基材の1枚あたりの厚みが2.5m以上であれば、皺の発生がなく取り扱いが容易で、生産性が良好である。また、基材層の厚みが15mm以下であれば、省スペース性を妨げる恐れがない。
基材層には、本発明の効果を妨げない範囲内で、各種の添加剤、例えば、着色剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、滑剤、抗菌剤、難燃剤、可塑剤及び他の熱可塑性樹脂等が添加されていてもよい。また、表面が各種の仕上げ剤で処理されていてもよく、これによって撥水性、制電性、表面平滑性、耐摩耗性などの機能が付与されていてもよい。
(積層吸音材の吸音特性)
本発明の積層吸音材は、低周波数領域(1000Hzの周波領域)や中周波数領域(3000Hz)、高周波数領域(5000Hz)、超高周波数領域(10000Hz)における吸音性が優れることを特徴としている。特定の理論に拘束されるものではないが、本発明の積層吸音材は、制御された平均流量細孔径をもつ繊維層の間に、低密度の基材層を挟み込む構成とすることで、繊維層に挟まれた閉鎖空間が作り出され、当該閉鎖空間の中で反射が繰り返し発生して音の吸収が高効率化されるものと考えられている。さらに、特定範囲の平均流量細孔径の繊維層及び基材層を用いることによって、音の反射を防ぎながら第1の繊維層を透過させ、第2の繊維層で音を反射させることで、基材層でより効率的に吸収することが可能となるため、厚みが薄く、かつ高い吸音性を有する吸音材が得られるものと考えられている。
吸音性の評価方法は、実施例に詳述される。
本発明の積層吸音材は、低周波数領域(1000Hzの周波領域)や中周波数領域(3000Hz)、高周波数領域(5000Hz)、超高周波数領域(10000Hz)における吸音性が優れることを特徴としている。特定の理論に拘束されるものではないが、本発明の積層吸音材は、制御された平均流量細孔径をもつ繊維層の間に、低密度の基材層を挟み込む構成とすることで、繊維層に挟まれた閉鎖空間が作り出され、当該閉鎖空間の中で反射が繰り返し発生して音の吸収が高効率化されるものと考えられている。さらに、特定範囲の平均流量細孔径の繊維層及び基材層を用いることによって、音の反射を防ぎながら第1の繊維層を透過させ、第2の繊維層で音を反射させることで、基材層でより効率的に吸収することが可能となるため、厚みが薄く、かつ高い吸音性を有する吸音材が得られるものと考えられている。
吸音性の評価方法は、実施例に詳述される。
(積層吸音材の製造方法)
積層吸音材の製造方法は特に制限されないが、例えば、1層の基材層に1層の繊維層を形成した繊維積層体(つまり、基材層/繊維層の積層体)、又は、保護層上に1層の繊維層を形成した繊維積層体(つまり、保護層/繊維層の積層体)を作成する工程、及び、複数の繊維積層体を所定の順番及び枚数で重ね合わせて一体化する工程、を含む製造方法によって得ることができる。繊維積層体が保護層と繊維層からなる場合、繊維層と繊維層の間に基材層を挟み込むように積層して一体化することができる。なお、繊維積層体を重ね合わせる工程において、繊維積層体以外のさらなる層、例えばさらなる基材層を加えて積層することも好ましい。
積層吸音材の製造方法は特に制限されないが、例えば、1層の基材層に1層の繊維層を形成した繊維積層体(つまり、基材層/繊維層の積層体)、又は、保護層上に1層の繊維層を形成した繊維積層体(つまり、保護層/繊維層の積層体)を作成する工程、及び、複数の繊維積層体を所定の順番及び枚数で重ね合わせて一体化する工程、を含む製造方法によって得ることができる。繊維積層体が保護層と繊維層からなる場合、繊維層と繊維層の間に基材層を挟み込むように積層して一体化することができる。なお、繊維積層体を重ね合わせる工程において、繊維積層体以外のさらなる層、例えばさらなる基材層を加えて積層することも好ましい。
基材層として不織布を用いる場合、公知の方法で不織布を製造して用いてもよいし、市販の不織布を選択して用いることもできる。基材層ないし保護層上に繊維層を形成する工程は、電界紡糸法やメルトブロー法を用いることが好ましい。
電界紡糸法は、紡糸溶液を吐出させるとともに、電界を作用させて、吐出された紡糸溶液を繊維化し、コレクター上に繊維を得る方法である。例えば、紡糸溶液をノズルから押し出すとともに電界を作用させて紡糸する方法、紡糸溶液を泡立たせるとともに電界を作用させて紡糸する方法、円筒状電極の表面に紡糸溶液を導くとともに電界を作用させて紡糸する方法などを挙げることができる。本発明においては、コレクター上に基材層(又は保護層)となる不織布等を挿入し、その上に繊維を集積させることができる。紡糸溶液としては、曳糸性を有するものであれば特に限定されないが、樹脂を溶媒に分散させたもの、樹脂を溶媒に溶解させたもの、樹脂を熱やレーザー照射によって溶融させたものなどを用いることができる。
紡糸の安定性や繊維形成性を向上させる目的で、紡糸溶液にさらに界面活性剤を含有させてもよい。界面活性剤は、例えば、ドデシル硫酸ナトリウムなどの陰イオン性界面活性剤、臭化テトラブチルアンモニウムなどの陽イオン界面活性剤、ポリオキシエチレンソルビタモンモノラウレートなどの非イオン性界面活性剤などを挙げることができる。界面活性剤の濃度は、紡糸溶液に対して5重量%以下の範囲であることが好ましい。5重量%以下であれば、使用に見合う効果の向上が得られるため好ましい。また、本発明の効果を著しく損なわない範囲であれば、上記以外の成分も紡糸溶液の成分として含んでもよい。
メルトブロー法は、基材層の上に繊維層となる樹脂をノズルから溶融状態で押し出し、加熱圧縮空気によって吹き付けることで不織布を形成する方法である。例えば、スクリュー、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いて不織布を製造することができる。基材層を搬送するコンベアーの速度を調整することによって任意に目付けを設定できる。紡糸に用いる樹脂としては、熱可塑性を有しており、曳糸性を有するものであれば特に限定されない。
前記によって得られた繊維積層体を、複数枚重ね合わせて一体化する方法は、特に限定されるわけではなく、接着を行わず重ね合わせるだけでもよく、また、各種の接着方法、つまり、加熱したフラットロールやエンボスロールによる熱圧着、ホットメルト剤や化学接着剤による接着、循環熱風もしくは輻射熱による熱接着などを採用することもできる。繊維層の物性低下を抑制するという観点では、なかでも循環熱風もしくは輻射熱による熱処理が好ましい。フラットロールやエンボスロールによる熱圧着の場合、繊維層が溶融してフィルム化したり、エンボス点周辺部分に破れが発生したりする等のダメージを受け、安定的な製造が困難となる可能性があるほか、吸音特性が低下等の性能低下を生じやすい。また、ホットメルト剤や化学接着剤による接着の場合には、該成分によって繊維層の繊維間空隙が埋められ、性能低下を生じやすい場合がある。一方で、循環熱風もしくは輻射熱による熱処理で一体化した場合には、繊維層へのダメージが少なく、かつ十分な層間剥離強度で一体化できるので好ましい。循環熱風もしくは輻射熱による熱処理によって一体化する場合には、特に限定されるものではないが、熱融着性複合繊維からなる不織布および積層体を使用することが好ましい。
以下、実施例によって本発明をより詳細に説明するが、以下の実施例は例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。
実施例中に示した物性値の測定方法と定義を以下に示す。
<平均繊維径>
株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡SU8020を使用して、繊維構造体(不織布)を観察し、画像解析ソフトを用いて繊維50本の直径を測定した。繊維50本の繊維径の平均値を平均繊維径とした。
<平均繊維径>
株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡SU8020を使用して、繊維構造体(不織布)を観察し、画像解析ソフトを用いて繊維50本の直径を測定した。繊維50本の繊維径の平均値を平均繊維径とした。
<平均流量細孔径>
POROUS MATERIAL社製Capillary FlowPorometer(CFP-1200-A)を使用して、平均流量細孔径を測定(JIS K 3822)した。
