WO2018143430A1 - 極細繊維を含む積層吸音材 - Google Patents

極細繊維を含む積層吸音材 Download PDF

Info

Publication number
WO2018143430A1
WO2018143430A1 PCT/JP2018/003659 JP2018003659W WO2018143430A1 WO 2018143430 A1 WO2018143430 A1 WO 2018143430A1 JP 2018003659 W JP2018003659 W JP 2018003659W WO 2018143430 A1 WO2018143430 A1 WO 2018143430A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
sound
base material
layer
absorbing material
Prior art date
Application number
PCT/JP2018/003659
Other languages
English (en)
French (fr)
Inventor
貴之 服部
賢 西島
Original Assignee
Jnc株式会社
Jncファイバーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jncファイバーズ株式会社 filed Critical Jnc株式会社
Priority to EP18747423.4A priority Critical patent/EP3579224A4/en
Priority to CN201880009796.3A priority patent/CN110249381A/zh
Priority to KR1020197025324A priority patent/KR20190115021A/ko
Priority to US16/483,044 priority patent/US20200005753A1/en
Publication of WO2018143430A1 publication Critical patent/WO2018143430A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/005Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to another layer of paper or cardboard layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B29/007Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material next to a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • D04H13/001Making non-woven fabrics from staple fibres, filaments or yarns, bonded to at least one web-like material, e.g. woven, knitted non-woven fabric, paper, leather, during consolidation
    • D04H13/007Making non-woven fabrics from staple fibres, filaments or yarns, bonded to at least one web-like material, e.g. woven, knitted non-woven fabric, paper, leather, during consolidation strengthened or consolidated by welding together the various components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/023Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention relates to a sound-absorbing material having a laminated structure including ultrafine fibers.
  • Sound absorbing material is a product that has the function of absorbing sound, and is widely used in the construction and automobile fields. It is known to use a nonwoven fabric as a material constituting the sound absorbing material.
  • Patent Document 1 discloses a composite nonwoven web including submicron fibers having a median diameter of less than 1 ⁇ m and microfibers having a median diameter of at least 1 ⁇ m.
  • the composite nonwoven web of Patent Document 1 is a mixture of fibers having two different median diameters called submicron fibers and microfibers, and the mixing ratio is changed in the thickness direction by changing the mixing ratio. Is forming.
  • a microfiber stream can be formed and a sub-micron fiber stream can be separately formed and added to the microfiber stream to form a web of different fibers mixed together. .
  • Patent Document 2 discloses a multilayer article having sound absorbing properties, which includes a support layer and a submicron fiber layer laminated on the support layer. It is disclosed that the diameter is less than 1 ⁇ m and the average fiber diameter is in the range of 0.5 to 0.7 ⁇ m, and it is formed by a melt film fibrillation method or an electrospinning method.
  • a polypropylene spunbonded nonwoven fabric having a basis weight (weight per unit area) of 100 g / m 2 and a diameter of about 18 ⁇ m is used as a support layer, and a basis weight of 14 to 50 g / m 2 and an average fiber diameter of about 0 Laminated articles laminated with .56 ⁇ m submicron polypropylene fibers are disclosed.
  • the basis weight 62 g / m on a polyester card processing web 2 and a basis weight of 6 ⁇ 32 g / m 2 the multilayer article is disclosed as a laminate of electrospun polycaprolactone fibers having an average fiber diameter of 0.60 ⁇ m Has been.
  • the multilayer articles made in the examples are measured for acoustic absorption properties and have been shown to have better acoustic absorption properties than those of the support alone.
  • Patent Document 3 discloses a laminated sound-absorbing nonwoven fabric that absorbs low-frequency and high-frequency sounds, and includes a resonance film and at least one other fiber material layer.
  • the resonance film has a surface weight (weight per unit area) up to a diameter of 600 nm.
  • A) formed by 0.1-5 g / m 2 nanofiber layers.
  • the nanofiber layer is typically created by electrospinning, while the substrate layer is a fiber fabric having a diameter of 10 to 45 ⁇ m and a basis weight of 5 to 100 g / m 2 , and further layers may be laminated. Is disclosed. Further, it is disclosed that this laminate may be further laminated in order to reach an appropriate thickness and basis weight.
  • Patent Document 4 discloses a non-woven fabric structure that is excellent in sound absorption characteristics using nanofibers.
  • the nonwoven fabric structure of Patent Document 4 includes a fibrous body containing nanofibers having a fiber diameter of less than 1 ⁇ m, and the thickness of the fibrous body is 10 mm or more. Further, it is disclosed that the fibrous body may be supported by a support, or may have a structure in which the fibrous body and the support are repeatedly laminated.
  • the nanofibers are formed by, for example, a melt blown method, and in an embodiment, a nanofiber body layer having a fiber diameter of 0.5 ⁇ m and a basis weight of 350 g / m 2 is formed on a polypropylene spunlace nonwoven fabric as a support. Has been.
  • nonwoven fabric laminates having various configurations have been studied as sound absorbing materials, and it is also known to use nanofibers having a fiber diameter of less than 1 ⁇ m and ultrafine fibers called submicron fibers.
  • a sound-absorbing material having more excellent sound-absorbing characteristics particularly a sound-absorbing material that exhibits excellent sound-absorbing performance in a relatively low frequency region of 1000 Hz or less and is excellent in space saving.
  • an object of the present invention is to provide a sound-absorbing material that exhibits excellent sound-absorbing properties in a low-frequency region.
  • the laminated sound-absorbing material including the base material layer and the fiber layer includes at least three fiber layers having a specific range of fiber diameter and basis weight, and has a specific range of basis weight and thickness between the fiber layers.
  • the laminated sound-absorbing material including the base material layer was found to exhibit excellent sound-absorbing properties in the low-frequency region and excellent in space-saving properties, thus completing the present invention.
  • a laminated sound-absorbing material including a plurality of fiber layers and a base material layer existing between the fiber layers,
  • the laminated sound absorbing material includes at least three fiber layers, each fiber layer is made of fibers having a fiber diameter of less than 450 nm, and has a basis weight of 0.1 to 50 g / m 2 .
  • the base material layer has a basis weight of 1 g / m 2 or more, a thickness of 0.1 mm or more,
  • the base material layer is a laminated sound-absorbing material that is at least one selected from the group consisting of a nonwoven fabric, a film, glass fiber, and paper.
  • the base material included in the base material layer is a nonwoven fabric made of at least one selected from the group consisting of polyethylene phthalate fiber, polybutylene terephthalate fiber, polyethylene fiber and polypropylene fiber, and the basis weight of the base material is 1
  • the fiber forming the fiber layer is at least one selected from the group consisting of polyvinylidene fluoride, nylon 6,6, polyacrylonitrile, polystyrene, polyurethane, polysulfone, and polyvinyl alcohol.
  • the sound absorption coefficient at a frequency x of 200 Hz to 3200 Hz is measured at intervals of 1 Hz, and the obtained curve is f (x), from 200 Hz to 1000 Hz.
  • the laminated sound-absorbing material of the present invention is in a region where the peak of sound-absorbing characteristics is lower than that of conventional sound-absorbing materials, and is excellent in sound-absorbing performance in a region of 1000 Hz or less.
  • most of the daily noise is said to be around 200 to 500 Hz.
  • road noise is said to be around 100 to 500 Hz, and noise during acceleration and transmission fluctuation is said to be around 100 to 2000 Hz. .
  • the laminated sound-absorbing material of the present invention is useful for such noise countermeasures.
  • the laminated sound absorbing material of the present invention is lighter than the sound absorbing material made of porous material, glass fiber, etc., it is possible to reduce the weight of the member and save space. It is useful as a sound absorbing material.
  • the laminated sound-absorbing material of the present invention comprises a base material layer and a fiber layer. Three or more fiber layers are included in the laminated sound-absorbing material, and a base material layer is interposed between the fiber layers.
  • the fiber layer includes three or more layers, preferably 3 to 6 layers, more preferably 3 to 4 layers.
  • Each fiber layer may be one fiber structure or may be a form in which a plurality of fiber structures are stacked in one fiber layer.
  • a base material layer is interposed between the fiber layers.
  • Each base material layer may consist of one base material, or may have a form in which a plurality of base materials are stacked.
  • the fiber layer and the base material layer included in the laminated sound-absorbing material may each be one type, but two or more different fiber layers or base material layers may be included. Moreover, unless the effect of this invention is impaired, structures other than a fiber layer and a base material layer may be contained, for example, the additional fiber layer (1 layer or 2 layers or more outside the range prescribed
  • the layers of the laminated sound absorbing material may be physically and / or chemically bonded, or may not be bonded.
  • the laminated sound-absorbing material may have a form in which a part of the plurality of layers is bonded and a part of the laminated sound-absorbing material is not bonded.
  • Adhesion is performed, for example, by heating in the fiber layer forming step or as a subsequent step, melting a part of the fibers constituting the fiber layer, and fusing the fiber layer to the substrate. May be adhered.
  • the thickness of the laminated sound-absorbing material is not particularly limited as long as the effects of the present invention can be obtained.
  • the thickness can be 0.1 to 50 mm, preferably 0.3 to 40 mm, and preferably 0.3 to 35 mm. If it exists, it is more preferable from a viewpoint of space-saving property.
  • the thickness of the laminated sound-absorbing material typically means the total thickness of the fiber layer and the base material layer. When an exterior body such as a cartridge or a lid is attached, the thickness of that portion is included. Make it not exist.
  • the air permeability of the laminated sound-absorbing material is not particularly limited as long as the desired sound-absorbing performance can be obtained, but can be 10 to 1000 ⁇ m / Pa ⁇ s, and more preferably 10 to 500 ⁇ m / Pa ⁇ s. .
  • the air permeability can be measured by a known method, for example, the Gurley tester method.
  • the laminated sound absorbing material has a laminated structure in which a fiber layer is sandwiched between base layers.
  • the distance between the fiber layer (the thickness of the base material layer, also referred to as the interlayer distance) is preferably 100 ⁇ m to 15 mm, and more preferably 100 ⁇ m to 10 mm. . If the interlayer distance is 100 ⁇ m or more, the sound absorption performance in the low frequency region is good, and if the interlayer distance is 15 mm or less, the thickness of the sound absorbing material does not become too large, which is suitable for space saving.
  • the fiber layer contained in the laminated sound-absorbing material of the present invention is a layer made of fibers having a fiber diameter of less than 450 nm.
  • the fiber diameter being less than 450 nm means that the average fiber diameter is within this numerical range. If the fiber diameter is less than 450 nm, it is preferable because high sound absorption is obtained, and if it is less than 420 nm, it is more preferable because higher sound absorption is obtained.
  • the fiber diameter can be measured by a known method. For example, it is a value obtained by measurement or calculation from an enlarged photograph of the fiber layer surface, and a detailed measurement method will be described in detail in Examples.
  • the fiber layer contained in the laminated sound-absorbing material of the present invention may have a single fiber layer composed of a single fiber structure, and a plurality of fiber aggregates in one fiber layer, The layer of body layers may form a single fiber layer.
  • a fiber assembly means the fiber assembly used as one continuous body formed on one layer of a base material.
  • the basis weight of the fiber aggregate is preferably 0.1 to 25 g / m 2 , and more preferably 0.3 to 20 g / m 2 .
  • the basis weight is 0.1 g / m 2 or more, the control of flow resistance due to the difference in density between the fine fiber layer and the base fiber is good, and if it is less than 50 g / m 2 , warping may increase as a sound absorbing material. Becomes lower.
  • the fiber structure constituting the fiber layer is preferably a non-woven fabric, and is not particularly limited as long as it has a fiber diameter and basis weight in the above range, but is a melt-blown non-woven fabric, a non-woven fabric formed by electrospinning, or the like. Is preferred. According to the electrospinning method, ultrafine fibers can be efficiently laminated on a substrate. Details of the electrospinning method will be described in detail in the manufacturing method.
