WO2021083316A1 - 稀土卤化物闪烁材料 - Google Patents

稀土卤化物闪烁材料 Download PDF

Info

Publication number
WO2021083316A1
WO2021083316A1 PCT/CN2020/125172 CN2020125172W WO2021083316A1 WO 2021083316 A1 WO2021083316 A1 WO 2021083316A1 CN 2020125172 W CN2020125172 W CN 2020125172W WO 2021083316 A1 WO2021083316 A1 WO 2021083316A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth halide
present
scintillation
scintillation material
Prior art date
Application number
PCT/CN2020/125172
Other languages
English (en)
French (fr)
Inventor
余金秋
罗亮
刁成鹏
崔磊
吴浩
何华强
Original Assignee
有研稀土新材料股份有限公司
有研稀土高技术有限公司
河北雄安稀土功能材料创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司, 有研稀土高技术有限公司, 河北雄安稀土功能材料创新中心有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to US17/441,927 priority Critical patent/US20220372368A1/en
Priority to JP2021555345A priority patent/JP7351923B2/ja
Publication of WO2021083316A1 publication Critical patent/WO2021083316A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only

Definitions

  • the invention relates to the field of inorganic scintillation materials, in particular to a rare earth halide scintillation material.
  • Scintillation materials can be used for the detection of high-energy rays such as alpha rays, gamma rays, X-rays, and high-energy particles such as neutrons, and are widely used in nuclear medicine, high-energy physics, safety inspection, oil logging and other fields.
  • high-energy rays such as alpha rays, gamma rays, X-rays, and high-energy particles such as neutrons
  • Scintillation materials are usually applied in the form of single crystals, and in some cases can also be ceramics or other forms.
  • the scintillating material has the highest possible light yield, the shortest decay time and the highest possible energy resolution.
  • nuclear medicine imaging devices such as positron emission tomography (PET)
  • PET positron emission tomography
  • the LaBr 3 Ce crystal published by EVDvan Loef et al. in 2001 has high light output (>60000ph/MeV), short decay time ( ⁇ 30ns) and high energy resolution (about 3%@662keV) ), is a scintillating material with excellent performance.
  • the luminescence center of LaBr 3 :Ce crystal is Ce 3+ .
  • alkaline earth metal ions are used for doping, which can further improve the energy resolution and linearity of energy response of LaBr 3 :Ce crystals.
  • this method has also been used to improve the performance of Ce 3+ activated lutetium silicate and yttrium lutetium silicate crystals.
  • alkaline earth metal ion is a heterogeneous impurity after all, and there is a difference in radius and valence with rare earth ions. This doping is easy to cause crystal growth defects, and will cause the doping concentration of alkaline earth metal ions in different parts of the crystal due to segregation. Inconsistent, which in turn affects the uniformity of crystal performance.
  • the purpose of the present invention is to further improve the performance of the LaBr 3 :Ce scintillating material through composition control, thereby obtaining a new material with better comprehensive performance, and applying the new material in different scenarios.
  • the first aspect of the present invention provides a rare earth halide scintillation material
  • the chemical formula of the rare earth halide scintillation material is La 1-x Ce x Br 3+y , where 0.001 ⁇ x ⁇ 1, 0.0001 ⁇ y ⁇ 0.1.
  • the rare earth halide scintillation material contains both Ce 3+ and Ce 4+ .
  • the rare earth halide scintillation material is a single crystal.
  • the rare earth halide scintillation material is obtained by growing by the Bridgman method.
  • the second aspect of the present invention provides a scintillation detector including the rare earth halide scintillation material as described above.
  • the third aspect of the present invention provides a positron emission tomography imager, including the scintillation detector as described above.
  • the fourth aspect of the present invention provides a gamma spectrometer including the scintillation detector as described above.
  • the fifth aspect of the present invention provides a petroleum logging tool, which includes the scintillation detector as described above.
  • the sixth aspect of the present invention provides a lithology scanning imager, including the scintillation detector as described above.
  • the rare earth halide scintillation material obtained by the present invention has excellent scintillation performance, the overall performance is significantly better than that of conventional undoped lanthanum bromide crystals, and the crystal uniformity is obvious It is superior to lanthanum bromide crystals doped with alkaline earth metal ions, and the yield of crystal growth is significantly improved.
  • the first aspect of the present invention provides a rare earth halide scintillation material.
  • the chemical composition of the rare earth halide scintillation material has the following general formula: the chemical general formula of the material is La 1-x Ce x Br 3+y , where 0.001 ⁇ x ⁇ 1 and 0.0001 ⁇ y ⁇ 0.1.
  • 0.005 ⁇ x ⁇ 0.1, 0.001 ⁇ y ⁇ 0.05, and more preferably, x 1, 0.001 ⁇ y ⁇ 0.05.
  • the above-mentioned rare earth halide scintillation material may be powder, ceramic or single crystal, but is preferably applied in the form of a single crystal, and the single crystal can be obtained by growing by the Bridgman method.
