WO2021235446A1 - 複合吸音材 - Google Patents
複合吸音材 Download PDFInfo
- Publication number
- WO2021235446A1 WO2021235446A1 PCT/JP2021/018842 JP2021018842W WO2021235446A1 WO 2021235446 A1 WO2021235446 A1 WO 2021235446A1 JP 2021018842 W JP2021018842 W JP 2021018842W WO 2021235446 A1 WO2021235446 A1 WO 2021235446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound absorbing
- absorbing material
- composite sound
- skin material
- less
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 105
- 239000011358 absorbing material Substances 0.000 title claims abstract description 104
- 239000000463 material Substances 0.000 claims abstract description 216
- 238000010521 absorption reaction Methods 0.000 claims abstract description 44
- 239000000835 fiber Substances 0.000 claims description 153
- 239000004745 nonwoven fabric Substances 0.000 claims description 58
- 229920005989 resin Polymers 0.000 claims description 58
- 239000011347 resin Substances 0.000 claims description 58
- 229920001410 Microfiber Polymers 0.000 claims description 52
- 239000000945 filler Substances 0.000 claims description 33
- 239000006260 foam Substances 0.000 claims description 13
- 229920003002 synthetic resin Polymers 0.000 claims description 11
- 239000000057 synthetic resin Substances 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 5
- 238000000691 measurement method Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 85
- 238000000034 method Methods 0.000 description 44
- -1 polyethylene Polymers 0.000 description 42
- 230000000694 effects Effects 0.000 description 37
- 238000002844 melting Methods 0.000 description 35
- 230000008018 melting Effects 0.000 description 35
- 239000000155 melt Substances 0.000 description 28
- 229920000139 polyethylene terephthalate Polymers 0.000 description 26
- 239000005020 polyethylene terephthalate Substances 0.000 description 26
- 229920000728 polyester Polymers 0.000 description 19
- 238000009987 spinning Methods 0.000 description 19
- 239000000243 solution Substances 0.000 description 17
- 229920001187 thermosetting polymer Polymers 0.000 description 13
- 238000005304 joining Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229920001225 polyester resin Polymers 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000012943 hotmelt Substances 0.000 description 9
- 239000004744 fabric Substances 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000002074 melt spinning Methods 0.000 description 8
- 239000004645 polyester resin Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000306 component Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 238000002788 crimping Methods 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000003856 thermoforming Methods 0.000 description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000877 Melamine resin Polymers 0.000 description 5
- 239000004640 Melamine resin Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002994 synthetic fiber Polymers 0.000 description 5
- 239000012209 synthetic fiber Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 229930182843 D-Lactic acid Natural products 0.000 description 4
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229940022769 d- lactic acid Drugs 0.000 description 4
- 210000002615 epidermis Anatomy 0.000 description 4
- 239000011491 glass wool Substances 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 235000019256 formaldehyde Nutrition 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920005835 Basotect® TG Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
- G10K11/168—Plural layers of different materials, e.g. sandwiches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/245—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
- B32B5/265—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/05—Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/20—All layers being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/02—Coating on the layer surface on fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
- B32B2255/102—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer synthetic resin or rubber layer being a foamed layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0221—Vinyl resin
- B32B2266/0228—Aromatic vinyl resin, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0242—Acrylic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/025—Polyolefin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0257—Polyamide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0278—Polyurethane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0285—Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/06—Open cell foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/022—Foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/026—Porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/10—Fibres of continuous length
- B32B2305/18—Fabrics, textiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/10—Fibres of continuous length
- B32B2305/20—Fibres of continuous length in the form of a non-woven mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/30—Fillers, e.g. particles, powders, beads, flakes, spheres, chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/737—Dimensions, e.g. volume or area
- B32B2307/7375—Linear, e.g. length, distance or width
- B32B2307/7376—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
Definitions
- the present invention relates to a composite sound absorbing material composed of two or more layers including a base material and a skin material.
- a sound absorbing material is applied to the walls of the engine hood, dash panel, ceiling material, door trim, cab floor and the like as a noise countermeasure so that such noise does not cause discomfort to the crew.
- a sound absorbing material made of a porous material such as a non-woven fabric or a resin foam, or a non-woven fabric or a resin whose air permeability is controlled to a certain range by using the sound absorbing material as a base material.
- a skin layer also referred to as a skin material, a surface material, or a skin
- a film such as a film
- Patent Document 2 describes a non-woven fabric surface material made of a laminated non-woven fabric integrated by thermal pressure bonding between a melt-blow ultrafine fiber layer and a synthetic fiber length fiber layer, and a coarse bulk density of 0.005 to 0.15 g / cm 3.
- a sound absorbing material made of a synthetic fiber non-woven fabric backing material having a structure has been proposed, but a material that absorbs a wide frequency sound has not been realized due to the large influence of the synthetic fiber non-woven fabric on the surface.
- Patent Document 3 proposes a nonwoven fabric having excellent moldability, in which a melt-blown ultrafine fiber layer and a short-fiber nonwoven fabric containing a base cloth of a spunbonded nonwoven fabric are laminated and integrated by a mechanical entanglement method. Since it is laminated and integrated, there is a drawback that the non-woven fabric is thick from the viewpoint of space saving as an automobile member. Further, there is a drawback that the sound absorption property is poor because the sound travels straight and enters the hole generated by the mechanical confounding method.
- Patent Document 4 is a composite sound absorbing material having at least two fiber layers having a specific average flow rate pore diameter and controlling air permeability, and a base material layer arranged between them.
- a back air layer of 5 mm is provided for measurement, and the sound absorption effect when the reflected sound after transmission penetrates into the back surface fiber layer again is used, and the thickness is substantially thick. .. Further, when it is arranged on the wall surface of an automobile, it is difficult to provide a back air layer.
- a sound absorbing material in which a skin material is compounded with a sound absorbing base material has been proposed, but a sound absorbing material having a thin thickness, a low basis weight and absorbing a wide frequency is difficult to reach only from the viewpoint of breathability. In order to obtain sufficient sound absorption performance, it was necessary to increase the thickness with back air or the like.
- Japanese Unexamined Patent Publication No. 2015-121631 Japanese Unexamined Patent Publication No. 2006-0288708 Japanese Unexamined Patent Publication No. 2002-161464 International Publication No. 2019/172016
- the problem to be solved by the present invention is to provide a composite sound absorbing material which is thin and can exhibit sound absorption over a wide range of low frequency, medium frequency, and high frequency even in a low basis weight region. be.
- a composite sound absorbing material composed of at least two layers including a base material and a skin material has a surface area per unit area of the base material.
- the ratio of the surface area per unit area of the skin material is within a specific range, so that it is excellent in sound absorption in a wide range of low frequency, medium frequency, and high frequency, but also excellent in space saving and lightweight. This is the result of completing the present invention.
- the present invention is as follows. [1] A composite sound absorbing material composed of two or more layers including a base material and a skin material, and the skin material is arranged in the outermost layer, and the surface area per unit area of the skin material (m 2 / m 2). ) And the surface area (m 2 / m 2 ) per unit area of the base material (skin material: base material) is 1: 5 or more and less than 1:40.
- the ratio of the surface area per unit area of the skin material (m 2 / m 2 ) to the surface area of the base material per unit area (m 2 / m 2 ) (skin material: base material) is 1:
- the composite sound absorbing material according to the above [1] or [2], wherein the surface area per unit area of the skin material is 10 m 2 / m 2 or more and 20 m 2 / m 2 or less.
- [4] The composite sound absorbing material according to any one of [1] to [3], wherein the surface area per unit area of the base material is 100 m 2 / m 2 or more and 500 m 2 / m 2 or less.
- [5] The composite sound absorbing material according to any one of the above [1] to [4], which has a thickness of 40 mm or less.
- [6] The composite sound absorbing material according to any one of [1] to [5], wherein the skin material has a basis weight of 25 g / m 2 or more and 70 g / m 2 or less.
- [7] The composite sound absorbing material according to any one of [1] to [6] above, which is a non-woven fabric in which the skin material is integrated by thermocompression bonding.
- the skin material includes at least one ultrafine fiber layer (M) having an average fiber diameter of 0.3 ⁇ m or more and 7 ⁇ m or less, and at least one thick fiber layer (S) having an average fiber diameter of 10 ⁇ m or more and 30 ⁇ m or less.
- M ultrafine fiber layer
- S thick fiber layer
- the composite sound absorbing material according to the present invention is thin and lightweight, yet has excellent sound absorbing properties over a wide range of low frequencies, medium frequencies, and high frequencies. It can be suitably used as a skin material for materials.
- the composite sound absorbing material of the present embodiment is a composite sound absorbing material composed of two or more layers including a base material and a skin material, and the skin material is arranged in the outermost layer, and is a surface area per unit area of the skin material. and (m 2 / m 2), the ratio of the surface area per unit area of the substrate (m 2 / m 2) (skin material: base) is 1: 5 or more and less than 1:40 composite sound absorbing material Is.
- the composite sound absorbing material of the present embodiment exhibits the effects of both sides of the porous sound absorbing effect and the surface vibration sound absorbing effect, thereby exhibiting the sound absorbing effect in a wide range of low frequency, medium frequency, and high frequency.
- the porous sound absorption effect is an effect of converting the vibration energy of sound into heat energy by friction with the skeleton, and is effective for a high frequency region.
- the surface vibration sound absorption effect means that when sound enters a dense structure, it receives the vibration energy of the sound and vibrates on the entire surface, and the air of the base material behind it acts as a spring, so that the inside of the base material It is an effect of converting the vibration energy of sound into heat energy by vibrating the air more efficiently and rubbing against the skeleton of the base material, which is effective for a low frequency region.
- the composite sound absorbing material is a combination of a skin material having good sound absorbing performance and a base material, it does not generally show good sound absorbing performance, and it is easy for sound to enter and friction with air. By optimizing each from the above viewpoints, better sound absorption can be obtained.
- the skin material constituting the composite sound absorbing material of the present embodiment is not particularly limited as long as it is a cloth, and may be a woven cloth, a knitted cloth, a non-woven fabric, or the like, but is preferably a non-woven fabric.