  • the resin constituting the fiber structure is not particularly limited as long as the effects of the invention can be obtained.
  • polyolefins such as polypropylene and polyethylene, polyurethane, polylactic acid, acrylic resins, polyesters such as polyethylene terephthalate and polybutylene terephthalate, Nylon 6, nylon 6, 6, nylon 12 and other nylons (amide resins), polyphenylene sulfide, polyvinyl alcohol, polystyrene, polysulfone, liquid crystal polymers, polyethylene-vinyl acetate copolymer, polyacrylonitrile, polyvinylidene fluoride, polyfluoride And vinylidene chloride-hexafluoropropylene.
  • the fiber structure preferably contains one kind of the above-mentioned resins, and may contain two or more kinds.
  • the fiber structure may contain various additives other than the resin.
  • additives that can be added to the resin include fillers, stabilizers, plasticizers, adhesives, adhesion promoters (eg, silanes and titanates), silica, glass, clay, talc, pigments, colorants, Antioxidants, fluorescent brighteners, antibacterial agents, surfactants, flame retardants, and fluorinated polymers.
  • One or more of the above additives may be used to reduce the weight and / or cost of the resulting fibers and layers, adjust the viscosity, or modify the thermal properties of the fibers.
  • various physical properties derived from the properties of the additive may be imparted, including electrical properties, optical properties, density properties, liquid barrier or tack properties.
  • the base material layer in the laminated sound absorbing material has a sound absorbing property and also has a function of supporting the fiber layer and maintaining the shape of the entire sound absorbing material.
  • the fiber layer is formed of fibers having an extremely thin fiber diameter of 10 nm to 450 nm, and therefore has low strength (rigidity). Therefore, the base material layer substantially bears the strength of the laminated sound absorbing material.
  • the base material layer may consist of a single base material, or may have a form in which a plurality of base materials are stacked.
  • the base material constituting the base material layer is not particularly limited as long as the fiber structure can be laminated on at least one surface thereof.
  • Nonwoven fabric, film, glass fiber, paper, woven fabric, foam (foam layer) , Foil, mesh and the like can be used.
  • one or more of nonwoven fabric, film, glass fiber, and paper are preferable, and nonwoven fabric is more preferable.
  • One type of substrate may be included in the laminated sound-absorbing material, and it is also preferable that two or more types of substrates are included.
  • the type of nonwoven fabric can be selected from melt blown nonwoven fabric, spunlace nonwoven fabric, spunbond nonwoven fabric, through-air nonwoven fabric, thermal bond nonwoven fabric, needle punched nonwoven fabric, etc., and can be appropriately selected according to desired physical properties and functions. .
  • thermoplastic resin As the resin constituting the fibers of the nonwoven fabric, a thermoplastic resin can be used. Examples thereof include polyolefin resins, polyester resins such as polyethylene terephthalate, and polyamide resins. Examples of the polyolefin resin include homopolymers such as ethylene, propylene, butene-1, or 4-methylpentene-1, and other ⁇ -olefins such as ethylene, propylene, butene-1, pentene-1, A random or block copolymer with one or more of hexene-1 and 4-methylpentene-1, or a combination of these, or a mixture thereof.
  • Polyamide resins include nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 6,6, nylon 6,10, polymetaxylidene adipamide, polyparaxylidenedecanamide, polybiscyclohexylmethanedecane. Amides or their copolyamides can be mentioned.
  • polyester resin include polyethylene terephthalate, polytetramethylene terephthalate, polybutyl terephthalate, polyethyleneoxybenzoate, poly (1,4-dimethylcyclohexane terephthalate), and copolymers thereof.
  • polyethylene terephthalate fiber polybutylene terephthalate fiber
  • polyethylene fiber polypropylene fiber
  • the same resin can be used when the substrate is a film, a woven fabric, or a mesh.
  • the fiber constituting the nonwoven fabric of the base material it can be used with only one component, but considering the effect of fusion at the intersection of the heat-adhesive fibers, the composite component of the low melting point resin and the high melting point resin It is also preferable to use a composite fiber composed of two or more components having different melting points. Examples of the composite form include a sheath core type, an eccentric sheath core type, and a parallel type. Moreover, it is also preferable to use a mixed fiber of two or more components having different melting points as the fiber constituting the nonwoven fabric of the base material.
  • the mixed fiber means a fiber in which fibers made of a high melting point resin and fibers made of a low melting point resin exist independently and are mixed.
  • the fiber diameter of the fibers constituting the nonwoven fabric of the base material is not particularly limited, but those made of fibers having a fiber diameter of 0.5 ⁇ m to 1 mm can be used.
  • the fiber diameter of 0.5 ⁇ m to 1 mm means that the average fiber diameter is within this numerical range. If the fiber diameter is 0.5 ⁇ m or more, the flow resistance due to the density difference between the fine fiber layer and the base fiber can be controlled, and if it is less than 1 mm, versatility is not lost and is also available. It becomes easy.
  • a fiber diameter of 1.0 to 100 ⁇ m is more preferable because flow resistance due to the density difference between the fine fiber layer and the base fiber can be controlled and is easily available.
  • the measurement of the fiber diameter can be performed by the same method as the measurement of the fiber diameter of the fiber layer.
  • the base material constitutes a base material layer interposed between the fiber layer and the fiber layer.
  • the laminated sound-absorbing material may be included as two layers located on the outermost surface.
  • a base material may comprise a base material layer only by 1 layer, and it is also preferable that 2 or more layers are arrange
  • the basis weight of the substrate may be 1 g / m 2 or more, preferably 1 to 300 g / m 2 , more preferably 15 to 300 g / m 2 . If the basis weight of the base material is less than 1 g / m 2 , the strength required for the sound absorbing material may not be obtained.
  • the base material layer has a thickness of 0.1 mm or more.
  • the upper limit of the thickness of the base material layer is not particularly limited, but is preferably 0.1 to 60 mm, more preferably 0.1 to 30 mm from the viewpoint of space saving.
  • the thickness of the base material constituting the base material layer can be, for example, 20 ⁇ m to 20 mm, and more preferably 30 ⁇ m to 10 mm. If the thickness of the base material is 20 ⁇ m or more, wrinkles are not generated and handling is easy and productivity is good. If the thickness of the base material is 20 mm or less, there is no risk of hindering space saving.
  • various additives such as a colorant, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, a nucleating agent, a lubricant, and an antibacterial agent are provided as long as the effects of the present invention are not impaired.
  • flame retardants, plasticizers and other thermoplastic resins may be added.
  • the surface may be processed with various finishing agents, and functions, such as water repellency, antistatic property, surface smoothness, and abrasion resistance, may be provided by this.
  • the laminated sound-absorbing material of the present invention is particularly characterized by excellent sound-absorbing properties in a low frequency region (frequency region of 1000 Hz or less).
  • the laminated sound-absorbing material of the present invention exhibits a sound-absorbing characteristic different from that of conventional sound-absorbing materials, in particular, excellent in sound-absorbing properties in the 400 Hz to 1000 Hz region.
  • the laminated sound-absorbing material of the present invention is superior in absorbency in the low-frequency region as a result of controlling the flow resistance of sound waves by utilizing the density difference between the fine fiber layer and the base material layer. It is thought that the performance is obtained.
  • the sound absorption evaluation method is described in detail in Examples.
  • the production method of the laminated sound-absorbing material is not particularly limited.
  • a step of creating a fiber laminate in which a single-layer fiber structure is formed on a single-layer base material, and a plurality of fiber laminates in a predetermined order and It can be obtained by a manufacturing method including a process of superimposing and integrating them in the number of sheets.
  • a manufacturing method including a process of superimposing and integrating them in the number of sheets.
  • it in the process of superimposing a fiber laminated body, it can also laminate
  • a nonwoven fabric When using a nonwoven fabric as a base material, a nonwoven fabric may be manufactured and used by a well-known method, and a commercially available nonwoven fabric can also be selected and used.
  • the step of forming the fiber structure on the substrate preferably uses an electrospinning method.
  • the electrospinning method is a method in which a spinning solution is discharged and an electric field is applied to fiberize the discharged spinning solution to obtain fibers on a collector.
  • a method of spinning by spinning the spinning solution from the nozzle and applying an electric field a method of spinning by spinning the spinning solution and applying an electric field, and spinning by directing the spinning solution to the surface of a cylindrical electrode and applying an electric field.
  • the nonwoven fabric etc. which become a base material can be inserted on a collector, and a fiber can be integrated
  • the spinning solution is not particularly limited as long as it has spinnability, but a solution in which a resin is dispersed in a solvent, a solution in which a resin is dissolved in a solvent, a solution in which a resin is melted by heat or laser irradiation, and the like. Can be used.
  • Examples of the solvent for dispersing or dissolving the resin include water, methanol, ethanol, propanol, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, toluene, and xylene.
  • Pyridine formic acid, acetic acid, tetrahydrofuran, dichloromethane, chloroform, 1,1,2,2-tetrachloroethane, 1,1,1,3,3,3-hexafluoroisopropanol, trifluoroacetic acid, and mixtures thereof.
  • the mixing ratio in the case of mixing and using is not particularly limited, and can be appropriately set in view of the required spinnability and dispersibility and the physical properties of the obtained fiber.
  • a surfactant may be further contained in the spinning solution.
  • the surfactant include an anionic surfactant such as sodium dodecyl sulfate, a cationic surfactant such as tetrabutylammonium bromide, and a nonionic surfactant such as polyoxyethylene sorbitamon monolaurate. Can be mentioned.
  • the concentration of the surfactant is preferably in the range of 5% by weight or less with respect to the spinning solution. If it is 5 weight% or less, since the improvement of an effect commensurate with use is obtained, it is preferable.
  • components other than those described above may be included as components of the spinning solution as long as the effects of the present invention are not significantly impaired.
  • the method for preparing the spinning solution is not particularly limited, and examples thereof include agitation and ultrasonic treatment. Also, the order of mixing is not particularly limited, and they may be mixed simultaneously or sequentially.
  • the stirring time when preparing the spinning solution by stirring is not particularly limited as long as the resin is uniformly dissolved or dispersed in the solvent. For example, the spinning solution may be stirred for about 1 to 24 hours.
  • the viscosity of the spinning solution is preferably adjusted in the range of 10 to 10,000 cP, more preferably in the range of 50 to 8,000 cP. If the viscosity is 10 cP or more, spinnability for forming fibers is obtained, and if it is 10,000 cP or less, the spinning solution can be easily discharged. A viscosity in the range of 50 to 8,000 cP is more preferable because good spinnability can be obtained over a wide range of spinning conditions.
  • the viscosity of the spinning solution can be adjusted by appropriately changing the molecular weight, concentration, type of solvent, and mixing ratio of the resin.
  • the spinning solution can be spun at room temperature or heated and cooled for spinning.
  • Examples of the method of discharging the spinning solution include a method of discharging the spinning solution filled in the syringe from a nozzle using a pump.
  • the inner diameter of the nozzle is not particularly limited, but is preferably in the range of 0.1 to 1.5 mm.
  • the discharge amount is not particularly limited, but is preferably 0.1 to 10 mL / hr.
  • the method of applying an electric field is not particularly limited as long as an electric field can be formed in the nozzle and the collector.
  • a high voltage may be applied to the nozzle and the collector may be grounded.
  • the voltage to be applied is not particularly limited as long as fibers are formed, but it is preferably in the range of 5 to 100 kV.
  • the distance between the nozzle and the collector is not particularly limited as long as fibers are formed, but is preferably in the range of 5 to 50 cm.
  • the method of stacking and integrating a plurality of fiber laminates composed of two layers of the base material / fiber structure obtained as described above is not particularly limited, and may be performed without performing bonding.