  • the rare earth halide scintillation material provided by the present invention contains both Ce 3+ and Ce 4+ , and the apparent valence of Ce ions is between +3 and +4.
  • the present invention regulates the content of Ce 4+ by adjusting the ratio of rare earth ions and halogen ions, thereby realizing the improvement of the performance of the rare earth halide scintillation material.
  • the present invention can further improve the doping modification scheme of LaBr 3 :Ce, and solve the problem that the existing doping scheme is easy to induce growth defects and the consistency of crystal scintillation performance caused by the heterogeneity of alkaline earth metal ions doped in LaBr 3 :Ce crystals.
  • the halide ion in LaBr 3 : Ce is excessive, deviating from its stoichiometric ratio of 3:1 with rare earth ions, inducing part of Ce 3+ to be converted into Ce 4+ based on charge balance, thereby improving the crystal performance
  • the embodiment of the present invention adopts the following method to obtain the rare earth halide scintillating material with the general chemical formula La 1-x Ce x Br 3+y.
  • LaBr 3 Ce crystals with anhydrous LaBr 3, CeBr 3 material is heated in an environment containing a vapor of Br 2, Br 2 can absorb a small amount of raw material vapor so that the rare earth ion is Br molar ratio of greater than 3:1 stoichiometric ratio.
  • Br 2 By controlling the Br 2 vapor concentration and heating time, raw materials of lanthanum bromide and cerium bromide with different Br surpluses can be obtained.
  • the rare earth halide scintillation material with the general formula La 1-x Ce x Br 3+y involved in the present invention can be obtained.
  • the rare earth halide scintillation material obtained in the present invention has excellent scintillation performance, the overall performance is significantly better than that of conventional undoped lanthanum bromide crystals, and the crystal uniformity is significantly better than that of alkaline earth metal ions. With doped lanthanum bromide crystals, the yield of crystal growth is significantly improved.
  • the technical idea of the present invention is applied to other Ce-activated rare earth halide scintillating materials, and it is found that all have good implementation effects.
  • the margin y of Br ions in the present invention is limited to a relatively small range.
  • the value range of the excess Br ion is 0.0001 ⁇ y ⁇ 0.1, and the preferred range is 0.001 ⁇ y ⁇ 0.05.
  • the crystals are colorless or light yellow and have excellent scintillation properties. The excessively high Br ion surplus will cause the crystal to appear more obvious yellow, and cause problems such as decreased light yield, poor energy resolution, and prolonged decay time.
  • the present invention also relates to a scintillation detector containing the above-mentioned rare earth halide scintillation material, and a positron emission tomography scanner, a gamma spectrometer, a petroleum logging tool or a lithology scanning imager containing the scintillation detector.
  • Comparative Example 1 In a glove box with Ar accurately weighed 119.89g anhydrous LaBr 3 (99.99%) and 6.33g of anhydrous CeBr 3 (99.99%), mixed uniformly charged with a diameter of 25mm quartz crucible. Take the quartz crucible out of the glove box and quickly connect it to the vacuum system for vacuuming. When the vacuum reaches 1 ⁇ 10 -3 Pa, the crucible is melted and sealed. The crucible was placed in a Bridgman crystal furnace for single crystal growth. The temperature in the high temperature zone is 850°C, the temperature in the low temperature zone is 700°C, the temperature gradient in the gradient zone is about 10°C/cm, the crucible falling rate is 0.5-2mm/h, and the total growth time is about 15 days. The resulting crystals are transparent and colorless, with a length of about 5 cm. The crystal was cut and processed into a cylindrical sample of ⁇ 25mm ⁇ 25mm in a glove box, and the light yield, decay time, energy resolution test and crystal composition analysis were performed.
  • Comparative Example 2 In a glove box with Ar accurately weighed 119.89g anhydrous LaBr 3 (99.99%), 6.33g anhydrous CeBr 3 (99.99%) and 0.041g of anhydrous SrBr 2 (99.99%), mixed uniformly loaded Put it into a quartz crucible with a diameter of 25mm. The rest of the operations are the same as in Comparative Example 1.
  • Example 1 accurately weigh 119.89 g of anhydrous LaBr 3 (99.99%) and 6.46 g of anhydrous CeBr 3.1 (99.99%) in an Ar-filled glove box, mix them evenly, and put them into a quartz crucible with a diameter of 25 mm. The rest of the operations are the same as in Comparative Example 1.
  • the present invention provides a rare earth halide scintillating material, the chemical formula of the material is La 1-x Ce x Br 3+y , where 0.001 ⁇ x ⁇ 1 and 0.0001 ⁇ y ⁇ 0.1.
  • the rare earth halide scintillation material obtained by the present invention has excellent scintillation performance, the overall performance is significantly better than that of conventional undoped lanthanum bromide crystals, and the crystal uniformity is significantly better than that of alkaline earth metal ion doped lanthanum bromide crystals. At the same time, the yield of crystal growth is significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种稀土卤化物闪烁材料,该材料的化学通式为La 1-xCe xBr 3+y,其中0.001≤x≤1,0.0001≤y≤0.1。本发明所涉及的稀土卤化物闪烁材料具有高光输出、高能量分辨率、快衰减等优异的闪烁性能。

