WO2019163281A1 - 自動分析装置、自動分析方法 - Google Patents

自動分析装置、自動分析方法 Download PDF

Info

Publication number
WO2019163281A1
WO2019163281A1 PCT/JP2018/047389 JP2018047389W WO2019163281A1 WO 2019163281 A1 WO2019163281 A1 WO 2019163281A1 JP 2018047389 W JP2018047389 W JP 2018047389W WO 2019163281 A1 WO2019163281 A1 WO 2019163281A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
concentration
ion
coexisting
electrode
Prior art date
Application number
PCT/JP2018/047389
Other languages
English (en)
French (fr)
Inventor
竹内 美和
恵美子 牛久
高橋 健一
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201880061604.3A priority Critical patent/CN111788479B/zh
Priority to EP18906758.0A priority patent/EP3757561A4/en
Priority to US16/647,952 priority patent/US20200256821A1/en
Priority to JP2020502054A priority patent/JP7148594B2/ja
Publication of WO2019163281A1 publication Critical patent/WO2019163281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • the present invention relates to an automatic analyzer.
  • the concentration of target ions such as sodium ions, potassium ions, chlor ions, etc. contained in samples such as serum and urine is measured using an ion selective electrode.
  • various ions other than the target ions derived from the living body are mixed.
  • QC samples quality control samples
  • the ion selective electrode When measuring the ion concentration in a biological sample using an ion selective electrode, the ion selective electrode may react with ions other than the target ions as described above (coexisting ions). At this time, the ion selection electrode outputs a concentration obtained by combining the target ions and the coexisting ions as a detection result of the target ions. The degree to which the ion selective electrode reacts with the coexisting ions is expressed as a selection coefficient.
  • the selection coefficient varies depending on each ion selection electrode, and also changes depending on the use time and the number of uses. Since the degree of response to coexisting ions is different when the selection coefficient is different, the measured value varies. This causes a measurement error of the target ion concentration.
  • An ideal ion selection electrode is not affected at all by ions other than the target ions, that is, has a selection coefficient of zero. However, an electrode film specific to the target ion has not been found, and it is difficult to make an ideal electrode with the current technology.
  • there is a technique for measuring the ion concentration of target ions in an ion selective electrode see Patent Document 1.
  • Patent Document 1 includes an electrode for detecting target ions and an electrode for detecting coexisting ions, and attempts to correct the influence of the coexisting ions by mutually using the detection results of each electrode. ing. However, if an extra electrode is installed to correct the influence of the coexisting ions, the extra space is consumed, thereby increasing the running cost and the apparatus cost.
  • the present invention has been made in view of the above problems, and can reduce the influence of coexisting ions without adding an ion selective electrode other than an ion selective electrode for detecting a target ion.
  • An object is to provide an automatic analyzer.
  • the automatic analyzer it is possible to provide an automatic analyzer that reduces the influence of coexisting ions on the target ions without adding an ion selection electrode other than the target ions.
  • FIG. 1 is a schematic configuration diagram of an automatic analyzer 100 according to Embodiment 1.
  • FIG. 2 is a functional block diagram of the automatic analyzer 100.
  • 9 is a flowchart for explaining a procedure for the automatic analyzer 100 to measure the sodium ion concentration of the measurement sample 15 in the second embodiment.
  • 10 is a flowchart for explaining a procedure by which the automatic analyzer 100 according to the third embodiment calculates a target ion concentration in a sample.
  • the sample container 101 accommodates biological samples such as blood and urine (hereinafter referred to as samples).
  • the sample dispensing nozzle 102 is immersed in the sample stored in the sample container 101.
  • the sample dispensing nozzle syringe 103 By the operation of the sample dispensing nozzle syringe 103, the sample dispensing nozzle 102 sucks the sample by a set amount and discharges it to the dilution tank 104.
  • Diluent bottle 105 contains a diluting liquid used for diluting the sample.
  • the dilution liquid is sent to the dilution tank 104 by the operation of the dilution liquid syringe 106 and the dilution liquid electromagnetic valve 107 to dilute the sample in the dilution tank 104.
  • the sample diluted in the dilution tank 104 is sucked into the sodium ion selection electrode 111, the potassium ion selection electrode 112, and the chlorine ion selection electrode 113 by the operations of the sipper syringe 108, the electromagnetic valve 109 for sipper syringe, and the pinch valve 110. Is done.
  • the comparison electrode solution stored in the comparison electrode solution bottle 114 is sucked into the comparison electrode 116 by the operations of the comparison electrode solution electromagnetic valve 115, the sipper syringe 108, and the sipper syringe electromagnetic valve 109.
