WO2019168169A1 - 蛍光体 - Google Patents

蛍光体 Download PDF

Info

Publication number
WO2019168169A1
WO2019168169A1 PCT/JP2019/008166 JP2019008166W WO2019168169A1 WO 2019168169 A1 WO2019168169 A1 WO 2019168169A1 JP 2019008166 W JP2019008166 W JP 2019008166W WO 2019168169 A1 WO2019168169 A1 WO 2019168169A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppm
single crystal
light emission
added
composition
Prior art date
Application number
PCT/JP2019/008166
Other languages
English (en)
French (fr)
Inventor
圭 鎌田
吉川 彰
有為 横田
俊介 黒澤
敬鎮 金
育宏 庄子
Original Assignee
国立大学法人東北大学
株式会社C&A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社C&A filed Critical 国立大学法人東北大学
Publication of WO2019168169A1 publication Critical patent/WO2019168169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements

Definitions

  • the present invention relates to a phosphor that can be used as a scintillator.
  • a wide band gap oxide crystal activated with rare earth is used as a scintillator in a photon detector or a radiation detector for detecting ⁇ rays, X rays, ⁇ rays, ⁇ rays, neutron rays, and the like.
  • detectors are used in medical imaging devices such as positron emission tomography (PET) devices and X-ray computed tomography devices (CT devices), various radiation measuring devices in the high energy physics field, resource exploration devices, etc. Widely applied.
  • PET positron emission tomography
  • CT devices X-ray computed tomography devices
  • garnet, silicate, perovskite, and phosphate type materials containing cerium one of the most promising activators, have been studied as potential fast and efficient scintillators. ing.
  • a radiation detector absorbs ⁇ -rays, X-rays, ⁇ -rays, ⁇ -rays, neutron rays, etc., and converts them into a plurality of low-energy photons (scintillation light) such as a scintillator and light from the phosphor. It is comprised from the light receiving element which light-receives and converts into an electrical signal etc.
  • a radiation detector absorbs ⁇ -rays, X-rays, ⁇ -rays, ⁇ -rays, neutron rays, etc., and converts them into a plurality of low-energy photons (scintillation light) such as a scintillator and light from the phosphor. It is comprised from the light receiving element which light-receives and converts into an electrical signal etc.
  • ⁇ -rays with relatively high energy annihilation ⁇ -rays: 511 eV
  • scintillation detectors with high sensitivity and high
  • TOF-PET Time-of-flight type PET
  • TOF-PET Time-of-flight type PET
  • the radiation detector used for TOF-PET in particular, a high-speed response is obtained, and it is important that the scintillator used for the radiation detector has a short fluorescence lifetime.
  • scintillator having such a fast timing characteristic is demanded with high priority.
  • scintillators suitable for these radiation detectors have high density and high atomic number (high photoelectric absorption ratio) from the viewpoint of detection efficiency, light emission amount from the point of necessity of high-speed response and high energy resolution. Therefore, it is desired to have a short fluorescence lifetime (fluorescence decay time) and a highly transparent crystal.
  • the most common scintillator crystal as a scintillator for PET apparatus is Ce addition (Lu, Y, Gd) 2 SiO 5 (Ce: LYSO).
  • This scintillator has excellent scintillator characteristics of high density ( ⁇ 7.39 g / cm 3 ), short life (about 40 nsec), and light emission (27000 photon / MeV).
  • Ce-added (Lu, Y, Gd) 2 SiO 5 (Ce: LYSO) has an improved light emission amount as compared with the recently developed Ce-added Gd 3 Al 2 Ga 3 O 12. is necessary.
  • Ce: LYSO Ce-added
  • Ce 3+ which is the luminescent center, emits light by taking the Ce 4+ state by charge compensation with divalent Ca ions having a low valence.
  • a technique for increasing the amount and shortening the fluorescence lifetime has been reported (see, for example, Patent Documents 1 and 3 and Non-Patent Document 1).
  • Ce: LYSO a melt growth method by the Czochralski method is used, and a crystal having a diameter of about 6 cm and a length of about 20 cm is produced.
  • Ce: LYSO co-added with Ca the amount of luminescence in the latter part of the crystal is reduced by 30 to 40% compared to the initial stage due to fluctuations in the composition of Ca in the crystal production direction. It becomes a problem.
  • a long crystal with a length of 20 radiation (about 18-25 cm) is generally used. The deterioration of accuracy becomes a problem.
  • the Gd 3 Al 2 Ga 3 O 12 (Ce: GAGG) scintillator has characteristics of a density of 6.7 g / cm 3 and a light emission amount of 56000 photon / MeV.
  • Ce-added Gd 3 Al 2 Ga 3 O 12 (Ce: GAGG) scintillator has sufficiently low self-radiation, so it is not only applied to PET equipment, but also various radiation fields such as high energy physics and environmental radiation measurement. Application to is progressing.
  • Ce 3+ as the emission center can be valenced by co-adding one or more kinds of monovalent or divalent cations to the Ce-added (Gd, Y, Lu) 3 (Al, Ga) 5 O 12 crystal.
  • Lu 3 Al 5 O 12 and Y 3 Al 5 O can be made into phosphors having a short fluorescence decay time and a high emission intensity by taking a Ce 4+ state by charge compensation with a small number of co-added elements. 12 (see, for example, Patent Document 4 and Non-Patent Document 3).
  • Ce-added (Gd 0.25 La 0.75 ) 2 Si 2 O 7 scintillator has characteristics of density 5.5 g / cm 3 , light emission amount of 40000 photon / MeV, and a harmonic melt composition. Bulk crystal growth is possible. Further, since the self-radioactivity is sufficiently small, it is expected to be applied not only to the PET apparatus but also to various radiation measuring apparatuses for high energy physics and environmental radiation measuring instruments. In addition, since the decrease in the amount of light emission is small even at a high temperature exceeding 150 ° C., application to a resource exploration detector is also expected.
  • Ce 3+ as the emission center has a valence by co-adding one or more monovalent or divalent cations to the Ce-added (Gd, La, Y, Lu) 2 Si 2 O 7 crystal. Due to charge compensation with a small amount of co-added elements, it becomes possible to obtain a phosphor with a short fluorescence decay time and a high emission intensity by taking the Ce 4+ state, and Ce addition (Gd, La) 2 Si 2 O 7 (La -GPS) (see, for example, Patent Document 6 and Non-Patent Document 3).
  • Ce: YAlO 3 crystal which has a density of 5.5 g / cm 3 and a light emission amount of 20000 photon / MeV.
  • Ce: YAlO 3 it has been reported that co-addition of a divalent cation shortens the fluorescence decay time, but the light emission amount is significantly reduced (see Non-Patent Document 4).
  • metal halide crystals represented by the composition of (La, Ce) (Cl, Br, I) 3 described in Patent Document 7 and Patent Document 8 are disclosed. is there.
  • (La, Ce) Br 3 it has been confirmed that the scintillator characteristics such as density, light emission amount, and fluorescence lifetime change depending on the crystal composition.
  • Ce-added LaBr 3 has characteristics of a density of 5.06 g / cm 3 and a light emission amount of 71500 photon / MeV.
  • CeBr 3 has a density of 5.06 g / cm 3 and a light emission amount of 71500 photon / MeV.
  • Ce-added LaBr 3 and CeBr 3 have a high light emission amount, but have a lower density than LYSO and GAGG. Therefore, when considering application to a PET apparatus, the light emission amount and time are increased in order to increase the radiation detection efficiency. The resolution needs to be improved.
  • the present invention has been made to solve the above-described problems, and shortens the fluorescence lifetime of phosphors suitably used for radiation detectors such as ⁇ rays, X rays, ⁇ rays, and neutron rays.
  • the purpose is to increase the emission intensity.
  • Phosphor according to the present invention are represented by the general formula Ce x RE 3-x M 5 + y O z has a garnet structure, M is Al, Lu, and at least one of Ga, and Sc, RE Is at least one of La, Pr, Tb, Yb, Gd, Y, and Lu, and 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or ⁇ 0.5 ⁇ y ⁇ 0, 11 .25 ⁇ z ⁇ 12.75, and includes garnet co-added with at least one of Mo and W at a molar ratio of 10,000 ppm or less with respect to the total cations.
  • Phosphor according to the present invention are represented by the general formula Ce x Gd 3-x M 5 + y O z has a garnet structure, M is Al, Lu, and at least one of Ga, and Sc, 0 .0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or ⁇ 0.5 ⁇ y ⁇ 0, 11.25 ⁇ z ⁇ 12.75, and at least one of Mo and W is all cations Garnet co-added at a molar ratio of 10,000 ppm or less with respect to the total.
  • Phosphor according to the present invention are represented by the general formula Ce x RE 2-x Si y O z, RE is Lu, Y, is at least one of Sc, and Gd, 0.00001 ⁇ x ⁇ 0. 1, 0.95 ⁇ y ⁇ 1.05, 4.9 ⁇ z ⁇ 5.1, and at least one of Mo and W is co-expressed at a molar ratio of 10,000 ppm or less with respect to all cations. Contains added orthosilicate.
  • Phosphor according to the present invention are represented by the general formula Ce x RE 2-x M 2 + y O z, RE is La, Pr, Gd, Tb, Yb, and at least one of Y and Lu, M Is at least one of Si, Zr and Hf, and 0.00001 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 0.25 or ⁇ 0.25 ⁇ y ⁇ 0, 6.5 ⁇ z ⁇ 7.5, It includes pyrosilicate in which at least one of Mo and W is co-added at a molar ratio of 10,000 ppm or less with respect to all cations.
  • the phosphor according to the present invention is represented by the general formula La (1-y) RE y X z , where RE is at least one of Ce, Pr, Gd, Eu, Tb, Yb, Y and Lu, Is at least one of F, Cl, Br and I, and 0 ⁇ y ⁇ 1, 2.8 ⁇ z ⁇ 3.2, and at least one of Mo and W is 10,000 ppm with respect to the total cations Includes metal halides co-added in the following molar ratios.
  • the phosphor according to the present invention is represented by the general formula AE (1-y) RE y Xz , where AE is at least one of Be, Mg, Ca, Sr and Ba, and RE is Ce, Pr, At least one of Gd, Eu, Tb, Yb, and Lu, X is at least one of F, Cl, Br, and I, and 0 ⁇ y ⁇ 1, 1.8 ⁇ z ⁇ 2.2 , And a metal halide in which at least one of Mo and W is co-added at a molar ratio of 10,000 ppm or less with respect to the total cation.
  • Phosphor according to the present invention are represented by the general formula Ce x RE 1-x M y O z, RE is La, Gd, and at least one of Y and Lu, M is Al, at least Ga and Sc One of 0.00001 ⁇ x ⁇ 2, 0.9 ⁇ y ⁇ 1.1 or ⁇ 0.25 ⁇ y ⁇ 0, 2.85 ⁇ z ⁇ 3.15, and at least one of Mo and W Perovskite co-added at a molar ratio of 10000 ppm or less with respect to the total cation.
  • the present invention it is possible to shorten the fluorescence lifetime and increase the emission intensity of the phosphor suitably used for the radiation detector such as ⁇ -ray, X-ray, ⁇ -ray, and neutron beam. Effect.
  • FIG. 1 is a configuration diagram showing the configuration of a measuring apparatus that measures the amount of luminescence.
  • FIG. 2 is a characteristic diagram showing energy spectra obtained by irradiating the samples of Example 9 and Comparative Example 3 with 137 Cs ⁇ rays.
  • FIG. 3 is a characteristic diagram showing voltage pulse signals obtained by irradiating the samples of Example 9 and Comparative Example 3 with 137 Cs ⁇ rays.
  • FIG. 4 is a characteristic diagram showing energy spectra obtained by irradiating the samples of Example 20 and Comparative Example 9 with 137 Cs ⁇ rays.
  • This phosphor has a garnet structure represented by the general formula Ce x Gd 3-x M 5 + y O z, M is Al, Lu, and at least one of Ga, and Sc, 0.0001 ⁇ x ⁇ 0.3, ⁇ 0.5 ⁇ y ⁇ 0.5, 11.25 ⁇ z ⁇ 12.75, and at least one of Mo and W at a molar ratio of 10,000 ppm or less with respect to the total cations Includes co-added garnet.
  • the phosphor has a general formula Ce x RE 3-x M 5 + y O z garnet structure represented by, M is Al, Lu, and at least one of Ga, and Sc, RE is La , Pr, Tb, Yb, Gd, Y, and Lu, and 0.0001 ⁇ x ⁇ 0.3, ⁇ 0.5 ⁇ y ⁇ 0.5, 11.25 ⁇ z ⁇ 12.75 And garnet co-added with at least one of Mo and W at a molar ratio of 10000 ppm or less with respect to the total cation.
  • the phosphors according to the first and second embodiments have a garnet structure using light emission from the 4f5d level of Ce 3+ .
  • This phosphor has a short fluorescence decay time, a short emission rise time, a large emission intensity, a high radiation resistance, a high light emission amount, and a small phosphorescence component.
  • the phosphors according to Embodiments 1 and 2 can be manufactured, for example, by heat-treating the raw material at 1000 ° C. or higher.
  • the phosphor according to Embodiment 1 has a light emission amount of 42000 photon / MeV or more and a time resolution of 240 ps or less.
  • the phosphor according to Embodiment 1 is a transparent body having a phosphorescence component of 0.5% or less, a diffuse transmittance of 80% or more, and may be a single crystal.
  • the phosphors according to Embodiments 1 and 2 have a fluorescence wavelength of 420 to 600 nm emitted when excited by radiation such as ⁇ rays or high-energy photons.
  • the phosphor using light emission from the 4f5d level of Ce 3+ has no co-addition by co-adding at least one of Mo and W at a molar ratio of 10000 ppm or less with respect to all cations.
  • the fluorescence decay time is shortened by 5% or more for each phosphor, and the amount of emitted light is increased by 5% or more.
  • the sampling time for fluorescence measurement can be shortened, and high time resolution, that is, a reduction in sampling interval can be expected.
  • high time resolution is realized, the number of samplings per unit time can be increased. Further, the energy resolution is improved by increasing the emission intensity.
  • At least one of Mo and W is in a molar ratio of 1 ppm to 10000 ppm, preferably 5 ppm to 6000 ppm, more preferably 10 ppm to 5000 ppm, based on the total cation. It is desirable to contain it in the following molar ratio, more preferably 10 ppm to 4000 ppm.
  • the light emission amount of the phosphor correlates with the integrated value of the voltage pulse signal.
  • the light emission amount increases as the light emission intensity increases, and the light emission amount decreases as the light emission rise time and the fluorescence lifetime decrease.
  • the amount of light emitted is higher than LYSO of an existing PET scintillator, preferably 28000 photon / MeV or more, more preferably 36000 photon / MeV or more, Even more preferably, it is desirable to be 42000 photon / MeV or more.
  • the scintillator crystal made of the phosphor according to Embodiment 1 having such short-lived emission is expected to be used as a scintillator for radiation detection with high response for TOF-PET, PET, SPECT, and CT.
  • Application to various radiation measuring devices for high energy physics and environmental radiation measuring instruments is also expected.
  • a general oxide raw material can be used as a starting material, but when used as a scintillator crystal, it has a high purity of 99.99% or higher (4N or higher). It is particularly preferable to use raw materials. At the time of production, these starting materials are weighed and mixed so as to have a target composition at the time of melt formation. Further, these raw materials are particularly preferably those containing as little impurities as possible (for example, 1 ppm or less) other than the target composition.
  • the phosphor according to the first embodiment it is preferable to grow crystals in an inert gas (eg, Ar, N 2 , He, etc.) atmosphere.
  • the above-described crystal can be grown in an atmosphere using a mixed gas of an inert gas (for example, Ar, N 2 , He, etc.) and oxygen gas, carbon dioxide gas, or carbon monoxide gas.
  • the partial pressure of oxygen is preferably 2% or less for the purpose of preventing oxidation of the crucible.
  • oxygen gas In post-processes such as annealing after crystal growth, oxygen gas, carbon dioxide gas, carbon monoxide gas, inert gas (eg, Ar, N 2 , He, etc.), and inert gas (eg, Ar, N) 2 , He, etc.) and oxygen gas, carbon dioxide gas, and carbon monoxide gas can be used.
  • oxygen partial pressure is not limited to 2%, and any mixture ratio from 0% to 100% is used.
  • the phosphor according to the first embodiment is desirably manufactured by heat treatment at 1000 ° C. or higher for the raw material.
  • a liquid phase method such as a method (pulling method), a Bridgman method, a zone melting method (zone melt method), or an edge limited thin film supply crystal growth (EFG method), a flux method produced by heat treatment at 1000 ° C.
  • a solution growth method such as a top seeded solution growth (TSSG) method, an atmosphere sintering method, a reaction sintering method, a sintering method such as a hot isostatic pressing method, and the like can be used without particular limitation.
  • TSSG top seeded solution growth
  • atmosphere sintering method an atmosphere sintering method
  • reaction sintering method a reaction sintering method
  • sintering method such as a hot isostatic pressing method
  • the chocolate ski method or the Bridgman method is preferable in order to obtain a large crystal.
  • a sintering method such as an atmosphere sintering method, a reaction sintering method, a hot isostatic pressing method or the like, it is more preferable to perform heat treatment at a temperature of 1300 ° C. or higher and a melting point or lower.
  • the crucible / afterheater / die used in these heat treatments it is possible to use platinum, iridium, rhodium, rhenium, tungsten, molybdenum or alloys thereof.
  • a high-frequency oscillator not only a condenser heater or a resistance heater can be used.
  • the phosphor according to the first embodiment has a fluorescent lifetime reduced to a long lifetime, and for the purpose of reducing the long-lived fluorescence lifetime component, after the phosphor is manufactured, in an atmosphere containing oxygen, argon, nitrogen
  • an atmosphere containing oxygen with respect to an inert gas such as argon or nitrogen, or in air heat treatment is performed at 1000 ° C. or higher.
  • This heat treatment is desirably performed in a temperature range of 1000 ° C. or higher for 8 hours or more, and preferably, heating is performed in a temperature range of 1300 ° C. or higher for 12 hours or more.
  • mirror polishing by mechanical polishing is necessary to improve the emission intensity, emission amount, time resolution, and energy resolution of a phosphor.