- the skin material may contain a filler containing a synthetic resin (hereinafter, also simply referred to as “filler”) on the surface and / or voids of the cloth.
- the ratio is 1: 5 or more, when the surface vibration of the skin material is transmitted to the air of the base material, the surface area that causes friction with the air of the base material is large and the vibration energy is efficiently converted into heat energy.
- the surface area per unit area of the skin material constituting the composite sound absorbing material of the present embodiment refers to the total surface area of the skin material including the cloth and the filler when the skin material contains the filler.
- the surface area per unit area of the skin material constituting the composite sound absorbing material of the present embodiment is preferably 10 to 20 m 2 / m 2 from the viewpoint of exhibiting the effects of both sides of the porous sound absorbing effect and the surface vibration sound absorbing effect. It is more preferably 11 to 19 m 2 / m 2 , and even more preferably 12 to 18 m 2 / m 2 . When it is 10 m 2 / m 2 or more, the effect of both sides of the porous sound absorption effect and the surface vibration sound absorption effect can be exhibited, so that the sound absorption effect in a wide range of low frequency, medium frequency, and high frequency can be exhibited.
- the surface area per unit area can be adjusted by setting the fiber diameter and the fiber weight in the optimum range.
- the spunbonded non-woven fabric is used as the skin material, if the surface area per unit area is kept within the above-mentioned preferable range, the basis weight tends to be high. , Easy to achieve thinness and light weight. It is also preferable to use a single ultrafine fiber as a skin material without using a spunbonded non-woven fabric.
- the surface area per unit area of the base material constituting the composite sound absorbing material of the present embodiment has a sufficient sound absorbing effect, and while converting to heat energy in the entire thickness direction, the sound absorbing effect of the skin material is sufficiently obtained.
- 100 to 500 m 2 / m 2 is preferable, 150 to 450 m 2 / m 2 is more preferable, and 200 to 400 m 2 / m 2 is more preferable.
- it is 100 m 2 / m 2 or more, there are many regions where the vibration energy of the sound required for the porous sound absorption effect is converted into heat energy by friction with the skeleton, and a sufficient sound absorption effect can be easily obtained.
- the sound absorption effect can be exhibited in a wide range of high frequencies.
- it is 500 m 2 / m 2 or less, an excessively dense structure can be suppressed, the reflection of medium to high frequency sound is small, the sound easily penetrates into the base material, and the decrease in the sound absorption coefficient of the medium to high frequency sound can be suppressed. ..
- the thickness of the composite sound absorbing material of the present embodiment is preferably 5 to 40 mm, more preferably 7 to 30 mm. Since the thickness is 5 to 40 mm, it is a thin and lightweight sound absorbing material, and a high sound absorbing effect can be obtained in a relatively wide range of sound frequencies.
- the basis weight of the skin material constituting the composite sound absorbing material of the present embodiment is preferably 25 to 70 g / m 2 , and more preferably 27 to 60 g / m 2 .
- the ventilation of the skin can be sufficiently controlled, and the surface area per unit area tends to be sufficient.
- the basis weight of the skin material is 70 g / m 2 or less, excessively dense structure can be suppressed, sound is less reflected, sound easily penetrates into the base material, and the sound absorption effect of the entire composite sound absorbing material can be easily obtained.
- thermocompression bonding As a method of integrating the skin material constituting the composite sound absorbing material of the present embodiment, integration by thermocompression bonding, integration by applying an adhesive resin to the web that has undergone carding, mechanical entanglement such as needle punching and water flow entanglement, etc.
- thermocompression bonding it is desirable to integrate by thermocompression bonding from the viewpoint of sound absorption and weight reduction. Since the surface of the skin material integrated by thermocompression bonding is appropriately fixed as a surface, the film vibration sound absorption effect is likely to be exhibited, and sufficient strength is easily given, so that the handleability is also good.
- thermocompression bonding is performed by thermocompression bonding between a known embossed roll and a smooth roll (hereinafter, also referred to as flat roll).
- a smooth roll hereinafter, also referred to as flat roll.
- Bonding by thermocompression bonding between smooth rolls and thermocompression bonding, and bonding by thermocompression bonding between hot plates are possible.
- the most preferable method is a method of thermocompression-bonding between an embossed roll and a smooth roll, in which densification can be suppressed in a non- (partial) thermocompression-bonded portion (in this method, it is regarded as a non-embossed portion). It becomes difficult to block the intrusion of sound.
- thermocompression bonding part in this method, it is regarded as the embossed part
- the embossed part is strongly integrated, it has sufficient strength and is easy to handle, and it is a member that requires thermoforming. Can be applied and can be widely used.
- thermocompression bonding is performed at a pressure bonding area ratio in the range of 6% or more and 30% or less with respect to the total area of the nonwoven fabric, and more preferably 7. % Or more and 25% or less.
- a pressure bonding area ratio in the range of 6% or more and 30% or less with respect to the total area of the nonwoven fabric, and more preferably 7. % Or more and 25% or less.
- the thermocompression bonding area ratio is 6% or more, fluffing is small, and when it is 30% or less, the non-woven fabric is less likely to become paper-like, and mechanical properties such as breaking elongation and tear strength are less likely to deteriorate. If the pressure bonding area ratio is within this range, good thermocompression bonding between fibers can be performed, and the obtained nonwoven fabric can have appropriate mechanical strength, rigidity, and dimensional stability.
- the temperature of thermocompression bonding should be appropriately selected depending on the conditions such as the basis weight and speed of the supplied web, and although it is not unconditionally determined, it is 30 ° C. or higher and 90 ° C. or lower than the melting point of the resin constituting the fiber.
- the temperature is preferably low, more preferably 40 ° C. or higher and 70 ° C. or lower.
- the temperature difference between the embossed roll and the flat roll is large. It is preferably less than 10 ° C, more preferably less than 5 ° C, still more preferably less than 3 ° C.
- thermocompression bonding pressure should also be appropriately selected depending on the conditions such as the texture and speed of the supplied web, and is not unconditionally determined, but is preferably 10 N / mm or more and 100 N / mm or less. It is preferably 30 N / mm or more and 70 N / mm or less, and if it is within this range, good thermocompression bonding treatment between fibers can be performed, and the obtained nonwoven fabric can be obtained with appropriate mechanical strength, rigidity and dimensional stability. Can be.
- thermocompression bonding portion is not particularly limited, but is preferably a texture pattern, an iron pattern (rectangular pattern), a pinpoint pattern, a diamond pattern, a square pattern, a hexagonal pattern, an elliptical pattern, a lattice pattern, a polka dot pattern, or a circle.
- An example is a pattern.
- the skin material constituting the composite sound absorbing material of the present embodiment is from one or more large-diameter fiber layers (S), from one or more ultrafine fiber layers (M), or at least one thick-diameter fiber layer (S). It is preferably composed of a composite of at least one ultrafine fiber layer (M).
- S and SS when composed of one or more large-diameter fiber layers (S)
- M and MM when composed of one or more ultrafine fiber layers (M)
- at least one large-diameter fiber layer When it is composed of a composite of S) and at least one ultrafine fiber layer (M), SM, SMS, SMM, SMMS, SMSS, SMSSMS and the like can be mentioned.
- a particularly preferable configuration is a case where the complex is composed of a large-diameter fiber layer (S) and an ultrafine fiber layer (M), and both the large-diameter fiber layer (S) and the ultrafine fiber layer (M) are both.
- the characteristics of can be obtained. That is, both sound absorption and handleability can be achieved by reducing the basis weight by making the ultrafine fibers extremely fine without containing a filler.
- the skin material constituting the composite sound absorbing material of the present embodiment is composed of a composite of a large diameter fiber layer (S) and an ultrafine fiber layer (M), at least one layer having an average fiber diameter of 0.3 ⁇ m or more and 7 ⁇ m or less.
- a non-woven fabric in which an ultrafine fiber layer (M) and at least one thick fiber layer (S) having an average fiber diameter of 10 ⁇ m or more and 30 ⁇ m or less are integrated is preferable. As a result, both the sound absorption effect and the handleability can be achieved.
- the ultrafine fiber layer (M) which is easily torn during molding, with the high-strength large-diameter fiber layer (S) and integrating them by thermocompression bonding, for example, the large-diameter fiber layer (S) is formed during stretching.
- the ultrafine fiber layer (M) is not subjected to extreme stress, so that the ultrafine fiber layer (M) can be easily stretched uniformly without tearing.
- the large-diameter fiber layer (S) is preferably composed of continuous long fibers, and a spinning method thereof is known.
- the spunbond method is preferable, and the condition that the yarns are uniformly dispersed by triboelectric charging or corona charging during spinning is preferable. If such conditions are used, it is easy to produce a web in an unbonded state, and it is excellent in economy. Further, the web of the large-diameter fiber layer may be a single layer or a plurality of layers may be stacked.
- thermoplastic synthetic resin that can be fibrized by the melt spinning method.
- thermoplastic synthetic resin include polyolefin resins (polyethylene, polypropylene, copolymerized polypropylene, etc.), aromatic polyester resins, aliphatic polyester resins (poly D-lactic acid, poly L-lactic acid, D-lactic acid and L).
- thermoplastic synthetic resin an aromatic polyester resin having excellent heat resistance, water resistance and the like is particularly preferably used.
- the aromatic polyester-based resin examples include thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polytrimethylene terephthalate. Further, the aromatic polyester resin may be a polyester obtained by polymerizing or copolymerizing isophthalic acid, phthalic acid or the like as an acid component forming an ester.
- thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polytrimethylene terephthalate.
- PET polyethylene terephthalate
- the aromatic polyester resin may be a polyester obtained by polymerizing or copolymerizing isophthalic acid, phthalic acid or the like as an acid component forming an ester.
- the large-diameter fiber layer (S) of the non-woven fabric in contact with the base material of the composite sound absorbing material may contain fibers having a melting point 30 ° C. or higher lower than the melting point of the fibers of the other layer. That is, in order to maintain good adhesiveness between the nonwoven fabric facing material and the base material, the layer in contact with the base material may have a fiber structure having a low melting point.