POROUS MATERIAL社製Capillary FlowPorometer(CFP-1200-A)を使用して、平均流量細孔径を測定(JIS K 3822)した。
<通気度>
(フラジール形法):東洋精機株式会社製 織布通気度試験機(フラジール形法:A法)を使用して、通気度を測定(JIS L 1096)した。
(ガーレ形法):東洋精機株式会社製 GURLEY TYPE DENSOMETER(ガーレ形法:B法)を使用して、通気度を測定(JIS L 1096)した。
(フラジール形法):東洋精機株式会社製 織布通気度試験機(フラジール形法:A法)を使用して、通気度を測定(JIS L 1096)した。
(ガーレ形法):東洋精機株式会社製 GURLEY TYPE DENSOMETER(ガーレ形法:B法)を使用して、通気度を測定(JIS L 1096)した。
<吸音率測定>
吸音率測定は、各条件の積層をした、各繊維積層体より直径16.6mmのサンプルを採取し、垂直入射吸音率測定装置「日本音響エンジニアリング社製WinZacMTX」を用いASTM E 1050に準拠し、周波数500~5000Hzにおける試験片に平面音波が垂直に入射するときの垂直入射吸音率を測定した。
<低周波数領域の吸音性>
周波数が900Hzから1120Hzまでの吸音率を56点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式1)により平均吸音率(α)を算出した。
吸音率測定は、各条件の積層をした、各繊維積層体より直径16.6mmのサンプルを採取し、垂直入射吸音率測定装置「日本音響エンジニアリング社製WinZacMTX」を用いASTM E 1050に準拠し、周波数500~5000Hzにおける試験片に平面音波が垂直に入射するときの垂直入射吸音率を測定した。
<低周波数領域の吸音性>
周波数が900Hzから1120Hzまでの吸音率を56点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式1)により平均吸音率(α)を算出した。
<中周波数領域の吸音性>
周波数が2800Hzから3550Hzまでの吸音率を190点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式2)により平均吸音率(β)を算出した。
平均吸音率(β)は2800~3550Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。βが0.60以上の場合、中周波数領域の吸音性を良好と評価し、0.60未満の場合、吸音性を不良と評価した。
周波数が2800Hzから3550Hzまでの吸音率を190点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式2)により平均吸音率(β)を算出した。
平均吸音率(β)は2800~3550Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。βが0.60以上の場合、中周波数領域の吸音性を良好と評価し、0.60未満の場合、吸音性を不良と評価した。
<高周波数領域の吸音性>
周波数が4500Hzから5600Hzまでの吸音率を282点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式3)により平均吸音率(γ)を算出した。
平均吸音率(γ)は4500~5600Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。γが0.90以上の場合、高周波数領域の吸音性を良好と評価し、0.90未満の場合、吸音性を不良と評価した。
周波数が4500Hzから5600Hzまでの吸音率を282点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式3)により平均吸音率(γ)を算出した。
平均吸音率(γ)は4500~5600Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。γが0.90以上の場合、高周波数領域の吸音性を良好と評価し、0.90未満の場合、吸音性を不良と評価した。
<超高周波数領域の吸音性>
周波数が9000Hzから11200Hzまでの吸音率を564点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式4)により平均吸音率(η)を算出した。
平均吸音率(η)は9000~11200Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。ηが0.85以上の場合、高周波数領域の吸音性を良好と評価し、0.85未満の場合、吸音性を不良と評価した。
周波数が9000Hzから11200Hzまでの吸音率を564点(3.9Hz間隔)で測定し得られた曲線をf(x)としたとき、下記(式4)により平均吸音率(η)を算出した。
平均吸音率(η)は9000~11200Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。ηが0.85以上の場合、高周波数領域の吸音性を良好と評価し、0.85未満の場合、吸音性を不良と評価した。
<基材層の準備>
高密度ポリエチレンとして、京葉ポリエチレン製の高密度ポリエチレン「M6900」(MFR17g/10分)を用い、ポリプロピレンとして、日本ポリプロ製のポリプロピレンホモポリマー「SA3A」(MFR=11g/10分)を用いて、熱溶融紡糸法により、繊維径16μmの鞘成分が高密度ポリエチレン、芯成分がポリプロピレンからなる鞘芯型熱融着性複合繊維を作製した。得られた鞘芯型熱融着性複合繊維を用いて、目付けが200g/m2、厚み5mm、幅が1000mmのカード法スルーエア不織布を作製した。カード法スルーエア不織布を、商研株式会社製一軸式粉砕機(ES3280)にて約6mm程度に粉砕した。
この粉砕した不織布をエアレイド試験機にて、設定温度142℃で加熱し、目付け250g/m2、通気度95cc/cm2・s、厚み5mmである基材層P、目付け373g/m2、通気度70cc/cm2・s、厚み5mmである基材層M、目付け500g/m2、通気度78cc/cm2・s、厚み10mmである基材層Q、目付け423g/m2、通気度83cc/cm2・s、厚み10mmである基材層Nを得た。
高密度ポリエチレンとして、京葉ポリエチレン製の高密度ポリエチレン「M6900」(MFR17g/10分)を用い、ポリプロピレンとして、日本ポリプロ製のポリプロピレンホモポリマー「SA3A」(MFR=11g/10分)を用いて、熱溶融紡糸法により、繊維径16μmの鞘成分が高密度ポリエチレン、芯成分がポリプロピレンからなる鞘芯型熱融着性複合繊維を作製した。得られた鞘芯型熱融着性複合繊維を用いて、目付けが200g/m2、厚み5mm、幅が1000mmのカード法スルーエア不織布を作製した。カード法スルーエア不織布を、商研株式会社製一軸式粉砕機(ES3280)にて約6mm程度に粉砕した。
この粉砕した不織布をエアレイド試験機にて、設定温度142℃で加熱し、目付け250g/m2、通気度95cc/cm2・s、厚み5mmである基材層P、目付け373g/m2、通気度70cc/cm2・s、厚み5mmである基材層M、目付け500g/m2、通気度78cc/cm2・s、厚み10mmである基材層Q、目付け423g/m2、通気度83cc/cm2・s、厚み10mmである基材層Nを得た。
<保護層の準備>
保護層として、市販のポリエチレンテレフタレート製カード法スルーエア不織布(目付け18g/m2、厚み60μm)を準備した。
保護層として、市販のポリエチレンテレフタレート製カード法スルーエア不織布(目付け18g/m2、厚み60μm)を準備した。
<繊維層の準備>
1)繊維層A
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.5mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は0.5g/m2であり、平均繊維径は470nmであり、融解温度は175℃であった。これを繊維層Aとした。平均流量細孔径を評価したところ8.9μmであった。
1)繊維層A