  • the mechanical polishing method is complicated by a plurality of processes such as a rough polishing process and a mirror polishing process.
  • polishing a plurality of surfaces of a polyhedron it is generally necessary to polish one surface at a time, which is uneconomical. Further, it has been generally difficult to polish a complicated surface that is not a flat surface.
  • an etching process by immersing in an etching solution containing phosphoric acid such as orthophosphoric acid has an etch pit on the surface and a non-glossy surface having a vertical reflectance of 10% or less.
  • the etching solution may be used by mixing at least one of orthophosphoric acid, sulfuric acid, hydrochloric acid, or nitric acid.
  • the etchant is preferably heated to 100 ° C. or higher.
  • the phosphor is represented by the general formula Ce x Gd 3-x M 5 + y O z has a garnet structure, M is Al, Lu, and at least one of Ga, and Sc, 0.0001 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5 or ⁇ 0.5 ⁇ y ⁇ 0, 11.25 ⁇ z ⁇ 12.75, and at least one of Mo and W with respect to all cations Contains garnet co-added at a molar ratio of 10,000 ppm or less.
  • the phosphor according to the second embodiment has a garnet structure using light emission from the 4f5d level of Ce 3+ .
  • the phosphor according to Embodiment 2 can be manufactured, for example, by heat-treating the raw material at 1000 ° C. or higher.
  • the phosphor according to Embodiment 2 has a light emission amount of 42000 photon / MeV or more and a time resolution of 240 ps or less.
  • the phosphor according to Embodiment 2 is a transparent body having a phosphorescence component of 0.5% or less and a diffuse transmittance of 80% or more.
  • the phosphor is represented by the general formula Ce x RE 2-x Si y O z, RE is Lu, Y, Sc, and Gd is at least one of, be 0.00001 ⁇ x ⁇ 0.1 0.95 ⁇ y ⁇ 1.05, 4.9 ⁇ z ⁇ 5.1, and at least one of Mo and W was co-added at a molar ratio of 10,000 ppm or less with respect to the total cation.
  • silicate is represented by the general formula Ce x RE 2-x Si y O z
  • RE is Lu
  • Gd is at least one of, be 0.00001 ⁇ x ⁇ 0.1 0.95 ⁇ y ⁇ 1.05, 4.9 ⁇ z ⁇ 5.1
  • Mo and W was co-added at a molar ratio of 10,000 ppm or less with respect to the total cation.
  • the phosphor is represented by the general formula Ce x RE 2-x M 2 + y O z
  • RE is La, Pr, Gd, Tb, Yb, and at least one of Y and Lu
  • M is Si
  • At least one of Zr and Hf 0.00001 ⁇ x ⁇ 3, ⁇ 0.25 ⁇ y ⁇ 0.25, 6.5 ⁇ z ⁇ 7.5
  • at least one of Mo and W is Pyrosilicate co-added at a molar ratio of 10,000 ppm or less with respect to total cations
  • the phosphor is represented by the general formula Ce x RE 1-x M y O z, RE is La, Gd, and at least one of Y and Lu, at least one of M is Al, Ga and Sc Yes, 0.00001 ⁇ x ⁇ 2, 0.9 ⁇ y ⁇ 1.1, 2.85 ⁇ z ⁇ 3.15, and at least one of Mo and W is 10000 ppm or less with respect to all cations
  • a phosphor comprising perovskite co-added at a molar ratio.
  • the phosphor according to Embodiments 3, 4, and 5 can be manufactured by heat-treating the raw material at 1000 ° C. or higher.
  • the phosphor according to Embodiment 3 has a light emission amount of 28000 photon / MeV or more.
  • the phosphor material according to Embodiment 3 is a compound containing Ce, RE (for example, Lu, Gd, Y), Si, and Mo or W cations.
  • This phosphor is represented by the general formula La (1-y) RE y X z , where RE is at least one of Ce, Pr, Gd, Eu, Tb, Yb, Y and Lu, and X is F , Cl, Br and I, and 0 ⁇ y ⁇ 1, 2.8 ⁇ z ⁇ 3.2, and at least one of Mo and W is a mole of 10,000 ppm or less with respect to the total cation. Includes metal halides co-added in ratios.
  • the phosphor according to Embodiment 6 can be manufactured by heat-treating the raw material at 400 ° C. or higher.
  • the phosphor according to Embodiment 6 has a light emission amount of 60000 photon / MeV or more.
  • the raw material of the phosphor according to Embodiment 6 is a compound containing Ce, RE (for example, Lu, Gd, Y), and a Mo or W cation.
  • the phosphors according to Embodiments 3, 4, 5, and 6 have a fluorescence wavelength of 280 to 480 nm that is emitted when excited by radiation such as ⁇ rays or high energy photons, for example.
  • the phosphor using light emission from the 4f5d level of Ce 3+ has no co-addition by co-adding at least one of Mo and W at a molar ratio of 10000 ppm or less with respect to all cations.
  • the fluorescence decay time is shortened by 5% or more for each phosphor, and the amount of emitted light is increased by 5% or more.
  • the sampling time for fluorescence measurement can be shortened, and high time resolution, that is, a reduction in sampling interval can be expected.
  • high time resolution is realized, the number of samplings per unit time can be increased. Further, the energy resolution is improved by increasing the emission intensity.
  • At least one of Mo and W is in a molar ratio of 1 ppm to 10000 ppm, preferably 5 ppm to 6000 ppm, more preferably 10 ppm to 5000 ppm, based on the total cation. It is desirable to contain it in the following molar ratio, more preferably 10 ppm to 4000 ppm.
  • This phosphor is represented by the general formula AE (1-y) RE y Xz , where AE is at least one of Be, Mg, Ca, Sr and Ba, and RE is Ce, Pr, Gd, Eu. , Tb, Yb, Y and Lu, X is at least one of F, Cl, Br and I, and 0 ⁇ y ⁇ 1, 1.8 ⁇ z ⁇ 2.2, and Mo And a metal halide co-added with at least one of W and W at a molar ratio of 10,000 ppm or less based on the total cation.
  • the phosphor according to Embodiment 7 can be manufactured by heat-treating the raw material at 400 ° C. or higher.
  • the phosphor according to Embodiment 7 has a light emission amount of 60000 photon / MeV or more.
  • the material of the phosphor according to the seventh embodiment includes Eu, RE (for example, Lu, Gd, Y), AE (for example, Be, Mg, Ca, Sr, Ba), and Mo or W cation. A compound.
  • the europium-activated phosphor has at least one of Mo and W with respect to the total cation in a molar ratio of 1 ppm to 10,000 ppm, preferably 5 ppm to 6000 ppm, more preferably 10 ppm to 5000 ppm. It is desirable to contain it in the following molar ratio, more preferably 10 ppm to 4000 ppm.
  • the light emission amount of the phosphor correlates with the integrated value of the voltage pulse signal.
  • the light emission amount increases as the light emission intensity increases, and the light emission amount decreases as the light emission rise time and the fluorescence lifetime decrease.
  • the light emission amount is higher than that of LYSO of an existing PET scintillator, preferably 28000 photon / MeV or more, more preferably 36000 photon / MeV or more, Even more preferably, it is desirable to be 42000 photon / MeV or more.
  • the scintillator crystal made of the phosphor according to the second embodiment having such short-lived light emission is expected to be used as a scintillator for radiation detection with high response for TOF-PET, PET, SPECT, and CT.
  • Application to various radiation measuring devices for high energy physics and environmental radiation measuring instruments is also expected.
  • a general oxide material can be used as a starting material.
  • a general halide raw material can be used, but when used as a scintillator crystal, it is particularly preferable to use a high-purity raw material of 99.99% or higher (4N or higher).
  • these starting materials are weighed and mixed so as to have a target composition at the time of melt formation. Further, these raw materials are particularly preferably those containing as little impurities as possible (for example, 1 ppm or less) other than the target composition.
  • the phosphors according to Embodiments 1 to 5 it is preferable to grow crystals in an inert gas (eg, Ar, N 2 , He, etc.) atmosphere.
  • the atmosphere for crystal growth may be a mixed gas of an inert gas (for example, Ar, N 2 , He, etc.) and oxygen gas, carbon dioxide gas, or carbon monoxide gas.
  • the partial pressure of oxygen is preferably 2% or less for the purpose of preventing oxidation of the crucible.
  • the crystal is grown in an inert gas (eg, Ar, N 2 , He, etc.) atmosphere not containing oxygen or moisture.
  • oxygen gas In post-processes such as annealing after crystal growth, oxygen gas, carbon dioxide gas, carbon monoxide gas, inert gas (eg, Ar, N 2 , He, etc.), and inert gas (eg, Ar, N) 2 , He, etc.) and oxygen gas, carbon dioxide gas, and carbon monoxide gas can be used.
  • inert gas eg, Ar, N 2 , He, etc.
  • inert gas eg, Ar, N 2 , He, etc.
  • oxygen gas, carbon dioxide gas, and carbon monoxide gas can be used.
  • the oxygen partial pressure is not limited to 2%, and any mixture ratio from 0% to 100% can be used.
  • the phosphors according to the first to seventh embodiments are preferably produced by heat treatment of the raw material at 1000 ° C. or higher.
  • the micro pull-down method which is a melt growth method in which heat treatment is performed at or above the melting point of the phosphor
  • Flux produced by liquid phase methods such as the chocolate ski method (lifting method), Bridgman method, zone melting method (zone melt method), or edge-limited thin film supply crystal growth (EFG method), and heat treatment at 1000 ° C. or higher.
  • Method solution growth method such as top seeded solution growth (TSSG) method, atmosphere sintering method, reaction sintering method, sintering method such as hot isostatic pressing method, etc. .
  • the chocolate ski method or the Bridgman method is preferable in order to obtain a large crystal.
  • a sintering method such as an atmosphere sintering method, a reaction sintering method, a hot isostatic pressing method or the like, it is more preferable to perform heat treatment at a temperature of 1300 ° C. or higher and a melting point or lower.
  • platinum, iridium, rhodium, rhenium, tungsten, molybdenum or alloys thereof, quartz, and carbon may be used.
  • a condenser heater or a resistance heater can be used.
  • the phosphors according to Embodiments 1 to 5 are manufactured in the atmosphere containing oxygen after the phosphor is manufactured for the purpose of shortening the fluorescence lifetime and reducing the long-lived fluorescence lifetime component.
  • an inert gas atmosphere such as nitrogen
  • an atmosphere containing oxygen with respect to an inert gas such as argon or nitrogen, or in air
  • heat treatment can be performed at 1000 ° C. or higher. This heat treatment is desirably performed in a temperature range of 1000 ° C. or higher for 8 hours or more, and preferably, heating is performed in a temperature range of 1300 ° C. or higher for 12 hours or more.
  • mirror polishing by mechanical polishing is necessary to improve the emission intensity, emission amount, time resolution, and energy resolution of a phosphor.
  • the mechanical polishing method is complicated by a plurality of processes such as a rough polishing process and a mirror polishing process.
  • polishing a plurality of surfaces of a polyhedron it is generally necessary to polish one surface at a time, which is uneconomical. Further, it has been generally difficult to polish a complicated surface that is not a flat surface.
  • an etching process is performed by immersing the phosphor in an etching solution containing phosphoric acid such as orthophosphoric acid. It is desirable to have a non-glossy surface of no more than%.
  • the etching solution may be used by mixing at least one of orthophosphoric acid, sulfuric acid, hydrochloric acid, or nitric acid.
  • the etchant is preferably heated to 100 ° C. or higher.
  • the etching solution may be a mixture of at least one of ethanol, propanol, methanol, acetone, toluene, xylene, hexane, and ethyl acetate.
  • the light emission amount of the phosphor correlates with the integrated value of the voltage pulse signal.
  • the light emission amount increases as the light emission intensity increases, and the light emission amount decreases as the light emission rise time and the fluorescence lifetime decrease.
  • the amount of light emitted is higher than LYSO of an existing PET scintillator, preferably 28000 photon / MeV or more, more preferably 36000 photon / MeV or more, Even more preferably, it is desirable to be 42000 photon / MeV or more.
  • the scintillator crystal made of the phosphor according to Embodiment 3 having such short-lived light emission is expected to be used as a scintillator for radiation detection with high response for TOF-PET, PET, SPECT, and CT.
  • Application to various radiation measuring devices for high energy physics and environmental radiation measuring instruments is also expected.
  • the micro pull-down method can be performed using a known atmosphere-controlled micro pull-down apparatus using high-frequency induction heating.
  • the micro-pulling device includes a crucible containing a raw material melt, a seed crystal holder for holding a seed crystal in contact with the raw material melt flowing out from a pore provided at the bottom of the crucible, and a seed crystal holder downward.
  • a single crystal manufacturing apparatus including a moving mechanism for moving, a moving speed control device for controlling the speed of the moving mechanism, and induction heating means (for example, a high frequency induction heating coil) for heating the crucible. According to such a single crystal manufacturing apparatus, a single crystal can be produced by forming a solid-liquid interface immediately below the crucible and moving the seed crystal downward.
  • the crucible is made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof.
  • an after heater which is a heating element made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof is disposed on the outer periphery of the bottom of the crucible.
  • the above atmosphere control type micro pull-down apparatus employs stainless steel (SUS) as the material of the chamber and quartz as the window material, and includes a rotary pump for enabling the atmosphere control before gas replacement.
  • SUS stainless steel
  • Ar, N 2 , H 2 , O 2 gas, etc. can be introduced into the chamber at a flow rate precisely adjusted by an accompanying gas flow meter.
  • the crystal growth raw material prepared by the above method is put into a crucible, the inside of the furnace is evacuated to a high vacuum, and then Ar gas or a mixed gas of Ar gas and O 2 gas is introduced into the furnace. By doing so, the inside of the furnace is made an inert gas atmosphere or a low oxygen partial pressure atmosphere. Next, the crucible is heated by gradually applying high frequency power to the high frequency induction heating coil to raise the temperature until the raw material is melted, and the raw material in the crucible is completely melted.
  • the raw material is preferably 99.99% or more (4N or more) high purity and contains as few impurities as possible (for example, 1 ppm or less) other than the intended composition.
  • the seed crystal held in the seed crystal holder is gradually raised at a predetermined speed by the moving mechanism. Then, when the tip of the seed crystal is brought into contact with the pores at the lower end of the crucible and sufficiently blended, the seed crystal is lowered while being adjusted while the melt temperature is adjusted to grow the crystal.
  • the seed crystal it is preferable to use a seed crystal that is the same as the crystal growth object or that is similar in structure and composition, but is not limited thereto. Moreover, it is preferable to use a crystal having a clear crystal orientation as a seed crystal.
  • the crystal growth is completed when all of the prepared crystal growth raw materials are crystallized and the melt is gone.
  • a device for continuously charging the crystal growth raw material can be incorporated. Thereby, the crystal can be grown while charging the crystal growth raw material.
  • the measurement apparatus shown in FIG. 1 was used for the measurement of the amount of luminescence.
  • the measuring apparatus includes a radiation source 101 that emits ⁇ rays, a photomultiplier tube 102, a power source 103, a preamplifier 104, a waveform shaping amplifier 105, a multichannel analyzer 106, an analysis unit 107, and a digital oscilloscope 108.
  • the radiation source 101 and the photomultiplier tube 102 are accommodated in a dark box 109.
  • the sample 121 is fixed to the light receiving portion of the photomultiplier tube 102.
  • the sample 121 is irradiated with ⁇ rays from the radiation source 101, and as a result, the fluorescence emitted from the sample 121 is received by the photomultiplier tube 102.
  • the pulse signal output from the photomultiplier tube 102 that has received the fluorescence is input to the preamplifier 104 and the waveform shaping amplifier 105, amplified and waveform shaped, and further input to the multichannel analyzer 106, and the analysis unit 107.
  • the position of the photoelectric absorption peak in the obtained energy spectrum is compared with a known phosphor, and the light emission amount is finally calculated in consideration of the wavelength sensitivity of the photomultiplier tube 102, respectively.
  • the digital oscilloscope 108 acquires a voltage pulse signal output when the photomultiplier tube 102 receives fluorescence by irradiating the sample 121 with ⁇ rays from the radiation source 101, and analyzes the fluorescence decay component.
  • the ratio of the intensity of each fluorescence decay component to the fluorescence decay time of each fluorescence decay component and the intensity of the entire fluorescence lifetime component is calculated.
  • the photomultiplier tube 102 is R7600U made by Hamamatsu Photonics.
  • the power source 103 is a 6662 type power source manufactured by Clearpulse Corporation.
  • the preamplifier 104 is a 5607 type scintillator preamplifier manufactured by Clearpulse Corporation.
  • the waveform shaping amplifier 105 is a 4417-type spectroscopy amplifier manufactured by Clearpulse Corporation.
  • the multichannel analyzer 106 is K102 manufactured by Kromek.
  • the digital oscilloscope 108 is a DPO2000 manufactured by Tektro Corporation.
  • the analysis unit 107 is a personal computer that realizes the above-described functions by a predetermined program.
  • the time resolution is measured as follows. First, the phosphor according to each example was processed and polished to a size of ⁇ 3 ⁇ 3 mm, and the two phosphors (samples) were optically separated into two Si-PMs arranged facing each other at a distance of about 5 cm. Adhere using an adhesive and cover the area other than the adhesive surface with a fluororesin tape. Next, a 22 Na ⁇ ray source is installed at the center of two samples, and each sample is irradiated with 511 keV ⁇ rays that are simultaneously emitted from the 22 Na ⁇ ray source and facing each other by about 180 ° due to ⁇ ray decay. The time resolution is measured by measuring the fluorescence of each phosphor by ⁇ -ray irradiation by a coincidence measurement method using a digital oscilloscope.