  • Various bonding methods that is, thermocompression bonding using a heated flat roll or embossing roll, bonding using a hot melt agent or a chemical adhesive, thermal bonding using circulating hot air or radiant heat, and the like can also be employed. From the viewpoint of suppressing deterioration of physical properties of the fiber layer containing ultrafine fibers, heat treatment with circulating hot air or radiant heat is particularly preferable.
  • the fiber layer may be melted to form a film, or damage may occur such as tearing around the embossing point, which may make stable production difficult. In addition, performance deterioration such as a decrease in sound absorption characteristics tends to occur. Moreover, in the case of adhesion
  • ⁇ Average fiber diameter> A scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation was used to observe the ultrafine fibers, and the diameter of 50 ultrafine fibers was measured using image analysis software. The average value of the fiber diameters of 50 ultrafine fibers was defined as the average fiber diameter.
  • the normal incidence sound absorption coefficient was measured when a plane sound wave was perpendicularly incident on a test piece at 200 to 3200 Hz.
  • ⁇ Sound absorption in low frequency range When the sound absorption rate at a frequency x of 200 Hz to 3200 Hz is measured at 1 Hz intervals, and the obtained curve is f (x), an integrated value S of the sound absorption rate from 200 Hz to 1000 Hz is obtained by the following equation.
  • the integrated value S indicates the sound absorption performance in the frequency range of 200 to 1000 Hz. If the numerical value is high, it is determined that the sound absorption is high. When the S value exceeded 170, the sound absorption in the low frequency region was evaluated as good, and when it was less than 170, the sound absorption was evaluated as poor.
  • Example 1 DIC Bayer Polymer polyurethane resin (grade name: T1190) was dissolved in a co-solvent of N, N-dimethylformamide and acetone (60/40 (w / w)) at a concentration of 15% by mass to obtain an electrospinning solution.
  • a polyethylene terephthalate through-air non-woven fabric having a basis weight of 18 g / m 2 and a width of 1000 mm is prepared as a base non-woven fabric B (thickness 60 ⁇ m), and the polyurethane solution is electrospun onto the base non-woven fabric B and a polyurethane microfiber structure.
  • the fiber laminated body which consists of two layers was produced.
  • the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
  • the polyurethane ultrafine fiber in the obtained fiber laminate had a basis weight of 20.0 g / m 2 , an average fiber diameter of 420 nm, and a melting temperature of 175 ° C.
  • the obtained two-layer fiber laminate is punched out to a diameter of 63 mm, and three fiber laminates and a base nonwoven fabric B are used. Ultrafine fiber structure / base material B / base material B / very fine fiber structure / base material B / Substrate B / Superfine fiber structures were superposed.
  • the obtained sample was used as a sound absorption coefficient measurement sample (interlayer distance 0.12 mm). Since there are three ultrafine fiber layers, the number of fiber layers was set to “3”. The normal incident sound absorption coefficient was measured, and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated.
  • Kynar (trade name) 3120 which is a polyvinylidene fluoride-hexafluoropropylene (hereinafter abbreviated as “PVDF-HFP”) resin manufactured by Arkema, was mixed with N, N-dimethylacetamide and acetone co-solvent (60/40 ( w / w)) was dissolved at a concentration of 18% by mass to prepare an electrospinning solution.
  • a base non-woven fabric A was prepared, and the PVDF-HFP solution was electrospun onto the base non-woven fabric A to prepare a fiber laminate composed of two layers of the base non-woven fabric A and PVDF-HFP ultrafine fibers.
  • the electrospinning conditions were as follows: a 24G needle was used, the single-hole solution supply rate was 3.0 mL / h, the applied voltage was 35 kV, and the spinning distance was 17.5 cm.
  • the basis weight of the layer was 24.0 g / m 2 , the average fiber diameter was 300 nm, and the melting temperature was 168 ° C.
  • Example 3 black line
  • Comparative Example 2 there is a sound absorption peak in a higher frequency region.
  • Example 4 DIC Bayer Polymer polyurethane resin (grade name: T1190) was dissolved in a co-solvent of N, N-dimethylformamide and acetone (60/40 (w / w)) at a concentration of 15% by mass to obtain an electrospinning solution.
  • a base non-woven fabric A was prepared, and the polyurethane solution was electrospun onto the base non-woven fabric A to prepare a fiber laminate composed of two layers of the base non-woven fabric and polyurethane ultrafine fibers.
  • the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 V, and a spinning distance of 20 cm.
  • the basis weight of the layer was 10.0 g / m 2 , the average fiber diameter was 420 nm, and the melting temperature was 175 ° C.
  • Three fiber laminates and base non-woven fabric A are used so that it becomes an ultra-fine fiber structure / base A / base A / extra-fine fiber structure / base A / base A / ultra-fine fiber structure.
  • a sample for measurement of sound absorption rate (interlayer distance: 10 mm) was obtained by superimposing. Since there are three ultrafine fiber layers, the number of fiber layers was set to “3”. When the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 258.5, which was favorable.
  • Example 5 Three fiber laminates composed of two layers of the base nonwoven fabric and polyurethane microfiber obtained in Example 2 and a card method through-air nonwoven fabric (base A) were used, and the base A / ultrafine fiber structure / base A sample for measuring sound absorption (interlayer distance: 10 mm) was formed by superimposing materials A / base material A / extra fine fiber structure / base material A / base material A / extra fine fiber structure / base material A. Since there are three aggregate portions of the ultrafine fiber layer, the number of fiber layers is set to “3”. The normal incident sound absorption coefficient was measured, and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated.
  • Kynar 3120 a PVDF-HFP resin
  • a co-solvent of N, N-dimethylacetamide and acetone 60/40 (w / w)) at a concentration of 15% by mass to prepare an electrospinning solution.
  • a base nonwoven fabric A was prepared, and the solution was electrospun under the same conditions as in Example 3 to prepare a fiber laminate comprising two layers of the base nonwoven fabric A and PVDF-HFP ultrafine fibers.
  • the PVDF-HFP ultrafine fiber in the obtained fiber laminate had a layer basis weight of 1.0 g / m 2 , an average fiber diameter of 180 nm, and a melting temperature of 168 ° C.
  • a fiber laminate is punched into a circle having a diameter of 63 mm, three fiber laminates, a card method through-air nonwoven fabric (base material A) having a basis weight of 200 g / m 2 , a thickness of 5 mm, and a width of 1000 mm,
  • the samples were superposed so as to be substrate A / substrate A / ultrafine fiber structure / substrate A / substrate A / ultrafine fiber structure to obtain a sound absorption coefficient measurement sample (interlayer distance 10 mm). Since there are three aggregate portions of the ultrafine fiber layer, the number of fiber layers is set to “3”.
  • the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 300.0, which was favorable.
  • Example 7 A polyurethane resin electrospinning solution obtained in Example 1 was prepared, and a polyethylene terephthalate through-air nonwoven fabric having a basis weight of 18 g / m 2 and a width of 1000 mm was prepared as a base nonwoven fabric (thickness 60 ⁇ m). The solution was electrospun to produce a fiber laminate comprising two layers of a base nonwoven fabric and polyurethane resin ultrafine fibers. About the polyurethane ultrafine fiber in the obtained fiber laminated body which consists of two layers, the fabric weight of the layer was 3.0 g / m ⁇ 2 >, the average fiber diameter was 420 nm, and the melting temperature was 175 degreeC.
  • a two-layer fiber laminate is punched into a circle with a diameter of 63 mm, and three two-layer fiber laminates are used.
  • the card method through-air nonwoven fabric (base material A) has a basis weight of 200 g / m 2 , a thickness of 5 mm, and a width of 1000 mm.
  • the samples were superposed so as to obtain a sound absorption coefficient measurement sample (interlayer distance 10.1 mm). Since there are three aggregate portions of the ultrafine fiber layer, the number of fiber layers is set to “3”. When the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 289.9, which was favorable.
  • Example 8 Except that four fiber laminates were used, the same procedure as in Example 1 was carried out, and four ultrafine fiber layers (extrafine fiber structure / base material B / base material B / extra fine fiber structure / base material B / base material B) were used. A sample for measuring the sound absorption coefficient (interlayer distance 0.12 mm) was used so as to be / extrafine fiber structure / base material B / base material B / extra fine fiber structure). Since there are four ultrafine fiber layers, the number of fiber layers was set to “4”. When the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 236.8, which was favorable.
  • Kynar 3120 was dissolved at a concentration of 18% by mass in a co-solvent (60/40 (w / w)) of N, N-dimethylacetamide and acetone to prepare an electrospinning solution.
  • Example 10 Except for using four fiber laminates and the base nonwoven fabric A, the same procedure as in Example 2 was repeated, and the ultrafine fiber structure / base material A / base material A / extra fine fiber structure / base material A / base material A / A sample for measuring sound absorption rate (interlayer distance: 10 mm) was prepared so as to be an ultrafine fiber structure / base material A / base material A / ultrafine fiber structure. Since there are four aggregate portions of the ultrafine fiber layer, the number of fiber layers was set to “4”. When the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 385.5, which was good.
  • Example 11 Except that 6 fiber laminates were used, the same procedure as in Example 4 was carried out, and Base Material A / Ultrafine Fiber Structure / Ultrafine Fiber Structure / Base Material A / Base Material A / Ultrafine Fiber Structure / Ultrafine Fiber Structure / A sample for measuring sound absorption rate (interlayer distance: 10 mm) was prepared so as to be substrate A / substrate A / ultrafine fiber structure / ultrafine fiber structure / substrate A. Since there are three aggregate portions of the ultrafine fiber layer, the number of fiber layers is set to “3”. When the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 320.5, which was good.
  • the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
  • the polyurethane ultrafine fiber in the obtained two-layer fiber laminate had a basis weight of 10.0 g / m 2 , an average fiber diameter of 420 nm, and a melting temperature of 175 ° C.
  • the obtained two-layer fiber laminate was cut out to a major axis diameter of 252 mm and a minor axis diameter of 63 mm, and folds were repeated at intervals of 10 mm in width and pleated.
  • a paper having a width of 10 mm and a length of 197.8 mm was processed into a circular shape to form a paper frame.
  • a sample for measuring sound absorption coefficient is fixed around a fiber laminate consisting of two layers that have been pleated to fit within this paper frame with a commercially available silicon caulking material (chemical reaction adhesive manufactured by Konishi Co., Ltd.). Got.
  • the normal incident sound absorption coefficient was measured and the sound absorption property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 50.5, and the sound absorption property in the low frequency region was not obtained. .
  • the absorption characteristic peak was 3200 Hz or higher.
  • Example 3 Except for using two fiber laminates composed of two layers, the same procedure as in Example 4 was performed, so that the ultrafine fiber layer became one layer (base material A / extra fine fiber structure / extra fine fiber structure / base material A). A sample for measuring the sound absorption rate was used. Since there is one aggregated portion of the ultrafine fiber layer, the number of fiber layers was set to “1”. When the normal incident sound absorption coefficient was measured and the sound absorbing property in the low frequency region (integrated value S from 200 Hz to 1000 Hz) was evaluated, it was 54.8, and the sound absorbing property in the low frequency region was not obtained, which was poor.
  • the electrospinning conditions were a 27G needle, a single-hole solution supply rate of 2.0 mL / h, an applied voltage of 47 kV, and a spinning distance of 20 cm.
  • the fabric weight of the layer was 20.0 g / m ⁇ 2 >, the average fiber diameter was 420 nm, and melting temperature was 175 degreeC.
  • the fiber laminate is punched into a circle with a diameter of 63 mm, and two fiber laminates are superposed so as to be an ultrafine fiber structure / base material A / base material A / extra fine fiber structure, and a sample for measuring sound absorption (interlayer distance) 10 mm).
  • the laminated sound-absorbing material of the present invention is particularly excellent in the sound-absorbing property in the low-frequency region, and can be used as a sound-absorbing material in a field where noise in the low-frequency region is a problem.
  • sound-absorbing material used for ceilings, walls, floors, etc. of houses sound-proofing walls such as highways and railway lines, sound-proofing materials for home appliances, and sound-absorbing materials arranged in various parts of vehicles such as railways and automobiles Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