- low melting point fibers include aromatic polyester copolymers obtained by copolymerizing polyethylene terephthalate with one or more compounds of phthalic acid, isophthalic acid, sebacic acid, adipic acid, diethylene glycol, and 1,4-butanediol.
- polyester fibers such as coalesced and aliphatic esters. These fibers may be used alone, may be a composite blend of two or more kinds, or may be a composite blend of a low melting point fiber and a high melting point fiber. Further, a composite fiber having a sheath core structure having a low melting point component in the sheath portion may be used. Examples of the composite fiber having a sheath core structure include polyethylene terephthalate, polybutylene terephthalate, and a copolymerized polyester having a core having a high melting point component, a copolymerized polyester having a sheath having a low melting point component, and an aliphatic ester.
- the average fiber diameter of the fibers constituting the large-diameter fiber layer (S) is preferably 10.0 ⁇ m or more and 30.0 ⁇ m or less, more preferably 12.0 ⁇ m or more and 30.0 ⁇ m or less, and further preferably 12.0 ⁇ m or more and 20. It is 0 ⁇ m or less, more preferably 13.0 ⁇ m or more and 20.0 ⁇ m or less, and most preferably 13.0 ⁇ m or more and 18.0 ⁇ m or less. It is 10.0 ⁇ m or more from the viewpoint of spinning stability, and 30 ⁇ m or less from the viewpoint of strength and heat resistance.
- the crystallinity of the fiber is not too high, the crystallinity is reduced, the elongation of the fiber is improved, the moldability is likely to be improved, and thermal shrinkage occurs during partial thermal pressure bonding. Since it is difficult and the fibers are melted by the heat of the heat-bonding roll and are not easily taken by the roll, the productivity of the non-woven fabric is improved, the covering property is improved, the strength of the non-woven fabric is improved, and the spinning stability is also good. ..
- the ultrafine fiber layer (M) is manufactured by the melt blow method.
- the melt blow method since the molten resin is towed by high-temperature and high-speed air immediately after being discharged from the spinning nozzle, it is easy to obtain a fine fiber diameter with a relatively low production cost.
- the characteristics of the manufacturing method due to the characteristics of the manufacturing method, it is difficult to solidify the melted / discharged resin, and sufficient surface area may not be obtained due to fusion of fibers or the like. Therefore, in order to prevent the fibers from being fused to each other, it is preferable to appropriately adjust the resin viscosity, the distance sprayed onto the conveyor or the large-diameter fiber layer (S), and the like.
- the solution viscosity ( ⁇ sp / c) of the ultrafine fibers is preferably 0.35 or more and 0.6 or less, more preferably 0.37 or more and 0. It is .55 or less.
- the solution viscosity ( ⁇ sp / c) of the ultrafine fibers of PET or its copolymer is 0.3 or more, it suppresses the high fluidity of excessively low crystals, thereby accelerating solidification and suppressing the fusion of yarns. However, the decrease in surface area can be suppressed.
- the solution viscosity ( ⁇ sp / c) of the ultrafine fibers of PET or a copolymer thereof is 0.6 or less, fine fibers can be easily obtained without requiring excessive drawing energy, and the production cost can be reduced.
- the fibers are finely fiberized by blowing off the heated air by the melt blow method, and the fibers are sprayed at a high temperature on the conveyor net sucking from the back side or on the collecting surface on the large diameter fiber layer. It is made into a sheet by utilizing self-adhesion by fusion between. Therefore, in general, when fine fibers are made by the melt blow method, self-adhesion due to fusion between fibers becomes strong, which causes a fusion phenomenon between ultrafine fibers.
- the present inventors have found that the degree of fusion can be controlled even if the fibers are made into fine fibers by setting the distance between the melt blow nozzle and the collecting surface to a predetermined distance.
- the distance between the melt blow nozzle and the collection surface is preferably 100 mm or more and 180 mm or less, more preferably 110 mm or more and 150 mm or less, and further preferably 120 mm or more and 140 mm or less.
- the distance between the melt blow nozzle and the collection surface is 100 mm or more, fusion of the ultrafine fibers can be easily suppressed even if the temperature and flow rate of the heated air are increased.
- it is 180 mm or less, entanglement between fibers in the air is less likely to occur, spots are less likely to occur, and self-adhesion due to fusion is not too weak, and handling in a laminating process or the like is good.
- the average fiber diameter of the ultrafine fiber layer (M) is preferably 0.3 ⁇ m or more and 7 ⁇ m or less, more preferably 0.4 ⁇ m or more and 5 ⁇ m or less, and further preferably 0.6 ⁇ m or more and 2 ⁇ m or less. If it is 0.3 ⁇ m or more, harsh conditions are not required for spinning by the melt blow method, and stable fibers can be obtained. On the other hand, when the fiber diameter is 7 ⁇ m or less, the fiber diameter is sufficiently small, a sufficient sound absorbing effect can be obtained, and when the fiber is composed of a composite of a large diameter fiber layer (S) and an ultrafine fiber layer (M). Has the effect of entering the gaps of the large-diameter fiber layer (S) as fine fibers and filling the gaps, so that the structure becomes dense and the sound absorbing effect can be further enhanced.
- the basis weight of the ultrafine fiber layer (M) is 1 g / m 2 or more and 40 g / m 2 , preferably 2 g / m 2 or more and 25 g / m 2 or less, more preferably 3 g / m 2, from the viewpoint of obtaining sufficient sound absorption with a low basis weight. It is m 2 or more and 20 g / m 2 or less.
- thermoplastic synthetic resin that can be used for the large diameter fiber layer (S) described above can be similarly used.
- the shape of the fiber cross section of the skin material constituting the composite sound absorbing material of the present embodiment is not particularly limited, but a round cross section is preferable from the viewpoint of strength, and from the viewpoint of increasing the surface area of the fiber and forming fine voids, it is preferable.
- Atypical cross-section yarns such as flat yarns are preferred.
- the skin material constituting the composite sound absorbing material of the present embodiment may contain a filler containing a synthetic resin.
- a filler is contained in order to control the air permeability in a low basis weight and to obtain a sound absorbing effect with a sufficient surface area per unit area. Is very preferable.
- the content of the filler of the skin material is preferably 3 g / m 2 or more and 25 g / m 2 or less, and more preferably 3 g / m 2 or more and 20 g / m 2 or less.
- the content of the filler is the total content of the synthetic resin, the filler, the pigment, the flame retardant, and the like.
- thermosetting resin and a thermoplastic resin can be used, and as the thermosetting resin, a urethane resin, a melamine resin, an ester-bonded thermosetting acrylic resin, a phenol resin, etc.
- thermosetting polyester resin or the like can be used.
- thermoplastic resin a polyester resin, an acrylic resin or the like is used.
- thermosetting resins is an ester-bonded thermosetting acrylic resin.
- the ester-bonded thermosetting acrylic resin is cured by an esterification reaction between a polymer acid obtained by radical polymerization consisting of an ethylenically unsaturated dicarboxylic acid and a hydroxyl group contained in an alkanolamine having a hydroxyl group. Since cross-linking is an esterification reaction, only water is by-produced, and harmful substances such as formaldehyde are not by-produced, which is suitable for automobile interior materials and the like.
- thermosetting resin is a phenol-alkylresorcin cocondensate of a phenolic resin.
- the phenol-alkylresorcin cocondensate has the advantages that the stability of the aqueous solution is good and that it can be stored for a long period of time at room temperature as compared with the condensate composed only of phenol.
- alkylresorcin has high reactivity with formaldehydes and reacts by supplementing free aldehydes, so that there is an advantage that the amount of free aldehydes in the resin is reduced.
- a polyester-based resin is desirable as the thermoplastic resin.
- the polyester-based resin has a relatively high Tg, and after being contained in the skin material, it is less sticky even when dried at a low temperature, has a good feel, and has little resin transfer.
- a filler may be mixed in the filler for the purpose of providing an appropriate surface area while making the skin material dense.
- Fillers include hollow granules such as silas balloons, pearlite, glass balloons and hollow ceramics, plastic foams and foams, calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum hydroxide, alumina, silica and inorganic silica such as colloidal silica. Fillers and the like are exemplified. Among these, hollow particles such as Shirasu balloons are desirable because they are hollow inside and easily contribute to the improvement of sound absorption performance.
- the average particle size of the filler is preferably 1 to 100 ⁇ m, more preferably 10 to 90 ⁇ m, and even more preferably 15 to 70 ⁇ m.
- the average particle size is 1 ⁇ m or more, gaps in the same area of the filler are likely to be formed, the density and the denseness are not too high, the voids are not too small, the sound enters sufficiently, and the sound absorption effect is easily enhanced.
- it is 100 ⁇ m or less, it is easy to suppress the formation of an excessively large gap, and it is easy to have an appropriate surface area while making the epidermis dense.
- the mixing ratio of the filler and the resin can be used at a solid content ratio of 55:45 to 70:30. Within this range, the filler is sufficiently adhered to the skin material, and the possibility that the gap between the fillers is filled with the resin can be reduced.
- filler liquid a liquid containing the filler
- a roll coater a knife coater, a flow coater, or the like
- a dip a dip.
- a coating method can be used on the entire surface in the thickness direction by impregnation of a nip or the like.
- the skin material is composed of only the large-diameter fiber layer (S)
- S large-diameter fiber layer
- a coating method in which a resin is present on one side is desirable.
- the skin material is composed of a composite of a large-diameter fiber layer (S) and an ultrafine fiber layer (M) such as SMS
- the filler liquid is an ultrafine fiber layer (even if a dip nip is used. M) It adheres to the surface to generate surface tension, and the synthetic resin does not easily ooze out to the surface of the large-diameter fiber layer (S). It is desirable because it can suppress sticking to the mold.
- the resin is present in the entire thickness direction of the epidermis, it is easy to have an appropriate surface area while making the epidermis dense with a very small amount of resin.