  • a garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 12 was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 91% per 1 cm.
  • a garnet scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 12 in which 300 ppm of Mg was co-added was produced by the micro-pulling down method.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm.
  • the diffuse transmittance at 520 nm was 91% per 1 cm.
  • a garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 12 to which Mo was co-added with 50,000 ppm was prepared by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 85% per 1 cm.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 85% per 1 cm.
  • a garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2 Gd 0.85 Ga 3 Al 2 O 12 was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 92% per 1 cm.
  • a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Br 3 was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm.
  • a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Cl 3 was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm.
  • a metal halide crystal represented by a composition of CeBr 3 was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 370 nm.
  • a metal halide crystal represented by a composition of Eu 0.01 Sr 0.99 I 2 was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Luminescence from the 4f5d level of Eu 2+ was confirmed at a wavelength around 430 nm.
  • a perovskite single crystal represented by a composition of Ce 0.02 Lu 0.18 Y 0.8 AlO 3 was produced by a micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 85% per cm.
  • Example 1 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2.85 Al 5 O 12 in which 300 ppm of Mo was co-added was produced by a micro pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellowish green transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 91% per cm.
  • Example 2 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2.85 Al 5.2 O 12.3 to which 300 ppm of Mo was co-added was produced by a micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellowish green transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 92% per cm.
  • Example 3 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 2.85 Al 5 O 12 co-doped with 300 ppm of Mo was produced by a micro pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 92% per cm.
  • Example 4 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 2.85 Al 5.2 O 12.3 to which Mo was co-added with 300 ppm was prepared by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 90% per 1 cm.
  • Example 5 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 2.85 Al 4.8 O 11.7 in which 3000 ppm of W was co-added was produced by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 13 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 91% per cm.
  • Example 6 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2.85 Al4.8 O 11.7 in which 3000 ppm of W was added together by a micro-pulling-down method was produced. This single crystal had a diameter of 3 mm and a length of 17 mm, and was yellowish green transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 92% per cm.
  • Example 7 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 1.85 Y 1 Al 5.2 O 12.3 to which 3000 ppm of W was co-added was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 17 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 91% per cm.
  • Example 8 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 1.85 Lu 1 Al 4.8 O 11.7 in which Mo was co-added with 3000 ppm was prepared by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 13 mm, and was yellow and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength around 480 nm. The diffuse transmittance at 480 nm was 91% per cm.
  • Example 9 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 12 in which 300 ppm of Mo was co-added was produced by a micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 92% per cm.
  • Example 10 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3.1 Al 2 O 12.15 in which 300 ppm of Mo was co-added was produced by a micro pull-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 92% per cm.
  • Example 11 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 12 to which 1000 ppm of Mo was co-added was produced by a micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 91% per 1 cm.
  • Example 12 A garnet scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3 Al 2 O 122 to which Mo was co-added with 5000 ppm was prepared by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 90% per 1 cm.
  • Example 13 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2 Gd 0.85 Ga 3 Al 2 O 12 to which 300 ppm of Mo was co-added was produced by a micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 90% per 1 cm.
  • Example 14 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2 Gd 0.85 Gd 2.9 Al 2 O 11.85 to which 300 ppm of Mo was co-added was produced by a micro pull-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 90% per 1 cm.
  • Example 15 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Gd 2.85 Ga 3.1 Al 2 O 12.15 to which 300 ppm of W was added together was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 520 nm. The diffuse transmittance at 520 nm was 92% per cm.
  • Example 16 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Lu 2 Gd 0.85 Ga 3 Al 2 O 12 in which 300 ppm of W was co-added was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 90% per 1 cm.
  • a garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 1.85 Gd 1 Ga 3 Al 2 O 12 that was not co-added was produced by the micro-pulling down method.
  • This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent.
  • Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm.
  • the diffuse transmittance at 500 nm was 92% per 1 cm.
  • Example 17 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 1.85 Gd 1 Ga 3 Al 2.2 O 12.3 to which 1000 ppm of Mo was co-added was produced by a micro pulling method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 90% per 1 cm.
  • Example 18 A garnet-type scintillator single crystal represented by a composition of Ce 0.15 Y 1.85 Gd 1 Ga 4.8 Al 2 O 11.7 co-doped with W 1000 ppm was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was yellow and transparent. Luminescence from the 4f5d level of Ce 3+ was confirmed at a wavelength near 500 nm. The diffuse transmittance at 500 nm was 91% per 1 cm.
  • Example 19 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 2 SiO 5 co-doped with 300 ppm of Mo was produced by a micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 91% per 1 cm.
  • Example 20 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 1.8 Y 0.2 Si 1.9 O 4.8 co-doped with 300 ppm of Mo was produced by the micro-pulling-down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 92% per cm.
  • Example 21 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 1.8 Gd 0.2 Si 2.1 O 5.2 in which 300 ppm of Mo was co-added was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 15 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 91% per 1 cm.
  • Example 22 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 2 Si 1.1 O 5.2 in which 1000 ppm of W was co-added was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 92% per cm.
  • Example 23 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 2 Y 0.2 Si 1.1 O 5.2 co-doped with 1000 ppm of W was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 92% per cm.
  • Example 24 An orthosilicate single crystal represented by a composition of Ce 0.15 Lu 2 Gd 0.2 Si 0.9 O 54.8 co-doped with 1000 ppm of W was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The diffuse transmittance at 420 nm was 92% per cm.
  • Example 25 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Br 3.05 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 92% per cm.
  • Example 26 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Br 3.0 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 90% per 1 cm.
  • Example 27 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Br 2.95 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 93% per cm.
  • Example 28 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Br 2.95 in which 300 ppm of W was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 93% per cm.
  • Example 29 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Cl 3.05 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 92% per cm.
  • Example 30 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Cl 3.0 in which 300 ppm of Mo was co-added was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 91% per 1 cm.
  • Example 31 A metal halide crystal represented by a composition of Ce 0.01 La 0.99 Cl 2.95 in which 300 ppm of Mo was added together was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 93% per cm.
  • Example 32 By the Bridgman method, a metal halide crystal represented by a composition of Ce 0.01 La 0.99 Cl 2.95 in which 300 ppm of W was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 92% per cm.
  • Example 33 A metal halide crystal represented by a composition of CeBr 3.05 in which 300 ppm of Mo was co-added was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 370 nm. The diffuse transmittance at 370 nm was 93% per 1 cm.
  • Example 34 By the Bridgman method, a metal halide crystal represented by a composition of CeBr 3.0 co-doped with 300 ppm of Mo was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 370 nm. The diffuse transmittance at 370 nm was 91% per cm.
  • Example 35 By the Bridgman method, a metal halide crystal represented by a composition of CeBr 2.95 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 370 nm. The diffuse transmittance at 370 nm was 93% per 1 cm.
  • Example 36 A metal halide crystal represented by a composition of CeBr 2.95 in which 300 ppm of W was added together was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 370 nm. The diffuse transmittance at 370 nm was 92% per cm.
  • Example 37 By the Bridgman method, a metal halide crystal represented by a composition of Eu 0.01 Sr 0.99 I 2.05 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Luminescence from the 4f5d level of Eu 2+ was confirmed at a wavelength around 430 nm. The diffuse transmittance at 430 nm was 92% per cm.
  • Example 38 By the Bridgman method, a metal halide crystal represented by a composition of Eu 0.01 Sr 0.99 I 2 in which 300 ppm of Mo was added together was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Luminescence from the 4f5d level of Eu 2+ was confirmed at a wavelength around 430 nm. The diffuse transmittance at 430 nm was 90% per 1 cm.
  • Example 39 A metal halide crystal represented by a composition of Eu 0.01 Sr 0.99 I 1.95 in which 300 ppm of Mo was added together was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Luminescence from the 4f5d level of Eu 2+ was confirmed at a wavelength near 430 nm. The diffuse transmittance at 430 nm was 92% per cm.
  • Example 40 A metal halide crystal represented by a composition of Eu 0.01 Sr 0.99 I 1.95 in which 300 ppm of W was added together was produced by the Bridgman method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Luminescence from the 4f5d level of Eu 2+ was confirmed at a wavelength around 430 nm. The diffuse transmittance at 430 nm was 92% per cm.
  • Example 41 An orthosilicate single crystal represented by a composition of Ce 0.02 La 0.48 Gd 1.5 Si 2 O 7 co-doped with 1000 ppm of Mo was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 380 nm. The diffuse transmittance at 380 nm was 92% per cm.
  • Example 42 An orthosilicate single crystal represented by a composition of Ce 0.02 La 0.48 Gd 1.5 Si 2.05 O 7.1 in which 1000 ppm of W was co-added was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 380 nm. The diffuse transmittance at 380 nm was 92% per cm.
  • Example 43 An orthosilicate single crystal represented by a composition of Ce 0.02 Y 0.48 Lu 1.5 Si 1.95 O 6.9 co-doped with 1000 ppm of Mo was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 380 nm. The diffuse transmittance at 380 nm was 92% per cm.
  • Example 44 An orthosilicate single crystal represented by a composition of Ce 0.02 Y 0.48 Lu 1.5 Si 2 O 7 co-doped with 1000 ppm of W was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 380 nm. The diffuse transmittance at 380 nm was 92% per cm.
  • Example 45 A perovskite single crystal represented by a composition of Ce 0.02 Lu 0.18 Y 0.82 AlO 3.06 co-doped with 1000 ppm of Mo was produced by the micro-pulling down method. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 92% per cm.
  • Example 46 A perovskite single crystal represented by a composition of Ce 0.02 Lu 0.18 Y 0.78 AlO 2.94 in which 1000 ppm of W was added by a micro-pulling-down method was produced. This single crystal had a diameter of 3 mm and a length of 20 mm, and was colorless and transparent. Emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 360 nm. The diffuse transmittance at 360 nm was 92% per cm.
  • Example 47 By the Czochralski method, an orthosilicate single crystal represented by a composition of Ce 0.15 Lu 2 SiO 5 co-doped with 5000 ppm of Mo was produced. This single crystal had a diameter of 50 mm and a length of 100 mm, and was colorless and transparent. Light emission from the 4f5d level of Ce 3+ was confirmed at a wavelength near 420 nm. The crystallization rate of the obtained single crystal with respect to the charged raw materials was 70%.
  • FIG. 2 shows a sample of Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-doped with 300 ppm of Mo according to Example 9 and a sample (crystal) of Comparative Example 3 not co-doped with the same composition, ⁇ 3 ⁇ 1 mm
  • This is an energy spectrum obtained by processing and polishing to size, bonding to a photomultiplier tube using an optical adhesive, covering the upper surface with a fluororesin tape, and irradiating with 137 Cs ⁇ rays.
  • the amount of luminescence was evaluated by analyzing the photoelectric absorption peak of this spectrum.
  • the amount of luminescence increased by 23% compared to the sample not co-added by co-adding 300 ppm of Mo.
  • the sample in which Mg of Comparative Example 4 was co-added the light emission amount was reduced by 8% with respect to the crystals not co-added.
  • FIG. 3 shows a sample of Gd 2.985 Ce 0.015 Ga 3 Al 2 O 12 co-doped with 300 ppm of Mo according to Example 9 and a sample (crystal) of Comparative Example 3 not co-doped with the same composition, ⁇ 3 ⁇ 1 mm
  • This is a voltage pulse signal obtained by processing with a digital oscilloscope after processing and polishing into a size, adhering to a photomultiplier tube using an optical adhesive, covering the upper surface with a fluororesin tape, irradiating with 137 Cs ⁇ rays.
  • the obtained voltage pulse signal was analyzed to evaluate the fluorescence lifetime.
  • the fluorescence lifetime is 41% faster from 64 ns (no co-addition) to 38 ns (Mo 300 ppm co-addition) compared to the sample not co-added, and the long-life fluorescence existing without co-addition. Life component decreased.
  • X-ray irradiation was performed under the conditions of CuK ⁇ , 40 mA, and 40 mV, the maximum emission intensity was compared with the emission intensity after 1 ms, and the phosphorescent component content was measured to be 1% (no co-addition) to 0.08 % (Mo 300 ppm co-added) and phosphorescent component decreased.
  • FIG. 4 shows a sample of Ce 0.15 Lu 1.8 Y 0.2 Si 1.9 O 4.8 in which Mo was co-added with 300 ppm of Example 20 and the sample (crystal) of Comparative Example 9 in which the same composition was not co-added with a ⁇ 3 ⁇ 1 mm size.
  • This is an energy spectrum obtained by processing and polishing into a photomultiplier tube using an optical adhesive, covering the upper surface with a fluororesin tape, and irradiating with 137 Cs ⁇ rays. The amount of luminescence was evaluated by analyzing the photoelectric absorption peak of this spectrum. The amount of luminescence increased by 50% with respect to the sample not co-added by adding 300 ppm of Mo.
  • Mo and W are also co-added in the scintillators of orthosilicates such as LSO and LYSO whose luminescent center is Ce 3+ or Eu 2+ , garnets such as GAGG, pyrosilicate, perovskite, LaBr 3 , LaCl 3 and SrI 2. As a result, light emission, fluorescence lifetime, and time resolution were improved.
  • orthosilicates such as LSO and LYSO whose luminescent center is Ce 3+ or Eu 2+
  • garnets such as GAGG, pyrosilicate, perovskite, LaBr 3 , LaCl 3 and SrI 2.
  • samples having a size of 5 ⁇ 5 ⁇ 5 mm were obtained from positions with crystallization ratios of 10, 30, 50, and 70%, respectively.
  • After cutting and processing, and performing 6-side mirror polishing it is bonded to a photomultiplier tube using an optical adhesive, and the upper surface is covered with a fluororesin tape, and ⁇ having an energy of 662 keV from a 137 Cs radiation source
  • Table 10 shows the measurement results of the amount of luminescence and the fluorescence lifetime with respect to the crystallization rate for each sample.
  • Ce LSO without co-addition of Comparative Example 13
  • the amount of luminescence was reduced by 12% and the fluorescence lifetime was 44 ns (crystallization rate of 10%) in the sample with a crystallization rate of 70% compared to the sample with a crystallization rate of 10%.
  • the phosphor according to the present invention having such short-lived light emission is expected to be used as a scintillator for detecting high-response radiation for TOF-PET, PET, SPECT, CT, Compton cameras, and gamma cameras.
  • Application to various radiation measuring devices for high energy physics and environmental radiation measuring instruments is also expected.
  • phosphors suitable for radiation detectors such as ⁇ -rays, X-rays, ⁇ -rays, and neutrons are used, and phosphors having high radiation durability, short fluorescence decay time, and high emission intensity are used.
  • a radiation detector can be provided.
  • the present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. It should be noted that the composition ratio of the manufactured phosphor does not necessarily match the stoichiometric composition. In addition, as is well known, it is natural that an oxygen defect exists in an oxide crystal. Generally, oxygen vacancies and surplus are allowed even if the actual valence is not described in the chemical formula of the oxide crystal. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

