WO2015037726A1 - シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 - Google Patents

シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 Download PDF

Info

Publication number
WO2015037726A1
WO2015037726A1 PCT/JP2014/074310 JP2014074310W WO2015037726A1 WO 2015037726 A1 WO2015037726 A1 WO 2015037726A1 JP 2014074310 W JP2014074310 W JP 2014074310W WO 2015037726 A1 WO2015037726 A1 WO 2015037726A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
scintillator
crystal material
single crystal
grown
Prior art date
Application number
PCT/JP2014/074310
Other languages
English (en)
French (fr)
Inventor
貴之 二瓶
晃 小野寺
武 加賀谷
一重 遠田
吉川 彰
俊介 黒澤
有為 横田
育宏 庄子
圭 鎌田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2015536654A priority Critical patent/JP6341208B2/ja
Publication of WO2015037726A1 publication Critical patent/WO2015037726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77742Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides

Definitions

  • the present invention relates to a scintillator crystal material, a single crystal scintillator, a radiation detector, an imaging device, and a nondestructive inspection device.
  • a scintillator is a substance that emits scintillation light by irradiating radiation with an energy that causes ionization, such as alpha rays, gamma rays, X-rays, or neutron rays, and these are combined with a photodetector as a radiation detector.
  • an energy that causes ionization such as alpha rays, gamma rays, X-rays, or neutron rays
  • a photodetector as a radiation detector.
  • Examples of such radiation detectors include a positron emission tomography (PET) apparatus, a single photon emission tomography (SPECT), and various radiations in the high energy physics field. Widely used in measuring devices and resource exploration devices.
  • an image is created based on the interaction between the scintillator and radiation generated by radioactive decay.
  • gamma rays resulting from the interaction of positrons in the subject and the corresponding electrons are incident on the scintillator and converted into photons that can be detected by the photodetector.
  • Photons emitted from the scintillator can be obtained by using a photodiode (PD), a silicon photomultiplier (Si-Photomultiplier: Si-PM), a photomultiplier tube (Photomultiplier Tube: PMT), or another photodetector. Can be detected using.
  • PMT has high quantum efficiency (efficiency for converting photons into electrons (current signals)) in a wavelength region near 400 nm, and is mainly used in combination with a scintillator having an emission peak wavelength near 400 nm.
  • a position sensitive PMT PS-PMT
  • semiconductor detectors such as photodiodes, avalanche photodiodes (APDs), and silicon photomultipliers have a wide range of applications, particularly in radiation detectors and imaging devices.
  • Various semiconductor photodetectors are known.
  • some APDs composed of silicon semiconductors have quantum efficiencies exceeding 50% in the wavelength band from 350 nm to 900 nm, whereas the quantum efficiency of PMT is 45% at the maximum. Is expensive.
  • the wavelength band with high sensitivity is 500 nm to 700 nm, and the sensitivity is highest around 600 nm, and the quantum efficiency is about 80%.
  • these semiconductor photodetectors are used in combination with a scintillator having an emission peak wavelength between 350 nm and 900 nm centering around 600 nm.
  • PD, APD, and Si-PM include PD arrays having position detection sensitivity, position-sensitive avalanche photodiodes (PSAPD), and Si-PM arrays.
  • Scintillators suitable for these radiation detectors have high density from the point of detection efficiency, high atomic number (high photoelectric absorption ratio), high light emission from the point of high energy resolution, and the need for high-speed response Therefore, it is desired that the fluorescence lifetime (fluorescence decay time) is short.
  • multiple scintillators need to be closely arranged in a long and narrow shape (for example, about 5 mm x 5 mm x 30 mm for PET) to increase the number of layers and increase the resolution.
  • the price is also an important selection factor. It is also important that the emission wavelength of the scintillator matches the wavelength range where the detection sensitivity of the photodetector is high.
  • a preferred scintillator applied to various radiation detectors is a pyrosilicate scintillator Ce: Gd 2 Si 2 O 7 .
  • the scintillator has the advantages that it is chemically stable, has no cleavage or deliquescence, is excellent in workability, and has a high light emission amount.
  • a pyrosilicate scintillator described in Non-Patent Document 1 using light emission from the Ce 3+ 4f5d level has a short fluorescence lifetime of about 80 ns or less and a high light emission amount.
  • Non-Patent Document 1 because of the peritectic composition in the phase diagram, there is a problem that it is difficult to obtain a large transparent body because single crystal growth from the melt cannot be performed. Therefore, as described in Patent Document 1, it was previously assumed that a small amount of pyrosilicate scintillator was contained in a matrix such as glass.
  • Non-Patent Document 3 describes an example of succeeding in taking out a single crystal by a floating zone method by substituting Ce for La to suppress a drastic decrease in light emission (concentration quenching) and by using a harmonic melting composition.
  • a single crystal can be obtained, its growth is still difficult, and it has been a challenge to grow a single crystal having a large size for application to a production method applied to crystal production in the industrial field.
  • the crystal material used as a scintillator is required to have a high light emission amount and a short fluorescence lifetime, and from the viewpoint of cost to be widely applied to society, it has no cleaving property or deliquescence, that is, It is also required to have easy processability and mass productivity.
  • the present invention has been made in view of the above, and is a scintillator crystal material having a high light emission amount and a short fluorescence lifetime, a single crystal scintillator having no cleavage and deliquescence using the scintillator crystal material, and It is an object of the present invention to provide a radiation detector, an imaging device, and a nondestructive inspection device that are used.
  • the scintillator crystal material according to the present invention is represented by (Gd 1-xy La x Ce y ) 2 Si 2 O 7 , and the range of x is 0.2 ⁇ x ⁇ 0.45, and the range of y is It is a scintillator crystal material satisfying 0.0001 ⁇ y ⁇ 0.05.
  • the scintillator crystal material according to the present invention preferably further has an x range of 0.22 ⁇ x ⁇ 0.35 and a y range of 0.0005 ⁇ y ⁇ 0.02.
  • the scintillator crystal material according to the present invention in the above invention, emits scintillation light by irradiation of radiation, and the predetermined fluorescent component contained in the scintillation light has a fluorescence wavelength of 200 nm to 900 nm and its fluorescence lifetime Is 1000 nanoseconds or less.
  • the scintillator crystal material emits scintillation light by irradiation of radiation in the above invention, and the predetermined fluorescent component contained in the scintillation light has a fluorescence wavelength of 300 nm to 700 nm and its fluorescence lifetime. Is 80 nanoseconds or less.
  • the single crystal scintillator according to the present invention is characterized by comprising the scintillator crystal material according to the present invention.
  • a radiation detector includes the scintillator constituted by the scintillator crystal material or the single crystal scintillator of the above invention, and a photodetector for receiving scintillation light from the scintillator.
  • an imaging apparatus includes the radiation detector according to the above invention.
  • a nondestructive inspection apparatus includes the radiation detector of the above invention.
  • the present invention it is possible to provide a scintillator crystal material having a high light emission amount, a fluorescence lifetime, and easy to grow a single crystal, and a radiation detector, an imaging device, and a nondestructive inspection device using the same.
  • FIG. 1 is a view showing a photograph of Example 1 after crystal growth.
  • FIG. 2 is a view showing a photograph of Example 2 after crystal growth.
  • FIG. 3 is a view showing a photograph of Example 3 after crystal growth.
  • FIG. 4 is a view showing a photograph of Example 4 after crystal growth.
  • FIG. 5 is a view showing a photograph of Example 5 after crystal growth.
  • 6 is a view showing a photograph of Example 6 after crystal growth.
  • FIG. 7 is a view showing a photograph of the first comparative example after crystal growth.
  • FIG. 8 is a view showing a photograph of the comparative example 2 after crystal growth.
  • FIG. 9 is a diagram showing a light emission characteristic profile of radioluminescence.
  • FIG. 10 is a diagram showing a pulse height distribution spectrum obtained by irradiation with 137 Cs gamma rays (662 keV).