Description

稀土卤化物闪烁材料 技术领域
本发明涉及无机闪烁材料领域,尤其涉及一种稀土卤化物闪烁材料。
背景技术
闪烁材料可用于α射线、γ射线、X射线等高能射线以及中子等高能粒子的探测,在核医学、高能物理、安全检查、石油测井等领域均有广泛应用。
闪烁材料通常以单晶体的形式应用,在部分情况下也可以是陶瓷或其他形式。
不同的应用领域对闪烁材料的性能要求不尽相同。但对大多数应用领域而言,都希望闪烁材料具有尽量高的光产额、尽量短的衰减时间和尽量高的能量分辨率。特别是对于正电子发射断层扫描仪(positron emission tomography,PET)之类的核医学成像装置而言,这些参数对成像质量至关重要。
E.V.D.van Loef等人于2001年公开的LaBr 3:Ce晶体,具有很高的光输出(>60000ph/MeV)、很短的衰减时间(<30ns)和很高的能量分辨率(约3%@662keV),是一种性能极为优异的闪烁材料。
LaBr 3:Ce晶体的发光中心为Ce 3+。现有技术采用碱土金属离子进行掺杂,可以进一步改善LaBr 3:Ce晶体的能量分辨率和能量响应线性等性能。事实上,该方法也被用于改善Ce 3+激活的硅酸镥和硅酸钇镥等晶体的性能。但碱土金属离子毕竟是一种异质杂质,与稀土离子存在半径和价态差异,这种掺杂易于引发晶体生长缺陷,且会因分凝现象而造成晶体不同部位碱 土金属离子的掺杂浓度不一致,进而影响晶体性能的均匀性。
发明内容
本发明的目的在于通过成分调控,进一步提升LaBr 3:Ce闪烁材料的性能,从而获得综合性能更为优异的新材料,并依据该新材料进行不同场景的应用。
为达到上述目的,本发明的第一方面提供了一种稀土卤化物闪烁材料,该稀土卤化物闪烁材料的化学通式为La 1-xCe xBr 3+y,其中0.001≤x≤1,0.0001≤y≤0.1。
进一步的,0.005≤x≤0.1,0.001≤y≤0.05。
进一步的,x=1,0.001≤y≤0.05。
进一步的,所述稀土卤化物闪烁材料中同时含有Ce 3+和Ce 4+
进一步的,所述稀土卤化物闪烁材料为单晶体。
进一步的,所述稀土卤化物闪烁材料采用布里奇曼法生长获得。
本发明的第二方面提供了一种闪烁探测器,包括如前所述的稀土卤化物闪烁材料。
本发明的第三方面提供了一种正电子发射断层扫描成像仪,包括如前所述的闪烁探测器。
本发明的第四方面提供了一种伽马能谱仪,包括如前所述的闪烁探测器。
本发明的第五方面提供了一种石油测井仪,包括如前所述的闪烁探测器。
本发明的第六方面提供了一种岩性扫描成像仪,包括如前所述的闪烁探测器。
本发明的上述技术方案具有如下有益的技术效果:本发明所获得的稀土卤化物闪烁材料具有极佳的闪烁性能,综合性能明显优于常规的不掺杂溴化镧晶体,晶体均匀性则明显优于碱土金属离子掺杂的溴化镧晶体,同 时晶体生长的成品率明显提高。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明的第一方面提供了一种稀土卤化物闪烁材料。该稀土卤化物闪烁材料的化学组成具有如下通式:该材料的化学通式为La 1-xCe xBr 3+y,其中0.001≤x≤1,0.0001≤y≤0.1。
进一步的,0.005≤x≤0.1,0.001≤y≤0.05,进一步优选的,x=1,0.001≤y≤0.05。
上述稀土卤化物闪烁材料可以是粉末、陶瓷或单晶,但优选以单晶形态应用,单晶体可采用布里奇曼法生长获得。
本发明的一个显著特征在于,本发明提供的稀土卤化物闪烁材料既含有Ce 3+,也含有Ce 4+,Ce离子的表观价态介于+3价和+4价之间。本发明正是通过调整稀土离子与卤素离子的比例,调控Ce 4+的含量,从而实现对稀土卤化物闪烁材料的性能提升。
本发明能够进一步改进LaBr 3:Ce的掺杂改性方案,解决现有掺杂方案在LaBr 3:Ce晶体中掺杂碱土金属离子异质所带来的易于引发生长缺陷和晶体闪烁性能一致性欠佳的问题。本发明实施例中使LaBr 3:Ce中的卤素离子过量,偏离其与稀土离子3:1的化学计量比,诱发部分Ce 3+基于电荷平衡而转化成Ce 4+,从而起到改善晶体性能均匀性的效果,并有效避免因异质掺杂而带来的引发生长缺陷和分凝不均等问题。
本发明实施例采用如下的方法以获得化学通式为La 1-xCe xBr 3+y的稀土卤化物闪烁材料。
方法之一:将生长LaBr 3:Ce晶体所用的无水LaBr 3、CeBr 3原料在含有 Br 2蒸气的环境中加热,其可以吸收少量Br 2蒸气而使得原料中Br与稀土离子的摩尔比大于3:1的化学计量比。通过控制Br 2蒸气浓度和加热时间,可以获得不同Br富余量的溴化镧、溴化铈原料。采用这种富Br的溴化镧、溴化铈原料进行单晶生长,即可获得本发明所涉及的通式为La 1-xCe xBr 3+y的稀土卤化物闪烁材料。
方法之二:先采用化学计量比的LaBr 3、CeBr 3原料生长获得符合化学计量比的LaBr 3:Ce晶体,再将晶体在含有部分Br 2蒸气的干燥惰性气体如Ar气中进行退火处理,从而使LaBr 3:Ce晶体中的Br超出化学计量比,获得本发明所涉及的通式为La 1-xCe xBr 3+y的稀土卤化物闪烁材料。
根据本发明的一个实施例,本发明所获得的稀土卤化物闪烁材料具有极佳的闪烁性能,综合性能明显优于常规的不掺杂溴化镧晶体,晶体均匀性则明显优于碱土金属离子掺杂的溴化镧晶体,同时晶体生长的成品率明显提高。
将本发明的技术思路应用到其它的Ce激活稀土卤化物闪烁材料中,发现也都具有良好的实施效果。
需要说明的是,本发明中Br离子的富余量y仅限于一个较小的范围。本发明中,Br离子富余量的取值范围是0.0001≤y≤0.1,优选的范围是0.001≤y≤0.05。在本发明的范围内,晶体呈现无色或淡黄色,具有优异的闪烁性能。而过高的Br离子富余量将导致晶体呈现较明显的黄色,并引起光产额下降、能量分辨率变差、衰减时间延长等问题。
本发明同样涉及包含上述稀土卤化物闪烁材料的闪烁探测器,以及包含该闪烁探测器的正电子发射断层扫描仪、伽马能谱仪、石油测井仪或岩性扫描成像仪。
下面将结合具体的实施例进一步说明本发明的有益效果。
对比例1:在充Ar手套箱中准确称取119.89g无水LaBr 3(99.99%)和6.33g无水CeBr 3(99.99%),混合均匀后装入直径25mm的石英坩埚中。将石英坩埚从手套箱中取出后迅速接入真空系统抽真空,当真空度达到1 ×10 -3Pa时烧熔封口。将坩埚置于布里奇曼晶体炉中进行单晶生长。高温区温度为850℃,低温区温度为700℃,梯度区温度梯度约10℃/cm,坩埚下降速率为0.5-2mm/h,总的生长时间约15天。所得晶体透明无色,长度约5cm。将晶体在手套箱中切割加工成Φ25mm×25mm的圆柱状样品,进行光产额、衰减时间、能量分辨率测试及晶体成分分析。
对比例2:在充Ar手套箱中准确称取119.89g无水LaBr 3(99.99%)、6.33g无水CeBr 3(99.99%)和0.041g无水SrBr 2(99.99%),混合均匀后装入直径25mm的石英坩埚中。其余操作均与对比例1相同。
实施例1:在充Ar手套箱中准确称取119.89g无水LaBr 3(99.99%)和6.46g无水CeBr 3.1(99.99%),混合均匀后装入直径25mm的石英坩埚中。其余操作均与对比例1相同。
实施例2-7除原料配比不同外,其余操作均与实施例1相同。
所有实施例的详细对比情况见表1。
表1
Figure PCTCN2020125172-appb-000001
综上所述,本发明提供了一种稀土卤化物闪烁材料,该材料的化学通 式为La 1-xCe xBr 3+y,其中0.001≤x≤1,0.0001≤y≤0.1。本发明所获得的稀土卤化物闪烁材料具有极佳的闪烁性能,综合性能明显优于常规的不掺杂溴化镧晶体,晶体均匀性则明显优于碱土金属离子掺杂的溴化镧晶体,同时晶体生长的成品率明显提高。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

  1. 一种稀土卤化物闪烁材料,其特征在于,该稀土卤化物闪烁材料的化学通式为La 1-xCe xBr 3+y,其中0.001≤x≤1,0.0001≤y≤0.1。
  2. 如权利要求1所述的稀土卤化物闪烁材料,其特征在于,0.005≤x≤0.1,0.001≤y≤0.05。
  3. 如权利要求1或2所述的稀土卤化物闪烁材料,其特征在于,x=1,0.001≤y≤0.05。
  4. 如权利要求1-3任一项所述的稀土卤化物闪烁材料,其特征在于,所述稀土卤化物闪烁材料中同时含有Ce 3+和Ce 4+
  5. 如权利要求1-4任一项所述的稀土卤化物闪烁材料,其特征在于,所述稀土卤化物闪烁材料为单晶体。
  6. 如权利要求1-5任一项所述的稀土卤化物闪烁材料,其特征在于,所述稀土卤化物闪烁材料采用布里奇曼法生长获得。
  7. 一种闪烁探测器,其特征在于,包括权利要求1-6任一项所述的稀土卤化物闪烁材料。
  8. 一种正电子发射断层扫描成像仪,其特征在于,包括权利要求7所述的闪烁探测器。
  9. 一种伽马能谱仪,其特征在于,包括权利要求7所述的闪烁探测器。
  10. 一种石油测井仪或岩性扫描成像仪,其特征在于,包括权利要求7所述的闪烁探测器。
PCT/CN2020/125172 2019-11-01 2020-10-30 稀土卤化物闪烁材料 WO2021083316A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/441,927 US20220372368A1 (en) 2019-11-01 2020-10-30 Rare earth halide scintillation material
JP2021555345A JP7351923B2 (ja) 2019-11-01 2020-10-30 希土類ハロゲン化物シンチレーション材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911058510.3 2019-11-01
CN201911058510.3A CN110938868B (zh) 2019-11-01 2019-11-01 稀土卤化物闪烁材料

Publications (1)

Publication Number Publication Date
WO2021083316A1 true WO2021083316A1 (zh) 2021-05-06

Family

ID=69906380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125172 WO2021083316A1 (zh) 2019-11-01 2020-10-30 稀土卤化物闪烁材料

Country Status (4)

Country Link
US (1) US20220372368A1 (zh)
JP (1) JP7351923B2 (zh)
CN (1) CN110938868B (zh)
WO (1) WO2021083316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938868B (zh) * 2019-11-01 2022-02-22 有研稀土新材料股份有限公司 稀土卤化物闪烁材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285559A (ja) * 2009-06-12 2010-12-24 Hitachi Chem Co Ltd シンチレータ用結晶及び放射線検出器
JP2011225742A (ja) * 2010-04-21 2011-11-10 Hitachi Chem Co Ltd 原料精製装置およびシンチレータ用単結晶の製造方法
CN102560647A (zh) * 2012-02-08 2012-07-11 中国科学院福建物质结构研究所 制备掺铈溴化镧闪烁晶体的坩埚下降法
CN103695002A (zh) * 2013-12-26 2014-04-02 有研稀土新材料股份有限公司 无机闪烁材料
CN109988577A (zh) * 2017-12-27 2019-07-09 有研稀土新材料股份有限公司 稀土卤化物闪烁材料及其应用
WO2019168169A1 (ja) * 2018-03-02 2019-09-06 国立大学法人東北大学 蛍光体
CN110938868A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938433A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110982527A (zh) * 2019-11-01 2020-04-10 有研稀土新材料股份有限公司 稀土卤化物闪烁材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405404B1 (en) * 2004-09-23 2008-07-29 Radiation Monitoring Devices, Inc. CeBr3 scintillator
CN102534775B (zh) * 2012-03-12 2015-06-17 中国科学院福建物质结构研究所 采用异相籽晶生长掺铈溴化镧闪烁晶体的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285559A (ja) * 2009-06-12 2010-12-24 Hitachi Chem Co Ltd シンチレータ用結晶及び放射線検出器
JP2011225742A (ja) * 2010-04-21 2011-11-10 Hitachi Chem Co Ltd 原料精製装置およびシンチレータ用単結晶の製造方法
CN102560647A (zh) * 2012-02-08 2012-07-11 中国科学院福建物质结构研究所 制备掺铈溴化镧闪烁晶体的坩埚下降法
CN103695002A (zh) * 2013-12-26 2014-04-02 有研稀土新材料股份有限公司 无机闪烁材料
CN109988577A (zh) * 2017-12-27 2019-07-09 有研稀土新材料股份有限公司 稀土卤化物闪烁材料及其应用
WO2019168169A1 (ja) * 2018-03-02 2019-09-06 国立大学法人東北大学 蛍光体
CN110938868A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110938433A (zh) * 2019-11-01 2020-03-31 有研稀土新材料股份有限公司 稀土卤化物闪烁材料
CN110982527A (zh) * 2019-11-01 2020-04-10 有研稀土新材料股份有限公司 稀土卤化物闪烁材料

Also Published As

Publication number Publication date
CN110938868A (zh) 2020-03-31
US20220372368A1 (en) 2022-11-24
JP7351923B2 (ja) 2023-09-27
CN110938868B (zh) 2022-02-22
JP2022525603A (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
Nikl et al. Defect engineering in Ce-doped aluminum garnet single crystal scintillators
US20140061537A1 (en) Multi-doped lutetium based oxyorthosilicate scintillators having improved photonic properties
Kamada et al. Large Size Czochralski Growth and Scintillation Properties of $\text {Mg}^{2+} $ Co-doped $\text {Ce}:\text {Gd} _ {3}\text {Ga} _ {3}\text {Al} _ {2}\text {O} _ {12} $
CN110938433B (zh) 稀土卤化物闪烁材料
JP7351924B2 (ja) 希土類ハロゲン化物シンチレーション材料
Petrosyan et al. A study of radiation effects on LuAG: Ce (Pr) co-activated with Ca
CN109988577B (zh) 稀土卤化物闪烁材料及其应用
Lindsey et al. Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method
WO2021083316A1 (zh) 稀土卤化物闪烁材料
WO2016158495A1 (ja) シンチレータ
CN106149054A (zh) 掺铈铝酸钆钇石榴石高温闪烁晶体及其制备方法
Wen et al. Scintillator‐oriented near‐infrared emitting Cs4SrI6: Yb2+, Sm2+ single crystals via sensitization strategy
Kodama et al. Growth and Luminescent Properties of Cs 2 HfCl 6 Scintillators Doped With Alkaline Earth Metals
CN115216840B (zh) 离子补偿法制备锂铊共掺杂碘化钠闪烁晶体的方法
CN115368897A (zh) 一种钾冰晶石型稀土闪烁材料
Sarukura et al. Czochralski growth of oxides and fluorides
CN103695002B (zh) 无机闪烁材料
JP7178043B2 (ja) Lso系シンチレータ結晶
WO2023238795A1 (ja) 結晶材料、シンチレータ、および放射線検出器
WO2021132494A1 (ja) シンチレータおよび放射線検出器
WO2021149670A1 (ja) シンチレータおよび放射線検出器
JP2018070769A (ja) シンチレータ結晶、シンチレータ結晶を製造するための熱処理方法、及びシンチレータ結晶の製造方法
CN105778900A (zh) 无机闪烁材料
Gao et al. Effects of rare earth codoping on the optical and scintillation properties of Cs3Cu2I5: Tl single crystals
CN115322784A (zh) 一种八面体格位掺杂改善铝镓酸钆闪烁材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882842

Country of ref document: EP

Kind code of ref document: A1