蛍光体は、一般式CexRE3-x5+yzで表されてガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、REは、La、Pr、Tb、Yb、Gd,Y、Luの少なくとも1つであり、0.0001≦x≦0.3、0≦y≦0.5あるいは0≦y≦-0.5、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加されたガーネットを含む。

Description

蛍光体
 本発明は、シンチレータとして用いることができる蛍光体に関する。
 希土類を賦活した広バンドギャップ酸化物結晶は、シンチレータとして、γ線、X線、α線、β線、中性子線等を検出するフォトン検出器あるいは放射線検出器に用いられている。このような検出器は、陽電子放射断層撮影(positron emission tomography、PET)装置やX線コンピュータ断層装置(CT装置)等の医療画像装置、高エネルギー物理分野における各種放射線計測装置、資源探査装置などに幅広く応用されている。このような背景の中で、例えば、最も有望な賦活剤の1つであるセリウムを含むガーネット、シリケート、ペロブスカイト、およびリン酸塩型材料が、可能性のある高速かつ効率的なシンチレータとして研究されている。
 一般に、放射線検出器は、γ線、X線、α線、β線、中性子線等を吸収し、低エネルギーの複数の光子(シンチレーション光)に変換するシンチレータなどの蛍光体と、蛍光体の光を受光し、電気信号等に変換する受光素子から構成される。例えば、PET装置においては、比較的エネルギーの高いγ線(消滅γ線:511eV)が同時計数により検出されるため、感度が高くかつ高速応答が得られるシンチレーション検出器が採用されてきた。検出器特性には、高計数率特性や偶発同時計数ノイズ除去のための高い時間分解能が要求される。
 さらに、近年ではTime-of-flight型PET(TOF-PET)と呼ばれる、消滅γ線が放射線検出器までに到達する時間差を計測することで、位置検出精度を向上させたPETも登場している。TOF-PETに用いられる放射線検出器では、特に、高速応答がもとめられ、放射線検出器に用いられるシンチレータは蛍光寿命が短いことが重要である。
 このように速いタイミング特性を有するシンチレータは、高い優先順位で求められている。一般に、これらの放射線検出器に適するシンチレータとしては、検出効率の点から、密度が高く原子番号が大きいこと(光電吸収比が高いこと)、高速応答の必要性や高エネルギー分解能の点から発光量が多く、蛍光寿命(蛍光減衰時間)の短いことや、透明性の高い結晶であることが望まれる。
 近年のシステムでは、多層化・高分解能化のため、多量のシンチレータを細長い形状(例えばPETでは5×30mm程度)で稠密に並べることが要求される。このような要求により、取り扱い易さ、加工性、大型結晶作製が可能なこと、結晶中のシンチレータ特性が均一で歩留りが高いこと、さらには価格も重要な選定要因となっている。また、シンチレータの発光波長が、光検出器の検出感度の高い波長域と一致することも重要である。
 現在、PET装置用シンチレータとして最も一般的なシンチレータ結晶は、Ce添加(Lu、Y、Gd)2SiO5(Ce:LYSO)である。このシンチレータは、高密度(~7.39g/cm3)・短寿命(約40nsec)・発光量(27000photon/MeV)という優れたシンチレータ特性を有する。
米国特許第9534170号公報 米国特許出願公開第2014/40061537号公報 国際公開第2012/105202号公報 国際公開第2015/166999号公報 特許第6188024号公報 特開2015-212311号公報 米国特許第7129494号公報 米国特許第7405404号公報 米国特許第9796922号公報 米国特許第8580149号公報
M. A. Spurrier et al., "The effect of co-doping on the growth stability and scintillation properties of lutetium oxyorthosilicate", J. Crystal Growth, vol.310, pp. 2110-2114, 2008. K. Kamada et al., "Large Size Czochralski Growth and Scintillation Properties of Mg2+ Co-doped Ce :Gd3Ga3Al2O12", IEEE Transactions on Nuclear Science, vol. 63, no. 2, 2016. K. Kamada et al., "Single Crystal Growth and Co-doping Effects of Lanthanum Substituted Gadolinium Pyrosilicate Scintillator", Journal of Physics: Conference Series, vol. 619 pp. 012034, 2015. F. Moretti et al., "Consequences of Ca Codoping in YAlO3:Ce Single Crystals", Chem. Phys. Chem., Vol.18, pp.493-497, 2017. Kan Yang et al., "Performance Improvement of Large Sr2+ and Ba2+ co-doped LaBr3 :Ce3+ Scintillation Crystals" Conference: Conference: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE、Nl-135.
 しかしながら、Ce添加(Lu、Y、Gd)2SiO5(Ce:LYSO)は、最近開発されたCe添加Gd3Al2Ga312と比較すると、相対的に小さい発光量であるため、改善が必要である。このCe:LYSOに2価のCaイオンを微量添加することで、発光中心となるCe3+が価数の少ない2価のCaイオンとの電荷補償により、Ce4+の状態をとることで発光量が増加し、蛍光寿命も短寿命化する技術が報告されている(例えば、特許文献1,3,非特許文献1参照)。
 Ce:LYSOの製造では、チョクラルスキー法による融液成長法が用いられており、直径6cm程度、長さ20cm程度の結晶が製造されている。Caを共添加したCe:LYSOでは、結晶中の結晶作製方向におけるCaの組成変動により、結晶の後期では、初期に対し発光量が30~40%低下し、歩留り低下の要因となり、結晶製造上の問題となる。例えば、高エネルギー物理学用検出器応用では、一般的に20放射長(18~25cm程度)の長尺の結晶が用いられるが、結晶内で特性ばらつきが存在する場合、エネルギー分解能の劣化や検出精度の劣化が問題となる。
 より最近では、各種放射線検出器へ応用される好ましいシンチレータとして、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つシンチレータである、Ce添加(Gd,Y,Lu)3(Al、Ga)512結晶が報告されている(例えば、特許文献3または非特許文献2参照)。Ce添加(Gd,Y,Lu)3(Al、Ga)512では、結晶組成により、密度、発光量、蛍光寿命といったシンチレータ特性が変化することが確認されており、この中でも特に、Ce添加Gd3Al2Ga312(Ce:GAGG)シンチレータは、密度6.7g/cm3、発光量が56000photon/MeVの特性を有している。Ce添加Gd3Al2Ga312(Ce:GAGG)シンチレータは、自己放射能が十分に少ないことから、PET装置への応用のみにとどまらず、高エネルギー物理、環境放射線計測など様々な放射線分野への応用が進んでいる。
 さらに、Ce添加(Gd,Y,Lu)3(Al、Ga)512結晶に1種類以上の1価または2価の陽イオンを共添加することで、発光中心となるCe3+が価数のすくない共添加元素との電荷補償により、Ce4+の状態をとることで蛍光減衰時間が短くかつ発光強度の大きい蛍光体となることが、Lu3Al512やY3Al512において報告されている(例えば、特許文献4、非特許文献3参照)。一方で、Ce:GAGGでは、1価または2価の陽イオンを共添加することで、蛍光減衰時間が短くなるが、発光量が低下することが報告されている(例えば、非特許文献3参照)。これらのように、従来では、γ線、X線、α線、中性子線といった放射線検出器用の蛍光体に用いることができる、発光強度が大きく蛍光寿命が短い蛍光体が得られていないという問題があった。
 より最近では、各種放射線検出器へ応用される好ましいシンチレータとして、特許文献5に記載の、Ce添加(Gd,La、Y、Lu)2Si27の組成であらわされる希土類パイロクロア型結晶がある。Ce添加(Gd,Y,Lu)3(Al、Ga)512では、結晶組成により、密度、発光量、蛍光寿命、といったシンチレータ特性が変化することが確認されており、加えて、調和・非調和融液組成の挙動も組成により変化することが分かっており、融液成長可能な組成範囲が報告されている。例えば、Ce添加(Gd0.25La0.75)2Si27シンチレータは密度5.5g/cm3、発光量が40000photon/MeVの特性を有し、調和融液組成となることから、融液成長によるバルク結晶成長が可能である。また、自己放射能が十分に少ないことから、PET装置への応用のみにとどまらず、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用が期待されている。加えて、150℃を超える高温でも発光量の低下が少ないことから、資源探査用検出器への応用も期待されている。
 さらに、Ce添加(Gd,La、Y、Lu)2Si27結晶に1種類以上の1価または2価の陽イオンを共添加することで、発光中心となるCe3+が価数の少ない共添加元素との電荷補償により、Ce4+の状態をとることで蛍光減衰時間が短くかつ発光強度の大きい蛍光体となることが、Ce添加(Gd,La)2Si27(La-GPS)において報告されている(例えば、特許文献6、非特許文献3参照)。一方で、Ce:La-GPSでは、1価または2価の陽イオンを共添加することで、蛍光減衰時間が短くなるが、発光量が低下することが報告されている(例えば、非特許文献3参照)。これらのように、従来では、γ線、X線、α線、中性子線といった放射線検出器用の蛍光体に用いることができる、発光量が大きく蛍光寿命が短い蛍光体が得られていないという問題があった。
 各種放射線検出器へ応用される好ましいシンチレータの1種として、Ce:YAlO3結晶があり、密度5.5g/cm3、発光量が20000photon/MeVの特性を有する。一方で、Ce:YAlO3では2価の陽イオンを共添加することで、蛍光減衰時間が短くなるが、発光量が著しく低下することが報告されている(非特許文献4参照)。
 より最近では、各種放射線検出器へ応用される好ましいシンチレータとして、特許文献7、特許文献8に記載の、(La,Ce)(Cl、Br、I)3の組成であらわされる金属ハロゲン化物結晶がある。(La,Ce)Br3では、結晶組成により、密度、発光量、蛍光寿命、といったシンチレータ特性が変化することが確認されている。例えば、Ce添加LaBr3は、密度5.06g/cm3、発光量が、71500photon/MeVの特性を有する。また、CeBr3では、密度5.06g/cm3、発光量が71500photon/MeVの特性を有する。Ce添加LaBr3、CeBr3では、高い発光量を有するものの、LYSO,GAGGに比べて密度が小さいため、PET装置への応用を考えた場合、放射線の検出効率を高めるために、発光量および時間分解能を改善する必要がある。
 さらに、(La,Ce)(Cl、Br、I)3に2価の陽イオンを共添加することで、発光量は増加するが、蛍光寿命が長寿命化することが報告されている。(例えば、特許文献9、非特許文献5参照)。PET装置への応用を考えた場合、蛍光寿命の長寿命化が問題となる。また、Eu添加SrI2では、密度4.55g/cm3、発光量が60000photon/MeVの特性を有する。
 本発明は、以上のような問題点を解消するためになされたものであり、γ線、X線、α線、中性子線といった放射線検出器に好適に用いられる蛍光体の蛍光寿命を短くするとともに発光強度を大きくすることを目的とする。
 本発明に係る蛍光体は、一般式CexRE3-x5+yzで表されてガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、REは、La、Pr、Tb、Yb、Gd,Y、Luの少なくとも1つであり、0.0001≦x≦0.3、0≦y≦0.5あるいは-0.5≦y≦0、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加されたガーネットを含む。
 本発明に係る蛍光体は、一般式CexGd3-x5+yzで表されてガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、0.0001≦x≦0.3、0≦y≦0.5あるいは-0.5≦y≦0、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したガーネットを含む。
 本発明に係る蛍光体は、一般式CexRE2-xSiyzで表され、REは、Lu、Y、Sc、およびGdの少なくとも1つであり、0.00001≦x≦0.1であり、0.95≦y≦1.05であり、4.9≦z≦5.1とされ、MoおよびWの少なくとも1つを、全陽イオンに対し、10000ppm以下のモル比で共添加したオルソシリケートを含む。
 本発明に係る蛍光体は、一般式CexRE2-x2+yzで表され、REは、La、Pr、Gd、Tb、Yb、YおよびLuの少なくとも1つであり、MはSi、ZrおよびHfの少なくとも1つであり、0.00001≦x≦3、0≦y≦0.25あるいは-0.25≦y≦0、6.5≦z≦7.5とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したパイロシリケートを含む。
 本発明に係る蛍光体は、一般式La(1-y)REyzで表され、REは、Ce、Pr、Gd、Eu,Tb、Yb、YおよびLuの少なくとも1つであり、Xは、F,Cl、BrおよびIの少なくとも1つであり、0≦y≦1、2.8≦z≦3.2とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む。
 本発明に係る蛍光体は、一般式AE(1-y)REyzで表され、AEは、Be,Mg、Ca,SrおよびBaの少なくとも1つであり、REは、Ce、Pr、Gd、Eu,Tb、Yb、およびLuの少なくとも1つであり、XはF,Cl、BrおよびIの少なくとも1つであり、0<y<1、1.8≦z≦2.2とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む。
 本発明に係る蛍光体は、一般式CexRE1-xyzで表され、REは、La、Gd、YおよびLuの少なくとも1つであり、MはAl、GaおよびScの少なくとも1つであり、0.00001≦x≦2、0.9≦y≦1.1あるいは-0.25≦y≦0、2.85≦z≦3.15とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したペロブスカイトを含む。
 以上説明したことによりように、本発明によれば、γ線、X線、α線、中性子線といった放射線検出器に好適に用いられる蛍光体の蛍光寿命を短くするとともに発光強度を大きくできるという優れた効果が得られる。
図1は、発光量の測定を行う測定装置の構成を示す構成図である。 図2は、実施例9および比較例3の試料に137Csγ線を照射して得られたエネルギースペクトルを示す特性図である。 図3は、実施例9および比較例3の試料に137Csγ線を照射して得られた電圧パルス信号を示す特性図である。 図4は、実施例20および比較例9の試料に137Csγ線を照射して得られたエネルギースペクトルを示す特性図である。
 以下、本発明の実施の形態に係る蛍光体について説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る蛍光体について説明する。この蛍光体は、一般式CexGd3-x5+yzで表されるガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、0.0001≦x≦0.3、-0.5≦y≦0.5、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したガーネットを含む。
[実施の形態2]
 次に、本発明の実施の形態2に係る蛍光体について説明する。この蛍光体は、一般式CexRE3-x5+yzで表されるガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、REは、La、Pr、Tb、Yb、Gd,Y、Luの少なくとも1つであり、0.0001≦x≦0.3、-0.5≦y≦0.5、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加されたガーネットを含む。
 実施の形態1,2に係る蛍光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ。この蛍光体は、短い蛍光減衰時間、短い発光の立ち上がり時間、大きい発光強度、高い放射線耐性、高い発光量、少ない燐光成分を兼ね備えている。
 実施の形態1,2に係る蛍光体は、例えば、原料を1000℃以上で熱処理することで作製することができる。実施の形態1に係る蛍光体は、42000photon/MeV以上の発光量かつ240ps以下の時間分解能を有する。実施の形態1に係る蛍光体は、燐光成分が0.5%以下であり、拡散透過率80%以上の透明体であり、単結晶であっても良い。
 実施の形態1,2に係る蛍光体は、例えば、γ線等の放射線や高エネルギーフォトンにより励起されて発する蛍光波長が、420~600nmである。
 ここで、Ce3+の4f5d準位からの発光を用いる蛍光体は、Mo、Wの少なくとも1つを、全陽イオンに対し、10000ppm以下のモル比で共添加することにより、共添加なしの蛍光体に対し 蛍光減衰時間がそれぞれ5%以上短寿命化し、発光量が5%以上増加する。このように、Mo、Wの少なくとも1つを共添加することで、蛍光測定のためのサンプリング時間が短くて済み、高時間分解能、すなわちサンプリング間隔の低減が期待できる。高時間分解能が実現されると、単位時間でのサンプリング数を増加させることが可能になる。また、発光強度が増加することによりエネルギー分解能が向上する。