  • the electromotive force between the comparison electrode 116 and each ion selection electrode 111, 112, 113 is measured.
  • the internal standard solution stored in the internal standard solution bottle 117 is changed to the sample or dilution by the operation of the internal standard solution syringe 118 and the internal standard solution electromagnetic valve 119. It is sent to the dilution tank 104 from which the liquid has been removed.
  • the internal standard solution in the dilution tank 104 is sucked by the sodium ion selection electrode 111, the potassium ion selection electrode 112, and the chlorine ion selection electrode 113 by the operations of the sipper syringe 108, the sipper syringe solenoid valve 109, and the pinch valve 110.
  • the electromotive force between the reference electrode 116 and the reference electrode 116 is measured.
  • an electromotive force the electromotive force between the reference electrode 116 and the reference electrode 116 is indicated.
  • FIG. 2 is a functional block diagram of the automatic analyzer 100.
  • the automatic analyzer 100 includes an electrolyte unit 23 and a measurement unit 24 as functional units that detect the ion concentration in the sample.
  • the electrolyte unit 23 detects the ion concentration using an ion selective electrode, and the measurement unit 24 measures the ion concentration using other methods.
  • the measurement unit 24 measures the ion concentration using a color reaction.
  • the electrolyte unit 23 includes a potential detection circuit 231, a sodium ion selection electrode 111, a potassium ion selection electrode 112, a chlorine ion selection electrode 113, and a comparison electrode 116. Electrolyte part 23 has a channel which lets a sample pass and supplies it to each electrode.
  • the potential detection circuit 231 acquires a voltage output from each ion selection electrode as a detection result of the ion concentration by measuring a potential difference between each ion selection electrode and the comparison electrode 116.
  • the density calculation unit (calculation unit) 125 will be described later.
  • the measurement unit 24 includes a reaction vessel 241, a photometry unit 242, a sample dispensing mechanism 243, and a reagent dispensing mechanism 244.
  • the sample dispensing mechanism 243 dispenses the sample to the reaction container 241
  • the reagent dispensing mechanism 244 dispenses the reagent 16 to the reaction container 241.
  • the measurement unit 24 measures the ion concentration in the sample by performing measurement based on the color reaction on the sample in the reaction container 241.
  • the density calculation unit (calculation unit) 126 will be described later.
  • the selection coefficient calculation sample 13, the calibration liquid (first sample) 14, and the measurement sample (second sample) 15 are samples having different roles.
  • the correction unit 124 calculates the target ion concentration using the measurement results for these samples. The use of each sample and the procedure for calculating the target ion concentration using each sample will be described later.
  • FIG. 3 is a functional block diagram of the correction unit 124.
  • the density calculation units 125 and 126 are described as function units different from the correction unit 124, but the density calculation units 125 and 126 may be configured as a function unit integrated with the correction unit 124.
  • the correcting unit 124 can be configured by an arithmetic device such as a CPU (Central Processing Unit) and a memory, for example.
  • a CPU Central Processing Unit
  • memory for example.
  • the concentration calculation unit 125 uses the voltage output from the electrolyte unit 23 to calculate the ion concentration contained in the sample and the selection coefficient of the ion selection electrode, and stores the values in the memory of the correction unit 124.
  • the concentration calculation unit 126 calculates the concentration of ions contained in the sample using the measurement result output from the measurement unit 24 and stores the value in the memory of the correction unit 124.
  • the user uses the input unit 123 to input an input value of a target ion concentration, which will be described later, to the automatic analyzer 100.
  • the display unit 122 displays the target ion concentration calculated by the correction unit 124 on the screen.
  • Step S401 The user detects the sodium ion concentration of the selection coefficient calculation sample 13 in which the sodium ion concentration and the coexisting ion concentration are known using the sodium ion selection electrode 111 of the electrolyte part 23.
  • two samples having different coexisting ion concentrations are prepared in advance as the selection coefficient calculation sample 13, and the respective sodium ion concentrations are detected.
  • the sodium ion concentration is 140 mM (mol / L)
  • the ⁇ concentrations are 0 mM and 100 mM, respectively.
  • the detection results of the sodium ion concentration by the electrolyte part 23 are 140 mM and 190 mM, respectively.
  • Step S401 Supplement
  • this step it is necessary to detect the sodium ion concentration using the two types of selection coefficient calculation samples 13 for each of the electrode used when step S405 is performed and the electrode used when step S406 is performed. That is, in principle, four selection coefficient calculation samples 13 are required.
  • this step may be performed once using the two types of selection coefficient calculation samples 13 for the same sodium ion selection electrode 111.
  • Step S402 Part 1
  • the concentration calculation unit 125 calculates the selection coefficient K1 of the sodium ion selection electrode 111 used when calibrating the calibration curve of sodium ion concentration in step S405.
  • This step has the significance of grasping in advance how much coexisting ions are taken in as the detection result of the sodium ion concentration by the sodium ion selection electrode 111 when the calibration curve is calibrated in step S405.
  • Step S402 Part 2
  • the concentration calculator 125 calculates a selection coefficient K1 ′ of the sodium ion selection electrode 111 used when detecting the sodium ion concentration in the measurement sample 15 in step S406.
  • the density calculation unit 125 stores the calculation result in the memory of the correction unit 124.
  • K1 K1 ′.
  • This step has a significance of grasping in advance how much coexisting ions are taken in as a detection result of the sodium ion concentration by the sodium ion selection electrode 111 when the measurement sample 15 is measured in step S406.
  • Step S403 to S404 the user measures the coexistence ion concentration contained in the calibration liquid 14 and the coexistence ion concentration contained in the measurement sample 15 using the measurement unit 24 (S403).
  • the concentration calculation unit 126 calculates the coexistence ion concentration C1 contained in the calibration liquid 14 and the coexistence ion concentration C′1 contained in the measurement sample 15 using the measurement result obtained by the measurement unit 24 (S404).
  • the density calculation unit 126 stores the calculation result in the memory of the correction unit 124.
  • Step S405 The user calibrates the calibration curve of the sodium ion selection electrode 111 by supplying the calibration solution 14 to the electrolyte part 23.
  • a correct detection result is obtained by correcting the calibration curve of the ion selective electrode with the measurement result of the calibration liquid.
  • This operation is called calibration of calibration curve.
  • the ion concentration of the calibration liquid 14 is presented from the shipping source of the calibration liquid 14. The user corrects the calibration curve by inputting this value to the automatic analyzer 100.
  • the ion concentration value presented by the sample shipping source is called an input value.
  • Step S405 Supplement
  • the user designates the input value of the sodium ion concentration of the calibration liquid 14, but the detection result actually output by the sodium ion selection electrode 111 is that in which coexisting ions are taken.
  • the calibration curve is shifted to the lower value side accordingly. Therefore, the subsequent detection result of the sodium ion selection electrode 111 is 15 mM less than the actual sodium ion concentration.
  • the sodium ion selection electrode 111 may or may not be replaced between the time of calibrating the calibration curve of the sodium ion selection electrode 111 in step S405 and the time of measuring the sodium ion concentration in step S406.
  • a sodium ion selective electrode may be used.
  • Step S407 Formula
  • Ci i-th coexisting ion concentration of the calibration solution 14
  • Ki selection coefficient for the i-th coexisting ion of the electrode used during calibration
  • C′i i-th coexisting ion concentration of the measurement sample 15
  • K′i A selection coefficient for the i-th coexisting ion of the electrode used when measuring the measurement sample
  • the sum of coexisting ions that affect the target ion.
  • steps S401 to S404 are performed for each coexisting ion.
  • Step S408 The display unit 122 displays the result of step S407 on the screen.
  • an appropriate output format such as (a) outputting data describing the calculation result or (b) printing out via a printer or the like may be used. .
  • ⁇ Embodiment 1 Summary>
  • the automatic analyzer 100 calculates the selection coefficient of the ion selective electrode in advance before measuring the measurement sample 15, and uses this to influence the measurement value by the coexisting ions. Correct. Therefore, a measured value closer to the actual value can be calculated.
  • the automatic analyzer 100 can correct the deviation from the assay value due to the coexisting ions by the measurement unit 24 measuring the coexisting ions of the calibration solution 14 and the measurement sample 15. it can. Therefore, the reliability of the sample measurement data can be ensured.
  • ⁇ Embodiment 2 When a sample (calibration liquid) shipping company ships a sample, the ion concentration contained in the sample is presented as a value to be input to the automatic analyzer 100. The process of determining this input value at the shipper is called pricing. When pricing is performed, the ion concentration is measured using an automatic analyzer owned by the shipping company, so the measured value may be affected by coexisting ions. In the second embodiment, a procedure for reducing the influence of coexisting ions at the time of pricing using the automatic analyzer 100 will be described. Since the configuration of the automatic analyzer 100 is the same as that of the first embodiment, the processing procedure performed by the automatic analyzer 100 at the time of pricing will be mainly described below.