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.5mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は0.5g/m2であり、平均繊維径は470nmであり、融解温度は175℃であった。これを繊維層Aとした。平均流量細孔径を評価したところ8.9μmであった。
2)繊維層B
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製し、導電助剤として0.01質量%を添加した。保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。
繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは3.0g/m2であり、平均繊維径は80nmであり、融解温度は168℃であった。これを繊維層Bとした。平均流量細孔径を評価したところ0.7μmであった。
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製し、導電助剤として0.01質量%を添加した。保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。
繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは3.0g/m2であり、平均繊維径は80nmであり、融解温度は168℃であった。これを繊維層Bとした。平均流量細孔径を評価したところ0.7μmであった。
3)繊維層C
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは1g/m2であり、平均繊維径は200nmであった。これを繊維層Cとした。平均流量細孔径を評価したところ2.4μmであった。
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは1g/m2であり、平均繊維径は200nmであった。これを繊維層Cとした。平均流量細孔径を評価したところ2.4μmであった。
・繊維層D
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に20質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは2g/m2であり、平均繊維径は400nmであった。これを繊維層Dとした。平均流量細孔径を評価したところ2.2μmであった。
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に20質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは2g/m2であり、平均繊維径は400nmであった。これを繊維層Dとした。平均流量細孔径を評価したところ2.2μmであった。
・繊維層E
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは2.2g/m2であり、平均繊維径は200nmであった。これを繊維層Eとした。平均流量細孔径を評価したところ1.5μmであった。
Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
保護層を準備し、この上に前記PVDF-HFP溶液を電界紡糸して、保護層とPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。繊維積層体におけるPVDF-HFP極細繊維については、その層の目付けは2.2g/m2であり、平均繊維径は200nmであった。これを繊維層Eとした。平均流量細孔径を評価したところ1.5μmであった。
・繊維層F
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は0.5g/m2であり、平均繊維径は260nmであった。これを繊維層Fとした。平均流量細孔径を評価したところ2.8μmであった。
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は0.5g/m2であり、平均繊維径は260nmであった。これを繊維層Fとした。平均流量細孔径を評価したところ2.8μmであった。
・繊維層G
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は3g/m2であり、平均繊維径は270nmであった。これを繊維層Gとした。平均流量細孔径を評価したところ0.9μmであった。
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は3g/m2であり、平均繊維径は270nmであった。これを繊維層Gとした。平均流量細孔径を評価したところ0.9μmであった。
・繊維層H
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に10質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は45kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は3g/m2であり、平均繊維径は90nmであった。これを繊維層Hとした。平均流量細孔径を評価したところ0.8μmであった。
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に10質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は45kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は3g/m2であり、平均繊維径は90nmであった。これを繊維層Hとした。平均流量細孔径を評価したところ0.8μmであった。
・繊維層I
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は2g/m2であり、平均繊維径は270nmであった。これを繊維層Iとした。平均流量細孔径を評価したところ1.0μmであった。
ディーアイシーバイエルポリマー製のポリウレタン(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に12.5質量%の濃度で溶解し、電界紡糸溶液を調製した。保護層を準備し、この上に前記ポリウレタン溶液を電界紡糸して、保護層とポリウレタン極細繊維との2層からなる繊維積層体を作製した。電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は2g/m2であり、平均繊維径は270nmであった。これを繊維層Iとした。平均流量細孔径を評価したところ1.0μmであった。
・繊維層J
繊維層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR-185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した98kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、繊維層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m2に設定した。平均繊維径は、1.3μmであり、これを繊維層Jとした。平均流量細孔径を評価したところ9.4μmであった。
繊維層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR-185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した98kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、繊維層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m2に設定した。平均繊維径は、1.3μmであり、これを繊維層Jとした。平均流量細孔径を評価したところ9.4μmであった。
・繊維層L