 なお、セリウム賦活の蛍光体は、Mo、Wの少なくとも1つを、全陽イオンに対し、1ppm以上10000ppm以下のモル比、好ましくは、5ppm以上6000ppm以下のモル比、より好ましくは、10ppm以上5000ppm以下のモル比、さらにより好ましくは10ppm以上4000ppm以下で含有することが望ましい。
 一般に、蛍光体の発光量は、電圧パルス信号の積分値と相関があり、発光強度が高くなるほど発光量が高くなり、発光の立ち上がり時間および蛍光寿命が短くなるほど発光量は低くなる。実施の形態1に係る蛍光体は、例えば、PET装置に用いる場合、既存のPET用シンチレータのLYSOより高い発光量であることが望ましく、好ましくは28000photon/MeV以上、より好ましくは36000photon/MeV以上、さらにより好ましくは42000photon/MeV以上であることが望ましい。
 このような短寿命の発光を有する、実施の形態1に係る蛍光体から成るシンチレータ結晶は、TOF-PET、PET、SPECT、CT用の高速応答の放射線検出のためのシンチレータとしての利用が期待され、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用も期待される。
 実施の形態1に係る蛍光体を製造する場合、出発原料として、一般的な酸化物原料が使用可能であるが、シンチレータ用結晶として使用する場合、99.99%以上(4N以上)の高純度原料を用いることが特に好ましい。製造の際には、これらの出発原料を、融液形成時に目的組成となるように秤量、混合したものを用いる。さらに、これらの原料は、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが特に好ましい。
 実施の形態1に係る蛍光体を製造する場合、結晶の育成を、不活性ガス(例えば、Ar、N2、He等)雰囲気下で行うことが好ましい。不活性ガス(例えば、Ar、N2、Heなど)と酸素ガスや炭酸ガス、一酸化炭素ガスとの混合ガスを使用した雰囲気下で、上述した結晶の育成をすることもできる。ただし、これらの混合ガスを用いて結晶の育成を行う場合、坩堝の酸化を防ぐ目的で、酸素の分圧は2%以下であることが好ましい。
 なお、結晶育成後のアニールなどの後工程においては、酸素ガス、炭酸ガス、一酸化炭素ガス、不活性ガス(例えば、Ar、N2、He等)、および不活性ガス(例えば、Ar、N2、He等)と酸素ガス、炭酸ガス、一酸化炭素ガスとの混合ガスを用いることができる。混合ガスを用いる場合、酸素分圧は2%という制限は受けず、0%から100%までいずれの混合比のものを使用する。
 実施の形態1に係る蛍光体は、原料を1000℃以上の熱処理により製造することが望ましく、例えば、蛍光体の融点以上の熱処理を行う融液成長法であるマイクロ引き下げ法の他に、チョコラルスキー法(引き上げ法)、ブリッジマン法、帯溶融法(ゾーンメルト法)、又は縁部限定薄膜供給結晶成長(EFG法)等の液相法や、1000℃以上の熱処理により製造されるフラックス法やトップシーディッドソルーショングロース(TSSG)法等の溶液成長法、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法など、特に制限なく採用可能である。
 しかし、歩留まりを向上させ、相対的には加工ロスを軽減させる目的で、大型結晶を得るためには、チョコラルスキー法又はブリッジマン法が好ましい。また、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法を用いる場合には、1300℃以上融点以下の温度で熱処理することがより好ましい。
 一方、シンチレータ用結晶として小型の結晶のみを使用するのであれば、後加工の必要が無いかあるいは少ないことから、ゾーンメルト法、EFG法、マイクロ引き下げ法、チョコラルスキー法といった液相法や雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法が好ましい。
 また、これらの熱処理で使用する坩堝・アフターヒータ・ダイとしては、白金、イリジウム、ロジウム、レニウム、タングステン、モリブデンまたはこれらの合金からなるものを使用することも可能である。また、加熱には、高周波発振機のみならず、集光加熱器や抵抗加熱機を使用することが可能である。
 また、実施の形態1に係る蛍光体は、 蛍光寿命を、短寿命化し、長寿命の蛍光寿命成分を低減する目的のため、蛍光体を製造した後、酸素を含有する雰囲気中、アルゴン、窒素などの不活性ガス雰囲気中、アルゴン、窒素などの不活性ガスに対し酸素を含む雰囲気中、または空気中で、1000℃以上で加熱処理をする。この加熱処理は、1000℃以上の温度域で8時間以上行うことが望ましく、好ましくは、1300℃以上の温度域で12時間以上の条件で加熱する。より好ましくは、1500℃以上の温度域で12間以上の加熱条件、さらにより好ましくは1600℃以上の温度域で24時間以上の加熱条件で、上述した加熱処理を行うことが望ましい。
 一般に、蛍光体の発光強度、発光量、時間分解能、エネルギー分解能を向上させるためには、機械的研磨による鏡面研磨が必要である。機械的研磨方法は、粗研磨工程、鏡面研磨工程等の複数の工程からなり、複雑である。特に多面体の複数の表面を研磨する場合には、一般に1面ずつ研磨する必要があり、非経済的であった。また、平面ではない複雑な表面を研磨することは、一般に困難であった。
 これに対し、蛍光体を製造した後、オルトリン酸等のリン酸を含むエッチング液に浸すことによるエッチング処理によって、表面にエッチピットを有し、かつ垂直反射率10%以下の光沢性のない表面を有することが望ましい。なお、エッチング液は、オルトリン酸、硫酸、塩酸あるいは硝酸の少なくとも1種を混合させて用いても良い。エッチング液は、100℃以上加熱することが望ましい。このエッチング処理により、機械的研磨による鏡面研磨法に比べ、発光強度、発光量、時間分解能、エネルギー分解能を向上することができる。
[実施の形態2]
 次に、本発明の実施の形態2に係る蛍光体について説明する。この蛍光体は、一般式CexGd3-x5+yzで表されてガーネット構造を持ち、Mは、Al、Lu、Ga、およびScの少なくとも1つであり、0.0001≦x≦0.3、0≦y≦0.5あるいは-0.5≦y≦0、11.25≦z≦12.75とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したガーネットを含む。
 実施の形態2に係る蛍光体は、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ。この蛍光体は、特に、y=0や1の蛍光体と比べ、短い蛍光減衰時間、短い発光の立ち上がり時間、大きい発光強度、高い放射線耐性、高い発光量、少ない燐光成分を兼ね備えている。
 実施の形態2に係る蛍光体は、例えば、原料を1000℃以上で熱処理することで作製することができる。実施の形態2に係る蛍光体は、42000photon/MeV以上の発光量かつ240ps以下の時間分解能を有する。実施の形態2に係る蛍光体は、燐光成分が0.5%以下であり、拡散透過率80%以上の透明体である。
[実施の形態3]
 次に、本発明の実施の形態3に係る蛍光体について説明する。この蛍光体は、一般式CexRE2-xSiyzで表され、REは、Lu、Y、Sc、およびGdの少なくとも1つであり、0.00001≦x≦0.1であり、0.95≦y≦1.05であり、4.9≦z≦5.1とされ、MoおよびWの少なくとも1つを、全陽イオンに対し、10000ppm以下のモル比で共添加したオルソシリケートを含む。
[実施の形態4]
 次に、本発明の実施の形態4に係る蛍光体について説明する。この蛍光体は、一般式CexRE2-x2+yzで表され、REは、La、Pr、Gd、Tb、Yb、YおよびLuの少なくとも1つであり、MはSi、ZrおよびHfの少なくとも1つであり、0.00001≦x≦3、-0.25≦y≦0.25、6.5≦z≦7.5とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したパイロシリケートを含む。
[実施の形態5]
 次に、本発明の実施の形態5に係る蛍光体について説明する。この蛍光体は、一般式CexRE1-xyzで表され、REは、La、Gd、YおよびLuの少なくとも1つであり、MはAl、GaおよびScの少なくとも1つであり、0.00001≦x≦2、0.9≦y≦1.1、2.85≦z≦3.15とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したペロブスカイトを含むことを特徴とする蛍光体。
 実施の形態3、4、5に係る蛍光体は、原料を1000℃以上で熱処理することで作製することができる。実施の形態3に係る蛍光体は、28000photon/MeV以上の発光量を有する。実施の形態3に係る蛍光体の原料は、Ce、RE(例えば、Lu、Gd,Y)、Si、および、MoまたはWの陽イオンを含む化合物である。
[実施の形態6]
 次に、本発明の実施の形態6に係る蛍光体について説明する。この蛍光体は、一般式La(1-y)REyzで表され、REは、Ce、Pr、Gd、Eu,Tb、Yb、YおよびLuの少なくとも1つであり、Xは、F,Cl、BrおよびIの少なくとも1つであり、0≦y≦1、2.8≦z≦3.2とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む。
 実施の形態6に係る蛍光体は、原料を400℃以上で熱処理することで作製することができる。実施の形態6に係る蛍光体は、60000photon/MeV以上の発光量を有する。実施の形態6に係る蛍光体の原料は、Ce、RE(例えば、Lu、Gd,Y)、および、MoまたはWの陽イオンを含む化合物である。
 実施の形態3、4、5、6に係る蛍光体は、例えば、γ線等の放射線や高エネルギーフォトンにより励起されて発する蛍光波長が、280~480nmである。
 ここで、Ce3+の4f5d準位からの発光を用いる蛍光体は、Mo、Wの少なくとも1つを、全陽イオンに対し、10000ppm以下のモル比で共添加することにより、共添加なしの蛍光体に対し 蛍光減衰時間がそれぞれ5%以上短寿命化し、発光量が5%以上増加する。このように、Mo、Wの少なくとも1つを共添加することで、蛍光測定のためのサンプリング時間が短くて済み、高時間分解能、すなわちサンプリング間隔の低減が期待できる。高時間分解能が実現されると、単位時間でのサンプリング数を増加させることが可能になる。また、発光強度が増加することによりエネルギー分解能が向上する。
 なお、セリウム賦活の蛍光体は、Mo、Wの少なくとも1つを、全陽イオンに対し、1ppm以上10000ppm以下のモル比、好ましくは、5ppm以上6000ppm以下のモル比、より好ましくは、10ppm以上5000ppm以下のモル比、さらにより好ましくは10ppm以上4000ppm以下で含有することが望ましい。
[実施の形態7]
 次に、本発明の実施の形態7に係る蛍光体について説明する。この蛍光体は、一般式AE(1-y)REyzで表され、AEは、Be,Mg、Ca,SrおよびBaの少なくとも1つであり、REは、Ce、Pr、Gd、Eu,Tb、Yb、YおよびLuの少なくとも1つであり、XはF,Cl、BrおよびIの少なくとも1つであり、0<y<1、1.8≦z≦2.2とされ、MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む。
 実施の形態7に係る蛍光体は、原料を400℃以上で熱処理することで作製することができる。実施の形態7に係る蛍光体は、60000photon/MeV以上の発光量を有する。実施の形態7に係る蛍光体の原料は、Eu、RE(例えば、Lu、Gd,Y)、AE(例えば、Be,Mg、Ca,Sr、Ba)、および、MoまたはWの陽イオンを含む化合物である。
 なお、ユーロピウム賦活の蛍光体は、Mo、Wの少なくとも1つを、全陽イオンに対し、1ppm以上10000ppm以下のモル比、好ましくは、5ppm以上6000ppm以下のモル比、より好ましくは、10ppm以上5000ppm以下のモル比、さらにより好ましくは10ppm以上4000ppm以下で含有することが望ましい。
 一般に、蛍光体の発光量は、電圧パルス信号の積分値と相関があり、発光強度が高くなるほど発光量が高くなり、発光の立ち上がり時間および蛍光寿命が短くなるほど発光量は低くなる。実施の形態2に係る蛍光体は、例えば、PET装置に用いる場合、既存のPET用シンチレータのLYSOより高い発光量であることが望ましく、好ましくは28000photon/MeV以上、より好ましくは36000photon/MeV以上、さらにより好ましくは42000photon/MeV以上であることが望ましい。
 このような短寿命の発光を有する、実施の形態2に係る蛍光体から成るシンチレータ結晶は、TOF-PET、PET、SPECT、CT用の高速応答の放射線検出のためのシンチレータとしての利用が期待され、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用も期待される。
 実施の形態1~5に係る蛍光体を製造する場合、出発原料として、一般的な酸化物原料が使用可能であり、実施の形態6,7に係る蛍光体を製造する場合、出発原料として、一般的なハロゲン化物原料が使用可能であるが、シンチレータ用結晶として使用する場合、99.99%以上(4N以上)の高純度原料を用いることが特に好ましい。製造の際には、これらの出発原料を、融液形成時に目的組成となるように秤量、混合したものを用いる。さらに、これらの原料は、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが特に好ましい。
 実施の形態1~5に係る蛍光体を製造する場合、結晶の育成を、不活性ガス(例えば、Ar、N2、He等)雰囲気下で行うことが好ましい。結晶の育成を実施する雰囲気は、不活性ガス(例えば、Ar、N2、Heなど)と酸素ガスや炭酸ガス、一酸化炭素ガスとの混合ガスとすることもできる。ただし、これらの混合ガスを用いて結晶の育成を行う場合、坩堝の酸化を防ぐ目的で、酸素の分圧は2%以下であることが好ましい。また、実施の形態6、7に係る蛍光体を製造する場合、結晶の育成を、酸素や水分を含まない不活性ガス(例えば、Ar、N2、He等)雰囲気下で行うことが好ましい。
 なお、結晶育成後のアニールなどの後工程においては、酸素ガス、炭酸ガス、一酸化炭素ガス、不活性ガス(例えば、Ar、N2、He等)、および不活性ガス(例えば、Ar、N2、He等)と酸素ガス、炭酸ガス、一酸化炭素ガスとの混合ガスを用いることができる。混合ガスを用いる場合、酸素分圧は2%という制限は受けず、0%から100%までいずれの混合比のものを使用することもできる。
 実施の形態1~7に係る蛍光体は、原料を1000℃以上の熱処理により製造することが望ましく、例えば、蛍光体の融点以上の熱処理を行う融液成長法であるマイクロ引き下げ法の他に、チョコラルスキー法(引き上げ法)、ブリッジマン法、帯溶融法(ゾーンメルト法)、又は縁部限定薄膜供給結晶成長(EFG法)等の液相法や、1000℃以上の熱処理により製造されるフラックス法やトップシーディッドソルーショングロース(TSSG)法等の溶液成長法、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法など、特に制限なく採用可能である。
 しかし、歩留まりを向上させ、相対的には加工ロスを軽減させる目的で、大型結晶を得るためには、チョコラルスキー法又はブリッジマン法が好ましい。また、雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法を用いる場合には、1300℃以上融点以下の温度で熱処理することがより好ましい。
 一方、シンチレータ用結晶として小型の結晶のみを使用するのであれば、後加工の必要が無いかあるいは少ないことから、ゾーンメルト法、EFG法、マイクロ引き下げ法、チョコラルスキー法といった液相法や雰囲気焼結法、反応焼結法、熱間等方加圧式焼結法等の焼結法が好ましい。
 また、これらの熱処理で使用する坩堝・アフターヒータ・ダイとしては、白金、イリジウム、ロジウム、レニウム、タングステン、モリブデンまたはこれらの合金や石英、カーボンを使用することも可能である。また、加熱には、高周波発振機のみならず、集光加熱器や抵抗加熱機を使用することが可能である。
 また、実施の形態1~5に係る蛍光体は、 蛍光寿命を、短寿命化し、長寿命の蛍光寿命成分を低減する目的のため、蛍光体を製造した後、酸素を含有する雰囲気中、アルゴン、窒素などの不活性ガス雰囲気中、アルゴン、窒素などの不活性ガスに対し酸素を含む雰囲気中、または空気中で、1000℃以上で加熱処理をすることができる。この加熱処理は、1000℃以上の温度域で8時間以上行うことが望ましく、好ましくは、1300℃以上の温度域で12時間以上の条件で加熱する。より好ましくは、1500℃以上の温度域で12間以上の加熱条件、さらにより好ましくは1600℃以上の温度域で24時間以上の加熱条件で、上述した加熱処理を行うことが望ましい。
 一般に、蛍光体の発光強度、発光量、時間分解能、エネルギー分解能を向上させるためには、機械的研磨による鏡面研磨が必要である。機械的研磨方法は、粗研磨工程、鏡面研磨工程等の複数の工程からなり、複雑である。特に多面体の複数の表面を研磨する場合には、一般に1面ずつ研磨する必要があり、非経済的であった。また、平面ではない複雑な表面を研磨することは、一般に困難であった。
 これに対し、実施の形態1~5に係る蛍光体を製造した後、オルトリン酸等のリン酸を含むエッチング液に浸すことによるエッチング処理によって、表面にエッチピットを有し、かつ垂直反射率10%以下の光沢性のない表面を有することが望ましい。なお、エッチング液は、オルトリン酸、硫酸、塩酸あるいは硝酸の少なくとも1種を混合させて用いても良い。エッチング液は、100℃以上加熱することが望ましい。このエッチング処理により、機械的研磨による鏡面研磨法に比べ、発光強度、発光量、時間分解能、エネルギー分解能を向上することができる。
 実施の形態6,7に係る蛍光体を製造した後、エタノール等の有機溶媒を含むエッチング液に浸すことによるエッチング処理によって、光沢性のある表面を有することが望ましい。なお、エッチング液は、エタノール、プロパノール、メタノール、アセトン、トルエン、キシレン、ヘキサン、酢酸エチルの少なくとも1種を混合させて用いても良い。このエッチング処理により、機械的研磨による鏡面研磨法に比べ、発光強度、発光量、時間分解能、エネルギー分解能を向上することができる。