低周波領域において優れた吸音性を示し、省スペース性にも優れた吸音材を提供することを課題とする。複数の繊維層と、繊維層と繊維層の間に存在する基材層とを含む積層吸音材であって、前記積層吸音材は少なくとも3層の繊維層を含み、各繊維層は、450nm未満の繊維径の繊維からなり、かつ、0.1~50g/m2の目付けであり、前記基材層は、1g/m2以上の目付けであり、厚みが0.1mm以上であり、前記基材層は、不織布、フィルム、ガラス繊維及び紙からなる群より選ばれる少なくとも1つである、積層吸音材である。

Description

極細繊維を含む積層吸音材
 本発明は、極細繊維を含んで構成される、積層構造の吸音材に関する。
 吸音材とは音を吸収する機能を有する製品であって、建築分野や自動車分野において多用されている。吸音材を構成する材料として、不織布を用いることが公知である。例えば特許文献1には、メジアン直径が1μm未満のサブミクロン繊維と、メジアン直径が少なくとも1μmであるマイクロファイバーとを含む複合不織布ウェブが開示されている。特許文献1の複合不織布ウェブは、サブミクロン繊維及びマイクロファイバーと称される2種類の異なるメジアン直径を有する繊維が混合されてなり、その混合比を変化させることによって、厚み方向に混合比の勾配を形成している。代表的な実施形態においては、マイクロファイバー流を形成し、またサブミクロン繊維流を別個に形成してマイクロファイバー流に加えることによって、異なる繊維が混合されてなるウェブを形成できることが開示されている。
 また特許文献2には、吸音性を有する多層物品として、支持体層と、支持体層上に積層されるサブミクロン繊維層とを含むものが開示されており、サブミクロン繊維層は、中央繊維直径が1μm未満かつ平均繊維直径が0.5~0.7μmの範囲であり、溶融フィルムフィブリル化法や電界紡糸法によって形成されることが開示されている。特許文献2の実施例においては、坪量(目付)100g/m、直径約18μmのポリプロピレンスパンボンド不織布を支持体層とし、その上に、目付14~50g/m、平均繊維直径約0.56μmのサブミクロンポリプロピレン繊維を積層した積層物品が開示されている。また別の実施例では、目付62g/mのポリエステルのカード処理ウェブの上に、目付6~32g/m、平均繊維直径0.60μmの電界紡糸ポリカプロラクトン繊維を積層させた多層物品が開示されている。実施例で作成された多層物品は、音響吸収特性が測定され、支持体のみの音響吸収特性よりも優れた音響吸収特性を備えることが示されている。
 特許文献3には、低周波及び高周波の音を吸収する積層吸音不織布であって、共振膜と、少なくとも1つの別の繊維材料層とを含み、共振膜は、直径600nmまでで表面重量(目付)0.1~5g/mのナノ繊維層によって形成されるものが開示されている。ナノ繊維層は典型的には電界紡糸によって作り出され、一方、基材層は、直径10~45μmで目付5~100g/mの繊維織物であり、さらに別の層が積層されてもよいことが開示されている。また、適切な厚さ及び目付に到達するために、この積層体をさらに積層してもよいことが開示されている。
 特許文献4には、ナノ繊維による、吸音特性に優れる不織布構造体が開示されている。特許文献4の不織布構造体は、繊維径が1μm未満のナノ繊維を含む繊維体を含み、当該繊維体の厚みが10mm以上であることを特徴とする。また、前記繊維体は支持体に支持されていてもよく、繊維体と支持体とが繰り返し積層された構造になっていてもよいことが開示されている。ナノ繊維は例えばメルトブローン法で形成され、実施例においては、支持体であるポリプロピレンスパンレース不織布の上に、繊維径0.5μm、目付350g/mのナノ繊維体の層を形成することが開示されている。
特表2011-508113号公報 特開2014-15042号公報 特表2008-537798号公報 特開2016-121426号公報
 上述のとおり、吸音材としてさまざまな構成の不織布積層体が検討されており、繊維径が1μmを下回るナノ繊維やサブミクロン繊維と称される極細繊維を用いることも公知である。しかしながら、より優れた吸音特性を有する吸音材、特に、1000Hz以下の、比較的低周波数の領域において優れた吸音性能を示し、且つ、省スペース性に優れた吸音材が求められている。この状況に鑑み、本発明は、低周波領域において優れた吸音性を示す吸音材を提供することを課題とする。
 発明者は上述の課題を解決するために検討を重ねた。その結果、基材層と繊維層とを含む積層吸音材において、特定範囲の繊維径及び目付を有する繊維層を少なくとも3層含み、かつ、繊維層の間に、特定範囲の目付け及び厚みを有する基材層を含む積層吸音材は、低周波領域において優れた吸音性を示し、省スペース性に優れることを見出し、本発明を完成した。
 本発明は、以下の構成を有する。
[1]複数の繊維層と、繊維層と繊維層の間に存在する基材層とを含む積層吸音材であって、
前記積層吸音材は少なくとも3層の繊維層を含み、各繊維層は、450nm未満の繊維径の繊維からなり、かつ、0.1~50g/mの目付けであり、
前記基材層は、1g/m以上の目付けであり、厚みが0.1mm以上であり、
前記基材層は、不織布、フィルム、ガラス繊維及び紙からなる群より選ばれる少なくとも1つである、積層吸音材。
[2]前記繊維層が、0.1g/m~25g/mの目付けである、[1]に記載の積層吸音材。
[3]前記基材層に含まれる基材が、ポリエチレンフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレン繊維およびポリプロピレン繊維からなる群から選ばれる少なくとも1種からなる不織布であり、前記基材の目付けが1~300g/mである、[1]又は[2]に記載の積層吸音材。
[4]前記繊維層を形成する繊維が、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォンおよびポリビニルアルコールからなる群から選ばれる少なくとも1種である、[1]~[3]のいずれか1項に記載の積層吸音材。
[5]垂直入射吸音率測定法(200~1000Hz)において、周波数xが200Hzから3200Hzまでの吸音率を1Hz間隔で測定し、得られる曲線をf(x)としたとき、200Hzから1000Hzまでの積分した値Sが、下記式を満たす範囲である、[1]~[4]のいずれか1項記載の積層吸音材。
Figure JPOXMLDOC01-appb-I000003
[6]垂直入射吸音率測定法(200~1000Hz)において、周波数xが200Hzから3200Hzまでの吸音率を1Hz間隔で測定し、得られる曲線をf(x)としたとき、200Hzから1000Hzまでの積分した値Sが、下記式を満たす範囲である、
[1]~[4]のいずれか1項に記載の積層吸音材。
Figure JPOXMLDOC01-appb-I000004
 上述の構成を有する本発明によれば、低周波数領域における吸音特性に優れた吸音材が得られる。本発明の積層吸音材は、吸音特性のピークが従来の吸音材よりも低い領域にあり、1000Hz以下の領域における吸音性能に優れる。建築分野では、生活騒音の多くは200~500Hz程度といわれており、また自動車分野では、ロードノイズでは100~500Hz程度、また、加速時やトランスミッション変動時の騒音は100~2000Hz程度といわれている。本発明の積層吸音材は、このような騒音対策に有用である。また、本発明の積層吸音材は、多孔質材料やガラス繊維等からなる吸音材と比較して軽量であるため、部材の軽量化と省スペース化が可能であり、この点は特に自動車分野向けの吸音材として有用である。
本発明の実施例(実施例3)及び比較例(比較例2)の吸音特性を示すグラフである。
 以下、本発明を詳細に説明する。
(積層吸音材の構造)
 本発明の積層吸音材は、基材層と繊維層とを含んでなる。積層吸音材の中に、繊維層は3層以上含まれ、それぞれの繊維層の間に基材層が介在する。
 積層吸音材において、繊維層は3層以上、好ましくは3~6層、より好ましくは3~4層含まれる。各繊維層は、1つの繊維構造体でもよいし、1つの繊維層の中に複数の繊維構造体が重ねられた形態であってもよい。
 また、繊維層の間には基材層が介在する。各基材層は、1つの基材からなってもよく、または、複数の基材が重ねられてなる形態であってもよい。
 積層吸音材に含まれる繊維層及び基材層は、それぞれ1種類ずつでもよいが、異なる2種以上の繊維層又は基材層が含まれていてもよい。また、本発明の効果を損なわない限り、繊維層及び基材層以外の構成が含まれていてもよく、例えば、本発明に規定する範囲外のさらなる繊維層(1層でも2層以上でもよい)、印刷層、発泡体、箔、メッシュ、織布等が含まれていてもよい。また、各層間を連結するための接着剤層、クリップ、縫合糸等を含んでいてもよい。
 積層吸音材の各層の間は、物理的及び/又は化学的に接着されていてもよいし、接着されていなくてもよい。積層吸音材の複数の層間の一部が接着され、一部は接着されていない形態であってもよい。接着は、例えば、繊維層の形成工程において、又は後工程として加熱を行い、繊維層を構成する繊維の一部を融解し、繊維層を基材に融着させることによって繊維層と基材とを接着してもよい。また、基材ないし繊維層の表面に接着剤を付与し、さらに基材層ないし繊維層を重層することによって、層間を接着することも好ましい。