  • FIG. 11 is a diagram showing a fluorescence decay curve profile of Example 1.
  • FIG. 10 is a
  • the scintillator crystal material according to the embodiment of the present invention is represented by (Gd 1-xy La x Ce y ) 2 Si 2 O 7 , and the range of x is 0.2 ⁇ x ⁇ 0.45, y The range is 0.0001 ⁇ y ⁇ 0.05.
  • the scintillator crystal material preferably further has an x range of 0.22 ⁇ x ⁇ 0.35 and a y range of 0.0005 ⁇ y ⁇ 0.02.
  • the scintillator crystal material according to the present embodiment is a crystal material having a high emission amount of scintillation light generated by radiation irradiation and a short fluorescence lifetime.
  • the crystal material according to the present embodiment can solve these problems and can be applied to a production method applied to crystal production in an industrial field such as a micro-pulling-down method or a Czochralski method.
  • the pyrosilicate Si site is not limited to only Si, but may be replaced with another pyrochlore oxide substituted with Ge, Hf, or the like. In this case, the same effect as that according to the present invention is expected.
  • the scintillator crystal material according to the present embodiment can easily grow a single crystal, and can be used as a radiation detector by combining a single crystal scintillator with a photodetector capable of receiving scintillation light. Become. Furthermore, it can be used as a radiation measuring apparatus or a resource exploration apparatus as a nondestructive inspection apparatus provided with these radiation detectors as radiation detectors.
  • the predetermined fluorescent component contained in the scintillation light has a fluorescence wavelength of 200 nm to 900 nm and a fluorescence lifetime of 1000 nanoseconds or less. It can be.
  • the fluorescence lifetime is short, the sampling time for fluorescence measurement can be shortened, and the high time resolution, that is, the sampling interval can be reduced.
  • the number of samplings per unit time can be increased.
  • Such a crystal material having a short-lived emission can be suitably used as a scintillator for detecting radiation with a high-speed response for PET, SPECT and CT which are imaging devices.
  • the fluorescence peak wavelength of the fluorescence component is in the range of 250 nm to 900 nm, it can be detected in combination with a semiconductor photodetector such as PD, APD, or Si-PM made of silicon semiconductor.
  • a semiconductor photodetector such as PD, APD, or Si-PM made of silicon semiconductor.
  • the fluorescence peak wavelength of the fluorescent component is 400 nm or less, it is effective to convert the wavelength to a wavelength of 300 nm to 900 nm, that is, a wavelength in a region where the wavelength sensitivity of the above-described photodetector is sufficient using a wavelength conversion element .
  • the wavelength conversion element for example, a plastic using a wavelength conversion optical fiber (for example, Y11 (200) MS manufactured by Kuraray Co., Ltd.) can be used. Further, the type of photodetector to be combined can be appropriately used according to the fluorescence peak wavelength or the like. For example, PMT or PS-PMT may be used.
  • the fluorescence lifetime of the fluorescent component contained in the scintillation light is 80 nanoseconds or less and the fluorescence peak wavelength is in the range of 300 nm to 700 nm, further high resolution
  • Adjustment of the fluorescence lifetime and the fluorescence peak wavelength can be realized by adjusting the composition of the crystal material. For example, the fluorescence lifetime can be shortened by increasing the Ce concentration.
  • the light emission amount of the fluorescent component in the range of the ambient temperature from room temperature to 150 degrees Celsius when the light emission amount of the fluorescent component when the ambient temperature is 0 degrees Celsius is used as a reference.
  • the attenuation ratio from the reference can be less than 20%. Therefore, the scintillator crystal material according to the present embodiment can be very useful as a scintillator crystal material used in a high-temperature environment because the attenuation of light emission can be reduced even in a high-temperature environment.
  • a method for producing a single crystal of crystal material according to the present embodiment will be described below.
  • a general oxide raw material can be used as a starting material, but when used as a single crystal for a scintillator, it has a high purity of 99.99% (4N) or more. It is particularly desirable to use raw materials. These starting materials are weighed and mixed so as to have a target composition at the time of melt formation, and used as a crystal growth material.
  • starting materials those starting with as few impurities as possible other than the intended composition are particularly preferred.
  • a starting material that contains as little as possible an element that emits light in the vicinity of the scintillation light wavelength of the crystalline material or an element that easily changes its valence.
  • Crystal growth is preferably performed in an inert gas atmosphere such as Ar or N 2 .
  • an inert gas atmosphere such as Ar or N 2 .
  • a mixed gas of an inert gas and oxygen gas may be used.
  • the oxygen partial pressure is preferably 2% or less for the purpose of preventing the crucible from being oxidized.
  • the oxygen partial pressure can be set up to 100%.
  • oxygen gas, inert gas, and a mixed gas of oxygen gas and inert gas can be used in a subsequent process such as annealing after crystal growth.
  • the oxygen partial pressure is not limited to 2% or less, and any mixture ratio from 0% to 100% oxygen partial pressure may be used.
  • the Czochralski method pulseling method
  • the Bridgman method the band melting method
  • the edge limited thin film examples thereof include a supply crystal growth (EFG) method and a floating zone method, but are not limited thereto, and various crystal growth methods can be used.
  • EFG supply crystal growth
  • the Czochralski method or the Bridgeman method is preferable.
  • the scintillator crystal material according to the present embodiment is not limited to a single crystal, and may be a polycrystalline sintered body such as ceramics.
  • the micro pull-down method has the feature that it can grow single crystals at high speed and is easy to control the shape during growth. preferable.
  • examples of usable crucible and afterheater materials include platinum, iridium, rhodium, rhenium, and alloys thereof.
  • a high-frequency oscillator In the production of a scintillator single crystal, a high-frequency oscillator, a condenser heater, and a resistance heater may be further used.
  • a single crystal manufacturing method using the Czochralski method and the micro-pulling-down method will be described as an example of a method for manufacturing a single crystal of the crystal material according to the present embodiment.
  • the method for producing the crystal is not limited to this.
  • the Czochralski method (pulling) method can be performed by using a known single crystal pulling apparatus of an atmosphere control type by high frequency induction heating.
  • the single crystal pulling apparatus includes a crucible filled with a raw material melt, induction heating means for remotely heating the crucible (for example, a high frequency induction heating coil), a seed crystal holder provided on the crucible, and a seed crystal holder upward. It consists of a moving mechanism that pulls up and a rotating mechanism that rotates around the axis of the seed crystal holder.
  • the micro pulling-down method can be carried out using a known atmosphere-controlled micro pulling-down apparatus using high-frequency induction heating.
  • the micro-pulling device is, for example, a crucible for containing a raw material melt, a seed crystal holder for holding a seed crystal to be brought into contact with the raw material melt flowing out from a fine hole provided at the bottom of the crucible, and a seed crystal holder downward
  • a single crystal manufacturing apparatus including a moving mechanism for moving, a moving speed control device for controlling the speed of the moving mechanism, and induction heating means (for example, a high frequency induction heating coil) for remotely heating the crucible. According to such a single crystal production apparatus, a single crystal can be produced by forming a solid-liquid interface immediately below the crucible and moving the seed crystal downward.
  • the crucible is made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof.
  • an after heater which is a heating element made of carbon, platinum, iridium, rhodium, rhenium, or an alloy thereof, is disposed on the outer periphery of the crucible bottom. Controlling the temperature and distribution of the solid-liquid boundary region of the raw material melt drawn from the fine holes provided at the bottom of the crucible by adjusting the heat output by adjusting the output of each induction heating means of the crucible and after-heater Can do.