 一般に、蛍光体の発光量は、電圧パルス信号の積分値と相関があり、発光強度が高くなるほど発光量が高くなり、発光の立ち上がり時間および蛍光寿命が短くなるほど発光量は低くなる。実施の形態3に係る蛍光体は、例えば、PET装置に用いる場合、既存のPET用シンチレータのLYSOより高い発光量であることが望ましく、好ましくは28000photon/MeV以上、より好ましくは36000photon/MeV以上、さらにより好ましくは42000photon/MeV以上であることが望ましい。
 このような短寿命の発光を有する、実施の形態3に係る蛍光体から成るシンチレータ結晶は、TOF-PET、PET、SPECT、CT用の高速応答の放射線検出のためのシンチレータとしての利用が期待され、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用も期待される。
 以下、マイクロ引き下げ法につい説明する。マイクロ引き下げ法は、公知の高周波誘導加熱による雰囲気制御型マイクロ引き下げ装置を用いて行うことができる。マイクロ引き下げ装置は、たとえば、原料融液を収容する坩堝と、坩堝底部に設けた細孔から流出する原料融液に接触させる種結晶を保持する種結晶保持具と、種結晶保持具を下方に移動させる移動機構と、移動機構の速度を制御する移動速度制御装置と、坩堝を加熱する誘導加熱手段(たとえば高周波誘導加熱コイル)とを具備した単結晶製造装置である。このような単結晶製造装置によれば、坩堝直下に固液界面を形成し、下方向に種結晶を移動させることで、単結晶を作製することができる。
 上記のマイクロ引き下げ法装置において、坩堝は、カーボン、白金、イリジウム、ロジウム、レニウム、またはこれらの合金製である。また、坩堝底部外周にカーボン、白金、イリジウム、ロジウム、レニウム、またはこれらの合金からなる発熱体であるアフターヒータが配置される。坩堝及びアフターヒータのそれぞれの誘導加熱手段の出力調整により、発熱量を調整することによって、坩堝底部に設けた細孔から引き出される原料融液の固液境界領域の温度およびその分布を制御することができる。
 上記の雰囲気制御型マイクロ引き下げ装置は、チャンバーの材質にはステンレス鋼(SUS)、窓材には石英を採用し、且つ、雰囲気制御を可能にするためのロータリーポンプを具備し、ガス置換前において、内部の真空度を1×10-3Torr以下にすることを可能にした装置である。また、チャンバーへは、付随するガスフローメータにより精密に調整された流量で、Ar、N2、H2、O2ガスなどを導入できるものである。
 この装置を用いて、上述の方法にて準備した結晶育成原料を坩堝に入れ、炉内を排気して高真空にした後、ArガスもしくはArガスとO2ガスとの混合ガスを炉内に導入することにより、炉内を不活性ガス雰囲気もしくは低酸素分圧雰囲気とする。つぎに、高周波誘導加熱コイルに高周波電力を徐々に印加することにより坩堝を加熱して原料を溶融するまで温度を上げ、坩堝内の原料を完全に融解する。なお、原料は、99.99%以上(4N以上)の高純度であり、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)のものが好ましい。
 原料を融解した後、続いて、種結晶保持具に保持された種結晶を移動機構によって所定の速度で徐々に上昇させる。そして、種結晶の先端を坩堝下端の細孔に接触させて充分になじませたら、融液温度を調整しつつ、種結晶を下降させることで冷却し、結晶を成長させる。
 種結晶としては、結晶成長対象物と同等ないしは、構造・組成ともに近いものを使用することが好ましいが、これに限定されない。また種結晶として結晶方位の明確なものを使用することが好ましい。
 準備した結晶育成原料が全て結晶化し、融液が無くなった時点で結晶成長は終了となる。一方、育成する結晶の組成を均一に保つ目的および長尺化の目的で、結晶育成原料の連続チャージ用機器を取り入れることもできる。これによって、結晶育成原料をチャージしながら結晶を育成することができる。
 以下、本発明の実施例および比較例について、説明するが、本発明はこれに限定されるわけではない。なお、以下の実施例では、Ce、Euや共添加するMoやWイオンの、特定に結晶中に係る濃度と、融液(仕込み)に係る濃度とのいずれかの記載となっているが、各実施例において、結晶中の濃度1に対して仕込み時の濃度1~100程度となるような関係があった。
 ここで、発光量の測定について説明する。発光量の測定は、図1に示す測定装置を用いた。この測定装置は、γ線を放射する線源101、光電子増倍管102、電源103、前置増幅器104、波形整形増幅器105、マルチチャンネルアナライザ106、解析部107、デジタルオシロスコープ108を備える。線源101、光電子増倍管102は、暗箱109に収容されている。
 測定においては、試料121を光電子増倍管102の受光部に固定する。線源101からγ線を試料121に照射し、この結果試料121より放射される蛍光を光電子増倍管102で受光する。蛍光を受光した光電子増倍管102より出力されたパルス信号は、前置増幅器104、波形整形増幅器105へと入力し、増幅・波形整形され、さらにマルチチャンネルアナライザ106へと入力し、解析部107によりγ線で励起されたエネルギースペクトルを取得する。得られたエネルギースペクトル中の光電吸収ピークの位置を既知の蛍光体と比較し、光電子増倍管102の波長感度をそれぞれ考慮し、発光量を最終的に算出する。
 また、線源101からγ線を試料121に照射したことによる蛍光を、光電子増倍管102で受光したことにより出力される電圧パルス信号を、デジタルオシロスコープ108で取得し、蛍光減衰成分を解析することで、各蛍光減衰成分の蛍光減衰時間、および蛍光寿命成分全体の強度に対する各蛍光減衰成分の強度の割合を算出する。
 光電子増倍管102は、浜松ホトニクス株式会社製のR7600Uである。電源103は、クリアパルス株式会社製の6662型電源である。前置増幅器104は、クリアパルス株式会社製の5607型シンチレータ用前置増幅器である。波形整形増幅器105は、クリアパルス株式会社製の4417型スペクトロスコピー・アンプである。マルチチャンネルアナライザ106は、Kromek社製のK102である。デジタルオシロスコープ108は、テクトロにクス社製のDPO2000である。なお、解析部107は、所定のプログラムにより上述した機能が実現するパーソナルコンピュータである。
 また、各実施例では、以下のようにして時間分解能を測定している。まず、各実施例による蛍光体を、φ3×3mmサイズに加工・研磨し、この蛍光体(試料)2個を、約5cmの距離を離して対向に配置されたSi-PM2個に、それぞれ光学接着剤を用いて接着し、接着面以外をフッ素樹脂テープで覆う。次に、22Naγ線源を試料2個の中心に設置し、22Naγ線源からβ線崩壊により約180°対向して同時放出される511keVのγ線を、各試料に照射する。γ線照射による各蛍光体の蛍光を、デジタルオシロスコープを用いたコインシデンス測定法で測定することにより、時間分解能を測定する。
[比較例1]
 マイクロ引き下げ法により、Ce0.15Lu2.85Al512の組成で表されるガーネット型シンチレータ単結晶(蛍光体)を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
[比較例2]
 マイクロ引き下げ法により、Ce0.152.85Al512の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり90%であった。
[比較例3]
 マイクロ引き下げ法により、Ce0.15Gd2.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
[比較例4]
 マイクロ引き下げ法により、Mgを300ppm共添加したCe0.15Gd2.85Ga3l212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
[比較例5]
 マイクロ引き下げ法により、Moを50000ppm共添加したCe0.15Gd2.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり85%であった。
[比較例6]
 マイクロ引き下げ法により、Wを50000ppm共添加したCe0.15Gd2.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり85%であった。
[比較例7]
 マイクロ引き下げ法により、Ce0.15Lu2Gd0.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり92%であった。
[比較例8]
マイクロ引き下げ法により、Ce0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり90%であった。
[比較例9]
 マイクロ引き下げ法により、Ce0.15Lu1.80.2Si1.94.8の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり90%であった。
[比較例10]
 マイクロ引き下げ法により、Ce0.15Lu1.8Gd0.2Si2.15.2の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり91%であった。
[比較例11]
 マイクロ引き下げ法により、Moを50000ppm共添加したCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり82%であった。
[比較例12]
 マイクロ引き下げ法により、Wを50000ppm共添加したCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり81%であった。
[比較例13]
 チョクラルスキー法により、共添加無しのCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、50mmの直径および100mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。仕込み原料に対する、得られた単結晶の結晶化率は70%であった。
[比較例14]
 チョクラルスキー法により、Caを500ppm共添加したCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、50mmの直径および100mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。仕込み原料に対する、得られた単結晶の結晶化率は70%であった。
[比較例15]
 ブリッジマン法により、Ce0.01La0.99Br3の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。
[比較例16]
 ブリッジマン法により、Ce0.01La0.99Cl3の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。
[比較例17]
 ブリッジマン法により、CeBr3の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。
[比較例18]
 ブリッジマン法により、Moを50000ppm共添加したCe0.01La0.99Br3の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。
[比較例19]
 ブリッジマン法により、Moを50000ppm共添加したCeBr3の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。
[比較例20]
 ブリッジマン法により、Eu0.01Sr0.992の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。
[比較例21]
 ブリッジマン法により、Moを50000ppm共添加したEu0.01Sr0.992の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。
[比較例22]
 マイクロ引き下げ法により、Ce0.02La0.48Gd1.5Si27の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、380nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり85%であった。
[比較例23]
 マイクロ引き下げ法により、Ce0.020.48Lu1.5Si27の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。380nmでの拡散透過率は1cmあたり85%であった。
[比較例24]
 マイクロ引き下げ法により、Ce0.02Lu0.180.8AlO3の組成で表されるペロブスカイト単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり85%であった。
[実施例1]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu2.85Al512の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄緑色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり91%であった。
[実施例2]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu2.85Al5.212.3の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄緑色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり92%であった。
[実施例3]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.152.85Al512の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり92%であった。
[実施例4]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.152.85Al5.212.3の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり90%であった。
[実施例5]
 マイクロ引き下げ法により、Wを3000ppm共添加したCe0.152.85Al4.811.7の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および13mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり91%であった。
[実施例6]
 マイクロ引き下げ法により、Wを3000ppm共添加したCe0.15Lu2.85l4.811.7の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および17mmの長さを有し、黄緑色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり92%であった。
[実施例7]
 マイクロ引き下げ法により、Wを3000ppm共添加したCe0.15Lu1.851l5.212.3の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および17mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり91%であった。
[実施例8]
 マイクロ引き下げ法により、Moを3000ppm共添加したCe0.151.85Lu1Al4.811.7の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および13mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、480nm付近の波長に確認された。480nmでの拡散透過率は1cmあたり91%であった。
[実施例9]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Gd2.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
[実施例10]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Gd2.85Ga3.1Al212.15の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
[実施例11]
 マイクロ引き下げ法により、Moを1000ppm共添加したCe0.15Gd2.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり91%であった。
[実施例12]
 マイクロ引き下げ法により、Moを5000ppm共添加したCe0.15Gd2.85Ga3Al2122の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり90%であった。
[実施例13]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu2Gd0.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり90%であった。
[実施例14]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu2Gd0.85Gd2.9Al211.85の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり90%であった。
[実施例15]
 マイクロ引き下げ法により、Wを300ppm共添加したCe0.15Gd2.85Ga3.1Al212.15の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、520nm付近の波長に確認された。520nmでの拡散透過率は1cmあたり92%であった。
[実施例16]