繊維層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR-185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した63kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、繊維層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m2に設定した。平均繊維径は、1.9μmであり、これを繊維層Lとした。平均流量細孔径を評価したところ12.6μmであった。
繊維層の形成には、スクリュー(50mm径)、加熱体及びギアポンプを有する2機の押出機、混繊用紡糸口金(孔径0.3mm、2機の押出機より交互に樹脂が吐出される孔数501ホールが一列に並んだ、有効幅500mm)、圧縮空気発生装置及び空気加熱機、ポリエステル製ネットを備えた捕集コンベアー、及び巻取り機からなる不織布製造装置を用いた。
原料のポリプロピレンとして、ポリプロピレンホモポリマー1(MFR=82g/10分)と、ポリプロピレンホモポリマー2(LOTTE CHEMICAL社製「FR-185」(MFR=1400g/10分))を用い、不織布製造装置の2機の押出機に前記2種類のポリプロピレンを投入し、押出機を240℃で加熱溶融させ、ギアポンプの質量比が50/50になる様に設定し、紡糸口金から単孔あたり0.3g/minの紡糸速度で溶融樹脂を吐出させた。吐出した繊維を400℃に加熱した63kPa(ゲージ圧)の圧縮空気によって紡糸口金から60cmの距離で、捕集コンベアー上に吹き付け、繊維層を形成した。捕集コンベアーの速度を調整することによって、目付を80g/m2に設定した。平均繊維径は、1.9μmであり、これを繊維層Lとした。平均流量細孔径を評価したところ12.6μmであった。
[実施例1]
第1の繊維層(繊維層A)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、最外層が保護層となるように第1の繊維層/基材層M/第2の繊維層となるよう重ね合わせた。得られたサンプルを吸音率測定用サンプルとした。繊維層が2層あるため、繊維層の層数「2」とした。これを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.42であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.97であり良好であった。
なお、測定に際しては、測定試料の背後に5mmの空気層を設け測定した(比較例3,4を除く)。
第1の繊維層(繊維層A)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、最外層が保護層となるように第1の繊維層/基材層M/第2の繊維層となるよう重ね合わせた。得られたサンプルを吸音率測定用サンプルとした。繊維層が2層あるため、繊維層の層数「2」とした。これを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.42であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.97であり良好であった。
なお、測定に際しては、測定試料の背後に5mmの空気層を設け測定した(比較例3,4を除く)。
[実施例2]
第1の繊維層(繊維層C)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層C/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.27であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.96であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.96であり良好であった。
第1の繊維層(繊維層C)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層C/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.27であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.96であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.96であり良好であった。
[実施例3]
第1の繊維層(繊維層D)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層D/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.35であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.92であり良好であった。
第1の繊維層(繊維層D)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層D/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.35であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.92であり良好であった。
[実施例4]
第1の繊維層(繊維層E)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層E/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.36であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.89であり良好であった。
第1の繊維層(繊維層E)と、第2の繊維層(繊維層B)との間に、基材層Mを挟み、第1の繊維層E/基材層M/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.36であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.89であり良好であった。
[実施例5]
第1の繊維層(繊維層E)と、第2の繊維層(繊維層E)との間に、基材層Mを挟み、第1の繊維層E/基材層M/第2の繊維層Eとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.35であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.93であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.94であり良好であった。
第1の繊維層(繊維層E)と、第2の繊維層(繊維層E)との間に、基材層Mを挟み、第1の繊維層E/基材層M/第2の繊維層Eとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.35であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.98であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.93であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.94であり良好であった。
[実施例6]
第1の繊維層(繊維層C)と、第2の繊維層(繊維層C)との間に、基材層Mを挟み、第1の繊維層C/基材層M/第2の繊維層Cとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.29であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.95であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.89であり良好であった。