- the filler liquid an aqueous solution, an aqueous emulsion, and an aqueous dispersion are preferable from the viewpoint of easy handling.
- the drying temperature of the coating is preferably in the range of 100 to 130 ° C. Within this range, the filler liquid can be sufficiently dried, and by promoting crystallization of the skin material by heat, deterioration of flexibility and moldability can be suppressed, and a thermosetting resin is used. In this case, it is possible to suppress the state of being cured before thermoforming, and it is possible to exhibit excellent moldability during thermoforming.
- a black pigment, a flame retardant such as phosphorus, and a water repellent can be simultaneously mixed in the filler to impart black coloring, flame retardancy, and water repellency required for the skin of a food insulator or the like.
- the bulk density of the skin material constituting the composite sound absorbing material of the present embodiment is preferably 0.1 g / cm 3 or more and 0.7 g / cm 3 or less, and more preferably 0.15 g / cm 3 or more and 0.6 g. It is / cm 3 or less, more preferably 0.2 g / cm 3 or more and 0.55 g / cm 3 or less.
- the bulk density is 0.1 g / cm 3 or more, the denseness of the non-woven fabric is improved and the effect of reducing sound is improved.
- the bulk density is 0.7 g / cm 3 or less, the skin material is not too dense, the voids are not too small, the sound can enter sufficiently, and the sound absorption coefficient around the medium frequency of 4000 Hz is particularly lowered. It is difficult and improves workability.
- the air permeability of the skin material constituting the composite sound absorbing material of the present embodiment is preferably 100 mL / cm 2 / sec or less, more preferably 0.1 mL / cm 2 / sec or more. It is 50 mL / cm 2 / sec or less, more preferably 0.5 mL / cm 2 / sec or more and 30 mL / cm 2 / sec.
- the air permeability is 100 mL / cm 2 / sec or less, the wavelength of the incoming sound can be reduced, and the effect of reducing the sound energy can be easily obtained.
- the dry heat shrinkage rate in 10 minutes under the atmosphere of 180 ° C. of the nonwoven fabric is preferably 5% or less, more preferably 4% or less. More preferably, it is 3.5% or less. If it does not exceed 5%, wrinkles are less likely to occur due to shrinkage during molding.
- the sound-absorbing base material should have a specific bulk density. Is desirable.
- the bulk density of the sound-absorbing base material may be compression-adjusted by a known hot press machine or the like before the combination with the non-woven fabric and the laminated non-woven fabric. The compression may be adjusted when integrally molded with the material.
- the bulk density of the base material used for the composite sound absorbing material of the present embodiment is preferably 0.01 g / cm 3 or more and 0.1 g / cm 3 or less, more preferably 0.02 g / cm 3 or more and 0.08 g / cm 3.
- the bulk density is 0.01 g / cm 3 or more, the sound absorption property does not easily decrease and it is not necessary to increase the thickness more than necessary.
- the bulk density is 0.1 g / cm 3 or less, the sound transmitted through the non-woven fabric skin material easily enters the sound absorbing base material, and the wear resistance and workability are also improved.
- Examples of the material of the sound absorbing base material include a continuous cell resin foam made of polyethylene resin, polypropylene resin, polyurethane resin, polyester resin, acrylic resin, polystyrene resin, melamine resin and the like, polyethylene, polypropylene, copolymerized polypropylene and the like.
- Polyethylene fiber nylon 6, nylon 66, polyamide fiber such as copolymerized polyamide, polyester fiber such as polyethylene terephthalate, polybutylene terephthalate, copolymerized polyester, aliphatic polyester, sheath is polyethylene, polypropylene, copolymerized polyester, core Is a known needle in which short fibers and / or long fibers such as composite fibers such as core-sheath structure composed of a combination of polypropylene and polyester, biodegradable fibers such as polylactic acid, polybutylene succinate and polyethylene succinate are laminated. Examples thereof include sound-absorbing synthetic fiber non-woven fabrics and felts obtained by entanglement by a punching method or the like.
- examples of the inorganic material include glass fiber and glass wool.
- the open-cell resin foam is preferably a melamine resin or urethane resin from the viewpoint of light weight and sound absorption
- the sound-absorbing synthetic fiber non-woven fabric is preferably a non-woven fabric made of polyester fiber from the viewpoint of flame retardancy and heat resistance.
- the composite sound absorbing material of the present embodiment is obtained by joining and integrating a skin material and a sound absorbing base material having a rough structure.
- the skin material and the sound absorbing base material can be bonded by, for example, a method of interposing heat-sealed fibers on the bonded surface, a method of applying a hot-melt resin or an adhesive, or the like.
- a hot melt adhesive is applied to the non-woven fabric skin material by a curtain spray method, a dot method, a screen method, etc. at a rate of 2 g / m 2 or more and 30 g / m 2 or less. It can be applied at a ratio and heated from the non-woven fabric skin material side to soften and melt the applied adhesive and adhere to the sound absorbing base material.
- the adhesive force between the skin material and the sound absorbing base material is preferably 0.1 N / 10 mm or more, more preferably 0.2 N / 10 mm or more and 5 N / 10 mm or less.
- the adhesive strength is 0.1 N / 10 mm or more, problems such as peeling during cutting and transportation of the sound absorbing material are unlikely to occur.
- the composite sound absorbing material of the present embodiment has a sound absorption coefficient of 30% or more at a frequency of 1000 Hz (low frequency) and a sound absorption coefficient of 90% or more at 2500 Hz (medium frequency) in a vertical incident measurement method based on JIS-1405. It is preferably 5000 Hz (high frequency) 80% or more.
- the flow direction (machine direction) in the non-woven fabric manufacturing is called the MD direction
- the width direction perpendicular to the direction is called the CD direction.
- the BET equation is an equation expressing the relational expression between the adsorption equilibrium pressure P and the adsorption amount Vm at that pressure when the adsorption equilibrium state is reached at a constant temperature.
- the basis weight of the skin material and the base material is measured according to JIS L 1913. Further, in the laminated body (composite sound absorbing material and the skin material which is a laminated non-woven fabric), the basis weight of each layer is the value calculated from the manufacturing conditions in this embodiment. If the manufacturing conditions are unknown, each layer weight can be measured in accordance with JIS L 1913 after peeling off those that can be delaminated to form a single layer. If delamination is not possible, an X-ray CT image of the nonwoven fabric can be taken and calculated from the area of the observation range, the volume and resin density occupied by the ultrafine fiber layer, and the thickness from the X-ray CT image.
- Average fiber diameter ( ⁇ m) A 500x magnified photograph is taken using a microscope VHX-700F manufactured by KEYENCE, and the average value of 10 fibers in focus in the observation field is calculated.
- Thickness Comply with JIS L 1913 B law. Measure the thickness of the pressure with a load of 0.02 kPa at three or more points, and calculate the average value. However, the thickness of the non-woven fabric skin material is measured with a load of 20 kPa.
- Punching workability A punching blade is placed on the composite sound absorbing material, and punching is performed with a hydraulic cutting machine. Visually check the cross section and judge according to the following evaluation criteria. (Evaluation criteria) ⁇ : Rough cross section and uncut yarn do not occur ⁇ : Rough cross section and / or uncut yarn occurs slightly ⁇ : Rough cross section and / or uncut yarn often occur.
- Example 1 Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ⁇ sp / c 0.77 by 25 ° C. method, melting point 263 ° C.) resin was supplied to a conventional melt spinning apparatus and melted at 300 ° C. to form a circular cross section. The yarn is cooled and the fiber web (S1) (grain 15.0 g / m 2 , average fiber diameter 13 ⁇ m) is captured while being discharged from a spinneret having a spinneret and drawn using a high-speed airflow traction device using an air jet. Collected and formed on the net.
- S1 fiber 15.0 g / m 2 , average fiber diameter 13 ⁇ m
- a large diameter fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1).
- the obtained laminated web was subjected to an IEL pattern embossed roll and a flat roll having a crimping area ratio of 11% at the time of thermocompression bonding, and the surface temperature of the embossed roll was 220 ° C. and the surface temperature of the flat roll was 220 ° C.
- a non-woven skin material having a grain size of 40 g / m 2 , a bulk density of 0.19 g / cm 3 , and a surface area of 16.4 m 2 / m 2 per unit area was obtained.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- As the base material felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 20 mm, a grain size of 1400 g / m 2 , a bulk density of 0.070 g / cm 3 , and a surface area of 368 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain the composite sound absorbing material of the present invention.
- the characteristics are shown in Table 1 below.
- Example 2 The substrate, the thickness of 20 mm, except for using glass wool having an average fiber diameter of 7 [mu] m, basis weight 1000 g / m 2 of a bulk density 0.050 g / cm 3, a unit area per surface area 331 (m 2 / m 2) are examples
- a composite sound absorbing material was obtained in the same manner as in 1. The characteristics are shown in Table 1 below.
- Example 3 A melamine resin foam having a thickness of 20 mm, a grain size of 200 g / m 2 , a bulk density of 0.010 g / cm 3 , and a surface area of 234 (m 2 / m 2 ) per unit area (BASF's melamine resin continuous foam).
- a composite sound absorbing material was obtained in the same manner as in Example 1 except that Basotect TG) was used. The characteristics are shown in Table 1 below.
- Example 4 A urethane resin foam with a thickness of 20 mm, a texture of 320 g / m 2 , a bulk density of 0.016 g / cm 3 , and a surface area of 102 (m 2 / m 2 ) per unit area (urethane resin continuous foam manufactured by Inoac).
- a composite sound absorbing material was obtained in the same manner as in Example 1 except that F-KL) was used. The characteristics are shown in Table 1 below.
- Example 5 The texture of the large-diameter fiber webs (S1 and S2) of the non-woven fabric skin material was 11.2 g / m 2 , and the texture of the ultrafine fiber webs (M) was 7.6 g / m 2. %, Weaving pattern embossed roll and flat roll were used, the base material had a thickness of 15 mm, a texture of 1100 g / m 2 , a bulk density of 0.073 g / cm 3 , and a surface area of 289 (m 2 / m 2) per unit area.