 積層吸音材の厚みは、本発明の効果が得られる限り特に制限されないが、例えば、0.1~50mmとすることができ、0.3~40mmとすることが好ましく、0.3~35mmであれば、省スペース性の観点からより好ましい。なお、積層吸音材の厚みとは、典型的には繊維層及び基材層の厚みの合計のことを意味し、カートリッジや蓋等の外装体が取り付けられている場合、その部分の厚みは含まないものとする。
 積層吸音材の通気度は、所望の吸音性能が得られる限り特に制限されるものではないが、10~1000μm/Pa・sとすることができ、10~500μm/Pa・sであればより好ましい。従来、吸音性能とともに遮音性能を期待されていた吸音材では、通気性が低いほど音が通過しにくく、すなわち遮音性に有効であると考えられていたが、本発明の積層吸音材は、高い通気性を有することによって音の反射を低減し、さらに吸音性に優れた繊維層を採用することによって高い吸音性が得られるものである。なお、通気度の測定は公知の方法によることができ、例えば、ガーレ試験機法で測定できる。
 積層吸音材は、繊維層が基材層によって挟まれた積層構造となっている。このような形態であるとき、繊維層と繊維層との間の距離(基材層の厚み、層間距離とも称する)は、100μm~15mmであることが好ましく、100μm~10mmであることがより好ましい。層間距離が100μm以上であれば、低周波数領域の吸音性能が良好となり、層間距離が15mm以下であれば、吸音材としての厚みが大きくなり過ぎることがなく、省スペース性に適している。
(繊維層)
 本発明の積層吸音材に含まれる繊維層は、繊維径が450nm未満である繊維からなる層である。繊維径が450nm未満であるとは、平均繊維径がこの数値範囲内であることを意味する。繊維径が450nm未満であれば、高い吸音性が得られるため好ましく、420nm未満であれば、より高い吸音性が得られるためさらに好ましい。繊維径の測定は、公知の方法によることができる。例えば、繊維層表面の拡大写真から測定ないし算出することによって得られる値であり、詳細な測定方法は実施例に詳述される。
 本発明の積層吸音材に含まれる繊維層は、1層の繊維層が一つの繊維構造体からなっていてもよく、また、1層の繊維層中に複数の繊維集合体を含み、繊維集合体の層が重ね合わされたものが1層の繊維層を形成していてもよい。
 なお、本明細書において、繊維集合体とは、一層の基材上に形成される一つの連続体となった繊維集合体のことを意味している。繊維集合体の目付けは、0.1~25g/mであることが好ましく、0.3~20g/mであることがさらに好ましい。目付けが0.1g/m以上であれば、微細繊維層と基材繊維との密度差による流れ抵抗の制御が良好となり、50g/m未満であれば、吸音材として反りが大きくなる恐れが低くなる。
 繊維層を構成する繊維構造体は、好ましくは不織布であり、前記の範囲の繊維径及び目付を有している限り特に制限されないが、メルトブローン不織布、電界紡糸法によって形成される不織布等であることが好ましい。電界紡糸法によれば、極細繊維を基材上に効率よく積層させることができる。電界紡糸法の詳細は製造方法に詳述する。
 繊維構造体を構成する樹脂としては、発明の効果を得られる限り特に制限されないが、例えば、ポリプロピレンやポリエチレン等のポリオレフィン、ポリウレタン、ポリ乳酸、アクリル樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル類、ナイロン6、ナイロン6,6、ナイロン12等のナイロン(アミド樹脂)類、ポリフェニレンスルフィド、ポリビニルアルコール、ポリスチレン、ポリスルフォン、液晶ポリマー類、ポリエチレン-酢酸ビニル共重合体、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン等が挙げられる。これらの中でも、ポリフッ化ビニリデン、ナイロン6,6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォンおよびポリビニルアルコールが、電界溶液紡糸法においては、各種溶剤に可溶である観点から、より好ましい。
 繊維構造体は、前記の樹脂の1種を含むことが好ましく、2種類以上を含んでいてもよい。
 また、繊維構造体には、樹脂以外の各種の添加剤を含んでもよい。樹脂に添加されうる添加剤としては例えば、充填剤、安定化剤、可塑剤、粘着剤、接着促進剤(例えば、シランおよびチタン酸塩)、シリカ、ガラス、粘土、タルク、顔料、着色剤、酸化防止剤、蛍光増白剤、抗菌剤、界面活性剤、難燃剤、およびフッ化ポリマーが挙げられる。前記添加物のうち1つ以上を用いて、得られる繊維および層の重量および/またはコストを軽減してもよく、粘度を調整してもよく、または繊維の熱的特性を変性してもよく、あるいは電気特性、光学特性、密度に関する特性、液体バリアもしくは粘着性に関する特性を包含する、添加物の特性に由来する様々な物理特性を付与してもよい。
(基材層)
 積層吸音材における基材層は、吸音性を有するとともに、繊維層を支持して吸音材全体の形状を保持する機能を有している。本発明の積層吸音材において、繊維層は10nm~450nmという極めて細い繊維径の繊維から形成されるため、強度(剛性)が低い。そのため、基材層が実質的に積層吸音材の強度を担うことになる。
 基材層は、1層の基材からなってもよく、または、複数の基材が重ねられてなる形態であってもよい。
 基材層を構成する基材は、その少なくとも一方の表面上に繊維構造体を積層できるものであれば特に制限されず、不織布、フィルム、ガラス繊維、紙、織布、フォーム(発泡体層)、箔、メッシュ等を用いることができる。特に、不織布、フィルム、ガラス繊維、紙のいずれか1種以上であることが好ましく、不織布であることがより好ましい。積層吸音材に含まれる基材は1種であってもよく、2種以上の基材を含むことも好ましい。
 基材が不織布である場合、不織布の種類は、メルトブロー不織布、スパンレース不織布、スパンボンド不織布、スルーエア不織布、サーマルボンド不織布、ニードルパンチ不織布等を用いることができ、所望の物性や機能によって適宜選択できる。
 不織布の繊維を構成する樹脂としては、熱可塑性樹脂を用いることができ、例えば、ポリオレフィン系樹脂、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリアミド系樹脂が例示できる。ポリオレフィン系樹脂としては、エチレン、プロピレン、ブテン-1、若しくは4-メチルペンテン-1等の単独重合体、及びこれらと他のα-オレフィン、即ち、エチレン、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1あるいは4-メチルペンテン-1などのうちの1種以上とのランダム若しくはブロック共重合体あるいはこれらを組み合わせた共重合体のことであり、またはこれらの混合物などを挙げることができる。ポリアミド系樹脂としてはナイロン4、ナイロン6、ナイロン7、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ポリメタキシリデンアジパミド、ポリパラキシリデンデカンアミド、ポリビスシクロヘキシルメタンデカンアミドもしくはこれらのコポリアミド等を挙げることができる。ポリエステル系樹脂としては、ポリエチレンテレフタレートの他、ポリテトラメチレンテレフタレート、ポリブチルテレフタレート、ポリエチレンオキシベンゾエート、ポリ(1,4-ジメチルシクロヘキサンテレフタレート)若しくはこれらの共重合体を挙げることができる。これらの中でも、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレン繊維及びポリプロピレン繊維の1種、又は2種以上を組み合わせて用いることが好ましい。
 基材が、フィルム、織布、メッシュである場合にも同様の樹脂を用いることができる。
 基材の不織布を構成する繊維としては、1成分のみで使用することもできるが、熱接着性繊維同士の交点の融着の効果を考慮したとき、低融点樹脂と高融点樹脂の複合成分からなる繊維、すなわち、融点が異なる二成分以上からなる複合繊維を用いることも好ましい。複合形態は例えば鞘芯型、偏心鞘芯型、並列型を挙げることができる。また、基材の不織布を構成する繊維として、融点が異なる二成分以上の混繊繊維を用いることも好ましい。なお、混繊繊維とは、高融点樹脂からなる繊維と低融点樹脂からなる繊維とが独立して存在し、混合されてなる繊維を意味している。
 基材の不織布を構成する繊維の繊維径は、特に制限されるものではないが、繊維径が0.5μm~1mmである繊維からなるものを用いることができる。繊維径が0.5μm~1mmであるとは、平均繊維径がこの数値範囲内であることを意味する。繊維径が0.5μm以上であれば、微細繊維層と基材繊維との密度差による流れ抵抗を制御することができ、1mm未満であれば、汎用性が失われることがなく、また入手も容易となる。繊維径は、1.0~100μmであれば、微細繊維層と基材繊維との密度差による流れ抵抗を制御することができ入手も容易であるためより好ましい。繊維径の測定は、繊維層の繊維径の測定と同様の方法で行うことができる。