第1の繊維層(繊維層C)と、第2の繊維層(繊維層C)との間に、基材層Mを挟み、第1の繊維層C/基材層M/第2の繊維層Cとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.29であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.95であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.98であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.89であり良好であった。
実施例1~6について、積層吸音材の構成と吸音特性をまとめて表1に示す。また、各層の構成についてもまとめて示す。
実施例7~21として、上記の実施例と同様に、様々な繊維層及び基材層を用いて積層吸音材を作製し、垂直入射吸音率を測定した。表2に積層吸音材の構成と吸音率をまとめる。また、各層の構成についてもまとめて示す。
[比較例1](実施例2の逆配置)
実施例2で得られたサンプルの第2の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.39であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.90であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.73であり不良であった。
細孔径が細かくなることで、超高周波数領域での音の反射が強く影響し吸音特性が低下したためと考えられる。
実施例2で得られたサンプルの第2の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.39であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.90であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.73であり不良であった。
細孔径が細かくなることで、超高周波数領域での音の反射が強く影響し吸音特性が低下したためと考えられる。
[比較例2](基材層(基材層M)のみ)
エアレイド試験機にて、作成した373g/m2、厚み5mmの基材層Mを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.11であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.28であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.41であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.80であり不良であった。
エアレイド試験機にて、作成した373g/m2、厚み5mmの基材層Mを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.11であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.28であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.41であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.80であり不良であった。
[比較例3](市販品ポリプロピレン製不織布)
市販されているポリプロピレン製不織布(3M社製シンサレートTAI1590、繊維径0.7~4.0μm、厚み13mm)を直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.12であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.47であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.69であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
市販されているポリプロピレン製不織布(3M社製シンサレートTAI1590、繊維径0.7~4.0μm、厚み13mm)を直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.12であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.47であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.69であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
[比較例4](市販品ポリプロピレン製不織布)
市販されているポリプロピレン製不織布(3M社製シンサレートTC3303、繊維径0.7~4.0μm、厚み41mm)を直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.21であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.74であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
市販されているポリプロピレン製不織布(3M社製シンサレートTC3303、繊維径0.7~4.0μm、厚み41mm)を直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.21であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.74であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.94であり良好であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
[比較例5](実施例8の逆配置)
実施例8で得られたサンプルの第2の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.52であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.92であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.81であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.67であり不良であった。
実施例8で得られたサンプルの第2の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.52であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.92であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.81であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.67であり不良であった。
[比較例6](基材層(基材層N)のみ)
エアレイド試験機にて、作成した423g/m2、厚み10mmの基材層Nを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.16であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.42であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.64であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.84であり不良であった。
エアレイド試験機にて、作成した423g/m2、厚み10mmの基材層Nを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.16であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.42であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.64であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.84であり不良であった。