- a composite sound absorbing material was obtained in the same manner as in Example 1 except that the felt (resin felt manufactured by Terada Takaron Co., Ltd.) was used. The characteristics are shown in Table 1 below.
- Example 6 The large-diameter fiber webs (S1 and S2) of the non-woven fabric skin material had a surface area of 26.9 g / m 2 , the ultrafine fiber webs (M) had a surface area of 16.3 g / m 2 , and the average fiber diameter was 2.2 ⁇ m. Except for using felt (resin felt manufactured by Terada Takaron Co., Ltd.) with a thickness of 15 mm, a grain size of 1100 g / m 2 , a bulk density of 0.073 g / cm 3 , and a surface area of 289 (m 2 / m 2) per unit area. , A composite sound absorbing material was obtained in the same manner as in Example 1. The characteristics are shown in Table 1 below.
- Example 7 Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ⁇ sp / c 0.77 by 25 ° C. method, melting point 263 ° C.) resin was supplied to a conventional melt spinning apparatus and melted at 300 ° C. to form a circular cross section. The yarn is cooled and the fiber web (S1) (grain 11.2 g / m 2 , average fiber diameter 13 ⁇ m) is captured while being discharged from a spinneret having a spinneret and drawn using a high-speed airflow traction device using an air jet. Collected and formed on the net.
- S1 fiber web (grain 11.2 g / m 2 , average fiber diameter 13 ⁇ m) is captured while being discharged from a spinneret having a spinneret and drawn using a high-speed airflow traction device using an air jet. Collected and formed on the net.
- polyethylene terephthalate also solution viscosity ⁇ sp / c 0.50, melting point 260 ° C.
- the yarn was directly ejected to form an ultrafine fiber web (M) (meshing 7.6 g / m 2 , average fiber diameter 0.8 ⁇ m.
- M ultrafine fiber web
- a polyethylene terephthalate large-diameter fiber web (S2) was formed on the obtained ultrafine fiber web in the same manner as the fiber web (S1).
- the laminated web obtained in the above was used with an IEL pattern embossed roll and a flat roll having a crimping area ratio of 11% at the time of thermal crimping, and the surface temperature of the embossed roll was 220 ° C. and the surface temperature of the flat roll was 220 ° C.
- a non-woven skin material having a grain size of 30 g / m 2 and a bulk density of 0.19 g / cm 3 and a surface area of 17.5 m 2 / m 2 per unit area was obtained.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- As the base material felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 15 mm, a grain size of 1100 g / m 2 , a bulk density of 0.073 g / cm 3 , and a surface area of 289 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain a composite sound absorbing material.
- the characteristics are shown in Table 1 below.
- the sheath component is a copolymerized polyester resin (melting point 208 ° C.), and the core component is polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ⁇ sp / c 0.77 by 25 ° C. method, melting point 263 ° C.) resin.
- a fiber web (S1) grain 15.0 g / m 2 , average fiber diameter 13.0 ⁇ m
- a polyethylene terephthalate (also solution viscosity ⁇ sp / c 0.77, melting point 263 ° C.) resin is discharged from a spinneret having a spinning hole having a circular cross section to make the same as the fiber web (S1).
- the obtained large-diameter fiber web (S2) grain: 15.0 g / m 2 , average fiber diameter: 13.0 ⁇ m was formed.
- the obtained laminated web was thermocompression-bonded using an IEL pattern embossed roll and a flat roll having a crimping area ratio of 11%, the surface temperature of the embossed roll was set to 220 ° C, and the surface temperature of the flat roll was set to 120 ° C.
- thermocompression bonding at a pressure of 30 N / mm a non-woven skin material having a grain size of 40 g / m 2 , a bulk density of 0.19 g / cm 3 , and a surface area of 16.2 m 2 / m 2 per unit area was obtained.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 20 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 20 mm, a grain size of 1400 g / m 2 , a bulk density of 0.070 g / cm 3 , and a surface area of 368 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- the large-diameter fiber web (S2) surface and felt were overlapped, sandwiched between mesh-shaped conveyor belts, and heated and pressurized in an atmosphere at a temperature of 150 ° C. to obtain a composite sound absorbing material.
- Table 1 The characteristics are shown in Table 1 below.
- Example 9 Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ⁇ sp / c 0.77 by 25 ° C. method, melting point 263 ° C.) resin was supplied to a conventional melt spinning apparatus and melted at 300 ° C. to form a circular cross section. It is discharged from a spinneret having a spinning hole, and while stretching using a high-speed airflow traction device using an air jet, the yarn is cooled to catch a fiber web (S1) (grain 10.7 g / m 2 , average fiber diameter 13 ⁇ m). Collected and formed on the net.
- S1 fiber web
- a large diameter fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1).
- the obtained laminated web was subjected to a texture pattern embossed roll and a flat roll having a crimping area ratio of 15% at the time of thermocompression bonding, and the surface temperature of the embossed roll was 220 ° C. and the surface temperature of the flat roll was 220.
- Thermocompression bonding was performed at a temperature of 30 N / mm and a calendar wire pressure of 30 N / mm.
- the non-woven fabric skin material having a resin adhesion amount of 3 g / m 2 and a total grain of 28 g / m 2 was obtained by drying using a pin tenter oven at 100 ° C.
- Example 10 Polyethylene terephthalate (1% using orthochlorophenol, solution viscosity ⁇ sp / c 0.77 by 25 ° C. method, melting point 263 ° C.) resin was supplied to a conventional melt spinning apparatus and melted at 300 ° C. to form a circular cross section. The yarn is cooled and the fiber web (S1) (grain 40.0 g / m 2 , average fiber diameter 13 ⁇ m) is captured while being discharged from a spinneret having a spinneret and drawn using a high-speed airflow traction device using an air jet. Collected and formed on the net.
- S1 fiber 40.0 g / m 2 , average fiber diameter 13 ⁇ m
- the surface temperature of the embossed roll is 220 ° C.
- the surface temperature of the flat roll is 220 ° C.
- the calendar wire pressure is 30 N / Thermocompression bonding was performed at mm.
- a resole-type phenol / alkylresorcin initial cocondensation resin (an aqueous solution having a solid content of 45% by mass) is used as a thermosetting resin liquid, and a silas balloon (average particle size: 45 ⁇ m) is mixed with the filler / thermosetting resin as a filler.
- the coating liquid obtained by adding the ratio: 55/45 and further adding an acrylic thickener to adjust the viscosity to an aqueous solution having a viscosity of 150 Poise and a solid content of 20% by mass is applied in terms of solid content.
- thermosetting resin After coating by a roll coating method so as to have a viscosity of 25 g / m 2 , the thermosetting resin was heat-dried at a heating temperature of 120 ° C. for 3 minutes to semi-cure the thermosetting resin to obtain a non-woven skin material.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 15 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 15 mm, a grain size of 1100 g / m 2 , a bulk density of 0.073 g / cm 3 , and a surface area of 289 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain a composite sound absorbing material.
- Table 1 The characteristics are shown in Table 1 below.
- Example 11 Polyethylene terephthalate (also solution viscosity ⁇ sp / c 0.50, melting point 260 ° C.) was directly ejected from a melt blow nozzle at a spinning temperature of 300 ° C. and heated air of 320 ° C. under the conditions of 1000 Nm 3 / hr, and ultrafine fiber web (M). (Grasping 40.0 g / m 2 , average fiber diameter 3.5 ⁇ m) was formed. At this time, the distance from the melt blow nozzle to the large-diameter fiber layer was set to 100 mm, and the suction wind speed on the collection surface directly under the melt blow nozzle was set to 7 m / sec.
- M ultrafine fiber web
- the surface temperature of the embossed roll is 120 ° C.
- the surface temperature of the flat roll is 120 ° C.
- the calendar wire pressure is 30 N / Thermocompression bonding was performed at mm.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 15 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 15 mm, a grain size of 1100 g / m 2 , a bulk density of 0.073 g / cm 3 , and a surface area of 289 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain a composite sound absorbing material.
- Table 1 The characteristics are shown in Table 1 below.
- Example 12 A composite sound absorbing material was obtained in the same manner as in Example 9 except that the treatment for containing the filler was not performed. The characteristics are shown in Table 1 below.
- Example 13 Using short fibers (fiber length 10 mm) with fiber diameters of 15 ⁇ m and 4 ⁇ m, mix with a water-soluble ester binder (solid content in water 1.0% by mass), thickener, dispersant, and water, and mix the two types. A liquid was prepared, and a laminate of large-diameter fiber layer A / ultrafine fiber layer / large-diameter fiber layer B was obtained by a papermaking method. This laminate was heated at 130 ° C. for 3 minutes to obtain a non-woven fabric skin material.
- a water-soluble ester binder solid content in water 1.0% by mass
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 20 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 20 mm, a grain size of 1400 g / m 2 , a bulk density of 0.070 g / cm 3 , and a surface area of 368 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain the composite sound absorbing material of the present invention.
- the characteristics are shown in Table 1 below.
- the surface temperature of the embossed roll is 220 ° C.
- the surface temperature of the flat roll is 220 ° C.
- the calendar wire pressure is 30 N / Thermocompression bonding was performed at mm.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 20 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 20 mm, a grain size of 1400 g / m 2 , a bulk density of 0.070 g / cm 3 , and a surface area of 368 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain a composite sound absorbing material.
- the characteristics are shown in Table 2 below.
- a large diameter fiber web (S2) of polyethylene terephthalate was formed in the same manner as the fiber web (S1).
- the laminated web obtained was subjected to thermocompression bonding using an IEL embossed roll and a flat roll having a crimping area ratio of 11%, and the surface temperature of the embossed roll was set to 220 ° C. and the surface temperature of the flat roll was set to 220 ° C.
- thermocompression bonding at a calendar wire pressure of 30 N / mm, a non-woven skin material having a grain size of 30 g / m 2 , a bulk density of 0.19 g / cm 3 , and a surface area of 9.1 m 2 / m 2 per unit area was obtained.