 基材は、繊維層と繊維層との間に介在する基材層を構成する。また、繊維層と繊維層との間に介在するのに加えて、積層吸音材において最外面に位置する2層として含まれてもよい。基材は、1層のみで基材層を構成してもよく、2層以上が連続して配置されて1層の基材層を構成していることも好ましい。基材を2層以上連続して配置することで、基材層の厚みにより繊維層の層間距離を制御できるという利点がある。
 基材の目付けは、1g/m以上であればよく、1~300g/mであることが好ましく、15~300g/mであることがより好ましい。基材の目付けが1g/m未満であると、吸音材として必要な強度を得ることができない恐れがある。
 本発明において、基材層は0.1mm以上の厚みを有する。基材層の厚みの上限は特に制限されるものではないが、省スペース性の観点からは0.1~60mmであることが好ましく、0.1~30mmであることがより好ましい。
 基材層を構成する基材の厚みは、例えば、20μm~20mmとすることができ、30μm~10mmとすることがより好ましい。基材の厚みが20μm以上であれば、皺の発生がなく取り扱いが容易で、生産性が良好であり、基材の厚みが20mm以下であれば、省スペース性を妨げる恐れがない。
 基材には、本発明の効果を妨げない範囲内で、各種の添加剤、例えば、着色剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、造核剤、滑剤、抗菌剤、難燃剤、可塑剤及び他の熱可塑性樹脂等が添加されていてもよい。また、表面が各種の仕上げ剤で処理されていてもよく、これによって撥水性、制電性、表面平滑性、耐摩耗性などの機能が付与されていてもよい。
(積層吸音材の吸音特性)
 本発明の積層吸音材は、特に低周波数領域(1000Hz以下の周波領域)における吸音性が優れることを特徴としている。本発明の積層吸音材は、特に400Hz~1000Hz領域の吸音性に優れるという、従来の吸音材と異なる吸音特性を示すものである。特定の理論に拘束されるものではないが、本発明の積層吸音材は、微細繊維層と基材層の密度差を利用し音波の流れ抵抗を制御する結果、低周波領域の吸収性に優れるという性能が得られるものと考えられている。
 吸音性の評価方法は、実施例に詳述される。
(積層吸音材の製造方法)
 積層吸音材の製造方法は特に制限されないが、例えば、1層の基材上に1層の繊維構造体を形成した繊維積層体を作成する工程、及び、複数の繊維積層体を所定の順番及び枚数で重ね合わせて一体化する工程、を含む製造方法によって得ることができる。なお、繊維積層体を重ね合わせる工程において、繊維積層体以外のさらなる層(例えばさらなる基材)をさらに加えて積層することもできる。
 基材として不織布を用いる場合、公知の方法で不織布を製造して用いてもよいし、市販の不織布を選択して用いることもできる。基材上に繊維構造体を形成する工程は、電界紡糸法を用いることが好ましい。電界紡糸法は、紡糸溶液を吐出させるとともに、電界を作用させて、吐出された紡糸溶液を繊維化し、コレクター上に繊維を得る方法である。例えば、紡糸溶液をノズルから押し出すとともに電界を作用させて紡糸する方法、紡糸溶液を泡立たせるとともに電界を作用させて紡糸する方法、円筒状電極の表面に紡糸溶液を導くとともに電界を作用させて紡糸する方法などを挙げることができる。本発明においては、コレクター上に基材となる不織布等を挿入し、基材上に繊維を集積させることができる。
 紡糸溶液としては、曳糸性を有するものであれば特に限定されないが、樹脂を溶媒に分散させたもの、樹脂を溶媒に溶解させたもの、樹脂を熱やレーザー照射によって溶融させたものなどを用いることができる。
 樹脂を分散または溶解させる溶媒としては、例えば、水、メタノール、エタノール、プロパノール、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、トルエン、キシレン、ピリジン、蟻酸、酢酸、テトラヒドロフラン、ジクロロメタン、クロロホルム、1,1,2,2-テトラクロロエタン、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、トリフルオロ酢酸及びこれらの混合物などを挙げることができる。混合して使用する場合の混合率は、特に限定されるものではなく、求める曳糸性や分散性、得られる繊維の物性を鑑みて、適宜設定することができる。
 電界紡糸の安定性や繊維形成性を向上させる目的で、紡糸溶液中にさらに界面活性剤を含有させてもよい。界面活性剤は、例えば、ドデシル硫酸ナトリウムなどの陰イオン性界面活性剤、臭化テトラブチルアンモニウムなどの陽イオン界面活性剤、ポリオキシエチレンソルビタモンモノラウレートなどの非イオン性界面活性剤などを挙げることができる。界面活性剤の濃度は、紡糸溶液に対して5重量%以下の範囲であることが好ましい。5重量%以下であれば、使用に見合う効果の向上が得られるため好ましい。また、本発明の効果を著しく損なわない範囲であれば、上記以外の成分も紡糸溶液の成分として含んでもよい。
 紡糸溶液の調製方法は、特に限定されず、撹拌や超音波処理などの方法を挙げることができる。また、混合の順序も特に限定されず、同時に混合しても、逐次に混合してもよい。撹拌により紡糸溶液を調製する場合の撹拌時間は、樹脂が溶媒に均一に溶解または分散していれば特に限定されず、例えば、1~24時間程度撹拌してもよい。
 電界紡糸により繊維を得るためには、紡糸溶液の粘度を、10~10,000cPの範囲に調製することが好ましく、50~8,000cPの範囲であることがより好ましい。粘度が10cP以上であると、繊維を形成するための曳糸性が得られ、10,000cP以下であると、紡糸溶液を吐出させるのが容易となる。粘度が50~8,000cPの範囲であれば、広い紡糸条件範囲で良好な曳糸性が得られるのでより好ましい。紡糸溶液の粘度は、樹脂の分子量、濃度や溶媒の種類や混合率を適宜変更することで、調整することができる。
 紡糸溶液の温度は、常温で紡糸することもできるし、加熱・冷却して紡糸してもよい。紡糸溶液を吐出させる方法としては、例えば、ポンプを用いてシリンジに充填した紡糸溶液をノズルから吐出させる方法などが挙げられる。ノズルの内径としては、特に限定されないが、0.1~1.5mmの範囲であるのが好ましい。また吐出量としては、特に限定されないが、0.1~10mL/hrであるのが好ましい。
 電界を作用させる方法としては、ノズルとコレクターに電界を形成させることができれば特に限定されるものではなく、例えば、ノズルに高電圧を印加し、コレクターを接地してもよい。印加する電圧は、繊維が形成されれば特に限定されないが、5~100kVの範囲であるのが好ましい。また、ノズルとコレクターとの距離は、繊維が形成されれば特に限定されないが、5~50cmの範囲であるのが好ましい。
 前記によって得られた、基材/繊維構造体の2層からなる繊維積層体を、複数枚重ね合わせて一体化する方法は、特に限定されるわけではなく、接着を行わず重ね合わせるだけでもよく、また、各種の接着方法、つまり、加熱したフラットロールやエンボスロールによる熱圧着、ホットメルト剤や化学接着剤による接着、循環熱風もしくは輻射熱による熱接着などを採用することもできる。極細繊維を含む繊維層の物性低下を抑制するという観点では、なかでも循環熱風もしくは輻射熱による熱処理が好ましい。フラットロールやエンボスロールによる熱圧着の場合、繊維層が溶融してフィルム化したり、エンボス点周辺部分に破れが発生したりする等のダメージを受け、安定的な製造が困難となる可能性があるほか、吸音特性が低下等の性能低下を生じやすい。また、ホットメルト剤や化学接着剤による接着の場合には、該成分によって繊維層の繊維間空隙が埋められ、性能低下を生じやすい場合がある。一方で、循環熱風もしくは輻射熱による熱処理で一体化した場合には、繊維層へのダメージが少なく、かつ十分な層間剥離強度で一体化できるので好ましい。循環熱風もしくは輻射熱による熱処理によって一体化する場合には、特に限定されるものではないが、熱融着性複合繊維からなる不織布および積層体を使用することが好ましい。
 下記の実施例は、例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。
 実施例中に示した物性値の測定方法と定義を以下に示す。
<平均繊維径>
 株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡SU8020を使用して、極細繊維を観察し、画像解析ソフトを用いて極細繊維50本の直径を測定した。極細繊維50本の繊維径の平均値を平均繊維径とした。
<吸音率測定>
 吸音率測定は、各繊維積層体より直径63mmのサンプルを採取し、各条件の積層をした後、垂直入射吸音率測定装置「ブリュエル&ケアー社製TYPE4206」を用いASTM E 1050に準拠し、周波数200~3200Hzにおける試験片に平面音波が垂直に入射するときの垂直入射吸音率を測定した。
<低周波数領域の吸音性>
周波数xが200Hzから3200Hzまでの吸音率を1Hz間隔で測定し、得られる曲線をf(x)としたとき、200Hzから1000Hzまでの吸音率の積分値Sが下記数式で得られる。
Figure JPOXMLDOC01-appb-I000005