[比較例7](基材層(基材層P)のみ)
エアレイド試験機にて、作成した250g/m2、厚み5mmの基材層Pを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.06であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.17であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.26であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.64であり不良であった。
エアレイド試験機にて、作成した250g/m2、厚み5mmの基材層Pを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.06であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.17であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.26であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.64であり不良であった。
[比較例8](基材層(基材層Q)のみ)
エアレイド試験機にて、作成した500g/m2、厚み10mmの基材層Qを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.14であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.44であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.68であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
エアレイド試験機にて、作成した500g/m2、厚み10mmの基材層Qを直径16.6mmの円形に打ち抜き、吸音率測定用サンプルとした。このサンプルの垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ、0.14であり不良であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.44であり不良であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.68であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.88であり良好であった。
[比較例9](第1の繊維層の平均流量細孔径が上限以上)
第1の繊維層(繊維層L)と、第2の繊維層(繊維層B)との間に、基材層Pを挟み、第1の繊維層L/基材層P/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ0.30であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.87であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.87であり良好であった。
第1の繊維層(繊維層L)と、第2の繊維層(繊維層B)との間に、基材層Pを挟み、第1の繊維層L/基材層P/第2の繊維層Bとなるよう重ね合わせ、実施例1と同様に吸音率測定用サンプルとした。
得られたサンプルの第1の繊維層側から音を入射し、垂直入射吸音率を測定し、低周波数領域の吸音性として900Hzから1120Hzまでの吸音率を測定し平均吸音率(α)を評価したところ0.30であり良好であった。垂直入射吸音率を測定し、中周波数領域の吸音性として2800Hzから3550Hzまでの平均吸音率(β)を評価したところ、0.97であり良好であった。高周波数領域の吸音性として4500Hzから5600Hzまでの平均吸音率(γ)を評価したところ、0.87であり不良であった。超高周波数領域の吸音性として9000Hzから11200Hzまでの平均吸音率(η)を評価したところ、0.87であり良好であった。
比較例1~9について、積層吸音材の構成と吸音特性をまとめて表3に示す。また、各層の構成についてもまとめて示す。
本発明の積層吸音材は、低周波数~超高周波数領域の吸音性に優れ、特に高周波数領域の吸音性に優れるため、音の侵入が問題になる分野における吸音材として利用されうる。具体的には住宅の天井、壁、床等に用いられる吸音材、高速道路や鉄道路線等の防音壁、家電製品の防音材、鉄道や自動車等の車両の各部に配置される吸音材等として用いられうる。
Claims (7)
- 少なくとも第1の繊維層と第2の繊維層と、前記第1の繊維層と第2の繊維層の間に存在する少なくとも1層の基材層とを含む積層吸音材であって、
前記第1の繊維層は、平均流量細孔径が0.5~10μmであり、目付けが0.1~200g/m2であり、
前記第2の繊維層は、平均流量細孔径が0.5~10μmであり、かつ、第1の繊維層の平均流量細孔径以下であり、目付けが0.1~200g/m2であり、
前記基材層は、フラジール形法による通気度が40cc/cm2・s以上であり、目付けが1~700g/m2であり、
前記第1の繊維層が音の入射側、前記第2の繊維層が音の透過側となるように配置される、積層吸音材。 - 前記第1の繊維層、前記第2の繊維層、および前記基材層が独立して、不織布および織布からなる群より選ばれる少なくとも1つである、請求項1に記載の積層吸音材。
- 前記基材層が、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種、または、少なくとも2種が複合化された繊維を含み、前記第1の繊維層および第2の繊維層が独立して、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォン、およびポリビニルアルコール、ポリエチレンフタレート、ポリブチレンテレフタレート、ポリエチレン、およびポリプロピレンからなる群から選ばれる少なくとも1種の繊維を含む、請求項1または2に記載の積層吸音材。
- 垂直入射吸音率測定法において、周波数が900Hzから1120Hzまでの吸音率の測定により、吸音率の平均吸音率(α)を算出し、平均吸音率(α)の値が下記式を満たす範囲である、請求項1~3のいずれか1項に記載の積層吸音材。
1.00 ≧ α ≧ 0.22 - 垂直入射吸音率測定法において、周波数が2800Hzから3550Hzまでの吸音率の測定により、吸音率の平均吸音率(β)を算出し、平均吸音率(β)の値が下記式を満たす範囲である、請求項1~4のいずれか1項に記載の積層吸音材。
1.00 ≧ β ≧ 0.60 - 垂直入射吸音率測定法において、周波数が4500Hzから5600Hzまでの吸音率の測定により、吸音率の平均吸音率(γ)を算出し、平均吸音率(γ)の値が下記式を満たす範囲である、請求項1~5のいずれか1項に記載の積層吸音材。
1.00 ≧ γ ≧ 0.90 - 垂直入射吸音率測定法において、周波数が9000Hzから11200Hzまでの吸音率の測定により、吸音率の平均吸音率(η)を算出し、平均吸音率(η)の値が下記式を満たす範囲である、請求項1~6のいずれか1項に記載の積層吸音材。
1.00 ≧ η ≧ 0.85
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980017119.0A CN111819075A (zh) | 2018-03-08 | 2019-02-26 | 层叠吸音材料 |
US16/978,712 US11801660B2 (en) | 2018-03-08 | 2019-02-26 | Laminated acoustic absorption member |
KR1020207026401A KR102601130B1 (ko) | 2018-03-08 | 2019-02-26 | 적층 흡음재 |
EP19763157.5A EP3763521B1 (en) | 2018-03-08 | 2019-02-26 | Laminated acoustic absorption member |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018042044A JP6660035B2 (ja) | 2018-03-08 | 2018-03-08 | 積層吸音材 |