- felt resin felt manufactured by Terada Takaron Co., Ltd.
- a thickness of 20 mm As the base material, felt (resin felt manufactured by Terada Takaron Co., Ltd.) having a thickness of 20 mm, a grain size of 1400 g / m 2 , a bulk density of 0.070 g / cm 3 , and a surface area of 368 (m 2 / m 2) per unit area was used. It was bonded to the non-woven fabric skin material.
- a copolymerized polyester hot melt powder (melting point 130 ° C.) was applied between the face material and the base material at 10 g / m 2 and bonded by heat treatment to obtain the composite sound absorbing material of the present invention.
- the characteristics are shown in Table 2 below.
- the composite sound absorbing material according to the present invention has excellent sound absorbing properties in a wide range of low frequencies, medium frequencies, and high frequencies, but is thin and can exhibit a sufficient sound absorbing effect even in a low grain area. It can be suitably used as a composite sound absorbing material for home appliances, construction machinery, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Fluid Mechanics (AREA)
- Laminated Bodies (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
[1]基材と表皮材とを含む2層以上で構成され、該表皮材が最外層に配置された複合吸音材であって、該表皮材の単位面積当たりの表面積(m2/m2)と、該基材の単位面積当たりの表面積(m2/m2)との比率(表皮材:基材)が1:5以上1:40未満である、複合吸音材。
[2]前記表皮材の単位面積当たりの表面積(m2/m2)と、前記基材の単位面積当たりの表面積(m2/m2)との比率(表皮材:基材)が1:10以上1:35以下である、前記[1]に記載の複合吸音材。
[3]前記表皮材の単位面積当たりの表面積が10m2/m2以上20m2/m2以下である、前記[1]又は[2]に記載の複合吸音材。
[4]前記基材材の単位面積当たりの表面積が100m2/m2以上500m2/m2以下である、前記[1]~[3]のいずれかに記載の複合吸音材。
[5]厚みが40mm以下である、前記[1]~[4]のいずれかに記載の複合吸音材。
[6]前記表皮材の目付が25g/m2以上70g/m2以下である、前記[1]~[5]のいずれかに記載の複合吸音材。
[7]前記表皮材が熱圧着により一体化されている不織布である、前記[1]~[6]のいずれかに記載の複合吸音材。
[8]前記熱圧着が、部分熱圧着である、前記[7]に記載の複合吸音材。
[9]前記表皮材が、平均繊維径0.3μm以上7μm以下の少なくとも1層の極細繊維層(M)と、平均繊維径10μm以上30μm以下の少なくとも1層の太径繊維層(S)とが一体化された不織布である、前記[1]~[8]のいずれかに記載の複合吸音材。
[10]前記表皮材の極細繊維層(M)の目付が1g/m2以上40g/m2以下である、前記[9]に記載の複合吸音材。
[11]前記表皮材が3g/m2以上20g/m2以下の含有量で合成樹脂を含む充填材を含有する、前記[1]~[10]いずれかに記載の複合吸音材。
[12]前記基材が連続気泡樹脂発泡体である、前記[1]~[11]のいずれかに記載の複合吸音材。
[13]前記基材が繊維多孔質材である、前記[1]~[11]のいずれかに記載の複合吸音材。
[14]音源側に前記表皮材が少なくとも1層配置される、前記[1]~[13]いずれかに記載の複合吸音材。
[15]JIS A 1405に準拠する垂直入射の測定法において表皮材側から入射する音の周波数1000Hzでの吸音率が30%以上、2500Hzでの吸音率が90%以上、及び5000Hzでの吸音率が80%以上である、前記[1]~[14]に記載のいずれかに記載の複合吸音材。
本実施形態の複合吸音材は、基材と表皮材とを含む2層以上で構成され、該表皮材が最外層に配置された複合吸音材であって、該表皮材の単位面積当たりの表面積(m2/m2)と、該基材の単位面積当たりの表面積(m2/m2)との比率(表皮材:基材)が1:5以上1:40未満である、複合吸音材である。
単位面積当たりの表面積には、繊維径と繊維重量が大きく関与するため、繊維径と繊維重量を最適な範囲に設定することで、単位面積当たりの表面積を調整可能である。但し、スパンボンド不織布を表皮材として用いる場合、単位面積当たりの表面積を前記した好ましい範囲に収めると高目付となりやすいため、フィラーや顔料等を含む充填材による表面積アップや極細繊維を含有させることで、薄さと軽量を達成しやすくなる。また、スパンボンド不織布を使用せず、極細繊維単体を表皮材とすることも好ましい。しかしながら、例えば、メルトブロー法で作製された極細繊維は糸同士の融着が多く発生しやすく、平均繊維径を低下させても単位表面積が大きく向上しにくい。そのため、後述するように、極細繊維紡糸時の樹脂粘度、紡糸温度、吹き付け距離などの紡糸条件の設定が非常に重要となる。
熱圧着の温度は、供給されるウェブの目付、速度等の条件によって適宜選択されるべきものであり、一概には定められないが、繊維を構成する樹脂の融点よりも30℃以上90℃以下低い温度であることが好ましく、より好ましくは40℃以上70℃以下低い温度である。また、エンボスロールと平滑ロール間で加熱、圧着して接合する場合であって、エンボスロール面に接する樹脂種とフラットロール面に接する樹脂種が同じ場合、エンボスロールとフラットロールの温度差は、10℃未満であることが好ましく、より好ましくは5℃未満、さらに好ましくは3℃未満である。但し、エンボスロール面に接する樹脂種とフラットロール面に接する樹脂種の融点が異なる場合、紡糸速度、糸の配向結晶性が異なる場合は、この限りではない。エンボスロールとフラットロールの温度差が上記範囲内であれば、ロール温度が低い側の毛羽も立ちにくくなり、成型により毛羽立ちも抑制でき、成型時の延伸の際、毛羽立ちによって熱圧着部から糸が外れにくくなり、糸が外れた部分へ応力集中しにくくなり延伸斑を抑制でき、吸音基材の露出を抑えることができる。また、温度の差が過度に大きくなければ、片面側の熱量不足による耐熱性不足となりにくい。尚、ロール温度の差をつけた場合には、延伸時の応力を下げることができ、成型性が向上する。
熱圧着部の形状については、特には限定されないが、好ましくは織目柄、アイエル柄(長方形柄)、ピンポイント柄、ダイヤ柄、四角柄、亀甲柄、楕円柄、格子柄、水玉柄、丸柄などが例示できる。
太径繊維層(S)のみから構成される場合、強度が高く取り扱い性に優れるが、吸音効果発現に必要な表皮材の通気性と、単位面積当たりの表面積を向上させる為には、充填材等を含有させ、緻密にさせることが好ましい。
極細繊維層(M)のみから構成される場合、吸音効果発現に必要な表皮材の通気性とさせ、十分な単位面積当たりの表面積を得やすいが、取り扱い性が良く、熱圧着工程での布の破断が発生しないようにするためには、低速での熱圧着を行うことや、3~7μm程度の繊維径とすることが好ましい。
特に好ましい構成は、太径繊維層(S)と極細繊維層(M)の複合体から構成される場合であり、前記の太径繊維層(S)のみ、極細繊維層(M)のみの両方の特性を得ることができる。すなわち吸音性と取り扱い性の両立を、充填材を含有させずして、極細繊維を非常に細くする事で、低目付化で達成可能となる。
メルトブローノズルと捕集面との距離は、100mm以上180mm以下の距離が好ましく、より好ましくは110mm以上150mm以下、さらに好ましくは120mm以上140mm以下である。メルトブローノズルと捕集面との距離が100mm以上であると、加熱空気の温度、流量を高くしても極細繊維同士の融着が抑えやすい。180mm以下であると、空気中での繊維間の絡み合いが発生しにくく、斑が発生しにくくなると共に、融着による自己接着が弱すぎず積層工程等での取り扱いが良好となる。
表皮材の充填材の含有量は、3g/m2以上25g/m2以下が好ましく、より好ましくは、3g/m2以上20g/m2以下である。本範囲であれば十分に通気性の制御と単位面積当たりの表面積を向上させることができると共に、熱成型時の金型への樹脂の付着を抑制しやすく、成型体の金型への貼り付きを抑制でき良好な成型性を得ることができ、成型体の打ち抜き加工性も良好となる。尚、前記充填材の含有量は、合成樹脂と、フィラー、顔料、難燃剤等との合計の含有量である。
連続気泡樹脂発泡体としては、軽量性、吸音性の観点から、メラミン樹脂、ウレタン樹脂が好ましく、吸音性合成繊維不織布としては、難燃性、耐熱性などからポリエステル系繊維からなる不織布が好ましい。
以下の実施例等における各物性は、下記方法により測定して得られたものである。尚、以下の実施例等では、各物性は、原則、下記方法により測定されるが、下記方法により測定できない事情がある場合は、適宜合理的な代替方法によって測定することが可能である。
セルに表皮材または基材のサンプルを適量詰め(0.02~2.5g程度)、島津製作所製の試料前処理装置バキュプレップ061LBを用いて前処理を行う(70℃×40分乾燥後、40分冷却)。これを島津製作所製の自動比表面積測定装置トライスターII3020にセットし、サンプル表面へのクリプトンガス吸着により、下記BETの式:
P/(V(P0-P))=1/(Vm×C)+((C-1)/(Vm×C))(P/P0)
{式中、P:吸着平衡圧、P0:飽和水蒸気圧(Pa)、Vm:単分子層吸着量(mg/g)、C:吸着熱などに関するパラメーター(-)<0であり本関係式は、特にP/P0=0.05~0.35の範囲で良く成り立つ。}
を適用し、比表面積値(m2/g)を求め、比表面積値(m2/g)×目付(g/m2)により単位面積当たり表面積(m2/m2)を算出する。BETの式とは、一定温度で吸着平衡状態である時、吸着平衡圧Pと、その圧力での吸着量Vmの関係式を表した式である。
表皮材及び基材の目付は、JIS L 1913に準拠して測定する。また、積層体(複合吸音材、及び、積層不織布である表皮材)において、各層の目付は本実施例では製造条件から計算される値を各層の目付とする。尚、製造条件が不明である場合、各層目付は、層間剥離できるものは剥がして単層としてからJIS L 1913に準拠して測定することができる。また、層間剥離ができない場合は、不織布のX線CT画像を撮り、X線CT画像から、観察範囲の面積、極細繊維層が占める体積と樹脂密度、厚みから計算することができる。
キーエンス社製のマイクロスコープVHX-700Fを用いて500倍の拡大写真を撮り、観察視野においてピントの合った繊維10本の平均値で求める。
(目付)/(厚み)から算出し、単位容積あたりの重量を求める。
JIS L 1913 B法に準拠する。荷重0.02kPaの圧力の厚みを3カ所以上測定し、その平均値を求める。但し、不織布表皮材の厚みは荷重20kPaで測定する。
JIS L 1906フラジール形法で測定する。
JIS A 1405に準拠し、垂直の入射法の測定機(ブリュエル・ケアー社製Type4206T)を用いて、代表値として周波数1000Hz、2500Hz、及び5000Hzでの吸音率(%)を測定する。基材は各実施例・比較例の記載に従って作製し使用する。
複合吸音材の上に打ち抜き刃を乗せ、油圧裁断機で打ち抜きを行う。断面を目視し、以下の評価基準で判断する。
(評価基準)
〇:断面の荒れ及び未切断糸が生じない
△:断面の荒れ及び/又は未切断糸がやや生じる