 マイクロ引き下げ法により、Wを300ppm共添加したCe0.15Lu2Gd0.85Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり90%であった。
[比較例22]
 マイクロ引き下げ法により、共添加しないCe0.151.85Gd1Ga3Al212の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり92%であった。
[実施例17]
 マイクロ引き下げ法により、Moを1000ppm共添加したCe0.151.85Gd1Ga3Al2.212.3の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり90%であった。
[実施例18]
 マイクロ引き下げ法により、W1000ppm共添加したCe0.151.85Gd1Ga4.8Al211.7の組成で表されるガーネット型シンチレータ単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、黄色透明であった。Ce3+の4f5d準位からの発光が、500nm付近の波長に確認された。500nmでの拡散透過率は1cmあたり91%であった。
[実施例19]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり91%であった。
[実施例20]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu1.80.2Si1.94.8の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり92%であった。
[実施例21]
 マイクロ引き下げ法により、Moを300ppm共添加したCe0.15Lu1.8Gd0.2Si2.15.2の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および15mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり91%であった。
[実施例22]
 マイクロ引き下げ法により、Wを1000ppm共添加したCe0.15Lu2Si1.15.2の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり92%であった。
[実施例23]
マイクロ引き下げ法により、Wを1000ppm共添加したCe0.15Lu20.2Si1.15.2の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり92%であった。
[実施例24]
マイクロ引き下げ法により、Wを1000ppm共添加したCe0.15Lu2Gd0.2Si0.954.8の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。420nmでの拡散透過率は1cmあたり92%であった。
[実施例25]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Br3.05の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり92%であった。
[実施例26]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Br3.0の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり90%であった。
[実施例27]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Br2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり93%であった。
[実施例28]
 ブリッジマン法により、Wを300ppm共添加したCe0.01La0.99Br2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり93%であった。
[実施例29]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Cl3.05の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり92%であった。
[実施例30]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Cl3.0の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり91%であった。
[実施例31]
 ブリッジマン法により、Moを300ppm共添加したCe0.01La0.99Cl2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり93%であった。
[実施例32]
 ブリッジマン法により、Wを300ppm共添加したCe0.01La0.99Cl2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり92%であった。
[実施例33]
 ブリッジマン法により、Moを300ppm共添加したCeBr3.05の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。370nmでの拡散透過率は1cmあたり93%であった。
[実施例34]
 ブリッジマン法により、Moを300ppm共添加したCeBr3.0の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。370nmでの拡散透過率は1cmあたり91%であった。
[実施例35]
 ブリッジマン法により、Moを300ppm共添加したCeBr2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。370nmでの拡散透過率は1cmあたり93%であった。
[実施例36]
 ブリッジマン法により、Wを300ppm共添加したCeBr2.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、370nm付近の波長に確認された。370nmでの拡散透過率は1cmあたり92%であった。
[実施例37]
 ブリッジマン法により、Moを300ppm共添加したEu0.01Sr0.992.05の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。430nmでの拡散透過率は1cmあたり92%であった。
[実施例38]
 ブリッジマン法により、Moを300ppm共添加したEu0.01Sr0.992の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。430nmでの拡散透過率は1cmあたり90%であった。
[実施例39]
 ブリッジマン法により、Moを300ppm共添加したEu0.01Sr0.991.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。430nmでの拡散透過率は1cmあたり92%であった。
[実施例40]
 ブリッジマン法により、Wを300ppm共添加したEu0.01Sr0.991.95の組成で表される金属ハロゲン化物結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Eu2+の4f5d準位からの発光が、430nm付近の波長に確認された。430nmでの拡散透過率は1cmあたり92%であった。
[実施例41]
 マイクロ引き下げ法により、Moを1000ppm共添加したCe0.02La0.48Gd1.5Si27の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、380nm付近の波長に確認された。380nmでの拡散透過率は1cmあたり92%であった。
[実施例42]
 マイクロ引き下げ法により、Wを1000ppm共添加したCe0.02La0.48Gd1.5Si2.057.1の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、380nm付近の波長に確認された。380nmでの拡散透過率は1cmあたり92%であった。
[実施例43]
 マイクロ引き下げ法により、Moを1000ppm共添加したCe0.020.48Lu1.5Si1.956.9の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、380nm付近の波長に確認された。380nmでの拡散透過率は1cmあたり92%であった。
[実施例44]
 マイクロ引き下げ法により、Wを1000ppm共添加したCe0.020.48Lu1.5Si27の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、380nm付近の波長に確認された。380nmでの拡散透過率は1cmあたり92%であった。
[実施例45]
 マイクロ引き下げ法により、Moを1000ppm共添加したCe0.02Lu0.180.82AlO3.06の組成で表されるペロブスカイト単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり92%であった。
[実施例46]
 マイクロ引き下げ法により、Wを1000ppm共添加したCe0.02Lu0.180.78AlO2.94の組成で表されるペロブスカイト単結晶を作製した。この単結晶は、3mmの直径および20mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、360nm付近の波長に確認された。360nmでの拡散透過率は1cmあたり92%であった。
[実施例47]
 チョクラルスキー法により、Moを5000ppm共添加したCe0.15Lu2SiO5の組成で表されるオルソシリケート単結晶を作製した。この単結晶は、50mmの直径および100mmの長さを有し、無色透明であった。Ce3+の4f5d準位からの発光が、420nm付近の波長に確認された。仕込み原料に対する、得られた単結晶の結晶化率は70%であった。
 図2は、実施例9に係る、Moを300ppm共添加したGd2.985Ce0.015Ga3l212、および、同じ組成で共添加していない比較例3の試料(結晶)を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をフッ素樹脂テープで覆い、137Csγ線を照射し、得られたエネルギースペクトルである。このスペクトルの光電吸収ピークを解析することで発光量を評価した。発光量はMoを300ppm共添加することで、共添加していない試料に対し、発光量が23%増加した。一方で、比較例4のMgを共添加した試料では、共添加していない結晶に対し、発光量が8%減少している。
 図3は、実施例9に係る、Moを300ppm共添加したGd2.985Ce0.015Ga3l212、および、同じ組成で共添加していない比較例3の試料(結晶)を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をフッ素樹脂テープで覆い、137Csγ線を照射し、デジタルオシロスコープにより得られた電圧パルス信号である。得られた電圧パルス信号を解析し、蛍光寿命を評価した。Moを300ppm添加することで、共添加していない試料に対し、蛍光寿命は64ns(共添加無し)から38ns(Mo300ppm共添加)と41%早くなり、かつ共添加無しで存在する長寿命の蛍光寿命成分が低減した。また、CuKα、40mA、40mVの条件でX線を照射し、最大発光強度と1ms後の発光強度の比較を行い、燐光成分の含有量を測定したところ1%(共添加無し)から0.08%(Mo300ppm共添加)と燐光成分が減少した。
 図4は、実施例20の、Moを300ppm共添加したCe0.15Lu1.80.2Si1.94.8、および、同じ組成で共添加していない比較例9の試料(結晶)を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をフッ素樹脂テープで覆い、137Csγ線を照射し、得られたエネルギースペクトルである。このスペクトルの光電吸収ピークを解析することで発光量を評価した。発光量はMoを300ppm共添加することで、共添加していない試料に対し、発光量が50%増加した。
 実施例1~21、実施例25~46および比較例1~12、比較例15~24で得られた試料の、発光量、蛍光寿命、時間分解能の評価結果を、表1,表2,表3,表4,表5,表6,表7,表8,表9に示す。発光量については、実施例および比較例の試料を、φ3×1mmサイズに加工・研磨した後、光学接着剤を用いて光電子増倍管に接着し、上面をフッ素樹脂テープで覆い、そこに137Cs線源からの662keVのエネルギーを有するγ線を照射し、得られたエネルギースペクトルの光電吸収ピークを解析することで評価した。
 比較例1~3、比較例7~10、比較例15~17、比較例20~24と比べて、MoやWを共添加することで、発光量が増加し、蛍光寿命が短くなり、かつ長寿命の蛍光寿命成分が低減し、時間分解能が向上していることが分かる。Ce3+が発光中心となる蛍光体では1価や2価の陽イオンを微量添加することで、発光中心となるCe3+が価数の少ない1価、2価の陽イオンとの電荷補償により、Ce4+の状態をとることでLSO,LYSOでは発光量が増加し、蛍光寿命も短寿命化し、GAGGでは、発光量が減少するが、蛍光寿命が短寿命化することが知られている。Ce4+のエネルギー準位が存在する場合、200~350nmの波長に吸収ピークが存在することが知られている。MoやWは仕込み原料では6価をとり、結晶中では3~6価の状態を取りえる。Ce3+あるいはEu2+が発光中心となるLSO,LYSO等のオルソシリケート、GAGG等のガーネット、パイロシリケート、ペロブスカイト、LaBr3,LaCl3、SrI2のシンチレータにおいてもMo、Wを共添加することで、発光量、蛍光寿命、時間分解能が改善した。MoやW共添加では、200~350nmの波長に吸収ピークの変化が無いことから、Ce4+は存在せず、シンチレータ特性改善のメカニズムは、1価、2価の陽イオン共添加のメカニズムとは異なる。酸化物、ハロゲン化物結晶では、結晶格子中の陽イオンが欠損した場合、結晶格子中の酸素欠損が誘発され、バンドギャップ内の伝導帯直下に、欠陥由来のトラップ準位が形成されることが知られている。トラップ準位の影響により、シンチレーション光が減衰し、蛍光寿命も長寿命化する。Mo、Wを共添加することで、結晶中の陽イオン欠陥を補償され、酸素欠損が低減されることで、シンチレーション特性が改善されるものと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例47、比較例12、比較例13で得られたチョクラルスキー法により作製した試料において、それぞれ結晶化率10、30、50,70%の位置から、5×5×5mmサイズの試料を切断・加工し、6面鏡面研磨を行った後、光学接着剤を用いて光電子増倍管に接着し、上面をフッ素樹脂テープで覆い、そこに137Cs線源からの662keVのエネルギーを有するγ線を照射し、得られたエネルギースペクトルの光電吸収ピークを解析することで発光量を評価し、さらに、デジタルオシロスコープにより得られた電圧パルス信号である。
 得られた電圧パルス信号を解析し、蛍光寿命を評価した。それぞれの試料に係る、結晶化率に対する発光量、蛍光寿命の測定結果を表10に示す。比較例13の共添加無しCe:LSOでは、結晶化率70%の試料において、結晶化率10%の試料に対し、発光量が12%低下し、蛍光寿命は44ns(結晶化率10%)から38ns(結晶化率70%)と14%早くなった。比較例12のCa共添加Ce:LSOでは、結晶化率70%の試料において、結晶化率10%の試料に対し、発光量が20%低下し、蛍光寿命は35ns(結晶化率10%)から28ns(結晶化率70%)と20%早くなった。
 一方で、実施例47のMo共添加Ce:LSOでは、結晶化率70%の試料において、結晶化率10%の試料に対し、発光量が低下せず、蛍光寿命は、33ns(結晶化率10%)から3130ns(結晶化率70%)と9%早くなり、共添加無し、Ca共添加の試料と比べて蛍光寿命の変化量が小さかった。発光中心元素となるCeや共添加元素であるCaは、偏析現象により、育成結晶中の結晶化率が大きくなるほど、濃度が高くなる。
 CeやCaの濃度が一定値以上高くなると、発光量が減少し、蛍光寿命が短くなることが知られている。MoおよびW共添加においても、結晶中の濃度が高くなると発光量が減少し、蛍光寿命が短くなる傾向があるが、チョクラルスキー法による結晶成長においては、酸化モリブデンが結晶育成中に蒸発することで、偏析によるMo,Wの高濃度化とMo,Wの蒸発量が近い値をとることで、結果として、結晶化率に対する発光量および蛍光寿命の変動率が低減されたものと考えられる。
Figure JPOXMLDOC01-appb-T000010
 以上に説明したように、本発明によれば、γ線、X線、α線、中性子線といった放射線検出器に好適に用いられる蛍光体の蛍光寿命を短くするとともに発光強度を大きくすることができる。
 このような短寿命の発光を有する、本発明に係る蛍光体は、TOF-PET、PET、SPECT、CT、コンプトンカメラ、ガンマカメラ用の高速応答の放射線検出のためのシンチレータとしての利用が期待され、高エネルギー物理用の各種放射線計測装置、環境放射線測定器への応用も期待される。また、本発明によれば、蛍光寿命が短くかつ発光量が大きい蛍光体を用いた放射線検出器を提供することができる。本発明によれば、γ線、X線、α線、中性子線といった放射線検出器用の蛍光体に好適であり、放射線耐久性が高く、蛍光減衰時間が短くかつ発光強度が大きい蛍光体を用いた放射線検出器を提供することができる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。なお、上述した作製した蛍光体の組成比は、化学量論組成と必ずしも一致しない。また、よく知られているように、酸化物結晶に酸素欠陥が存在することは当然であり、一般に酸化物結晶の化学式において実際の価数を記載しなくても、酸素の欠損や余剰が許容される。
 101…線源、102…光電子増倍管、103…電源、104…前置増幅器、105…波形整形増幅器、106…マルチチャンネルアナライザ、107…解析部、108…デジタルオシロスコープ、109…暗箱、121…試料。