JP2018-042044 | 2018-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019172016A1 true WO2019172016A1 (ja) | 2019-09-12 |
Family
ID=67846662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/007271 WO2019172016A1 (ja) | 2018-03-08 | 2019-02-26 | 積層吸音材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11801660B2 (ja) |
EP (1) | EP3763521B1 (ja) |
JP (1) | JP6660035B2 (ja) |
KR (1) | KR102601130B1 (ja) |
CN (1) | CN111819075A (ja) |
WO (1) | WO2019172016A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021049224A1 (ja) * | 2019-09-13 | 2021-03-18 | Jnc株式会社 | 吸遮音材 |
WO2021235446A1 (ja) | 2020-05-19 | 2021-11-25 | 旭化成株式会社 | 複合吸音材 |
WO2022018921A1 (ja) * | 2020-07-21 | 2022-01-27 | 日本毛織株式会社 | 積層吸音材 |
WO2024135261A1 (ja) * | 2022-12-19 | 2024-06-27 | 株式会社村田製作所 | 多孔体及び吸音材 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021117501A (ja) * | 2020-01-28 | 2021-08-10 | 大豊精機株式会社 | 吸音材 |
KR20230161555A (ko) * | 2022-05-18 | 2023-11-28 | 주식회사 아모그린텍 | 복합 흡음재 |
CN116005491A (zh) * | 2023-01-06 | 2023-04-25 | 中国航空制造技术研究院 | 一种耐高温、柔性宽频吸声隔热材料及其制备方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004019062A (ja) * | 2002-06-18 | 2004-01-22 | Toyobo Co Ltd | 吸音材 |
JP2004021037A (ja) * | 2002-06-18 | 2004-01-22 | Toyobo Co Ltd | 吸音材及び車両用内装材 |
JP2008065046A (ja) * | 2006-09-07 | 2008-03-21 | Toyoshima Sogo Kenkyusho:Kk | 音響特性制御ボード装置及びそれを用いた空間装置並びに音響特性制御方法 |
JP2008537798A (ja) * | 2005-04-11 | 2008-09-25 | エルマルコ、エス.アール.オー | 積層吸音不織布 |
JP2010085873A (ja) * | 2008-10-02 | 2010-04-15 | Kuraray Kuraflex Co Ltd | 複層吸音材 |
JP2011110773A (ja) * | 2009-11-25 | 2011-06-09 | Kosuge:Kk | 吸音材 |
US20130112499A1 (en) * | 2011-11-09 | 2013-05-09 | Dale S. Kitchen | Acoustic composite |
JP2015030218A (ja) | 2013-08-05 | 2015-02-16 | 東レ株式会社 | 吸音性に優れた不織布 |
JP2016121426A (ja) | 2014-12-25 | 2016-07-07 | パナソニックIpマネジメント株式会社 | 吸音材 |
WO2018143430A1 (ja) * | 2017-02-03 | 2018-08-09 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018146942A (ja) * | 2017-03-09 | 2018-09-20 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018169555A (ja) * | 2017-03-30 | 2018-11-01 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018199253A (ja) * | 2017-05-26 | 2018-12-20 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2019001012A (ja) * | 2017-06-13 | 2019-01-10 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
WO2019026798A1 (ja) * | 2017-07-31 | 2019-02-07 | Jnc株式会社 | 積層吸音材 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3705419B2 (ja) * | 2000-11-27 | 2005-10-12 | 東洋紡績株式会社 | 軽量吸音材 |
JP2006047628A (ja) * | 2004-08-04 | 2006-02-16 | Toyobo Co Ltd | 吸音断熱材 |
JP2009512578A (ja) * | 2005-10-19 | 2009-03-26 | スリーエム イノベイティブ プロパティズ カンパニー | 音響吸収特性を有する多層物品、並びにその製造および使用方法 |
US10174499B1 (en) * | 2007-05-01 | 2019-01-08 | Pacific Coast Building Products, Inc. | Acoustical sound proofing material for architectural retrofit applications and methods for manufacturing same |
US20090173569A1 (en) * | 2007-12-20 | 2009-07-09 | E. I. Du Pont De Nemours And Company | Acoustic absorber with barrier facing |
CN101946033B (zh) | 2007-12-28 | 2012-11-28 | 3M创新有限公司 | 复合非织造纤维料片及其制备和使用方法 |
US20100065368A1 (en) * | 2008-09-15 | 2010-03-18 | Vatche Tazian | Lightweight, flexible, moldable acoustic barrier and composites including the same |
CN102320171B (zh) * | 2011-08-27 | 2014-01-15 | 卢霖 | 一种多组份高分子聚合物纤维吸音保温材料及其制造方法 |
CN104441876B (zh) | 2013-09-25 | 2018-04-27 | 东丽纤维研究所(中国)有限公司 | 一种汽车用复合层状吸音材料 |
DE202014102942U1 (de) * | 2014-06-27 | 2015-10-02 | Pinta Acoustic Gmbh | Akustikabsorber |
CN105599400A (zh) * | 2014-11-25 | 2016-05-25 | 东丽纤维研究所(中国)有限公司 | 一种层状吸音材料及其制备方法 |