×:断面の荒れが及び/又は未切断糸が多く生じる。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付15.0g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。得られた太径繊維ウェブ(S1)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルから、紡糸温度300℃、加熱空気320℃で1000Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M)(目付10.0g/m2、平均繊維径1.7μm)を形成した。この際、メルトブローノズルから太径繊維層までの距離を110mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。更に得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの太径繊維ウェブ(S2)を形成した。次に得られた積層ウェブを、熱圧着時に圧着面積率11%である、アイエル柄エンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着することにより、目付40g/m2、嵩密度0.19g/cm3、単位面積あたり表面積16.4m2/m2の不織布表皮材を得た。
基材としては、厚さ20mm、目付け1400g/m2、嵩密度0.070g/cm3、単位面積当たり表面積368(m2/m2)のフェルト(寺田タカロン社製 レジンフェルト)を用い、前記不織布表皮材との接合を行った。接合は、面材と基材の間に共重合ポリエステル系ホットメルトパウダー(融点130℃)を10g/m2 塗布して加熱処理で接合して本発明の複合吸音材を得た。その特性を以下の表1に示す。
基材に、厚さ20mm、平均繊維径7μm、目付け1000g/m2の嵩密度0.050g/cm3、単位面積当たり表面積331(m2/m2)のグラスウールを用いた以外は、実施例1と同様に複合吸音材を得た。その特性を以下の表1に示す。
基材に、厚さ20mm、目付け200g/m2、嵩密度0.010g/cm3、単位面積当たり表面積234(m2/m2)のメラミン樹脂発泡体(BASF社製メラミン樹脂連続発泡体、バソテクト TG)を用いた以外は、実施例1と同様に複合吸音材を得た。その特性を以下の表1に示す。
基材に、厚さ20mm、目付け320g/m2、嵩密度0.016g/cm3、単位面積当たり表面積102(m2/m2)のウレタン樹脂発泡体(イノアック社製ウレタン樹脂連続発泡体、F-KL)を用いた以外は、実施例1と同様に複合吸音材を得た。その特性を以下の表1に示す。
不織布表皮材の太径繊維ウェブ(S1,S2)の目付をそれぞれ11.2g/m2、極細繊維ウェブ(M)の目付を7.6g/m2としたこと、熱圧着時に圧着面積率15%である、織目柄エンボスロールとフラットロールを用いたこと、基材に厚さ15mm、目付け1100g/m2、嵩密度0.073g/cm3、単位面積当たり表面積289(m2/m2)のフェルト(寺田タカロン社製 レジンフェルト)を用いた以外は、実施例1と同様に複合吸音材を得た。その特性を以下の表1に示す。
不織布表皮材の太径繊維ウェブ(S1,S2)の目付をそれぞれ26.9g/m2、極細繊維ウェブ(M)の目付を16.3g/m2、平均繊維径を2.2μmとしたこと、基材に厚さ15mm、目付け1100g/m2、嵩密度0.073g/cm3、単位面積当たり表面積289(m2/m2)のフェルト(寺田タカロン社製 レジンフェルト)を用いた以外は、実施例1と同様に複合吸音材を得た。その特性を以下の表1に示す。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付11.2g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。得られた太径繊維ウェブ(S1)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルから、紡糸温度330℃、加熱空気370℃で1300Nm3/hrで糸条直接噴出させ、極細繊維ウェブ(M) (目付け7.6g/m2、平均繊維径0.8μmを形成した。この際、メルトブローノズルから太径繊維層までの距離を120mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。更に得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの太径繊維ウェブ(S2)を形成した。次に得られた積層ウェブを、熱圧着時に圧着面積率11%である、アイエル柄エンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着することにより、目付30g/m2、嵩密度0.19g/cm3の単位面積あたり表面積17.5m2/m2の不織布表皮材を得た。
基材としては、厚さ15mm、目付け1100g/m2、嵩密度0.073g/cm3、単位面積当たり表面積289(m2/m2)のフェルト(寺田タカロン社製 レジンフェルト)を用い、前記不織布表皮材との接合を行った。接合は、面材と基材の間に共重合ポリエステル系ホットメルトパウダー(融点130℃)を10g/m2 塗布して加熱処理で接合して複合吸音材を得た。その特性を以下の表1に示す。
鞘成分が共重合ポリエステル樹脂(融点208℃)であり、かつ、芯成分がポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する2成分紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付15.0g/m2、平均繊維径13.0μm)をネット上に形成した。得られた太径繊維ウェブ(S1)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルから、紡糸温度300℃、加熱空気320℃で1000Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M)(目付10.0g/m2、平均繊維径1.7μm)を形成した。この際、メルトブローノズルから太径繊維層までの距離を110mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。更に得られた極細繊維ウェブ上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.77、融点263℃)樹脂を円形断面の紡糸孔を有する紡糸口金から吐出し、繊維ウェブ(S1)と同様にして得られた太径繊維ウェブ(S2)(目付15.0g/m2、平均繊維径13.0μm)を形成した。次に得られた積層ウェブを、熱圧着時に圧着面積率11%のアイエル柄エンボスロールとフラットロールを用いて、エンボスロールの表面温度を220℃、フラットロールの表面温度を120℃とし、カレンダ線圧30N/mmで熱圧着することにより、目付40g/m2、嵩密度0.19g/cm3、単位面積あたり表面積16.2m2/m2の不織布表皮材を得た。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付10.7g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。得られた太径繊維ウェブ(S1)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルから、紡糸温度300℃、加熱空気320℃で1000Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M) (目付け6.6g/m2、平均繊維径1.7μm)を形成した。この際、メルトブローノズルから太径繊維層までの距離を110mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。更に得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの太径繊維ウェブ(S2)を形成した。次に得られた積層ウェブを、熱圧着時に圧着面積率15%である、織目柄エンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着を実施した。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付40.0g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。ウェブを、熱圧着時に圧着面積率11%である、アイエルエンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着を実施した。
ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.50、融点260℃)をメルトブローノズルから、紡糸温度300℃、加熱空気320℃で1000Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M) (目付け40.0g/m2、平均繊維径3.5μm)を形成した。この際、メルトブローノズルから太径繊維層までの距離を100mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。ウェブを、熱圧着時に圧着面積率11%である、アイエルエンボスロールとフラットロールを用いて、該エンボスロールの表面温度を120℃、該フラットロールの表面温度を120℃とし、カレンダ線圧30N/mmで熱圧着を実施した。
充填材を含有させる処理を行わなかったこと以外は、実施例9と同様に複合吸音材を得た。その特性を以下の表1に示す。
15μm及び4μmの繊維径を有する短繊維(繊維長10mm)を用い、水溶性エステル系バインダー(水中固形分1.0質量%)、増粘剤、分散剤、水と共に混合し、2種類の混合液を作製し、抄造法により、太径繊維層A/極細繊維層/太径繊維層Bという積層体を得た。この積層体を130℃で3分間 加熱して不織布表皮材を得た。基材としては、厚さ20mm、目付け1400g/m2、嵩密度0.070g/cm3、単位面積当たり表面積368(m2/m2)のフェルト(寺田タカロン社製 レジンフェルト)を用い、前記不織布表皮材との接合を行った。接合は、面材と基材の間に共重合ポリエステル系ホットメルトパウダー(融点130℃)を10g/m2 塗布して加熱処理で接合して本発明の複合吸音材を得た。その特性を以下の表1に示す。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付40.0g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。ウェブを、熱圧着時に圧着面積率11%である、アイエルエンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着を実施した。
不織布表皮材の太径繊維ウェブ(S1,S2)の目付をそれぞれ30.0g/m2、極細繊維ウェブ(M)の目付を20.0g/m2とした以外は、実施例4と同様に複合吸音材を得た。その特性を以下の表2に示す。
基材に、厚さ20mm、平均繊維径4μm、目付け1000g/m2の嵩密度0.050g/cm3、単位面積当たり表面積774(m2/m2)のグラスウールを用いた以外は、実施例2と同様に複合吸音材を得た。その特性を以下の表2に示す。
基材に、厚さ15mm、目付け240g/m2、嵩密度0.016g/cm3、単位面積当たり表面積75(m2/m2)のウレタン樹脂発泡体(イノアック社製ウレタン樹脂連続発泡体、F-KL)を用いた以外は、実施例4と同様に複合吸音材を得た。その特性を以下の表2に示す。
ポリエチレンテレフタレート(オルソクロロフェノールを用いた1%、25℃法の溶液粘度ηsp/c 0.77、融点263℃)樹脂を、常用の溶融紡糸装置に供給して300℃で溶融し、円形断面の紡糸孔を有する紡糸口金から吐出し、エアジェットによる高速気流牽引装置を使用して延伸しながら、糸を冷却し繊維ウェブ(S1)(目付11.2g/m2、平均繊維径13μm)を捕集し、ネット上に形成した。得られた太径繊維ウェブ(S1)上に、ポリエチレンテレフタレート(同じく溶液粘度ηsp/c 0.30、融点260℃)をメルトブローノズルから、紡糸温度300℃、加熱空気320℃で900Nm3/hrの条件下で直接噴出させ、極細繊維ウェブ(M)(目付7.6g/m2、平均繊維径2.0μm)を形成した。この際、メルトブローノズルから太径繊維層までの距離を80mmとし、メルトブロウンノズル直下の捕集面における吸引風速を7m/secに設定した。更に得られた極細繊維ウェブ上に、繊維ウェブ(S1)と同様にポリエチレンテレフタレートの太径繊維ウェブ(S2)を形成した。次に得られた積層ウェブを、熱圧着時に圧着面積率11%である、アイエルエンボスロールとフラットロールを用いて、該エンボスロールの表面温度を220℃、該フラットロールの表面温度を220℃とし、カレンダ線圧30N/mmで熱圧着することにより、目付30g/m2、嵩密度0.19g/cm3、単位面積あたり表面積9.1m2/m2の不織布表皮材を得た。