Claims (8)

  1.  一般式CexRE3-x5+yzで表されてガーネット構造を持ち、
     前記Mは、Al、Lu、Ga、およびScの少なくとも1つであり、
     前記REは、La、Pr、Tb、Yb、Gd,Y、Luの少なくとも1つであり、
     0.0001≦x≦0.3、0≦y≦0.5あるいは-0.5≦y≦0、11.25≦z≦12.75とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加されたガーネットを含む蛍光体。
  2.  一般式CexGd3-x5+yzで表されてガーネット構造を持ち、
     前記Mは、Al、Lu、Ga、およびScの少なくとも1つであり、
     0.0001≦x≦0.3、0≦y≦0.5あるいは-0.5≦y≦0、11.25≦z≦12.75とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したガーネットを含む蛍光体。
  3.  一般式CexRE2-xSiyzで表され、
     前記REは、Lu、Y、Sc、およびGdの少なくとも1つであり、
     0.00001≦x≦0.1であり、0.95≦y≦1.05であり、4.9≦z≦5.1とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対し、10000ppm以下のモル比で共添加したオルソシリケートを含む蛍光体。
  4.  一般式CexRE2-x2+yzで表され、
     前記REは、La、Pr、Gd、Tb、Yb、YおよびLuの少なくとも1つであり、
     前記MはSi、ZrおよびHfの少なくとも1つであり、
     0.00001≦x≦3、0≦y≦0.25あるいは-0.25≦y≦0、6.5≦z≦7.5とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したパイロシリケートを含む蛍光体。
  5.  一般式La(1-y)REyzで表され、
     前記REは、Ce、Pr、Gd、Eu,Tb、Yb、YおよびLuの少なくとも1つであり、
     前記Xは、F,Cl、BrおよびIの少なくとも1つであり、
     0≦y≦1、2.8≦z≦3.2とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む蛍光体。
  6.  一般式AE(1-y)REyzで表され、
     前記AEは、Be,Mg、Ca,SrおよびBaの少なくとも1つであり、
     前記REは、Ce、Pr、Gd、Eu,Tb、Yb、およびLuの少なくとも1つであり、
     前記XはF,Cl、BrおよびIの少なくとも1つであり、
     0<y<1、1.8≦z≦2.2とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加した金属ハロゲン化物を含む蛍光体。
  7.  一般式CexRE1-xyzで表され、
     前記REは、La、Gd、YおよびLuの少なくとも1つであり、
     前記MはAl、GaおよびScの少なくとも1つであり、
     0.00001≦x≦2、0.9≦y≦1.1あるいは-0.25≦y≦0、2.85≦z≦3.15とされ、
     MoおよびWの少なくとも1つを、全陽イオンに対して10000ppm以下のモル比で共添加したペロブスカイトを含む蛍光体。
  8.  請求項1~7のいずれか1項に記載の蛍光体において、
     前記蛍光体は、単結晶とされていることを特徴とする蛍光体。
PCT/JP2019/008166 2018-03-02 2019-03-01 蛍光体 WO2019168169A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-037900 2018-03-02
JP2018037900 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019168169A1 true WO2019168169A1 (ja) 2019-09-06

Family

ID=67806184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008166 WO2019168169A1 (ja) 2018-03-02 2019-03-01 蛍光体

Country Status (1)

Country Link
WO (1) WO2019168169A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938868A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938433A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110982527A (zh) * 2019-11-01 2020-04-10 有研稀土新材料股份有限公司 稀土卤化物闪烁材料

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524163A (ja) * 1998-01-12 2001-11-27 ティーエイエスアール リミテッド シンチレーション材料およびシンチレーション導波路素子
JP2005095514A (ja) * 2003-09-26 2005-04-14 Hitachi Medical Corp 放射線検出器及びそれを用いたx線ct装置
JP2008101180A (ja) * 2006-09-20 2008-05-01 Hitachi Chem Co Ltd シンチレータ用結晶及び放射線検出器
JP2011052136A (ja) * 2009-09-02 2011-03-17 Taiheiyo Cement Corp 長残光蛍光体
WO2013005428A1 (ja) * 2011-07-04 2013-01-10 パナソニック株式会社 プラズマディスプレイパネル
CN103031127A (zh) * 2011-09-30 2013-04-10 北京有色金属研究总院 一种橙色荧光粉及其制备方法和用该荧光粉制成的电光源
WO2013118199A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 イットリウムアルミニウムガーネットタイプの蛍光体
WO2013118200A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 発光装置
JP2013231150A (ja) * 2012-05-01 2013-11-14 National Institute For Materials Science シンチレータ材料及びx線検出器
KR20150088668A (ko) * 2014-01-24 2015-08-03 희성금속 주식회사 산질화물계 황색 형광체 및 이를 포함하는 발광장치
JP2016056030A (ja) * 2014-09-05 2016-04-21 ユニオンマテリアル株式会社 EuドープSrI2単結晶及び放射線検出器
WO2016190439A1 (ja) * 2015-05-27 2016-12-01 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP2017036160A (ja) * 2015-08-06 2017-02-16 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
WO2017059832A1 (en) * 2015-10-09 2017-04-13 Crytur, Spol.S R.O. Manner of shortening scintillation response of luminescence centres and material of scintillator with shortened scintillation response
WO2017156143A1 (en) * 2016-03-08 2017-09-14 Lawrence Livermore National Security Transparent ceramic garnet scintillator detector for positron emission tomography

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524163A (ja) * 1998-01-12 2001-11-27 ティーエイエスアール リミテッド シンチレーション材料およびシンチレーション導波路素子
JP2005095514A (ja) * 2003-09-26 2005-04-14 Hitachi Medical Corp 放射線検出器及びそれを用いたx線ct装置
JP2008101180A (ja) * 2006-09-20 2008-05-01 Hitachi Chem Co Ltd シンチレータ用結晶及び放射線検出器
JP2011052136A (ja) * 2009-09-02 2011-03-17 Taiheiyo Cement Corp 長残光蛍光体
WO2013005428A1 (ja) * 2011-07-04 2013-01-10 パナソニック株式会社 プラズマディスプレイパネル
CN103031127A (zh) * 2011-09-30 2013-04-10 北京有色金属研究总院 一种橙色荧光粉及其制备方法和用该荧光粉制成的电光源
WO2013118199A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 イットリウムアルミニウムガーネットタイプの蛍光体
WO2013118200A1 (ja) * 2012-02-08 2013-08-15 パナソニック株式会社 発光装置
JP2013231150A (ja) * 2012-05-01 2013-11-14 National Institute For Materials Science シンチレータ材料及びx線検出器
KR20150088668A (ko) * 2014-01-24 2015-08-03 희성금속 주식회사 산질화물계 황색 형광체 및 이를 포함하는 발광장치
JP2016056030A (ja) * 2014-09-05 2016-04-21 ユニオンマテリアル株式会社 EuドープSrI2単結晶及び放射線検出器
WO2016190439A1 (ja) * 2015-05-27 2016-12-01 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP2017036160A (ja) * 2015-08-06 2017-02-16 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
WO2017059832A1 (en) * 2015-10-09 2017-04-13 Crytur, Spol.S R.O. Manner of shortening scintillation response of luminescence centres and material of scintillator with shortened scintillation response
WO2017156143A1 (en) * 2016-03-08 2017-09-14 Lawrence Livermore National Security Transparent ceramic garnet scintillator detector for positron emission tomography

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938868A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938433A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110982527A (zh) * 2019-11-01 2020-04-10 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
WO2021083317A1 (zh) * 2019-11-01 2021-05-06 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
WO2021083316A1 (zh) * 2019-11-01 2021-05-06 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110982527B (zh) * 2019-11-01 2021-12-14 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938868B (zh) * 2019-11-01 2022-02-22 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938433B (zh) * 2019-11-01 2022-03-08 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
JP2022525604A (ja) * 2019-11-01 2022-05-18 有研稀土新材料股▲フン▼有限公司 希土類ハロゲン化物シンチレーション材料
JP2022525603A (ja) * 2019-11-01 2022-05-18 有研稀土新材料股▲フン▼有限公司 希土類ハロゲン化物シンチレーション材料
US20220372368A1 (en) * 2019-11-01 2022-11-24 Grirem Advanced Materials Co., Ltd. Rare earth halide scintillation material
US11685860B2 (en) 2019-11-01 2023-06-27 Grirem Advanced Materials Co., Ltd. Rare earth halide scintillation material
JP7351924B2 (ja) 2019-11-01 2023-09-27 有研稀土新材料股▲フン▼有限公司 希土類ハロゲン化物シンチレーション材料
JP7351923B2 (ja) 2019-11-01 2023-09-27 有研稀土新材料股▲フン▼有限公司 希土類ハロゲン化物シンチレーション材料

Similar Documents

Publication Publication Date Title
JP5389328B2 (ja) Prを含むシンチレータ用単結晶及びその製造方法並びに放射線検出器及び検査装置
EP3138891B1 (en) Illuminant and radiation detector
JP5952746B2 (ja) シンチレータ用ガーネット型単結晶、及びこれを用いた放射線検出器
JP5674385B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
Shah et al. LuI/sub 3: Ce-a new scintillator for gamma ray spectroscopy
JP2012180399A (ja) シンチレータ用ガーネット型結晶、及び、これを用いる放射線検出器
JP5548629B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
WO2019168169A1 (ja) 蛍光体
JP2013002882A (ja) 放射線検出器
JP6078223B2 (ja) シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器
CN113529168A (zh) 一种Li+掺杂零维钙钛矿结构金属卤化物闪烁晶体及其制备方法与应用
JP4702767B2 (ja) 放射線検出用Lu3Al5O12結晶材料の製造方法及び放射線検出用(ZxLu1−x)3Al5O12結晶材料の製造方法
JP2011026547A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
JP2017036160A (ja) 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
US7060982B2 (en) Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
JP2013043960A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP6188024B2 (ja) 発光体及び放射線検出器
JP2017066245A (ja) シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
JP2016056378A (ja) シンチレータ用単結晶、シンチレータ用単結晶を製造するための熱処理方法、及びシンチレータ用単結晶の製造方法
Fawad et al. Czochralski growth and scintillation properties of Li6LuxY1− x (BO3) 3: Ce3+ single crystals
JP4905756B2 (ja) 放射線検出用フッ化物単結晶及びシンチレータ並びに放射線検出器
JP2013040274A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
CN110760307A (zh) 一种稀土掺杂石榴石结构闪烁体
JP2018070769A (ja) シンチレータ結晶、シンチレータ結晶を製造するための熱処理方法、及びシンチレータ結晶の製造方法
JP5317952B2 (ja) フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP