WO2016190439A1 - 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 - Google Patents
結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 Download PDFInfo
- Publication number
- WO2016190439A1 WO2016190439A1 PCT/JP2016/065837 JP2016065837W WO2016190439A1 WO 2016190439 A1 WO2016190439 A1 WO 2016190439A1 JP 2016065837 W JP2016065837 W JP 2016065837W WO 2016190439 A1 WO2016190439 A1 WO 2016190439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- material according
- wavelength
- scintillation light
- scintillator
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 184
- 239000000463 material Substances 0.000 title claims abstract description 46
- 230000005855 radiation Effects 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000003384 imaging method Methods 0.000 title claims description 18
- 238000007689 inspection Methods 0.000 title claims description 9
- 230000001066 destructive effect Effects 0.000 title 1
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 13
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 13
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 12
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 12
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 9
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 9
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 238000002844 melting Methods 0.000 claims abstract description 5
- 230000008018 melting Effects 0.000 claims abstract description 5
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 5
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 5
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims description 17
- 239000002178 crystalline material Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000002425 crystallisation Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 9
- 230000035945 sensitivity Effects 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910052715 tantalum Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 51
- 230000000052 comparative effect Effects 0.000 description 17
- 239000007789 gas Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 239000000155 melt Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 238000002600 positron emission tomography Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- RFVFQQWKPSOBED-PSXMRANNSA-N 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCC RFVFQQWKPSOBED-PSXMRANNSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000002603 single-photon emission computed tomography Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005251 gamma ray Effects 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052702 rhenium Inorganic materials 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005231 Edge Defined Film Fed Growth Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005260 alpha ray Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001857 fluorescence decay curve Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005258 radioactive decay Effects 0.000 description 1
- 238000005395 radioluminescence Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/77742—Silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4216—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using storage phosphor screens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4258—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/206—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
- C01F17/241—Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0838—Aluminates; Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7706—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
- C09K11/7721—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7734—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7792—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/04—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
- C30B11/08—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
- C30B11/10—Solid or liquid components, e.g. Verneuil method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/08—Downward pulling
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/34—Edge-defined film-fed crystal-growth using dies or slits
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/04—Production of homogeneous polycrystalline material with defined structure from liquids
- C30B28/06—Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/04—Production of homogeneous polycrystalline material with defined structure from liquids
- C30B28/08—Production of homogeneous polycrystalline material with defined structure from liquids by zone-melting
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/04—Production of homogeneous polycrystalline material with defined structure from liquids
- C30B28/10—Production of homogeneous polycrystalline material with defined structure from liquids by pulling from a melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/34—Silicates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/1611—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially
- G01T1/1612—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/1615—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources simultaneously
- G01T1/1617—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources simultaneously with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2006—Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2018—Scintillation-photodiode combinations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
- G01T1/2023—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14658—X-ray, gamma-ray or corpuscular radiation imagers
- H01L27/14663—Indirect radiation imagers, e.g. using luminescent members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
Definitions
- the present invention relates to a crystal material, a crystal manufacturing method, a radiation detector, a nondestructive inspection apparatus, and an imaging apparatus.
- Scintillator single crystals are used in radiation detectors that detect ⁇ rays, X rays, ⁇ rays, neutron rays, and the like.
- Such radiation detectors include medical imaging devices (imaging devices) such as positron emission tomography (PET) devices and X-ray CT devices, various radiation measuring devices in the high energy physics field, and resource exploration devices ( For example, it is widely applied to oil resource exploration (resource exploration such as oil well logging).
- a radiation detector includes a scintillator that absorbs ⁇ -rays, X-rays, ⁇ -rays, and neutron rays and converts them into scintillation light, and a photodetector such as a light receiving element that receives the scintillation light and converts it into an electrical signal,
- a photodetector such as a light receiving element that receives the scintillation light and converts it into an electrical signal
- positron emission tomography (PET) imaging system gamma rays resulting from the interaction of positrons in the subject and the corresponding electrons enter the scintillator and are converted into photons that can be detected by a photodetector. Is done. Photons emitted from the scintillator can be detected using a photodiode (PD), silicon photomultiplier (Si-PM), or photomultiplier tube (PMT), or other photodetector.
- PD photodiode
- Si-PM silicon photomultiplier
- PMT photomultiplier tube
- PMT has high quantum efficiency (efficiency for converting photons into electrons (current signals)) in a wavelength region near 400 nm, and is mainly used in combination with a scintillator having an emission peak wavelength near 400 nm.
- a position sensitive PMT PS-PMT or the like is used in combination. Thereby, it is possible to determine in which pixel of the scintillator array the photon is detected from the centroid calculation.
- semiconductor photodetectors such as photo diode (PD), avalanche photo diode (APD) and silicon photo multiplier (Si-PM) have a wide range of applications, particularly in radiation detectors and imaging equipment. .
- PD and Si-PM composed of a silicon semiconductor have a quantum efficiency exceeding 50% in the wavelength band from 350 nm to 900 nm, and the quantum efficiency of PMT is 45% at the maximum. High efficiency.
- the wavelength band with high sensitivity is 500 nm to 700 nm, and the sensitivity is highest around 600 nm, and the quantum efficiency is about 80%.
- these semiconductor photodetectors are used in combination with a scintillator having an emission peak wavelength between 350 nm and 900 nm centering around 600 nm.
- PD, APD, and Si-PM include PD arrays having position detection sensitivity, position-sensitive avalanche photodiodes (PSAPD), and Si-PM arrays. These elements can also determine in which pixel of the scintillator array the photon was detected.
- silicon semiconductors can be obtained by converting the scintillator light into light in the wavelength region where the silicon semiconductor is sensitive, such as by using a short wavelength Si-PM or a wavelength conversion element. It is possible to realize a radiation detector that performs readout by the above.
- the scintillators suitable for these radiation detectors have high density and high atomic number (high photoelectric absorption ratio) from the viewpoint of detection efficiency, high light emission from the point of high energy resolution, and the necessity of high-speed response. It is desired that the fluorescence lifetime (fluorescence decay time) is short. In addition, in recent systems, multiple scintillators need to be arranged densely in a long and narrow shape (for example, about 5mm x 30mm for PET) for multilayering and high resolution, making it easy to handle, workability, and large crystal production Moreover, price is also an important selection factor. It is also important that the emission wavelength of the scintillator matches the wavelength range where the detection sensitivity of the photodetector is high.
- a scintillator Ce: Gd 2 Si 2 O 7 having a pyrochlore structure as a preferable scintillator applied to various radiation detectors.
- the scintillator has advantages that it is chemically stable, has no deliquescence, and has a high light emission amount.
- a scintillator having a pyrochlore structure that utilizes light emission from the Ce 3+ 4f5d level described in Non-Patent Document 1 has a short fluorescence lifetime of about 80 ns or less and a high light emission amount.
- As described in Non-Patent Document 1 because of the peritectic composition on the phase diagram, single crystal growth from the melt cannot be performed, and it is difficult to obtain a large transparent body. .
- the non-stoichiometric composition causes the charge balance to shift, which may cause problems such as the generation of strain in the crystal and the effect on the fluorescence lifetime.
- JP 2009-74039 A International Publication No. WO2003 / 083010 International Publication No. WO2014 / 104238 International Publication No. WO2014 / 104238 International Publication No. WO2015 / 037726
- the scintillator absorbs high energy photons and converts them to low energy photons, but a large transparent body is required to absorb high energy photons.
- Crystals such as Ce: Gd 2 Si 2 O 7 and Ce: (Gd, La) 2 Si 2 O 7 used as scintillators have a high light emission amount, a short fluorescence lifetime, and excellent properties.
- the present invention has been made in view of the above, and is characterized by a charge-adjusted non-stoichiometric composition and a harmonic melt composition, which can provide a high-quality and transparent bulk body.
- Another object of the present invention is to provide a crystal material having a high light emission amount and a short fluorescence lifetime, a method for producing the crystal material, and a radiation detector, an imaging device, and a nondestructive inspection device using the crystal material.
- a crystalline material has a general formula (1): (RE x A 1-xy ⁇ s B y M ′ s ) 2 + ⁇ (Si 1-t , M ′′ t ) 2 + ⁇ O 7 + ⁇ (1) It is characterized by having a pyrochlore type structure, a non-stoichiometric composition, and a harmonic melt composition.
- A includes at least one selected from Gd, Y, La, Sc, Yb and Lu
- B is selected from La, Gd, Yb, Lu, Y and Sc.
- RE including at least one selected from Ce, Pr, Nd, Eu, Tb, Yb, and 0 ⁇ x ⁇ 0.1 M ′ and M ′′ include at least one selected from Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta, and W, and 0 ⁇ s ⁇ 0 .01, 0 ⁇ t ⁇ 0.01, 0 ⁇
- the ranges of the x, y, s, t, ⁇ , ⁇ , and ⁇ are further 0 ⁇ x ⁇ 0.05, 0.1 ⁇ y ⁇ 0.40, 0. ⁇ s ⁇ 0.005 and 0 ⁇ t ⁇ 0.005, 0.001 ⁇
- the ranges of the x, y, s, t, ⁇ , ⁇ , and ⁇ are further 0 ⁇ x ⁇ 0.04, 0.1 ⁇ y ⁇ 0.35, 0. ⁇ s ⁇ 0.005 and 0 ⁇ t ⁇ 0.005, 0.01 ⁇
- the crystal material according to one embodiment of the present invention is characterized in that, in the general formula (1), RE is Ce, A is Gd, and B is one or more selected from La and Y. .
- the crystalline material according to one embodiment of the present invention emits scintillation light when irradiated with radiation, and the predetermined fluorescent component included in the scintillation light has a fluorescence lifetime of 2 microseconds or less and a fluorescence peak wavelength of 250 nm or more. It is the range of 900 nm or less.
- the crystalline material according to one embodiment of the present invention emits scintillation light when irradiated with radiation, and the predetermined fluorescent component included in the scintillation light has a fluorescence lifetime of 80 nanoseconds or less and a fluorescence peak wavelength of 300 nm or more. It is the range of 700 nm or less.
- the crystalline material according to one embodiment of the present invention emits scintillation light when irradiated with radiation, and the emission amount of a predetermined fluorescent component included in the scintillation light is 13,000 photons in an ambient temperature range from room temperature to 150 degrees Celsius. More than / MeV and not deliquescent.
- a raw material containing A, Si, RE is blended so as to have an element ratio of the crystal material according to one aspect of the present invention, and the temperature is increased until the blended raw material is melted.
- a method for producing a crystal wherein the crystal is cooled after being raised to form a crystal having a pyrochlore structure, and the crystallization rate is 50% or more.
- the production method of the present invention drastically improves the crystallization rate to 50% or more.
- a radiation detector includes a scintillator formed of a crystal material according to an aspect of the present invention, and a photodetector that receives scintillation light from the scintillator.
- a radiation detector includes a scintillator including the crystal material according to one embodiment of the present invention, and light having a wavelength of 260 nm to 350 nm that is received by the scintillation light from the scintillator.
- a wavelength conversion element that converts the wavelength of the light into any wavelength within a range of 320 nm to 700 nm, and a photodetector that receives the light whose wavelength has been converted by the wavelength conversion element.
- the radiation detector according to one aspect of the present invention includes a scintillator made of the crystalline material according to one aspect of the present invention, and has a position sensitivity.
- An imaging device includes the radiation detector according to one embodiment of the present invention.
- the nondestructive inspection apparatus includes the radiation detector according to one aspect of the present invention.
- the crystal of the harmonic melt composition has a high light emission amount and has an excellent characteristic that the fluorescence lifetime is short, while the existing pyrochlore structure has a stoichiometric composition in time and cost for growth. It has the effect of being significantly suppressed compared to the crystals of.
- FIG. 1 is a view showing a photograph of the produced (Ce 0.015 Gd 0.750 La 0.235 ) 1.95 Si 2.01 O 6.94 crystal and a photograph obtained by cutting and polishing the cross section of the crystal. is there.
- FIG. 2 shows a photograph of the produced (Ce 0.015 Gd 0.7499 La 0.235 Mg 0.0001 ) 1.997 Si 2.05 O 7.10 crystal and a photograph obtained by cutting and polishing the cross section of the crystal.
- FIG. FIG. 3 is a diagram showing a photograph of the pixel array.
- FIG. 4 is a view showing a photograph of the produced (Ce 0.013 La 0.132 Gd 0.855 ) 1.66 Si 2.48 O 7.02 crystal.
- FIG. 5 is a view showing a photograph of a cross section of the produced (Ce 0.013 La 0.132 Gd 0.855 ) 1.66 Si 2.48 O 7.02 crystal cut and polished.
- FIG. 6 is a view showing a photograph in which a cross section of the produced (Ce 0.023 Gd 0.751 La 0.226 ) 2 Si 2 O 7 crystal is cut and polished.
- FIG. 7 is a diagram showing the transmittance profiles of Example 1 and Comparative Example 1.
- FIG. 8 is a diagram showing a pulse height distribution spectrum (Example 1, Comparative Example 10) obtained by irradiation with 137 Cs ⁇ rays (662 keV).
- FIG. 9 is a diagram showing a fluorescence decay curve profile of the crystal of Example 1 obtained by irradiation with 137 Cs ⁇ rays (662 keV).
- FIG. 10 is a diagram showing a reconstructed image obtained by irradiating a radiation detector provided with a pixel array and MPPC with 137 Cs ⁇ rays (662 keV).
- FIG. 11 is a diagram showing a radiation detector according to the exemplary embodiment of the present invention.
- FIG. 12 is a diagram showing a nondestructive inspection apparatus according to an embodiment of the present invention.
- FIG. 13 is a diagram illustrating an imaging apparatus according to an embodiment of the present invention.
- FIG. 14 is a view showing a radiation detector according to the embodiment of the present invention.
- the crystal material according to the embodiment of the present invention has a general formula (1): (RE x A 1 ⁇ xy ⁇ s B y M ′ s ) 2 + ⁇ (Si 1 ⁇ t , M ′′ t ) 2 + ⁇ O 7 + ⁇ (1) It is a crystalline material having a pyrochlore structure, a non-stoichiometric composition, and a harmonic melt composition.
- A includes at least one selected from Gd, Y, La, Sc, Yb and Lu
- B is selected from La, Gd, Yb, Lu, Y and Sc.
- RE including at least one selected from Ce, Pr, Nd, Eu, Tb, Yb, and 0 ⁇ x ⁇ 0.1 M ′ and M ′′ include at least one selected from Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta, and W, and 0 ⁇ s ⁇ 0 .01, 0 ⁇ t ⁇ 0.01, 0 ⁇
- transition metals as well as rare earth elements can be selected as the light-emitting activator, and the above x, y, s, t, ⁇ , ⁇ , and ⁇ can be selected.
- the combination of circumference, and the composition range (1).
- the ranges of x, y, s, t, ⁇ , ⁇ , and ⁇ in formula (1) are further 0 ⁇ x ⁇ 0.05, 0.1 ⁇ y ⁇ 0.40, 0 ⁇ s ⁇ 0. .005, 0 ⁇ t ⁇ 0.005, 0.001 ⁇
- a combination of the ranges of x, y, s, t, ⁇ , ⁇ , and ⁇ is defined as a composition range (2).
- the ranges of x, y, s, t, ⁇ , ⁇ , and ⁇ in the formula (1) are further 0 ⁇ x ⁇ 0.04, 0.1 ⁇ y ⁇ 0.35, 0 ⁇ s ⁇ 0.005 and 0 ⁇ t ⁇ 0.005, 0.01 ⁇
- a combination of the ranges of x, y, s, t, ⁇ , ⁇ , and ⁇ is defined as a composition range (3).
- the crystal material according to the present embodiment is a crystal material having a high emission amount of scintillation light generated by radiation irradiation and a short fluorescence lifetime.
- RE is preferably Ce
- A is Gd
- B is preferably one or more selected from La and Y.
- the pyrosilicate crystal having a known pyrochlore structure is expected to have a high light emission amount
- the stoichiometric composition is not a harmonic melting composition, so it becomes very difficult to produce a transparent bulk body, and the crystal production There is a problem that the yield or crystallization rate (good product rate of manufactured crystals) sometimes deteriorates.
- the crystal material according to the present embodiment can be configured to solve these problems.
- composition range (1) For example, by setting x, y, s, t, ⁇ , ⁇ , and ⁇ as the composition range (1), a crystallization ratio of 55% or more can be obtained, and the composition range (2) By doing so, a crystallization rate of 60% or more can be obtained, and by setting the composition range (3), a crystallization rate of 70% or more can be obtained.
- the crystal material according to the present embodiment can be used as a radiation detector 100 by combining with a photodetector 102 that can receive scintillation light emitted from the crystal material 101, for example, as shown in FIG. It becomes.
- the radiation detector 100 is irradiated with radiation from the radiation source 201 and the radiation that has passed through the measurement object 202 is detected by the radiation detector 100. It can also be used as a radiation measurement device or a resource exploration device as the nondestructive inspection device 200 provided.
- the crystal material according to the present embodiment can have a fluorescence lifetime of a fluorescent component contained in scintillation light of 10 microseconds or less and a fluorescence peak wavelength of 150 nm or more and 900 nm or less.
- the fluorescence lifetime can be set to 2 microseconds or less, and the fluorescence peak wavelength can be set to a range of 250 nm to 900 nm.
- the fluorescence lifetime is short, the sampling time for fluorescence measurement can be shortened, and the high time resolution, that is, the sampling interval can be reduced.
- the number of samplings per unit time can be increased.
- Such a crystalline material having a short-lived emission is suitable as a scintillator for PET, which is an imaging device, SPECT (Single photon emission computed tomography), and fast-response radiation detection for CT Available to:
- PET which is an imaging device
- SPECT Single photon emission computed tomography
- CT fast-response radiation detection for CT Available to:
- the radiation source 201 and the radiation detector 100 are arranged at symmetrical points on the circumference, and a tomographic image of the measurement object 202 is acquired while scanning the circumference. It can be used as an imaging apparatus 300 using the above.
- the fluorescence peak wavelength of the fluorescent component is in the range of 150 nm to 900 nm, it can be detected in combination with a semiconductor photodetector such as PD, APD, or Si-PM made of silicon semiconductor.
- a semiconductor photodetector such as PD, APD, or Si-PM made of silicon semiconductor.
- the fluorescence peak wavelength of the fluorescent component is 250 nm or more and 400 nm or less, it is effective to use a wavelength conversion element to convert the wavelength to 300 nm or more and 900 nm or less, that is, the wavelength in the region where the wavelength sensitivity of the above-described photodetector is sufficient. It is.
- a wavelength conversion element an element that converts the wavelength of light having a wavelength of 260 nm to 350 nm included in the scintillation light into any wavelength in the range of 320 nm to 700 nm can be used.
- the wavelength conversion element 103 for example, a plastic using a wavelength conversion optical fiber (for example, Y11 (200) MS manufactured by Kuraray Co., Ltd.) or the like is used.
- the scintillation light emitted from 101 can be received by the photodetector 104 after wavelength conversion.
- the type of photodetector to be combined can be appropriately used according to the fluorescence peak wavelength or the like. For example, PMT or PS-PMT may be used.
- the fluorescence lifetime of the fluorescent component contained in the scintillation light is 80 nanoseconds or less and the fluorescence peak wavelength is in the range of 300 nm to 700 nm, further high resolution and Highly sensitive scintillation light detection can be realized.
- a fluorescence lifetime of 60 nanoseconds or less and a fluorescence peak wavelength of 320 nm or more and 700 nm or less are preferable because scintillation light can be detected with higher resolution and sensitivity.
- Adjustment of the fluorescence lifetime and the fluorescence peak wavelength can be realized by adjusting the composition of the crystal material. For example, if the Ce concentration is increased, the fluorescence lifetime is shortened.
- the lifetime may be shortened by adding a trace amount of an element capable of taking a valence of 1, 2, or 4 or more.
- elements having a valence of 1, 2 or 4 or more include, but are not limited to, Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, Fe, Ta, and W. .
- the light emission amount of the fluorescent component in the range of the ambient temperature from room temperature to 150 degrees Celsius when the light emission amount of the fluorescent component when the ambient temperature is 0 degrees Celsius is used as a reference. More than 13,000 photons / MeV, and the attenuation rate from the reference can be less than 50%. Furthermore, the amount of luminescence at room temperature of the fluorescent component after standing for 12 hours or more in an environment of 400 degrees Celsius or higher does not vary by more than 20%, has no deliquescence, and has high mechanical strength. Therefore, the crystal material according to the present embodiment can reduce attenuation of light emission amount even under a high temperature environment, and thus is very useful as a crystal material used under a high temperature environment or under a large vibration.
- a radiation detector is configured by combining a scintillator made of a crystal material according to the present embodiment and a photodetector that receives light emitted from the scintillator and operates at an ambient temperature of room temperature to 200 degrees Celsius.
- a photodetector that receives light emitted from the scintillator and operates at an ambient temperature of room temperature to 200 degrees Celsius.
- a method for producing a single crystal of a crystal material (crystal production method) according to the present embodiment will be described below.
- a general oxide raw material can be used as a starting material.
- it when used as a single crystal for a scintillator, it has a high content of 99.99% or higher (4N or higher). It is particularly preferable to use a purity raw material.
- These starting materials including A, Si, and RE are weighed, mixed, and blended so as to have a target composition (element ratio of the crystal material according to the present embodiment) at the time of forming the melt as a crystal growth material. Use. Further, among these starting materials, those having as few impurities as possible other than the target composition (for example, 1 ppm or less) are particularly preferable.
- the starting material composition is not a stoichiometric composition, but is prepared taking into consideration that the melt has a ratio of the harmonic melt composition of the present embodiment. At that time, it is desirable to consider a loss in the crystal manufacturing process such as an ignition loss.
- Crystal growth is preferably performed in an inert gas (eg, Ar, N 2 , He, etc.) atmosphere.
- an inert gas eg, Ar, N 2 , He, etc.
- a mixed gas of an inert gas (for example, Ar, N 2 , He, etc.) and oxygen gas may be used.
- the partial pressure of oxygen is preferably 2% or less for the purpose of preventing oxidation of the crucible.
- the oxygen partial pressure can be set up to 100%.
- oxygen gas inert gas (eg, Ar, N 2 , He, etc.), inert gas (eg, Ar, N 2, He, etc.), oxygen gas
- the mixed gas can be used.
- the oxygen partial pressure is not limited to 2% or less, and any mixture ratio from 0% to 100% oxygen partial pressure may be used.
- the Czochralski method pulse-up method
- the Bridgman method the band melting method (zone melt method)
- the edge-limited thin film supply Examples include crystal growth (EFG method), floating zone method, Bernoulli method, and the like, but not limited thereto, and various crystal growth methods can be used.
- the Czochralski method or the Bridgman method is preferable. By using a large single crystal, the yield of the single crystal can be improved and the processing loss can be relatively reduced.
- the crystal material according to the present embodiment is not limited to a single crystal, and may be a polycrystalline sintered body such as ceramics.
- the floating zone method zone melt method, EFG method, micro pull-down method, or Czochralski
- the micro-pulling method or the zone melt method is particularly preferred for reasons such as wettability with the crucible material.
- examples of usable crucible and afterheater materials include platinum, iridium, rhodium, rhenium, and alloys thereof.
- a high-frequency oscillator In the production of a single crystal for scintillator, a high-frequency oscillator, a condenser heater, and a resistance heater may be further used.
- a single crystal production method using a micro-pulling method, a Czochralski method, and a floating zone method will be described.
- the method for producing a single crystal of crystal material is not limited to this.
- the micro pull-down method can be performed using a known atmosphere-controlled micro pull-down apparatus using high-frequency induction heating.
- the micro-pulling device includes a crucible containing a raw material melt, a seed crystal holder for holding a seed crystal in contact with the raw material melt flowing out from a pore provided at the bottom of the crucible, and a seed crystal holder downward.
- a single crystal manufacturing apparatus including a moving mechanism for moving, a moving speed control device for controlling the speed of the moving mechanism, and induction heating means (for example, a high frequency induction heating coil) for heating the crucible. According to such a single crystal manufacturing apparatus, a single crystal can be produced by forming a solid-liquid interface immediately below the crucible and moving the seed crystal downward.
- the crucible is made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof.
- an after heater which is a heating element made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof is disposed on the outer periphery of the bottom of the crucible.
- the above atmosphere control type micro pull-down apparatus employs stainless steel (SUS) as the material of the chamber and quartz as the window material, and includes a rotary pump for enabling the atmosphere control before gas replacement.
- the internal vacuum degree can be reduced to 1 ⁇ 10 ⁇ 3 Torr or less.
- Ar, N 2 , H 2 , O 2 , He gas, etc. can be introduced into the chamber at a flow rate precisely adjusted by an accompanying gas flow meter, but the atmospheric gas species are limited to these. It is not something.
- the crystal growth raw material prepared by the above method is put into a crucible, the inside of the furnace is evacuated to a high vacuum, and then Ar gas or a mixed gas of Ar gas and O 2 gas is put into the furnace. By introducing, the inside of the furnace is made an inert gas atmosphere or a low oxygen partial pressure atmosphere. Next, the crucible is heated by gradually applying high frequency power to the high frequency induction heating coil to raise the temperature until the raw material is melted, and the raw material in the crucible is completely melted.
- the seed crystal held in the seed crystal holder is gradually raised at a predetermined speed by the moving mechanism. Then, when the tip of the seed crystal is brought into contact with the pores at the lower end of the crucible and sufficiently blended, the seed crystal is lowered while being adjusted while the melt temperature is adjusted to grow the crystal.
- the seed crystal it is preferable to use a seed crystal that is the same as the crystal growth object or that is similar in structure and composition, but is not limited thereto. Moreover, it is preferable to use a crystal having a clear crystal orientation as a seed crystal.
- the crystal growth is completed when all of the prepared crystal growth raw materials are crystallized and the melt is gone.
- a device for continuously charging the crystal growth raw material may be incorporated. Thereby, the crystal can be grown while charging the crystal growth raw material.
- the Czochralski method can be performed using a known atmosphere-controlled pulling apparatus using high-frequency induction heating.
- the pulling device includes, for example, a crucible for storing the raw material melt, a seed crystal holder for holding the seed crystal in contact with the raw material melt, a moving mechanism for moving the seed crystal holder upward, and a speed of the moving mechanism.
- This is a single crystal manufacturing apparatus including a moving speed control device to be controlled and induction heating means (for example, a high frequency induction heating coil) for heating the crucible. According to such a single crystal manufacturing apparatus, a single crystal can be produced by forming a solid-liquid interface on the upper surface of the melt and moving the seed crystal upward.
- the seed crystal it is preferable to use a seed crystal that is the same as the crystal growth object or that is similar in structure and composition, but is not limited thereto. Moreover, it is preferable to use a crystal having a clear crystal orientation as a seed crystal.
- the crystal growth of the harmonic melt composition is possible mainly by the micro pulling down method, the Czochralski method, the Bridgman method, and the Bernoulli method.
- the floating zone method In the floating zone method, light from a halogen lamp or the like is usually collected by 2 to 4 spheroid mirrors, a part of a sample rod made of polycrystal is placed at the elliptical focus, and the temperature is increased by light energy. By melting the crystal and moving the mirror (focal point) gradually, the melted part is moved, while the melted part is slowly cooled to change the sample rod into a large single crystal. Is the method.
- the Ce concentration is either a concentration in a specific crystal or a concentration in a melt (preparation).
- Example 1 A crystal represented by a composition of (Ce 0.015 Gd 0.750 La 0.235 ) 1.95 Si 2.01 O 6.94 was produced by the Czochralski method. This crystal is a pyrochlore oxide.
- FIG. 1 shows a cut surface of a prepared (Ce 0.015 Gd 0.750 La 0.235 ) 1.95 Si 2.01 O 6.94 crystal (15 mm thickness, 15 mm ⁇ 15 mm surface, mirror-polished) It is a photograph of. As shown in FIG. 1, the produced single crystal showed a transparent pattern, and was a transparent bulk body.
- Example 2 A crystal represented by a composition of (Ce 0.015 Gd 0.7499 La 0.235 Mg 0.0001 ) 1.99 Si 2.05 O 7.10. was produced by the Czochralski method. This crystal is a pyrochlore oxide.
- FIG. 2 shows a cut surface (15 mm thick, 15 mm ⁇ 15 mm surface) of the produced (Ce 0.015 Gd 0.7499 La 0.235 Mg 0.0001 ) 1.99 Si 2.05 O 7.10 crystal. It is a photograph of mirror-polished). As shown in FIG. 2, the produced single crystal was transparent and the pattern under it was seen through, and it was a transparent bulk body.
- Examples 3 to 25 In addition to the above, crystals represented by the composition shown in Table 1 were prepared by the Czochralski method. This crystal is a pyrochlore type oxide represented by A 2 B 2 O 7 . The produced single crystal was transparent and the pattern under it was seen through, and it was a transparent bulk body.
- FIG. 3 is a view showing a photograph of a pixel array using the crystal of Example 1.
- the pixel size is 2.5 mm ⁇ 2.5 mm ⁇ 5 mm, and the number of pixels is 12 ⁇ 12.
- FIG. 4 is a view showing a photograph of the produced (Ce 0.013 Gd 0.855 La 0.132 ) 1.66 Si 2.48 O 7.02 crystal.
- FIG. 5 is a photograph of the cut surface (1 mm thickness, mirror polished) of the crystal. As shown in FIGS. 4 and 5, the produced single crystal was a yellow opaque bulk body.
- FIG. 6 is a view showing a photograph of the produced (Ce 0.023 Gd 0.751 La 0.226 ) 2 Si 2 O 7 crystal. As shown in FIG. 6, the produced single crystal was a yellow opaque bulk body.
- Table 1 shows ⁇ , ⁇ , ⁇ and crystal state for Examples 1 to 25 and Comparative Examples 1 to 9.
- Comparative Example 10 As a known comparative example 10, a commercially available (Ce 0.01 Gd 0.99 ) 2 SiO 5 (Ce 1%: GSO) crystal having a size of 5 mm ⁇ 5 mm ⁇ 5 mm was prepared.
- FIG. 7 is a diagram showing the transmittance profiles obtained in Example 1 and Comparative Example 1.
- the horizontal axis represents wavelength (nm) and the vertical axis represents linear transmittance (%).
- each crystal is optically bonded to a photomultiplier tube (R7600U-200 manufactured by Hamamatsu Photonics), which is a photodetector, with optical grease (Applied Koken Co., Ltd. 6262A), and sealed with 137 Cs having a radioactivity of 1 MBq
- a radiation source (gamma ray source) or a 241 Am sealed radiation source (alpha ray source) having a radioactivity of 4 MBq was used to excite and emit light by irradiation with gamma rays or alpha rays.
- the electric signal output from the photomultiplier tube is a pulse-like signal reflecting the received scintillation light, and the pulse height represents the emission intensity of the scintillation light.
- the electric signal output from the photomultiplier tube was shaped and amplified by the shaping amplifier, and then input to the multiple wave height analyzer for analysis to create a wave height distribution spectrum.
- a wave height distribution spectrum was similarly created for the (Ce 1%: GSO) crystal of Comparative Example 10.
- the temperature at the time of measurement was room temperature (21 degrees Celsius).
- FIG. 8 is a diagram showing a pulse height distribution spectrum (Example 1, Comparative Example 10) obtained by irradiation with 137 Cs ⁇ rays (662 keV).
- the horizontal axis represents the channel number of the multi-channel analyzer (MCA) and represents the signal magnitude.
- the vertical axis represents the count number (arb.unit).
- the photoelectric absorption peak derived from 662 keV gamma rays is higher in the right side of the figure, indicating that the light emission amount is higher.
- the crystal of Example 1 had higher light emission than the crystal of Comparative Example 10.
- the light emission amount of the crystal of Example 1 was 36,000 photons / MeV or more.
- the light emission amount could be obtained as shown in Table 2. However, in Comparative Examples 1 to 8, the amount of luminescence was not measurable.
- the decay time of the crystal of Example 1 was determined.
- the crystal was optically bonded to a photomultiplier tube (R7600U-200 made by Hamamatsu Photonics) with optical grease (Applied Koken 6262A), and a gamma ray was applied using a 137 Cs sealed radiation source having a radioactivity of 1 MBq. Irradiated to excite and emit light.
- the signal time distribution of the signal from the photomultiplier tube was measured with an oscilloscope (Tektronix TDS 3034B) to determine the decay time.
- FIG. 9 is a graph showing a fluorescence decay curve profile of the crystal of Example 1.
- the horizontal axis represents time, and the vertical axis represents the voltage corresponding to the emission intensity.
- the solid line is the result of fitting with the following function I (t) with time t as a variable in order to obtain the attenuation constant.
- the amount of luminescence of each of the crystals of Examples 1 to 10, 19 and 20 was measured in a high temperature environment of 150 degrees Celsius.
- the crystal is optically bonded to a photomultiplier tube (R1288AH manufactured by Hamamatsu Photonics), which is a photodetector, with optical grease (Applied Koken 6262A), and a 137 Cs sealed radiation source (gamma ray source) having a radioactivity of 1 MBq or more. )
- a photomultiplier tube R1288AH manufactured by Hamamatsu Photonics
- a photodetector with optical grease (Applied Koken 6262A)
- a 137 Cs sealed radiation source gamma ray source having a radioactivity of 1 MBq or more.
- the crystal and the photomultiplier tube were heated to a high temperature of 150 degrees Celsius using a thermostatic bath (VTN-11 manufactured by Isuzu Seisakusho).
- a thermocouple was used to confirm that the target temperature environment was achieved.
- the electric signal output from the photomultiplier tube is a pulse-like signal reflecting the received scintillation light, and the pulse height represents the emission intensity of the scintillation light.
- the electric signal output from the photomultiplier tube was shaped and amplified by the shaping amplifier, and then input to the multiple wave height analyzer for analysis to create a wave height distribution spectrum.
- a wave height distribution spectrum was similarly created for the (Ce 1%: GSO) crystal of Comparative Example 10.
- Examples 1 to 10, 19 and 20 the light emission amount at 150 degrees Celsius was obtained as shown in Table 3.
- Examples 1 to 10, 19 and 20 exceeded 13,000 photons / MeV in the range from room temperature to 150 degrees Celsius.
- Comparative Examples 1 to 8 the amount of luminescence was not measurable in the range from room temperature to 150 degrees Celsius.
- Example 1 the crystals of Example 1 were used to form a pixel array (see FIG. 3).
- the reflective material a material selected from barium sulfate, Teflon (registered trademark), titanium oxide, and ESR film can be used, but is not limited thereto.
- Example 8 Using the assembled array (Example 8), the operation principle of SPECT and PET was verified. Specifically, the scintillator crystal of Example 1 was combined with a position-sensitive multi-pixel photon counter (MPPC, S12642-0808PA-50 manufactured by Hamamatsu Photonics). MPPC is an array of a plurality of Geiger mode avalanche photodiodes, and an MPPC unit (pixel size: 50 ⁇ m ⁇ 50 ⁇ m) arrayed into 6 ⁇ 6. Imaging reconstruction was performed by using a 137 Cs sealed radiation source with 1 MBq of radioactivity in an array combined with MPPC (Example 8), irradiating with gamma rays and processing signals from each MPPC.
- MPPC position-sensitive multi-pixel photon counter
- FIG. 10 is a diagram in which imaging reconstruction is performed. Each pixel can be separated, imaging can be performed correctly, and application to imaging detectors such as SPECT and PET having position sensitivity has been demonstrated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Toxicology (AREA)
- Ceramic Engineering (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Pulmonology (AREA)
- Theoretical Computer Science (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
で表され、パイロクロア型構造を持ち、且つ、非化学量論的組成、且つ、調和溶融組成であることを特徴とする。ここで、式(1)中、AはGd、Y、La、Sc、Yb及びLuから選択される少なくとも1種以上を含み、BはLa、Gd、Yb、Lu、Y及びScから選択される少なくとも1種以上を含み、0.1<y<0.4であり、REはCe、Pr、Nd、Eu、Tb、Ybから選択される少なくとも1種以上を含み、0<x<0.1であり、M’およびM”はLi,Na,K,Mg,Ca,Sr,Ba,Ti,Zr,Hf,Fe、Ta,Wから選択される少なくとも1種以上を含み、0≦s<0.01、且つ、0≦t<0.01であり、また0<|α|<0.3、且つ、0≦|β|<0.3、且つ、0≦|γ|<0.5で表される。非化学量論的組成かつ調和溶融組成を選択することで、結晶化率の飛躍的な向上が認められる。ここで、||は絶対値をあらわし、0<|α|<0.3は0<α<0.3ないしは0>α>-0.3を意味する。同様に、0≦|β|<0.3は0<β<0.3ないしは0>β>-0.3ないしはβ=0を意味する。また同様に、0≦|γ|<0.5は0<γ<0.5ないしは0>γ>-0.5ないしはγ=0を意味する。
(RExA1-x-y―sByM’s)2+α(Si1-t,M”t)2+βO7+γ (1)
で表され、パイロクロア型構造を持ち、且つ、非化学量論的組成、且つ、調和溶融組成である結晶材料である。
ここで、式(1)中、AはGd、Y、La、Sc、Yb及びLuから選択される少なくとも1種以上を含み、BはLa、Gd、Yb、Lu、Y及びScから選択される少なくとも1種以上を含み、0.1<y<0.4であり、REはCe、Pr、Nd、Eu、Tb、Ybから選択される少なくとも1種以上を含み、0<x<0.1であり、M’およびM”はLi,Na,K,Mg,Ca,Sr,Ba,Ti,Zr,Hf,Fe、Ta,Wから選択される少なくとも1種以上を含み、0≦s<0.01、且つ、0≦t<0.01であり、また0<|α|<0.3、且つ、0≦|β|<0.3、且つ、0≦|γ|<0.5で表される。REについて、希土類元素のほか遷移金属でも発光賦活剤として選択できる。なお、上記x、y、s、t、α、β、及び、γの範囲の組合せを、組成範囲(1)とする。
チョクラルスキー法により、(Ce0.015Gd0.750La0.235)1.95Si2.01O6.94の組成で表される結晶を作製した。この結晶は、パイロクロア型酸化物である。図1は、作製した(Ce0.015Gd0.750La0.235)1.95Si2.01O6.94結晶の切断面(15mmの厚さ、15mm×15mm面、鏡面研磨済み)の写真である。図1に示すように、作製した単結晶は、その下の模様が透けて見えており、透明バルク体であった。
チョクラルスキー法により、(Ce0.015Gd0.7499La0.235Mg0.0001)1.99Si2.05O7.10の組成で表される結晶を作製した。この結晶は、パイロクロア型酸化物である。図2は、作製した(Ce0.015Gd0.7499La0.235Mg0.0001)1.99Si2.05O7.10結晶の切断面(15mmの厚さ、15mm×15mm面、鏡面研磨済み)の写真である。図2に示すように、作製した単結晶は、その下の模様が透けて見えており、透明バルク体であった。
前記に加えてチョクラルスキー法により、表1のとおりの組成であらわされる結晶を作製した。この結晶は、A2B2O7で表されるパイロクロア型酸化物である。作製した単結晶は、その下の模様が透けて見えており、透明バルク体であった。
図3は実施例1の結晶を用いて、ピクセルアレイ化したものの写真を示す図である。ピクセルサイズは2.5mm×2.5mm×5mmであり、ピクセル数はピクセル数:12×12個である。
チョクラルスキー法により、(Ce0.013Gd0.855La0.132)1.66Si2.48O7.02の組成で表される結晶を作製した。この結晶は、A2B2O7で表されるパイロクロア型酸化物である。図4は、作製した(Ce0.013Gd0.855La0.132)1.66Si2.48O7.02結晶の写真を示す図である。図5は当該結晶の切断面(1mmの厚さ、鏡面研磨済み)の写真である。図4および図5に示すように、作製した単結晶は、黄色い不透明バルク体であった。
チョクラルスキー法により、(Ce0.023Gd0.751La0.226)2Si2O7の組成で表される結晶を作製した。この結晶は、A2B2O7で表されるパイロクロア型酸化物である。図6は、作製した(Ce0.023Gd0.751La0.226)2Si2O7結晶の写真を示す図である。図6に示すように、作製した単結晶は、黄色い不透明バルク体であった。
公知の比較例10として、市販されている5mm×5mm×5mmサイズの(Ce0.01Gd0.99)2SiO5(Ce1%:GSO)結晶を用意した。
実施例2~10についても表2の通り発光量を求めることができた。しかし、比較例1~8については、発光量は測定不能であった。
I(t)=0.098・exp(-t/71ns)
+0.040・exp(-t/287ns)+0.00241
すなわち、実施例1の結晶の蛍光の減衰時間は71ナノ秒であり、高速シンチレータを構成できるものであった。
具体的には、実施例1のシンチレータ結晶を位置有感型のMulti-Pixel Photon Counter(MPPC、浜松ホトニクス社製S12642-0808PA-50)と組み合わせた。MPPCは複数のガイガーモードアバランシェ・フォトダイオードを並べたもので、さらにそのMPPCユニット(ピクセルサイズ:50μm×50μm)を6×6個にアレイ化したものである。
MPPCと組み合わせたアレイ(実施例8)に1MBqの放射能を有する137Cs密封線源を用い、ガンマ線を照射して、各MPPCからの信号を処理して、イメージング再構成を行った。
101 結晶材料
102、104 光検出器
103 波長変換素子
200 非破壊検査装置
201 放射線源
202 測定対象物
300 撮像装置
Claims (13)
- 一般式(1):
(RExA1-x-y―sByM’s)2+α(Si1-t,M”t)2+βO7+γ (1)
で表され、パイロクロア型構造を持ち、且つ、非化学量論的組成、且つ、調和溶融組成であることを特徴とする結晶材料。
ここで、式(1)中、AはGd、Y、La、Sc、Yb及びLuから選択される少なくとも1種以上を含み、BはLa、Gd、Yb、Lu、Y及びScから選択される少なくとも1種以上を含み、0.1≦y<0.4であり、REはCe、Pr、Nd、Eu、Tb、Ybから選択される少なくとも1種以上を含み、0<x<0.1であり、M’およびM”はLi,Na,K,Mg,Ca,Sr,Ba,Ti,Zr,Hf,Fe、Ta,Wから選択される少なくとも1種以上を含み、0≦s<0.01、且つ、0≦t<0.01であり、また0<|α|<0.3、且つ、0≦|β|<0.3、且つ、0≦|γ|<0.5で表される。 - 前記x、y、s、t、α、β、及び、γの範囲はさらに0<x<0.05、0.1<y<0.40、0≦s<0.005、且つ、0≦t<0.005、0.001<|α|<0.15、且つ、0.001<|β|<0.15、且つ、0.001<|γ|<0.2で表されることを特徴とする請求項1に記載の結晶材料。
- 前記x、y、s、t、α、β、及び、γの範囲はさらに0<x<0.04、0.1<y<0.35、0≦s<0.005、且つ、0≦t<0.005、0.01<|α|<0.1、且つ、0.01<|β|<0.1、且つ、0.001<|γ|<0.2で表されることを特徴とする請求項1に記載の結晶材料。
- 前記一般式(1)において、REはCeであり、AはGdであり、BはLa,Yから選択された1つ以上であることを特徴とする請求項1~3のいずれか一つに記載の結晶材料。
- 放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光寿命が2マイクロ秒以下であり、且つ、蛍光ピーク波長が250nm以上900nm以下の範囲であることを特徴とする請求項1~4のいずれか一つに記載の結晶材料。
- 放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光寿命が80ナノ秒以下であり、且つ、蛍光ピーク波長が300nm以上700nm以下の範囲であることを特徴とする請求項1~4のいずれか一つに記載の結晶材料。
- 放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分の発光量は、環境温度が室温から摂氏150度の範囲において13,000光子/MeVより多く、且つ、潮解性がないことを特徴とする請求項1~4のいずれか一つに記載の結晶材料。
- 請求項1~4のいずれか一つに記載の結晶材料の元素比になるようにA、Si、REを含む原料を配合し、前記配合した原料を溶融するまで温度を上げた後に冷却し、パイロクロア型構造を持つ結晶とすること、且つ、結晶化率50%以上とすることを特徴とする結晶製造方法。
- 請求項1~7のいずれか一つに記載の結晶材料から構成されるシンチレータと、
前記シンチレータからのシンチレーション光を受光する光検出器と、
を備えることを特徴とする放射線検出器。 - 請求項1~7のいずれか一つに記載の結晶材料から構成されるシンチレータと、
前記シンチレータからのシンチレーション光を受光し、該シンチレーション光に含まれる波長260nm~350nmの光の波長を320nm~700nmの範囲のいずれかの波長に変換する波長変換素子と、
前記波長変換素子が波長変換した光を受光する光検出器と、
を備えることを特徴とする放射線検出器。 - 請求項1~7のいずれか一つに記載の結晶材料から構成されるシンチレータを備え、位置感度を持たせたことを特徴とする放射線検出器。
- 請求項9~11のいずれか一つに記載の放射線検出器を備えることを特徴とする撮像装置。
- 請求項9~11のいずれか一つに記載の放射線検出器を備えることを特徴とする非破壊検査装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/566,199 US10011770B2 (en) | 2015-05-27 | 2016-05-27 | Crystal material, method for manufacturing crystal, radiation detector, nondestructive inspection apparatus, and imaging apparatus |
JP2017520824A JP6715426B2 (ja) | 2015-05-27 | 2016-05-27 | 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 |
RU2017140421A RU2666445C1 (ru) | 2015-05-27 | 2016-05-27 | Кристаллический материал, способ изготовления кристалла, детектор излучения, прибор неразрушющего контроля и прибор визуализации |
EP16800143.6A EP3305949B1 (en) | 2015-05-27 | 2016-05-27 | Crystal material, crystal production method, radiation detector, non-destructive inspection device, and imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107986 | 2015-05-27 | ||
JP2015-107986 | 2015-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190439A1 true WO2016190439A1 (ja) | 2016-12-01 |
Family
ID=57392957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065837 WO2016190439A1 (ja) | 2015-05-27 | 2016-05-27 | 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10011770B2 (ja) |
EP (1) | EP3305949B1 (ja) |
JP (1) | JP6715426B2 (ja) |
RU (1) | RU2666445C1 (ja) |
WO (1) | WO2016190439A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019038967A1 (ja) * | 2017-08-24 | 2019-02-28 | 株式会社村田製作所 | 発光セラミックス及び波長変換装置 |
JP2019043820A (ja) * | 2017-09-05 | 2019-03-22 | 国立大学法人東北大学 | 結晶材料、放射線検出器、非破壊検査装置、および撮像装置 |
WO2019168169A1 (ja) * | 2018-03-02 | 2019-09-06 | 国立大学法人東北大学 | 蛍光体 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU185203U1 (ru) * | 2018-06-08 | 2018-11-26 | Общество с ограниченной ответственностью "Стагирит Медицинские Инновации" | Детектирующий модуль портативного медицинского радиометра |
CN109628953B (zh) * | 2018-12-26 | 2020-10-23 | 浙江工业大学 | 一种铜电解液中去除砷锑铋的方法 |
CN110376633A (zh) * | 2019-07-19 | 2019-10-25 | 东软医疗系统股份有限公司 | 医疗探测器及医疗成像设备 |
RU196469U1 (ru) * | 2019-11-19 | 2020-03-02 | Закрытое акционерное общество "Научно-исследовательский институт интроскопии МНПО "СПЕКТР" | Детектор рентгеновского излучения |
CN112965162A (zh) * | 2021-03-04 | 2021-06-15 | 山东大学 | 一种基于单晶光纤声学各向异性和掺杂调制的高灵敏单晶光纤测温方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013152434A2 (en) * | 2012-04-13 | 2013-10-17 | Zecotek Photonics Inc. | Multi-doped lutetium based oxyorthosilicate scintillators having improved photonic properties |