  • the atmosphere control type single crystal pulling device and the atmosphere control type micro pulling device described above employ stainless steel (SUS) as the material of the chamber, quartz as the window material, and a rotary pump for enabling atmosphere control. And the internal vacuum can be reduced to 1 ⁇ 10 ⁇ 3 Torr or less before gas replacement.
  • Ar, N 2 , H 2 , O 2 gas, etc. can be introduced into the chamber at a flow rate precisely adjusted by an accompanying gas flow meter.
  • the crystal growth raw material prepared by the above method is put into a crucible, the inside of the furnace is evacuated to a high vacuum, and then N 2 gas, Ar gas, or a mixed gas of Ar gas and O 2 gas is used. Is introduced into the furnace to make the inside of the furnace an inert gas atmosphere or a low oxygen partial pressure atmosphere. Next, the crucible is slowly heated by gradually applying high-frequency power to the high-frequency induction heating coil to completely melt the raw material in the crucible.
  • the seed crystal held by the seed crystal holder is gradually raised at a predetermined speed by the moving mechanism. Then, when the tip of the seed crystal is brought into contact with the fine hole at the lower end of the crucible and sufficiently blended, the crystal is grown by lowering the seed crystal while adjusting the melt temperature.
  • the seed crystal it is preferable to use a seed crystal that is the same as the crystal growth object or that is similar in structure and composition, but is not limited thereto. Moreover, it is preferable to use a crystal with a clear crystal orientation as a seed crystal.
  • the crystal growth is completed when all of the prepared crystal growth raw materials are crystallized and the melt is gone.
  • a device for continuously charging the crystal growth raw material may be incorporated. Thereby, the crystal can be grown while charging the crystal growth raw material.
  • the Ce concentration is either a concentration in a specific crystal or a concentration in a melt or (preparation).
  • concentration in the crystal is 1
  • concentration at the time of charging was about 1 to 10.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 1 is a view showing a photograph of a grown (Ce 0.01 La 0.44 Gd 0.55 ) 2 Si 2 O 7 crystal. As shown in FIG. 1, the grown crystal was partially transparent. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 2 is a view showing a photograph of the grown (Ce 0.01 La 0.34 Gd 0.65 ) 2 Si 2 O 7 crystal. As shown in FIG. 2, the grown crystal was partially transparent. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 3 is a view showing a photograph of the grown (Ce 0.01 La 0.29 Gd 0.7 ) 2 Si 2 O 7 crystal. As shown in FIG. 3, a partially transparent crystal was obtained from the grown crystal. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 4 is a photograph showing a grown (Ce 0.01 La 0.22 Gd 0.77 ) 2 Si 2 O 7 crystal. As shown in FIG. 4, the grown crystal was partially transparent. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 5 is a view showing a photograph of the grown (Ce 0.005 La 0.30 Gd 0.695 ) 2 Si 2 O 7 crystal. As shown in FIG. 5, the grown crystal was partially transparent. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • This crystal is a pyrosilicate crystal which is a kind of pyrochlore type oxide represented by A 2 B 2 O 7 .
  • FIG. 6 is a photograph showing a grown (Ce 0.03 La 0.30 Gd 0.67 ) 2 Si 2 O 7 crystal. As shown in FIG. 6, the grown crystal was partially transparent. The transparent crystal had a transparent bulk body, and the pattern under it was seen through. Moreover, it was confirmed that this crystal is a single crystal without cleaving or deliquescence.
  • FIG. 7 is a view showing a photograph of the grown (Ce 0.01 La 0.49 Gd 0.50 ) 2 Si 2 O 7 crystal. As shown in FIG. 7, the grown crystal was cracked as a whole and was a brittle crystal.
  • FIG. 8 is a photograph showing a grown (Ce 0.01 La 0.19 Gd 0.80 ) 2 Si 2 O 7 crystal. As shown in FIG. 8, the grown crystal was cracked in a certain direction with respect to the growing direction, and cleavage occurred.
  • Comparative Example 3 As a comparative example of a known single crystal scintillator, a commercially available (Ce 0.01 Gd 0.99 ) 2 SiO 5 (Ce 1%: GSO) crystal having a size of 5 mm ⁇ 5 mm ⁇ 5 mm was used.
  • Comparative Example 1 is a case where La is large, but the ionic radii of Gd and La (Shannon's ionic radius) are different from 0.94 angstrom and 1.03 angstrom, respectively. Becomes larger and more easily broken.
  • Comparative Example 2 is a case where La is small, although it is close to the harmonic melt composition, this composition approaches the unstable peritectic composition of Gd 2 Si 2 O 7 , so that crystal growth becomes unstable.
  • FIG. 9 is a diagram showing the obtained profiles of Example 1, Example 2, and Example 3.
  • the horizontal axis represents the emission wavelength
  • the vertical axis represents the count number (normalized) in which the maximum value of each peak is normalized by 1, which represents the emission intensity.
  • all of the crystals of the examples had an emission peak wavelength in the range of 300 nm to 400 nm.
  • a photomultiplier tube which is an optical detector by an optical grease (Applied Koken Co. 6262A) (manufactured by Hamamatsu Photonics KK R7600-200)
  • 137 Cs which has a radioactivity of 1MBq
  • a sealed ray source (gamma ray source) or 241 Am was used to excite and emit light by irradiating gamma rays.
  • the electric signal output from the photomultiplier tube is a pulse-like signal reflecting the received scintillation light, and the pulse height represents the emission intensity of the scintillation light.
  • the electric signal output from the photomultiplier tube was shaped and amplified by a shaping amplifier in this way, and then input to a multi-wave height analyzer (multi-channel analyzer: MCA) for analysis to create a wave height distribution spectrum.
  • MCA multi-wave height analyzer
  • FIG. 10 is a diagram showing wave height distribution spectra (Example 1, Example 3, Example 5, Example 6, and Comparative Example 3) obtained by irradiating the above-mentioned 137 Cs with gamma rays (662 keV).
  • the horizontal axis represents the channel number of the MCA and represents the signal magnitude.
  • the photoelectric absorption peak derived from the 662 keV gamma ray is higher on the right side in the figure, indicating a higher light emission amount.
  • the crystal of the example had a higher light emission than the crystal of the comparative example.
  • the light emission amount of Example 1 was 39,000 photon / MeV.
  • a light emission amount of 30,000 photon / MeV or more is regarded as a good characteristic. All of Examples 1 to 6 were good.
  • the scintillation light decay time of the crystals of Examples 1 to 6 was determined.
  • the crystal was optically bonded to the photomultiplier tube with the optical grease, and was excited and emitted by irradiating the gamma ray with the 137 Cs gamma ray.
  • the time distribution of the signal from the photomultiplier tube was measured with an oscilloscope (Tektronix TDS 3034B) to determine the decay time.
  • 1000 nanoseconds or less is good, and 80 nanoseconds or less is particularly good.
  • FIG. 11 is a graph showing a fluorescence decay curve profile of the crystal of Example 1.
  • the horizontal axis represents time
  • the vertical axis represents the voltage corresponding to the emission intensity.
  • the gray line is the actual measurement
  • the black line is the result of fitting with the following function I (t) with the time t as a variable in order to obtain the attenuation constant (fluorescence lifetime).
  • I (t) A 1 ⁇ exp ( ⁇ t / ⁇ 1 (ns)) + A 2 ⁇ exp ( ⁇ t / ⁇ 2 (ns)) + c
  • the high-speed component fluorescence lifetime ⁇ 1 of the crystal was 75 nanoseconds, and a high-speed scintillator could be constructed. In all of the examples from Example 2 to Example 6, it was 80 nanoseconds or less, which was particularly good.
  • Example 7 In the scintillator crystal material represented by (Gd 1-xy La x Ce y ) 2 Si 2 O 7 , the same as in Examples 1 to 6 except that y was changed from 0.0001 to 0.05. A scintillator crystal material was prepared and subjected to the same test. In Example 7, as in Examples 1 to 6, partially transparent crystals were obtained, and it was confirmed that the crystals were single crystals without cleaving or deliquescence.
  • Example 7 by setting y within the range of 0.0001 to 0.05, a scintillator crystal material having a fluorescence wavelength of 200 nm to 900 nm and a fluorescence lifetime of 1000 nanoseconds or less can be obtained. I was able to confirm. Furthermore, it was confirmed that by setting y in the range of 0.0005 to 0.02, a scintillator crystal material having a fluorescence wavelength of 300 nm to 700 nm and a fluorescence lifetime of 80 nanoseconds or less can be obtained.
  • the scintillator crystal material and the single crystal scintillator according to the present invention are particularly useful for industrial production methods such as the Czochralski method and the micro pull-down method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

 (Gd1-x-y Lax Cey 2 Si2 7 で表され、xの範囲が0.2≦x≦0.45、yの範囲が0.0001≦y≦0.05であるシンチレータ結晶材料。

Description

シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
 本発明は、シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置に関する。
 シンチレータとは、アルファ線、ガンマ線、エックス線もしくは中性子線などの、電離作用を起こす程度のエネルギーを持つ放射線を照射することによりシンチレーション光を発する物質で、これらは光検出器と組み合わせて放射線検出器として用いられる。このような放射線検出器は核医学分野での例として陽電子放射断層撮影(Positron Emission Tomography:PET)装置や単一光放射断層撮像(Single Photon Emission Computed Tomography:SPECT)、高エネルギー物理分野における各種放射線計測装置、および資源探査装置などに広く利用されている。
 例えば、高エネルギー物理やPETイメージングシステムでは、シンチレータと、放射性壊変によって発生する放射線との相互作用に基づいて画像が作成される。ここでPETイメージングシステムでは、被検体内の陽電子(ポジトロン)と対応する電子との相互作用から生じるガンマ線がシンチレータに入射し、光検出器によって検出することのできる光子に変換される。シンチレータから放出された光子はフォト・ダイオード(Photodiode:PD)、シリコンフォトマルチプライヤー(Si-Photomultiplier:Si-PM)、もしくは、光電子増倍管(Photomultiplier Tube:PMT)、または他の光検出器を使用して検出することができる。
 PMTは400nm付近の波長域に高い量子効率(光子を電子(電流信号)に変換する効率)を有し、主に、400nm付近に発光ピーク波長を有するシンチレータと組合せて使用されている。シンチレータをアレー状に配列したシンチレータアレーに対しては、位置敏感型PMT(PS-PMT)などを組み合わせて用いる。これによって、重心演算から、光子がシンチレータアレーのどのピクセルで検出されたかを突き止めることができる。
 一方、フォト・ダイオード、アバランシェ・フォト・ダイオード(Avalanche Photodiode:APD)やシリコンフォトマルチプライヤーといった半導体検出器は、特に放射線検出器やイメージング機器において、広範な用途を有する。様々な半導体光検出器が知られている。
 たとえば、シリコン半導体から構成されるAPDは、量子効率が350nmから900nmまでの波長帯域において50%を超えているものもあり、PMTの量子効率が最大で45%であるのに対して、量子効率が高い。上記波長帯域の中で感度の高い波長帯域は500nm~700nmであり、600nm付近で最も感度が高く、量子効率は80%程度になる。
 そのため、これらの半導体光検出器は、600nm付近を中心に350nmから900nmまでの間に発光ピーク波長を有するシンチレータと組合わせて使用されている。PMTと同様に、PD、APD、Si-PMに関しても、位置検出感度を持つPDアレー、位置検知性アバランシェ・フォトダイオード(PSAPD)、およびSi-PMアレーが存在する。
 これらの素子でも、光子がシンチレータアレーのどのピクセルで検出されたかを突き止めることができる。さらに350nm以下の短波長発光シンチレータに関しても、波長変換素子を使用するなどして、シンチレータ光をシリコン半導体が感度を有する波長領域の光に変換することで、シリコン半導体による読み出しを行なう放射線検出器が実現可能である。
 これらの放射線検出器に適するシンチレータには、検出効率の点から密度が高く、原子番号が大きいこと(光電吸収比が高いこと)、高エネルギー分解能の点から発光量が高く、高速応答の必要性から、蛍光寿命(蛍光減衰時間)が短いことが望まれる。
 加えて、近年のシステムでは多層化、高分解能化のため、多数のシンチレータを細長い形状(例えばPETでは5mm×5mm×30mm程度)で緻密に並べる必要から、取り扱い易さ、加工性、大型結晶作製が可能なこと、さらには価格も重要な選定要因となっている。また、シンチレータの発光波長が光検出器の検出感度の高い波長域と一致することも重要である。
 現在、各種放射線検出器へ応用される好ましいシンチレータとして、パイロシリケート系のシンチレータCe:Gd2 Si2 7 がある。当該シンチレータは化学的に安定で、へき開性や潮解性が無く、加工性に優れ、発光量が高いという利点がある。例えば、非特許文献1に記載の、Ce3+の4f5d準位からの発光を利用するパイロシリケート系のシンチレータは、蛍光寿命が80ns程度以下と短く、発光量も高い。
 しかしながら、一方で非特許文献1に記載の通り、相図上、包晶組成であるため、融液からの単結晶成長ができず、大きな透明体を得ることが困難であるという問題を有する。そのため、特許文献1に記載されているように、以前は、パイロシリケート系のシンチレータをガラス等のマトリックス中に少量含んだものとして利用されることを前提としていた。
 また、特許文献2や非特許文献2に記載のパイロシリケート系のシンチレータでは、Ceを希土類元素のサイトに置換することで、調和溶融組成にするという試みがなされている。これにより、この結晶はフローティングゾーン法、チョクラルスキー法(引き上げ法)、マイクロ引下げ法、ブリッジマン法などの融液成長法により大型単結晶作製が可能となる。しかしながら、希土類元素のサイトにCeを増やすと、発光量が激減してしまうという問題(濃度消光)が生じる。
 特許文献2に記載の(Gd1-x Cex 2 Si2 7 では、安定な結晶成長などの観点から、発光量は落ちるものの、0.1<x<0.3が望ましいとしているが、それでも多結晶化した中から単結晶を取り出している実施例が記載されている。
 非特許文献3では、CeをLaに代替することで、発光量の激減(濃度消光)を抑制し、かつ調和溶融組成とすることでフローティングゾーン法により単結晶を取り出すことに成功した例が記載されている。しかしながら、単結晶が得られるものの、その育成は依然として難しく、工業分野での結晶生産に適用されている生産手法に応用するための、大きいサイズの単結晶を育成することが課題であった。
特許3870418号公報 特開2009-074039号公報
S.Kawamura, J.H.Kaneko, M.Higuchi, T.Yamaguchi, J.Haruna, Y,Yagi, K.Susa, F.Fujita, A.Homma, S.Nishiyama, H.Ishibashi, K.Kurashige and M.Furusaka, IEEE Nuculear Science Symposium Conference Record, San Diego, USA, 29 October -5 November 2006, pp.1160-1163. Sohan.Kawamura, Junichi H.Kaneko, Mikio Higuchi, Jun Haruna, Shohei Saeki, Fumiyuki Fujita, Akira Homma, Shusuke Nishiyama, Shunsuke Ueda, Kazuhisa Kurashige, Hiroyuki Ishibashi, and Michihiro Furusaka, IEEE TRANSACTIONS ON NUCLEAR SCIENCE , VOL. 56, NO. 1, FEBRUARY 2009. Akira Suzuki, Shunsuke Kurosawa, Toetsu Shishido, Jan Pejchal, Yuui Yokota, Yoshisuke Futami, and Akira Yoshikawa, Applied Physics Express 5 (2012) 102601-1 -102601-3.
 シンチレータとして用いられる結晶材料は、発光量が高いことや、蛍光寿命が短いことが求められる他、広く社会に応用されるためにはコストの観点から、へき開性や、潮解性がないこと、すなわち、易加工性を持ち、量産性があること等も求められる。
 本発明は、上記に鑑みてなされたものであって、発光量が高く、蛍光寿命が短い、シンチレータ結晶材料、このシンチレータ結晶材料を利用したへき開性や潮解性のない単結晶シンチレータ、ならびにこれらを用いた放射線検出器、撮像装置および非破壊検査装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、発明者らは、これまでに鋭意努力を続け、検討を行ない、次の発明に至った。すなわち、本発明に係るシンチレータ結晶材料は、(Gd1-x-y Lax Cey 2 Si2 7 で表され、xの範囲が0.2≦x≦0.45、yの範囲が0.0001≦y≦0.05であるシンチレータ結晶材料であることを特徴とする。
 また、本発明に係るシンチレータ結晶材料はさらに、xの範囲が0.22≦x≦0.35、yの範囲が0.0005≦y≦0.02であることが好ましい。
 また、本発明に係るシンチレータ結晶材料は、上記発明において、放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光波長が200nm以上900nm以下であり、かつその蛍光寿命が1000ナノ秒以下であることを特徴とする。
 また、本発明に係るシンチレータ結晶材料は、上記発明において、放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光波長が300nm以上700nm以下であり、かつその蛍光寿命が80ナノ秒以下であることを特徴とする。
 また、本発明に係る単結晶シンチレータは、上記発明に係るシンチレータ結晶材料からなることを特徴とする。
 また、本発明に係る放射線検出器は、上記発明のシンチレータ結晶材料もしくは単結晶シンチレータから構成されるシンチレータと、前記シンチレータからのシンチレーション光を受光する光検出器と、を備えることを特徴とする。
 また、本発明に係る撮像装置は、上記発明の放射線検出器を備えることを特徴とする。
 また、本発明に係る非破壊検査装置は、上記発明の放射線検出器を備えることを特徴とする。
 本発明によれば、高い発光量、蛍光寿命を持ち、単結晶育成が容易なシンチレータ結晶材料、およびこれを用いた放射線検出器、撮像装置および非破壊検査装置を提供することができる。
図1は、実施例1の結晶育成後の写真を示す図である。 図2は、実施例2の結晶育成後の写真を示す図である。 図3は、実施例3の結晶育成後の写真を示す図である。 図4は、実施例4の結晶育成後の写真を示す図である。 図5は、実施例5の結晶育成後の写真を示す図である。 図6は、実施例6の結晶育成後の写真を示す図である。 図7は、比較例1の結晶育成後の写真を示す図である。 図8は、比較例2の結晶育成後の写真を示す図である。 図9は、ラジオルミネッセンスの発光特性プロファイルを示す図である。 図10は、 137Csガンマ線(662keV)を照射して得られた波高分布スペクトルを示す図である。 図11は、実施例1の蛍光減衰曲線プロファイルを示す図である。
 以下に、本発明に係るシンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
 本発明の実施の形態に係るシンチレータ結晶材料は、(Gd1-x-y Lax Cey 2 Si2 7 で表され、xの範囲が0.2≦x≦0.45、yの範囲が0.0001≦y≦0.05である。
 前記シンチレータ結晶材料はさらに、xの範囲が0.22≦x≦0.35、yの範囲が0.0005≦y≦0.02であることが好ましい。
 これにより、本実施の形態に係るシンチレータ結晶材料は、放射線の照射により発生するシンチレーション光の発光量が高く、蛍光寿命の短い結晶材料となる。
 なお、公知のパイロシリケート系のシンチレータは、高い発光量が期待されるものの、CeやLaを希土類元素のサイトに置換しないと調和溶融組成にならないため、透明バルク体を作製することが非常に困難となってしまうという課題がある。しかしながら、一方で、希土類元素のサイトにLaが増えることで有効原子番号Zeff が低くなるという課題がある。これに対して、本実施の形態に係る結晶材料は、これらの課題を解決でき、マイクロ引下げ法やチョクラルスキー法などの工業分野の結晶生産に適用されている生産手法に応用できる。
 また、有効原子番号Zeff が低くなるという課題に対して、パイロシリケートのSiサイトにおいては、Siのみに限定されず、GeやHfなどに置換した、他のパイロクロア型酸化物にするといった事も考えられ得るが、その場合においても本発明の実施に係る効果と同様の効果が期待される。
 さらに、本実施の形態に係るシンチレータ結晶材料は、容易に単結晶を育成することができ、単結晶シンチレータとシンチレーション光を受光できる光検出器と組み合わせることで、放射線検出器としての使用が可能となる。さらに、これらの放射線検出器を放射線検出器として備えた非破壊検査装置としての放射線計測装置や資源探査装置としても使用可能である。
 また、本実施の形態に係るシンチレータ結晶材料およびその単結晶について、そのシンチレーション光に含まれる所定の蛍光成分は、蛍光波長が200nm以上900nm以下であり、かつその蛍光寿命が1000ナノ秒以下の範囲とすることができる。このように、蛍光寿命が短いので、蛍光測定のためのサンプリング時間が短くて済み、高時間分解能、すなわちサンプリング間隔を低減することができる。また、高時間分解能が実現されることにより、単位時間でのサンプリング数を増加させることが可能になる。このような短寿命の発光を有する結晶材料は、撮像装置であるPET、SPECTおよびCT用の高速応答の放射線検出のためのシンチレータとして好適に利用できる。
 また、蛍光成分の蛍光ピーク波長が250nm以上900nm以下の範囲であるので、シリコン半導体から構成されるPD、APD、またはSi-PMなどの半導体光検出器と組合わせて検出できるものである。特に、蛍光成分の蛍光ピーク波長が400nm以下の場合、波長変換素子を用いて300nm以上900nm以下の波長、すなわち上述の光検出器の波長感度が十分ある領域の波長に変換することが有効である。
 波長変換素子としては、たとえばプラスチック製の波長変換用光ファイバ(たとえばクラレ社製Y11(200)M-S)等を用いたものが利用できる。また、組合わせる光検出器の種類は蛍光ピーク波長等に合わせて適宜利用でき、例えばPMTやPS-PMTを利用してもよい。
 また、本実施の形態に係る結晶材料において、シンチレーション光に含まれる蛍光成分の蛍光寿命が80ナノ秒以下であり、かつ、蛍光ピーク波長が300nm以上700nm以下の範囲であれば、更なる高分解能かつ高感度でのシンチレーション光の検出を実現できる。蛍光寿命および蛍光ピーク波長の調整は、結晶材料の組成を調整することによって実現することができる。例えば、Ce濃度を高くすると蛍光寿命を短くできる。
 また、本実施の形態に係るシンチレータ結晶材料では、環境温度が摂氏0度の場合の蛍光成分の発光量を基準とした場合に、環境温度が室温から摂氏150度の範囲における蛍光成分の発光量の前記基準からの減衰割合を20%未満とすることができる。したがって、本実施の形態に係るシンチレータ結晶材料は、高温環境下でも発光量の減衰を少なくできるので、高温環境下で使用されるシンチレータ結晶材料として非常に有用である。
 本実施の形態に係る結晶材料の単結晶の製造方法について、以下に説明する。いずれの組成の単結晶の製造方法においても、出発原料としては、一般的な酸化物原料が使用可能であるが、シンチレータ用単結晶として使用する場合、99.99%(4N)以上の高純度原料を用いることが特に望ましい。これらの出発原料を、融液形成時に目的の組成となるように秤量、混合したものを結晶育成原料として用いる。
 さらにこれらの出発原料中には、目的とする組成以外の不純物が極力少ないものが特に好ましい。特に当該結晶材料のシンチレーション光の波長付近に発光を有する元素や価数の変化しやすい元素を極力含まない出発原料を用いることが好ましい。
 結晶の育成は、例えばAr,N2 などの不活性ガス雰囲気下で行なうことが好ましい。または、不活性ガスと酸素ガスとの混合ガスを使用してもよい。ただし、この混合ガスの雰囲気下で結晶の育成を行なう場合、るつぼの酸化を防ぐ目的で、酸素分圧は2%以下であることが好ましい。
 ただし、フローティングゾーン法の様にるつぼを使用しない作製法を用いる場合には、酸素分圧は100%まで設定可能である。なお、結晶成長後のアニールなどの後工程においては、酸素ガス、不活性ガス、および、酸素ガスと不活性ガスとの混合ガスを用いることができる。後工程においては、混合ガスを用いる場合、酸素分圧は2%以下という制限は受けず、酸素分圧0%から100%までいずれの混合比のものを使用してもよい。
 本実施の形態に係る結晶材料の単結晶の製造方法としては、マイクロ引下げ法に加え、チョクラルスキー法(引き上げ法)、ブリッジマン法、帯溶融法(ゾーンメルト法)、および縁部限定薄膜供給結晶成長(EFG)法、フローティングゾーン法などが挙げられるが、これらに限定されず、各種結晶育成方法を用いることができる。
 なお、大型単結晶を得るためには、チョクラルスキー法またはブリッジマン法が好ましい。大型単結晶を用い得ることにより、単結晶の歩留りを向上させ、相対的には加工ロスを軽減することができる。したがって特許文献2に記載のような、多結晶化した中から単結晶を取り出す方法と比較して、低コストかつ高品質の結晶材料を得ることができる。ただし、本実施の形態に係るシンチレータ結晶材料は、単結晶に限定されず、セラミックスなどの多結晶の焼結体でもよい。
 一方、シンチレータ用単結晶として小型の単結晶のみを使用するのであれば、後加工の必要が無いかあるいは少ないことから、フローティングゾーン法、ゾーンメルト法、EFG法、マイクロ引下げ法、またはチョクラルスキー法が好ましく、るつぼとの濡れ性などの理由から、マイクロ引下げ法、またはゾーンメルト法が特に好ましい。
 さらに、シンチレータ用単結晶として小型の単結晶を工業量産する観点から見ると、高速な単結晶育成ができ、育成中に形状制御をすることが容易であるという特徴を持つ、マイクロ引下げ法がより好ましい。
 また、使用できるるつぼおよびアフターヒータの材料としては、白金、イリジウム、ロジウム、レニウム、またはこれらの合金が挙げられる。
 シンチレータ用単結晶の製造においては、さらに高周波発振器、集光加熱器、および抵抗加熱機を使用してもよい。
 以下に、本実施の形態に係る結晶材料の単結晶の製造方法の例として、チョクラルスキー法およびマイクロ引下げ法を用いた単結晶製造法を示すが、本実施の形態に係る結晶材料の単結晶の製造方法はこれに限定されるものではない。
 チョクラルスキー法(引き上げ)法については、公知の高周波誘導加熱による雰囲気制御型の単結晶引き上げ装置を用いて行なうことができる。単結晶引き上げ装置は、原料融液を充填するるつぼと、るつぼを遠隔過熱する誘導加熱手段(例えば高周波誘導加熱コイル)と、るつぼ上部に設けた種結晶保持具と、種結晶保持具を上方に引き上げる移動機構と、種結晶保持具の軸を中心に回転させる回転機構から構成される。
 るつぼに結晶原料を充填し、高周波加熱法や抵抗加熱法によりるつぼを加熱し、結晶原料を融解する。原料が融解して原料融液となったところで、あらかじめ定められた結晶方位に切り出された種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら、所定の速度で引き上げることで単結晶を成長させる。
 マイクロ引下げ法については、公知の高周波誘導加熱による雰囲気制御型マイクロ引下げ装置を用いて行なうことができる。マイクロ引下げ装置は、例えば、原料融液を収容するるつぼと、るつぼ底部に設けた微細孔から流出する原料融液に接触させる種結晶を保持する種結晶保持具と、種結晶保持具を下方に移動させる移動機構と、移動機構の速度を制御する移動速度制御装置と、るつぼを遠隔加熱する誘導加熱手段(例えば高周波誘導加熱コイル)とを具備した単結晶製造装置である。このような単結晶製造装置によれば、るつぼ直下に固液界面を形成し、下方向に種結晶を移動させることで、単結晶を作製することができる。
 上記の単結晶引き上げ装置およびマイクロ引下げ法装置において、るつぼは、カーボン、白金、イリジウム、ロジウム、レニウム、またはこれらの合金製である。また、マイクロ引き下げ法においては、るつぼ底部外周にカーボン、白金、イリジウム、ロジウム、レニウム、またはこれらの合金からなる発熱体であるアフターヒータが配置される。るつぼおよびアフターヒータのそれぞれの誘導加熱手段の出力調整により、発熱量を調整することによって、るつぼ底部に設けた微細孔から引き出される原料融液の固液境界領域の温度およびその分布を制御することができる。
 上記の雰囲気制御型単結晶引き上げ装置および雰囲気制御型マイクロ引下げ装置は、チャンバーの材質にはステンレス鋼(SUS)、窓材には石英を採用し、かつ、雰囲気制御を可能にするためのロータリーポンプを具備し、ガス置換前において、内部の真空度を1×10-3Torr以下にすることを可能にした装置である。また、チャンバーへは、付随するガスフローメータにより精密に調整された流量で、Ar、N2 、H2 、O2 ガス等を導入できるものである。
 この装置を用いて、上述の方法にて準備した結晶育成原料をるつぼに入れ、炉内を排気して高真空にした後、N2 ガス、ArガスもしくはArガスとO2 ガスとの混合ガスを炉内に導入することにより、炉内を不活性ガス雰囲気もしくは低酸素分圧雰囲気とする。次に、高周波誘導加熱コイルに高周波電力を徐々に印加することによりるつぼをゆっくりと加熱して、るつぼ内の原料を完全に融解する。
 マイクロ引き下げ法においては、種結晶保持具に保持された種結晶を移動機構によって所定の速度で徐々に上昇させる。そして、種結晶の先端をるつぼ下端の微細孔に接触させて充分になじませたら、融液温度を調整しつつ、種結晶を降下させることで結晶を成長させる。
 種結晶としては、結晶成長対象物と同等ないしは、構造、組成ともに近いものを使用することが好ましいが、これに限定されない。また、種結晶として結晶方位の明確なものを使用することが好ましい。
 準備した結晶育成原料が全て結晶化し、融液が無くなった時点で結晶成長は終了となる。一方、育成する結晶の組成を均一に保つ目的および長尺化の目的で、結晶育成原料の連続チャージ用機器を取り入れてもよい。これによって、結晶育成原料をチャージしながら結晶を育成することができる。
 以下、本発明の実施例および比較例について、図面を参照して詳細に説明するが、本発明はこれに限定されるわけではない。なお、以下の実施例では、Ce濃度は、特定の結晶中における濃度か、融液、(仕込み)における濃度かのいずれかの記載となっているが、各実施例において、結晶中の濃度1に対して仕込み時の濃度1~10程度となるような関係があった。
 (実施例1)
 マイクロ引下げ法により、(Ce0.01La0.44Gd0.552 Si2 7 の組成(x=0.44、y=0.01)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図1は育成した(Ce0.01La0.44Gd0.552 Si2 7 結晶の写真を示す図である。図1に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (実施例2)
 マイクロ引下げ法により、(Ce0.01La0.34Gd0.652 Si2 7 の組成(x=0.34、y=0.01)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図2は育成した(Ce0.01La0.34Gd0.652 Si2 7 結晶の写真を示す図である。図2に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (実施例3)
 マイクロ引下げ法により、(Ce0.01La0.29Gd0.72 Si2 7 の組成(x=0.29、y=0.01)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図3は育成した(Ce0.01La0.29Gd0.7 2 Si2 7 結晶の写真を示す図である。図3に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (実施例4)
 マイクロ引下げ法により、(Ce0.01La0.22Gd0.772 Si2 7 の組成(x=0.22、y=0.01)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図4は育成した(Ce0.01La0.22Gd0.772 Si2 7 結晶の写真を示す図である。図4に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (実施例5)
 マイクロ引下げ法により、(Ce0.005 La0.30Gd0.695 2 Si2 7 の組成(x=0.30、y=0.005)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図5は育成した(Ce0.005 La0.30Gd0.695 2 Si2 7 結晶の写真を示す図である。図5に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (実施例6)
 マイクロ引下げ法により、(Ce0.03La0.30Gd0.672 Si2 7 の組成(x=0.30、y=0.03)で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図6は育成した(Ce0.03La0.30Gd0.672 Si2 7 結晶の写真を示す図である。図6に示すように、育成した結晶は、部分的に透明な結晶が得られた。透明な結晶は、その下の模様が透けて見えており、透明バルク体であった。また、この結晶は、へき開性や潮解性のない単結晶であることが確認された。
 (比較例1)
 マイクロ引下げ法により、(Ce0.01La0.49Gd0.502 Si2 7 の組成で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図7は育成した(Ce0.01La0.49Gd0.502 Si2 7 結晶の写真を示す図である。図7に示すように、育成した結晶は、全体的にクラックが入り、もろい結晶体であった。
 (比較例2)
 マイクロ引下げ法により、(Ce0.01La0.19Gd0.802 Si2 7 の組成で表される結晶を育成した。この結晶はA2 2 7 で表されるパイロクロア型酸化物の一種であるパイロシリケート結晶である。図8は育成した(Ce0.01La0.19Gd0.802 Si2 7 結晶の写真を示す図である。図8に示すように、育成した結晶は、育成方向に対し、一定方向にクラックが入り、へき開が生じた。
 (比較例3)
 公知の単結晶シンチレータの比較例として、市販されている5mm×5mm×5mmサイズの(Ce0.01Gd0.992 SiO5 (Ce1%:GSO)結晶を用いた。
 実施例1から実施例6まで実施したところ、透明なバルク体を安定して育成することができたのに対して、比較例1および比較例2は、安定して育成することができなかった。比較例1はLaが多い場合であるが、GdとLaのイオン半径(シャノンのイオン半径)がそれぞれ0.94オングストローム、1.03オングストロームと異なり、Laが多いと、育成した結晶の格子の歪が大きくなり、割れやすくなる。比較例2はLaが少ない場合であるが、調和溶融組成に近いものの、この組成では、Gd2 Si2 7 の不安定な包晶組成に近づくため、結晶育成が不安定になる。
 育成した実施例1~実施例6および比較例3の結晶について、各々のシンチレーション光の発光特性を、放射線励起による発光(ラジオルミネッセンス)にて測定した。発光測定にはEdingurg社の分光器(型式:Instrument FSL920)を用いた。励起に用いた放射線源には、5.5MeVのアルファ線源である 241Am(放射能:1MBq)を使用した。
 図9は得られた実施例1および実施例2および実施例3のプロファイルを示す図である。なお、図9において、横軸は発光波長、縦軸は各々のピークの最大値を1で規格化したカウント数(normalized)であり、発光強度を表す。図9に示すように、実施例の結晶は、どれも300nm~400nmの範囲で発光ピーク波長を有するものであった。
 さらに、実施例1~実施例6で得られた結晶の発光量を見積もった。ここでそれぞれの結晶は、光学グリース(応用光研社製6262A)にて光検出器である光電子増倍管(浜松ホトニクス社製R7600-200)に光学装着し、1MBqの放射能を有する 137Cs密封線源(ガンマ線源)または 241Amを用い、ガンマ線を照射して励起、発光させた。
 なお、光電子増倍管には650V~700Vを印加し、シンチレーション光を電気信号に変換した。ここで、光電子増倍管より出力される電気信号は、受光したシンチレーション光を反映したパルス状の信号であり、パルスの波高がシンチレーション光の発光強度を表す。このようにして光電子増倍管から出力された電気信号を整形増幅器で整形、増幅した後、多重波高分析器(マルチチャンネルアナライザー:MCA)に入力して解析し、波高分布スペクトルを作成した。なお、比較例3の結晶についても同様に波高分布スペクトルを作成した。
 図10は、上記 137Csによるガンマ線(662keV)を照射して得られた波高分布スペクトル(実施例1、実施例3、実施例5、実施例6、比較例3)を示す図である。図10において、横軸はMCAのチャンネル番号であり、信号の大きさを表している。横軸については、662keVのガンマ線に由来する光電吸収ピークが、図中の右側にあるほど発光量が高いことを表す。
 図10からわかるように、実施例の結晶は比較例の結晶よりも発光量が高かった。なお、図10において、実施例1の発光量は39,000photon/MeVであった。なお、発光量が30,000photon/MeV以上となるものを良好な特性とする。実施例1~実施例6まで、全て良好であった。
 次に、実施例1~実施例6の結晶のシンチレーション光の減衰時間を求めた。ここで結晶は上記光学グリースにて上記光電子増倍管に光学接着し、上記 137Csによるガンマ線を用い、ガンマ線を照射して励起、発光させた。そして、光電子増倍管からの信号をオシロスコープ(Tektronix社製TDS 3034B)で信号の時間分布を測定することで、減衰時間を求めた。ここで、1000ナノ秒以下を良好、80ナノ秒以下を特に良好とする。
 図11は、実施例1の結晶の蛍光減衰曲線のプロファイルを示す図である。図11において、横軸は時間を表し、縦軸は発光強度に対応する電圧を表している。灰色の線は実測であり、黒線は減衰定数(蛍光寿命)を求めるために時間tを変数とする次の関数I(t)でフィッティングを行なった結果である。
 I(t)=A1 ×exp(-t/τ1 (ns))+A2 ×exp(-t/τ2 (ns))+c
 ここで、実施例1の測1定結果をフィッティングすると、結晶の高速度成分蛍光寿命τ1 は75ナノ秒であり、高速シンチレータを構成できるものであった。また、実施例2~実施例6まで全ての実施例で80ナノ秒以下であり、特に良好であった。
 実施例1~6の結果から、(Gd1-x-y Lax Cey 2 Si2 7 で表されたシンチレータ結晶材料において、x=0.2~0.45、好ましくは0.22~0.35、さらに好ましくは0.22~0.34と設定することで、300~400nmの範囲の発光ピーク波長を持ち、蛍光寿命が80ナノ秒以下の好ましい特性を有する結晶材料が得られることが確認できた。
 (実施例7)
 (Gd1-x-y Lax Cey 2 Si2 7 で表されたシンチレータ結晶材料において、yを0.0001~0.05と変化させた以外は、実施例1~6と同様にして、シンチレータ結晶材料を作成し、同様な試験を行った。実施例7においても、実施例1~6と同様に、部分的に透明な結晶が得られ、へき開性や潮解性のない単結晶であることが確認された。
 また、実施例7においては、yを0.0001~0.05の範囲とすることで、蛍光波長が200nm以上900nm以下であり、かつその蛍光寿命が1000ナノ秒以下のシンチレータ結晶材料が得られることが確認できた。さらに、yを0.0005~0.02の範囲とすることで、蛍光波長が300nm以上700nm以下であり、かつその蛍光寿命が80ナノ秒以下のシンチレータ結晶材料が得られることが確認できた。
 以上のように、本発明に係るシンチレータ結晶材料、単結晶シンチレータは、特にチョクラルスキー法やマイクロ引下げ法といった、工業用途としての生産方法に向いており、有用である。

Claims (8)

  1.  (Gd1-x-y Lax Cey 2 Si2 7 で表され、xの範囲が0.2≦x≦0.45、yの範囲が0.0001≦y≦0.05であるシンチレータ結晶材料。
  2.  さらに、xの範囲が0.22≦x≦0.35、yの範囲が0.0005≦y≦0.02である請求項1に記載のシンチレータ結晶材料。
  3.  前記シンチレータ結晶材料は放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光波長が200nm以上900nm以下であり、かつその蛍光寿命が1000ナノ秒以下である請求項1または請求項2に記載のシンチレータ結晶材料。
  4.  前記シンチレータ結晶材料は放射線の照射によってシンチレーション光を発し、前記シンチレーション光に含まれる所定の蛍光成分は、蛍光波長が300nm以上700nm以下であり、かつその蛍光寿命が80ナノ秒以下である請求項1から請求項3のいずれかに記載のシンチレータ結晶材料。
  5.  請求項1から請求項4のいずれかに記載のシンチレータ結晶材料からなる単結晶シンチレータ。
  6.  請求項1~請求項4のいずれかに記載のシンチレータ結晶材料もしくは請求項5に記載の単結晶シンチレータから構成されるシンチレータと、前記シンチレータからのシンチレーション光を受光する光検出器と、を備えることを特徴とする放射線検出器。
  7.  請求項6に記載の放射線検出器を備えることを特徴とする撮像装置。
  8.  請求項6に記載の放射線検出器を備えることを特徴とする非破壊検査装置。
PCT/JP2014/074310 2013-09-13 2014-09-12 シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置 WO2015037726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015536654A JP6341208B2 (ja) 2013-09-13 2014-09-12 シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013190381 2013-09-13
JP2013-190381 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037726A1 true WO2015037726A1 (ja) 2015-03-19

Family

ID=52665822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074310 WO2015037726A1 (ja) 2013-09-13 2014-09-12 シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置

Country Status (2)

Country Link
JP (1) JP6341208B2 (ja)
WO (1) WO2015037726A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212311A (ja) * 2014-05-01 2015-11-26 国立大学法人東北大学 発光体及び放射線検出器
WO2016190439A1 (ja) * 2015-05-27 2016-12-01 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP2017036160A (ja) * 2015-08-06 2017-02-16 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP2017066245A (ja) * 2015-09-29 2017-04-06 Tdk株式会社 シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
WO2023238795A1 (ja) * 2022-06-08 2023-12-14 国立大学法人東北大学 結晶材料、シンチレータ、および放射線検出器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083010A1 (fr) * 2002-03-28 2003-10-09 Hitachi Chemical Co.,Ltd. Phosphore et composition a base de phosphore
JP2009074039A (ja) * 2007-08-31 2009-04-09 Hitachi Chem Co Ltd 単結晶シンチレーター

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100266A (ja) * 1997-09-30 1999-04-13 Mamoru Omori マルテンサイト変態するセラミック化合物とその製造方法および高靱性複合材料
US9810792B2 (en) * 2012-12-26 2017-11-07 Tohoku University Crystal material, radiation detector, imaging apparatus, nondestructive inspection apparatus, and lighting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083010A1 (fr) * 2002-03-28 2003-10-09 Hitachi Chemical Co.,Ltd. Phosphore et composition a base de phosphore
JP2009074039A (ja) * 2007-08-31 2009-04-09 Hitachi Chem Co Ltd 単結晶シンチレーター

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Development of Ce: (LaX, Luy, Gd1-x-y) 2Si2O7 Single Crystals", DAI 60 KAI JSAP SPRING MEETING KOEN YOKOSHU, 11 March 2013 (2013-03-11), pages 30A - G19-3 *
"Fast and High-Energy-Resolution Oxide Scintillator:Ce-Doped(La,Gd)2Si2O7", APPLIED PHYSICS EXPRESS, vol. 5, 2012, pages 102601 - 1 - 102601-3 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212311A (ja) * 2014-05-01 2015-11-26 国立大学法人東北大学 発光体及び放射線検出器
WO2016190439A1 (ja) * 2015-05-27 2016-12-01 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
US10011770B2 (en) 2015-05-27 2018-07-03 Tohoku University Crystal material, method for manufacturing crystal, radiation detector, nondestructive inspection apparatus, and imaging apparatus
RU2666445C1 (ru) * 2015-05-27 2018-09-07 Тохоку Юниверсити Кристаллический материал, способ изготовления кристалла, детектор излучения, прибор неразрушющего контроля и прибор визуализации
JP2017036160A (ja) * 2015-08-06 2017-02-16 国立大学法人東北大学 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
JP2017066245A (ja) * 2015-09-29 2017-04-06 Tdk株式会社 シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
WO2023238795A1 (ja) * 2022-06-08 2023-12-14 国立大学法人東北大学 結晶材料、シンチレータ、および放射線検出器

Also Published As

Publication number Publication date
JPWO2015037726A1 (ja) 2017-03-02
JP6341208B2 (ja) 2018-06-13

Similar Documents

Publication Publication Date Title
TWI525228B (zh) 閃爍器用石榴石型結晶及使用其之輻射線檢測器
JP6058030B2 (ja) 結晶材料、放射線検出器、撮像装置、非破壊検査装置、および照明機器
JP6715426B2 (ja) 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
Shah et al. LuI/sub 3: Ce-a new scintillator for gamma ray spectroscopy
JP6341208B2 (ja) シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
JP5674385B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP5548629B2 (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2012180399A (ja) シンチレータ用ガーネット型結晶、及び、これを用いる放射線検出器
JP2013002882A (ja) 放射線検出器
JP6078223B2 (ja) シンチレータ用ガーネット型単結晶およびこれを用いる放射線検出器
JP2017036160A (ja) 結晶材料、結晶製造法、放射線検出器、非破壊検査装置、および撮像装置
RU2596765C2 (ru) Сцинтиллятор, радиационный детектор и способ обнаружения излучения
JP2013043960A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP2017066245A (ja) シンチレータ結晶材料、単結晶シンチレータ、放射線検出器、撮像装置および非破壊検査装置
WO2012115234A1 (ja) 中性子検出用シンチレーター及び中性子線検出器
JP7026896B2 (ja) 結晶材料、放射線検出器、非破壊検査装置、および撮像装置
JPWO2012011505A1 (ja) 放射線検出器
JP2013040274A (ja) シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP5737978B2 (ja) 中性子検出用シンチレーター及び中性子線検出器
JP5737974B2 (ja) 中性子検出用シンチレーター及び中性子線検出器
Shah et al. LaBr/sub 3: Ce scintillators for gamma ray spectroscopy
JP2017132689A (ja) 結晶材料、結晶製造方法、放射線検出器、非破壊検査装置および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015536654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843484

Country of ref document: EP

Kind code of ref document: A1