積分値Sは200~1000Hzの周波数領域の吸音性能を示し、数値が高ければ、吸音性が高いと判断される。S値が170を超える場合、低周波数領域の吸音性を良好と評価し、170未満の場合、吸音性を不良と評価した。
<通気度>
 通気度測定は、株式会社東洋精機製作所製ガーレ式デンソメーター(型式:GB-3C)にてISO 5636に準拠し測定した。
[実施例1]
 ディーアイシーバイエルポリマー製のポリウレタン樹脂(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。目付が18g/m、幅が1000mmのポリエチレンテレフタレート製スルーエア不織布を基材不織布B(厚み60μm)として準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布とポリウレタン極細繊維構造体との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
 得られた繊維積層体におけるポリウレタン極細繊維については、その層の目付は20.0g/mであり、平均繊維径は420nmであり、融解温度は175℃であった。
 得られた2層からなる繊維積層体を直径63mmに打ち抜き、繊維積層体を3枚と基材不織布B使用し、極細繊維構造体/基材B/基材B/極細繊維構造体/基材B/基材B/極細繊維構造体となるよう重ね合わせた。得られたサンプルを吸音率測定用サンプル(層間距離0.12mm)とした。極細繊維層は3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、180.6であり良好であった。
[実施例2]
 実施例1と同様に電界紡糸溶液を調製した。次に、目付が200g/m、厚み5mm、幅が1000mmのカード法スルーエア不織布(ここでは、繊維径が22μmの鞘/芯=高密度ポリエチレン/ポリプロピレンの鞘芯型熱融着性複合繊維を使用した。)を基材不織布Aとして準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布とポリウレタン極細繊維構造体との2層からなる繊維積層体を作製した。この繊維積層体を3枚と基材不織布Aを使用し、極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体となるよう重ね合わせた以外は、実施例1と同様に実施し、吸音率測定用サンプル(層間距離10mm)とした。極細繊維層が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、322.6であり良好であった。
[実施例3]
 Arkema製のポリフッ化ビニリデン-ヘキサフルオロプロピレン(以下、「PVDF-HFP」と略記する。)樹脂であるKynar(商品名)3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に18質量%の濃度で溶解し、電界紡糸溶液を調製した。基材不織布Aを準備し、この上に前記PVDF-HFP溶液を電界紡糸して、基材不織布AとPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/h、印加電圧は35kV、紡糸距離は17.5cmとした。
 得られた2層からなる繊維積層体におけるPVDF-HFP極細繊維については、その層の目付は24.0g/mであり、平均繊維径は300nmであり、融解温度は168℃であった。基材不織布とPVDF-HFP極細繊維との2層からなる繊維積層体を3枚と基材Aを使用し、極細繊維構造体/基材A/基材A/極細繊維層構造体/基材A/基材層A/極細繊維構造体となるよう重ね合わせた以外は、実施例2と同様に実施し、吸音率測定用サンプル(層間距離10mm)とした。極細繊維層が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、359.8であり良好であった。
 なお、図1に、実施例3と比較例2の吸音特性のグラフを示す。実施例3(黒線)は最も吸音率を示す周波数が1800Hz付近であるのに対して、比較例2はより高周波数の領域に吸音のピークがある。
[実施例4]
 ディーアイシーバイエルポリマー製のポリウレタン樹脂(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。基材不織布Aを準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布とポリウレタン極細繊維との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47V、紡糸距離は20cmとした。
繊維積層体におけるポリウレタン極細繊維については、その層の目付は10.0g/mであり、平均繊維径は420nmであり、融解温度は175℃であった。
 繊維積層体を3枚と、基材不織布Aを使用し、極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体となるように重ね合わせて吸音率測定用サンプル(層間距離10mm)とした。極細繊維層が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、258.5であり良好であった。
[実施例5]
 実施例2で得られた基材不織布とポリウレタン極細繊維との2層からなる繊維積層体を3枚とカード法スルーエア不織布(基材A)を使用し、基材A/極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体/基材Aとなるように重ね合わせて吸音率測定用サンプル(層間距離10mm)とした。極細繊維層の集合部が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、321.2であり良好であった。
[実施例6]
 PVDF-HFP樹脂であるKynar3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。基材不織布Aを準備し、この上に前記溶液を実施例3と同様の条件で電界紡糸して、基材不織布AとPVDF-HFP極細繊維との2層からなる繊維積層体を作製した。得られた繊維積層体におけるPVDF-HFP極細繊維については、その層の目付は1.0g/mであり、平均繊維径は180nmであり、融解温度は168℃であった。
 繊維積層体を直径63mmの円形に打ち抜き、繊維積層体を3枚と、目付が200g/m、厚み5mm、幅が1000mmのカード法スルーエア不織布(基材A)とを、極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体となるように重ね合わせ、吸音率測定用サンプル(層間距離10mm)とした。極細繊維層の集合部が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、300.0であり良好であった。
[実施例7]
 実施例1で得られたポリウレタン樹脂の電界紡糸溶液を調製し、目付が18g/m、幅が1000mmのポリエチレンテレフタレート製スルーエア不織布を基材不織布(厚み60μm)として準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布とポリウレタン樹脂極細繊維との2層からなる繊維積層体を作製した。得られた2層からなる繊維積層体におけるポリウレタン極細繊維については、その層の目付は3.0g/mであり、平均繊維径は420nmであり、融解温度は175℃であった。
 2層からなる繊維積層体を直径63mmの円形に打ち抜き、2層からなる繊維積層体を3枚と、目付が200g/m、厚み5mm、幅が1000mmのカード法スルーエア不織布(基材A)とを、極細繊維層/基材層B/基材層A/基材層A/極細繊維層/基材層B/基材層A/基材層A/基材層B/極細繊維層となるように重ね合わせ、吸音率測定用サンプル(層間距離10.1mm)とした。極細繊維層の集合部が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、289.9であり良好であった。
[実施例8]
 繊維積層体を4枚使用した以外は、実施例1と同様にし、極細繊維層を4層(極細繊維構造体/基材B/基材B/極細繊維構造体/基材B/基材B/極細繊維構造体/基材B/基材B/極細繊維構造体)となるように吸音率測定用サンプル(層間距離0.12mm)とした。極細繊維層が4層あるため、繊維層の層数「4」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、236.8であり良好であった。
[実施例9]
 Kynar3120を、N,N-ジメチルアセトアミドとアセトンの共溶媒(60/40(w/w))に18質量%の濃度で溶解し、電界紡糸溶液を調製した。
 次に、目付が200g/m、幅が1000mmのカード法スルーエア不織布(ここでは、繊維径が22μmの鞘/芯=高密度ポリエチレン/ポリプロピレンの鞘芯型熱融着性複合繊維を使用した。)を基材不織布として準備し、この上に前記PVDF-HFP溶液を電界紡糸して、基材不織布AとPVDF-HFP極細繊維の層との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、24Gニードルを使用し、単孔溶液供給量は3.0mL/hとし、印加電圧は45kVとし、紡糸距離は12.5cmとした。
 得られた2層からなる繊維積層体におけるPVDF-HFP極細繊維については、その層の目付は12.0g/mであり、平均繊維径は300nmであり、融解温度は168℃であった。繊維積層体を4枚使用し、極細繊維層を4層(極細繊維構造体/基材A/極細繊維構造体/基材A/極細繊維構造体/基材A/極細繊維構造体/基材A)となるように吸音率測定用サンプル(層間距離5mm)とした。極細繊維層の集合部が4層あるため、繊維層の層数「4」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、261.2であり良好であった。
[実施例10]
 繊維積層体を4枚と基材不織布Aを使用した以外は、実施例2と同様にし、極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体/基材A/基材A/極細繊維構造体となるように吸音率測定用サンプル(層間距離10mm)とした。極細繊維層の集合部が4層あるため、繊維層の層数「4」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、385.5であり良好であった。
[実施例11]
 繊維積層体を6枚使用した以外は、実施例4と同様にし、基材A/極細繊維構造体/極細繊維構造体/基材A/基材A/極細繊維構造体/極細繊維構造体/基材A/基材A/極細繊維構造体/極細繊維構造体/基材Aとなるように吸音率測定用サンプル(層間距離10mm)とした。極細繊維層の集合部が3層あるため、繊維層の層数「3」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、320.5であり良好であった。
 実施例1~11のまとめを表1に示す。
Figure JPOXMLDOC01-appb-T000006
[比較例1]
 ディーアイシーバイエルポリマー製のポリウレタン樹脂(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
 目付が18g/m、幅が1000mmのポリエチレンテレフタレート製スルーエア不織布を基材不織布(厚み60μm)として準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布とポリウレタン極細繊維との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
 得られた2層からなる繊維積層体におけるポリウレタン極細繊維については、その層の目付は10.0g/mであり、平均繊維径は420nmであり、融解温度は175℃であった。
 得られた2層からなる繊維積層体を長軸直径252mm短軸直径63mmに切り抜き、幅10mm間隔で山折と谷折を繰り返し、プリーツ加工を施した。長軸方向に幅10mm長さ197.8mmの紙を円形に加工し、紙製の枠を作成した。この紙製の枠内に収まるよう、プリーツ加工を施した2層からなる繊維積層体の周りを市販のシリコンコーキング材(コニシ株式会社製化学反応型接着剤)で固定し、吸音率測定用サンプルを得た。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、50.5となり、低周波数領域の吸音性が得られず、不良であった。吸収特性のピークは3200Hz以上であった。
[比較例2]
 市販されているポリプロピレン樹脂製不織布(3M社製シンサレートT2203、繊維径0.7μm~4.0μm、厚み29mm)を直径63mmの円形に打ち抜き、吸音率測定用サンプル12とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、129.3であり低周波数領域の吸音性が得られず、不良であった。
[比較例3]
 2層からなる繊維積層体を2枚使用した以外は、実施例4と同様にし、極細繊維層が1層(基材A/極細繊維構造体/極細繊維構造体/基材A)となるように吸音率測定用サンプルとした。極細繊維層の集合部が1層あるため、繊維層の層数「1」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、54.8であり低周波数領域の吸音性得られず、不良であった。
[比較例4]
 ディーアイシーバイエルポリマー製のポリウレタン樹脂(グレード名:T1190)を、N,N-ジメチルホルムアミドとアセトンの共溶媒(60/40(w/w))に15質量%の濃度で溶解し、電界紡糸溶液を調製した。
 次に、目付が200g/m、厚み5mm、幅が1000mmのカード法スルーエア不織布(ここでは、繊維径が22μmの鞘/芯=高密度ポリエチレン/ポリエチレンテレフタレートの鞘芯型熱融着性複合繊維を使用した。)を基材不織布として準備し、この上に前記ポリウレタン溶液を電界紡糸して、基材不織布Aとポリウレタン極細繊維との2層からなる繊維積層体を作製した。
 電界紡糸の条件は、27Gニードルを使用し、単孔溶液供給量は2.0mL/h、印加電圧は47kV、紡糸距離は20cmとした。
 得られた2層からなる繊維積層体におけるポリウレタン極細繊維については、その層の目付は20.0g/mであり、平均繊維径は420nmであり、融解温度は175℃であった。
 繊維積層体を直径63mmの円形に打ち抜き、繊維積層体2枚を、極細繊維構造体/基材A/基材A/極細繊維構造体となるように重ね合わせ、吸音率測定用サンプル(層間距離10mm)とした。極細繊維層の集合部が2層あるため、繊維層の層数「2」とした。
 垂直入射吸音率を測定し、低周波数領域の吸音性(200Hzから1000Hzまでの積分した値S)を評価したところ、156.2であった。吸収特性のピークは3000Hz付近であった。比較例1~4のまとめを表2に示す。
Figure JPOXMLDOC01-appb-T000007
 本発明の積層吸音材は、低周波数領域の吸音性に特に優れるため、低周波数領域の騒音が問題になる分野における吸音材として利用されうる。具体的には住宅の天井、壁、床等に用いられる吸音材、高速道路や鉄道路線等の防音壁、家電製品の防音材、鉄道や自動車等の車両の各部に配置される吸音材等として用いられうる。