WO2014104238A1 (ja) * | 2012-12-26 | 2014-07-03 | 国立大学法人東北大学 | 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器 |
WO2015037726A1 (ja) * | 2013-09-13 | 2015-03-19 | Tdk株式会社 | シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001284479B2 (en) * | 2000-09-08 | 2005-05-12 | Nippon Steel Corporation | Ceramic/metal composite article, composite structure for transporting oxide ion, and composite article having sealing property |
AU2003227263A1 (en) | 2002-03-28 | 2003-10-13 | Hitachi Chemical Co., Ltd. | Phosphor and phosphor composition containing the same |
FR2874021B1 (fr) * | 2004-08-09 | 2006-09-29 | Saint Gobain Cristaux Detecteu | Materiau scintillateur dense et rapide a faible luminescence retardee |
JP2009074039A (ja) | 2007-08-31 | 2009-04-09 | Hitachi Chem Co Ltd | 単結晶シンチレーター |
JP5464613B2 (ja) * | 2009-12-25 | 2014-04-09 | 株式会社ネモト・ルミマテリアル | 真贋判定用蛍光体および真贋判定手段 |
JP5564146B2 (ja) * | 2011-09-08 | 2014-07-30 | パナソニック株式会社 | プラズマディスプレイパネルおよび蛍光体 |
WO2015037395A1 (ja) * | 2013-09-12 | 2015-03-19 | 信越化学工業株式会社 | シンチレータ材料、放射線検出器及び放射線検査装置 |
-
2016
- 2016-05-27 WO PCT/JP2016/065837 patent/WO2016190439A1/ja active Application Filing
- 2016-05-27 JP JP2017520824A patent/JP6715426B2/ja active Active
- 2016-05-27 US US15/566,199 patent/US10011770B2/en active Active
- 2016-05-27 EP EP16800143.6A patent/EP3305949B1/en active Active
- 2016-05-27 RU RU2017140421A patent/RU2666445C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013152434A2 (en) * | 2012-04-13 | 2013-10-17 | Zecotek Photonics Inc. | Multi-doped lutetium based oxyorthosilicate scintillators having improved photonic properties |
WO2014104238A1 (ja) * | 2012-12-26 | 2014-07-03 | 国立大学法人東北大学 | 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器 |
WO2015037726A1 (ja) * | 2013-09-13 | 2015-03-19 | Tdk株式会社 | シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3305949A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019038967A1 (ja) * | 2017-08-24 | 2019-02-28 | 株式会社村田製作所 | 発光セラミックス及び波長変換装置 |
JPWO2019038967A1 (ja) * | 2017-08-24 | 2020-05-28 | 株式会社村田製作所 | 発光セラミックス及び波長変換装置 |
US11691921B2 (en) | 2017-08-24 | 2023-07-04 | Murata Manufacturing Co., Ltd. | Light-emitting ceramic and wavelength conversion device |
JP2019043820A (ja) * | 2017-09-05 | 2019-03-22 | 国立大学法人東北大学 | 結晶材料、放射線検出器、非破壊検査装置、および撮像装置 |
WO2019168169A1 (ja) * | 2018-03-02 | 2019-09-06 | 国立大学法人東北大学 | 蛍光体 |
Also Published As
Publication number | Publication date |
---|---|
EP3305949A1 (en) | 2018-04-11 |
US10011770B2 (en) | 2018-07-03 |
US20180100101A1 (en) | 2018-04-12 |
JP6715426B2 (ja) | 2020-07-01 |
RU2666445C1 (ru) | 2018-09-07 |
JPWO2016190439A1 (ja) | 2018-04-26 |
EP3305949A4 (en) | 2019-03-27 |
EP3305949B1 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6715426B2 (ja) | 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 | |
JP6058030B2 (ja) | 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器 | |
JP5952746B2 (ja) | シンチレータ用ガーネット型単結晶、及びこれを用いた放射線検出器 | |
RU2389835C2 (ru) | Pr-СОДЕРЖАЩИЙ СЦИНТИЛЛЯЦИОННЫЙ МОНОКРИСТАЛЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ, ДЕТЕКТОР ИЗЛУЧЕНИЯ И УСТРОЙСТВО ОБСЛЕДОВАНИЯ | |
JP6630879B2 (ja) | 発光体及び放射線検出器 | |
JP5674385B2 (ja) | シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器 | |
JP2017036160A (ja) | 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置 | |
JP5548629B2 (ja) | シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器 | |
JP2012180399A (ja) | シンチレータ用ガーネット型結晶、及び、これを用いる放射線検出器 | |
JP2013002882A (ja) | 放射線検出器 | |
JP6078223B2 (ja) | シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器 | |
JP6341208B2 (ja) | シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 | |
JP2013043960A (ja) | シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器 | |
JP6188024B2 (ja) | 発光体及び放射線検出器 | |
JP2017066245A (ja) | シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 | |
JP7026896B2 (ja) | 結晶材料、放射線検出器、非破壊検査装置、および撮像装置 | |
JP2010285559A (ja) | シンチレータ用結晶及び放射線検出器 | |
JP2013040274A (ja) | シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器 | |
JP2017132689A (ja) | 結晶材料、結晶製造方法、放射線検出器、非破壊検査装置および撮像装置 | |
Shah et al. | LaBr/sub 3: Ce scintillators for gamma ray spectroscopy | |
JP2019043820A (ja) | 結晶材料、放射線検出器、非破壊検査装置、および撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16800143 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017520824 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15566199 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017140421 Country of ref document: RU |