US10286638B2 (en) * | 2015-10-19 | 2019-05-14 | Solutia Inc. | Multiple layer interlayers having enhanced properties |
US10062371B2 (en) * | 2016-11-21 | 2018-08-28 | Milliken & Company | Nonwoven composite |
JP2019111714A (ja) * | 2017-12-22 | 2019-07-11 | Jnc株式会社 | 積層吸音材 |
-
2018
- 2018-03-08 JP JP2018042044A patent/JP6660035B2/ja active Active
-
2019
- 2019-02-26 KR KR1020207026401A patent/KR102601130B1/ko active IP Right Grant
- 2019-02-26 WO PCT/JP2019/007271 patent/WO2019172016A1/ja active Application Filing
- 2019-02-26 CN CN201980017119.0A patent/CN111819075A/zh active Pending
- 2019-02-26 EP EP19763157.5A patent/EP3763521B1/en active Active
- 2019-02-26 US US16/978,712 patent/US11801660B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004019062A (ja) * | 2002-06-18 | 2004-01-22 | Toyobo Co Ltd | 吸音材 |
JP2004021037A (ja) * | 2002-06-18 | 2004-01-22 | Toyobo Co Ltd | 吸音材及び車両用内装材 |
JP2008537798A (ja) * | 2005-04-11 | 2008-09-25 | エルマルコ、エス.アール.オー | 積層吸音不織布 |
JP2008065046A (ja) * | 2006-09-07 | 2008-03-21 | Toyoshima Sogo Kenkyusho:Kk | 音響特性制御ボード装置及びそれを用いた空間装置並びに音響特性制御方法 |
JP2010085873A (ja) * | 2008-10-02 | 2010-04-15 | Kuraray Kuraflex Co Ltd | 複層吸音材 |
JP2011110773A (ja) * | 2009-11-25 | 2011-06-09 | Kosuge:Kk | 吸音材 |
US20130112499A1 (en) * | 2011-11-09 | 2013-05-09 | Dale S. Kitchen | Acoustic composite |
JP2015030218A (ja) | 2013-08-05 | 2015-02-16 | 東レ株式会社 | 吸音性に優れた不織布 |
JP2016121426A (ja) | 2014-12-25 | 2016-07-07 | パナソニックIpマネジメント株式会社 | 吸音材 |
WO2018143430A1 (ja) * | 2017-02-03 | 2018-08-09 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018146942A (ja) * | 2017-03-09 | 2018-09-20 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018169555A (ja) * | 2017-03-30 | 2018-11-01 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2018199253A (ja) * | 2017-05-26 | 2018-12-20 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
JP2019001012A (ja) * | 2017-06-13 | 2019-01-10 | Jnc株式会社 | 極細繊維を含む積層吸音材 |
WO2019026798A1 (ja) * | 2017-07-31 | 2019-02-07 | Jnc株式会社 | 積層吸音材 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021049224A1 (ja) * | 2019-09-13 | 2021-03-18 | Jnc株式会社 | 吸遮音材 |
JP2021043388A (ja) * | 2019-09-13 | 2021-03-18 | Jnc株式会社 | 吸遮音材 |
WO2021235446A1 (ja) | 2020-05-19 | 2021-11-25 | 旭化成株式会社 | 複合吸音材 |
KR20220160115A (ko) | 2020-05-19 | 2022-12-05 | 아사히 가세이 가부시키가이샤 | 복합 흡음재 |
WO2022018921A1 (ja) * | 2020-07-21 | 2022-01-27 | 日本毛織株式会社 | 積層吸音材 |
WO2024135261A1 (ja) * | 2022-12-19 | 2024-06-27 | 株式会社村田製作所 | 多孔体及び吸音材 |
Also Published As
Publication number | Publication date |
---|---|
JP2019155640A (ja) | 2019-09-19 |
EP3763521A1 (en) | 2021-01-13 |
CN111819075A (zh) | 2020-10-23 |
US20210094258A1 (en) | 2021-04-01 |
KR20200130304A (ko) | 2020-11-18 |
EP3763521B1 (en) | 2022-07-27 |
EP3763521A4 (en) | 2021-12-01 |
KR102601130B1 (ko) | 2023-11-10 |
US11801660B2 (en) | 2023-10-31 |
JP6660035B2 (ja) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019172016A1 (ja) | 積層吸音材 | |
WO2018143430A1 (ja) | 極細繊維を含む積層吸音材 | |
JP5863474B2 (ja) | メルトブローン不織布、その用途、及びその製造方法 | |
WO2019124186A1 (ja) | 積層吸音材 | |
JP6856888B2 (ja) | 極細繊維を含む積層吸音材 | |
JP6912753B2 (ja) | 極細繊維を含む積層吸音材 | |
JP6646267B1 (ja) | 積層吸音材 | |
JP6774042B2 (ja) | 積層吸音材 | |
JP2018146942A (ja) | 極細繊維を含む積層吸音材 | |
JP6751278B1 (ja) | 積層吸音材 | |
JP2019001012A (ja) | 極細繊維を含む積層吸音材 | |
JP6642811B2 (ja) | 積層吸音材 | |
KR102711901B1 (ko) | 적층 흡음재 | |
JP6642810B2 (ja) | 積層吸音材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19763157 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019763157 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019763157 Country of ref document: EP Effective date: 20201008 |