Claims (15)
- 基材と表皮材とを含む2層以上で構成され、該表皮材が最外層に配置された複合吸音材であって、該表皮材の単位面積当たりの表面積(m2/m2)と、該基材の単位面積当たりの表面積(m2/m2)との比率(表皮材:基材)が1:5以上1:40未満である、複合吸音材。
- 前記表皮材の単位面積当たりの表面積(m2/m2)と、前記基材の単位面積当たりの表面積(m2/m2)との比率(表皮材:基材)が1:10以上1:35以下である、請求項1に記載の複合吸音材。
- 前記表皮材の単位面積当たりの表面積が10m2/m2以上20m2/m2以下である、請求項1又は2に記載の複合吸音材。
- 前記基材の単位面積当たりの表面積が100m2/m2以上500m2/m2以下である、請求項1~3のいずれか1項に記載の複合吸音材。
- 前記複合吸音材の厚みが40mm以下である、請求項1~4のいずれか1項に記載の複合吸音材。
- 前記表皮材の目付が25g/m2以上70g/m2以下である、請求項1~5のいずれか1項に記載の複合吸音材。
- 前記表皮材が熱圧着により一体化されている不織布である、請求項1~6のいずれか1項に記載の複合吸音材。
- 前記熱圧着が部分熱圧着である、請求項7に記載の複合吸音材。
- 前記表皮材が、平均繊維径0.3μm以上7μm以下の少なくとも1層の極細繊維層(M)と、平均繊維径10μm以上30μm以下の少なくとも1層の太径繊維層(S)とが一体化された不織布である、請求項1~8のいずれか1項に記載の複合吸音材。
- 前記表皮材の極細繊維層(M)の目付が1g/m2以上40g/m2以下である、請求項9に記載の複合吸音材。
- 前記表皮材が3g/m2以上20g/m2以下の含有量で合成樹脂を含む充填材を含有する、請求項1~10のいずれか1項に記載の複合吸音材。
- 前記基材が連続気泡樹脂発泡体である、請求項1~11のいずれか1項に記載の複合吸音材。
- 前記基材が繊維多孔質材である、請求項1~11のいずれか1項に記載の複合吸音材。
- 音源側に前記表皮材が少なくとも1層配置される、請求項1~13のいずれか1項に記載の複合吸音材。
- JIS A 1405に準拠する垂直入射の測定法において表皮材側から入射する音の周波数1000Hzでの吸音率が30%以上、2500Hzでの吸音率が90%以上、及び5000Hzでの吸音率が80%以上である、請求項1~14のいずれか1項に記載の複合吸音材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180036512.1A CN115668357A (zh) | 2020-05-19 | 2021-05-18 | 复合吸音材料 |
US17/918,218 US20230147834A1 (en) | 2020-05-19 | 2021-05-18 | Composite Sound-Absorbing Material |
EP21808579.3A EP4155071A4 (en) | 2020-05-19 | 2021-05-18 | SOUND ABSORBING COMPOSITE MATERIAL |
JP2022524495A JP7462748B2 (ja) | 2020-05-19 | 2021-05-18 | 複合吸音材 |
KR1020227038304A KR20220160115A (ko) | 2020-05-19 | 2021-05-18 | 복합 흡음재 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020087357 | 2020-05-19 | ||
JP2020-087357 | 2020-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235446A1 true WO2021235446A1 (ja) | 2021-11-25 |
Family
ID=78708536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018842 WO2021235446A1 (ja) | 2020-05-19 | 2021-05-18 | 複合吸音材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230147834A1 (ja) |
EP (1) | EP4155071A4 (ja) |
JP (1) | JP7462748B2 (ja) |
KR (1) | KR20220160115A (ja) |
CN (1) | CN115668357A (ja) |
WO (1) | WO2021235446A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024143232A1 (ja) * | 2022-12-27 | 2024-07-04 | エム・エーライフマテリアルズ株式会社 | 吸音材及び吸音パネル |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT7084B (lt) | 2023-06-02 | 2024-08-12 | VšĮ Vilniaus Gedimino technikos universitetas | Kompozitinė garsą sugerianti plokštė |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161464A (ja) | 2000-11-27 | 2002-06-04 | Toyobo Co Ltd | 軽量吸音材 |
JP2006028708A (ja) | 2004-07-21 | 2006-02-02 | Asahi Kasei Fibers Corp | 吸音性積層体およびその製造法 |
JP2006098890A (ja) * | 2004-09-30 | 2006-04-13 | Toray Ind Inc | 吸音材およびその製造方法 |
JP2015121631A (ja) | 2013-12-23 | 2015-07-02 | 日本バイリーン株式会社 | 吸音材 |
WO2019124231A1 (ja) * | 2017-12-22 | 2019-06-27 | 旭化成株式会社 | 不織布、及びこれを表皮材として用いた複合吸音材 |
WO2019172016A1 (ja) | 2018-03-08 | 2019-09-12 | Jnc株式会社 | 積層吸音材 |
-
2021
- 2021-05-18 WO PCT/JP2021/018842 patent/WO2021235446A1/ja active Application Filing
- 2021-05-18 CN CN202180036512.1A patent/CN115668357A/zh active Pending
- 2021-05-18 EP EP21808579.3A patent/EP4155071A4/en active Pending
- 2021-05-18 KR KR1020227038304A patent/KR20220160115A/ko unknown
- 2021-05-18 JP JP2022524495A patent/JP7462748B2/ja active Active
- 2021-05-18 US US17/918,218 patent/US20230147834A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002161464A (ja) | 2000-11-27 | 2002-06-04 | Toyobo Co Ltd | 軽量吸音材 |
JP2006028708A (ja) | 2004-07-21 | 2006-02-02 | Asahi Kasei Fibers Corp | 吸音性積層体およびその製造法 |
JP2006098890A (ja) * | 2004-09-30 | 2006-04-13 | Toray Ind Inc | 吸音材およびその製造方法 |
JP2015121631A (ja) | 2013-12-23 | 2015-07-02 | 日本バイリーン株式会社 | 吸音材 |
WO2019124231A1 (ja) * | 2017-12-22 | 2019-06-27 | 旭化成株式会社 | 不織布、及びこれを表皮材として用いた複合吸音材 |
WO2019172016A1 (ja) | 2018-03-08 | 2019-09-12 | Jnc株式会社 | 積層吸音材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4155071A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024143232A1 (ja) * | 2022-12-27 | 2024-07-04 | エム・エーライフマテリアルズ株式会社 | 吸音材及び吸音パネル |
Also Published As
Publication number | Publication date |
---|---|
US20230147834A1 (en) | 2023-05-11 |
KR20220160115A (ko) | 2022-12-05 |
EP4155071A1 (en) | 2023-03-29 |
CN115668357A (zh) | 2023-01-31 |
JP7462748B2 (ja) | 2024-04-05 |
EP4155071A4 (en) | 2023-11-08 |
JPWO2021235446A1 (ja) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6826213B2 (ja) | 不織布、及びこれを表皮材として用いた複合吸音材 | |
US6720068B1 (en) | Sound absorbent thin-layer laminate | |
JP4574262B2 (ja) | 吸音性積層体およびその製造法 | |
JP6362400B2 (ja) | 不織布ウェブ | |
WO2021235446A1 (ja) | 複合吸音材 | |
JP2009000843A (ja) | 複合吸音材 | |
JP2010128005A (ja) | 複合吸音材 | |
JP2019111714A (ja) | 積層吸音材 | |
JP2019045636A (ja) | 複合吸音材 | |
JP5143110B2 (ja) | 吸音材 | |
JP6929167B2 (ja) | 複合吸音材 | |
JP6878058B2 (ja) | 成形用不織布及び自動車用外装材 | |
JP4540417B2 (ja) | 吸音材およびその製造法 | |
JP2021182079A (ja) | 吸音表皮材及び該吸音表皮材を含む複合吸音材 | |
JP2001018314A (ja) | 不織布積層体及び自動車用内装材 | |
JP2023032679A (ja) | 吸音表皮材、及びそれを含む吸音材 | |
KR102604135B1 (ko) | 부직포, 이 부직포의 적층 부직포, 및 이들을 표피재로서 이용한 복합 흡음재 | |
JP2022117661A (ja) | 吸音表皮材 | |
JP2022117628A (ja) | 吸音材 | |
JP2022135554A (ja) | 遮音シート及び防音シート | |
CN107635831B (zh) | 防火墙 | |
JP2023114375A (ja) | 複合吸音材 | |
JP2022030954A (ja) | 繊維ボードの熱成形法 | |
JPH04163352A (ja) | かさ高不織布 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21808579 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022524495 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202237053646 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20227038304 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021808579 Country of ref document: EP Effective date: 20221219 |