Claims (6)

  1. 複数の繊維層と、繊維層と繊維層の間に存在する基材層とを含む積層吸音材であって、
    前記積層吸音材は少なくとも3層の繊維層を含み、各繊維層は、450nm未満の繊維径の繊維からなり、かつ、0.1~50g/mの目付けであり、
    前記基材層は、1g/m以上の目付けであり、厚みが0.1mm以上であり、
    前記基材層は、不織布、フィルム、ガラス繊維及び紙からなる群より選ばれる少なくとも1つである、積層吸音材。
  2. 前記繊維層が、0.1g/m~25g/mの目付けである、請求項1に記載の積層吸音材。
  3. 前記基材層を構成する基材が、ポリエチレンフタレート繊維、ポリブチレンテレフタレート繊維、ポリエチレン繊維およびポリプロピレン繊維からなる群から選ばれる少なくとも1種からなる不織布であり、前記基材の目付けが1~300g/mである、請求項1又は2に記載の積層吸音材。
  4. 前記繊維層を形成する繊維が、ポリフッ化ビニリデン、ナイロン6.6、ポリアクリロニトリル、ポリスチレン、ポリウレタン、ポリスルフォンおよびポリビニルアルコールからなる群から選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の積層吸音材。
  5. 垂直入射吸音率測定法(200~1000Hz)において、周波数xが200Hzから3200Hzまでの吸音率を1Hz間隔で測定し、得られる曲線をf(x)としたとき、200Hzから1000Hzまでの積分した値Sが、下記式を満たす範囲である、請求項1~4のいずれか1項記載の積層吸音材。
    Figure JPOXMLDOC01-appb-I000001
  6. 垂直入射吸音率測定法(200~1000Hz)における吸音率をf(x)としたとき、下記式で得られる値Sが、下記式を満たす範囲である、請求項1~4のいずれか1項に記載の積層吸音材。
    Figure JPOXMLDOC01-appb-I000002
PCT/JP2018/003659 2017-02-03 2018-02-02 極細繊維を含む積層吸音材 WO2018143430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18747423.4A EP3579224A4 (en) 2017-02-03 2018-02-02 LAMINATED SOUND ABSORPTION MATERIAL INCLUDING ULTRAFINE FIBER
CN201880009796.3A CN110249381A (zh) 2017-02-03 2018-02-02 包含极细纤维的层叠吸音材料
KR1020197025324A KR20190115021A (ko) 2017-02-03 2018-02-02 극세 섬유를 포함하는 적층 흡음재
US16/483,044 US20200005753A1 (en) 2017-02-03 2018-02-02 Laminated sound-absorbing material containing ultrafine fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018859A JP2018124512A (ja) 2017-02-03 2017-02-03 極細繊維を含む積層吸音材
JP2017-018859 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143430A1 true WO2018143430A1 (ja) 2018-08-09

Family

ID=63040790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003659 WO2018143430A1 (ja) 2017-02-03 2018-02-02 極細繊維を含む積層吸音材

Country Status (6)

Country Link
US (1) US20200005753A1 (ja)
EP (1) EP3579224A4 (ja)
JP (1) JP2018124512A (ja)
KR (1) KR20190115021A (ja)
CN (1) CN110249381A (ja)
WO (1) WO2018143430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172016A1 (ja) * 2018-03-08 2019-09-12 Jnc株式会社 積層吸音材
WO2020218092A1 (ja) * 2019-04-26 2020-10-29 クラレクラフレックス株式会社 繊維積層体及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109898232A (zh) * 2019-03-15 2019-06-18 无锡吉兴汽车声学部件科技有限公司 一种声调节材料及其用途
JP2021000739A (ja) * 2019-06-20 2021-01-07 帝人フロンティア株式会社 吸音材
KR102249862B1 (ko) * 2020-10-19 2021-05-10 주식회사 서연이화 재활용이 가능한 자동차용 플로어 카페트
MX2023005110A (es) * 2020-10-30 2023-08-04 Ascend Performance Mat Operations Llc Materiales no tejidos de poliamida en compuestos multicapa para absorción de sonido.
CN113174701B (zh) * 2021-04-26 2023-06-02 泉州师范学院(石狮)生态智能织物工程技术研究院 一种基于聚丙烯腈的电纺增强膜材料的制备方法
KR20230161555A (ko) * 2022-05-18 2023-11-28 주식회사 아모그린텍 복합 흡음재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537798A (ja) 2005-04-11 2008-09-25 エルマルコ、エス.アール.オー 積層吸音不織布
JP2011508113A (ja) 2007-12-28 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー 複合不織布ウェブ並びにこれの製造及び使用方法
JP2013180474A (ja) * 2012-03-01 2013-09-12 Nagoya Oil Chem Co Ltd 吸音材料
JP2014015042A (ja) 2005-10-19 2014-01-30 3M Innovative Properties Co 音響吸収特性を有する多層物品、並びにその製造および使用方法
JP2016121426A (ja) 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 吸音材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217691B1 (en) * 1998-12-24 2001-04-17 Johns Manville International, Inc. Method of making a meltblown fibrous insulation
KR20090106211A (ko) * 2008-04-04 2009-10-08 현대자동차주식회사 초경량 흡음재 및 그 제조방법
JP5863474B2 (ja) * 2012-01-20 2016-02-16 三井化学株式会社 メルトブローン不織布、その用途、及びその製造方法
US20150233030A1 (en) * 2012-08-23 2015-08-20 Mitsui Chemicals, Inc. Meltblown nonwoven fabric and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537798A (ja) 2005-04-11 2008-09-25 エルマルコ、エス.アール.オー 積層吸音不織布
JP2014015042A (ja) 2005-10-19 2014-01-30 3M Innovative Properties Co 音響吸収特性を有する多層物品、並びにその製造および使用方法
JP2011508113A (ja) 2007-12-28 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー 複合不織布ウェブ並びにこれの製造及び使用方法
JP2013180474A (ja) * 2012-03-01 2013-09-12 Nagoya Oil Chem Co Ltd 吸音材料
JP2016121426A (ja) 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 吸音材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579224A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172016A1 (ja) * 2018-03-08 2019-09-12 Jnc株式会社 積層吸音材
JP2019155640A (ja) * 2018-03-08 2019-09-19 Jnc株式会社 積層吸音材
US11801660B2 (en) 2018-03-08 2023-10-31 Jnc Corporation Laminated acoustic absorption member
WO2020218092A1 (ja) * 2019-04-26 2020-10-29 クラレクラフレックス株式会社 繊維積層体及びその製造方法
JP7479356B2 (ja) 2019-04-26 2024-05-08 クラレクラフレックス株式会社 繊維積層体及びその製造方法

Also Published As

Publication number Publication date
KR20190115021A (ko) 2019-10-10
EP3579224A4 (en) 2020-12-09
CN110249381A (zh) 2019-09-17
US20200005753A1 (en) 2020-01-02
JP2018124512A (ja) 2018-08-09
EP3579224A1 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018143430A1 (ja) 極細繊維を含む積層吸音材
WO2019172016A1 (ja) 積層吸音材
JP6856888B2 (ja) 極細繊維を含む積層吸音材
JP5863474B2 (ja) メルトブローン不織布、その用途、及びその製造方法
WO2019124186A1 (ja) 積層吸音材
JP6912753B2 (ja) 極細繊維を含む積層吸音材
JP6646267B1 (ja) 積層吸音材
JP6774042B2 (ja) 積層吸音材
JP2018146942A (ja) 極細繊維を含む積層吸音材
JP2019001012A (ja) 極細繊維を含む積層吸音材
JP6642811B2 (ja) 積層吸音材
JP6751278B1 (ja) 積層吸音材
JP6642810B2 (ja) 積層吸音材
JP2021157133A (ja) 積層用吸音材および積層吸音材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025324

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018747423

Country of ref document: EP

Effective date: 20190903