  • FIG. 5 is a flowchart illustrating a procedure for the automatic analyzer 100 to measure the sodium ion concentration of the measurement sample 15 in the second embodiment.
  • the automatic analyzer 100 reduces the influence of the coexisting ions included in the input value designated by the shipper by the procedure shown in FIG. Hereinafter, each step of FIG. 5 will be described.
  • Step S501 Part 1
  • the user detects the sodium ion concentration of the selection coefficient calculation sample 13 in which the sodium ion concentration and the coexisting ion concentration are known using the sodium ion selection electrode 111 used in step S505.
  • the sodium ion concentration is 140 mM (mol / L), and the ⁇ concentrations are 0 mM and 100 mM, respectively.
  • the detection results of the sodium ion concentration by the electrolyte part 23 are 140 mM and 170 mM, respectively.
  • Step S501 Part 2
  • the calibration liquid 14 is also measured at the shipping source of the calibration liquid 14 at the stage before shipment in the same manner as in this step.
  • the sodium ion concentration is 140 mM (mol / L)
  • the ⁇ concentrations are 0 mM and 100 mM, respectively.
  • the detection results of the sodium ion concentration are 140 mM and 160 mM, respectively. Since the selection coefficient K′1 of the electrode used by the user and the selection coefficient K1 at the time of pricing of the shipping source only need to be known at the time of carrying out the subsequent steps, the electrode used by the user and the shipping source are determined. The electrodes used need not be the same. Information sharing of each selection coefficient between the user and the shipping source will be described later.
  • Step S502 Part 1
  • the concentration calculator 125 calculates the selection coefficient K′1 of the sodium ion selection electrode 111 used when calibrating the calibration curve of sodium ion concentration in step S505.
  • the density calculation unit 125 stores the calculation result in the memory of the correction unit 124.
  • Step S502 Part 2
  • the concentration calculator 125 calculates a selection coefficient K1 when the calibration liquid 14 is measured for pricing at the shipping source.
  • the density calculation unit 125 stores the calculation result in the memory of the correction unit 124.
  • Step S501: The result of step 2 may be described in a document together with a specification document when the shipping company ships the calibration solution 14, for example, and the user may input this to the automatic analyzer 100. Alternatively, the shipping source may designate K1 itself and the value may be input to the automatic analyzer 100.
  • Steps S503 to S504: Part 1 the user uses the measurement unit 24 to measure the coexisting ion concentration contained in the calibration solution 14 (S503).
  • the concentration calculation unit 126 calculates the coexistence ion concentration C′1 contained in the calibration liquid 14 using the measurement result obtained by the measurement unit 24 (S504).
  • the density calculation unit 126 stores the calculation result in the memory of the correction unit 124.
  • C′1 30 mM.
  • Steps S503 to S504 Part 2
  • the calibration liquid 14 is also measured at the shipping source of the calibration liquid 14 at the stage before shipment in the same manner as in S503.
  • the concentration calculation unit 126 receives the measurement result and calculates the coexisting ion concentration C1 at the shipping source.
  • the measurement result at the shipping source is shared between the shipping source and the user in the same manner as in S502, and the user may input it to the automatic analyzer 100.
  • C1 30 mM.
  • Step S505 Part 1
  • the user calibrates the calibration curve of the sodium ion selection electrode 111 by supplying the calibration solution 14 to the electrolyte unit 23 as in step S405.
  • Step S505 Part 2
  • Step S505 Part 3
  • the subsequent detection result of the sodium ion selection electrode 111 is 3 mM less than the actual sodium ion concentration.
  • Step S506 The user measures the sodium ion concentration contained in the measurement sample 15 by supplying the measurement sample 15 to the electrolyte part 23.
  • the concentration calculation unit 125 calculates the sodium ion concentration as 122 mM.
  • Step S507 to S508 The correction unit 124 calculates the correct sodium ion concentration of the measurement sample 15 by correcting the calibration curve calibrated to the low value side under the influence of the coexisting ions in the shipping source and step S505 according to the following equation 2. (S507).
  • the meaning of each coefficient in Equation 2 is the same as that in Equation 1.
  • Step S508 is the same as step S408.
  • the automatic analyzer 100 acquires the selection coefficient and coexisting ion concentration at the time of pricing at the shipping source of the calibration liquid 14, and corrects the measurement result using this. Therefore, even if the selection coefficient and the coexisting ion concentration of the calibration solution 14 at the shipping source and the selection coefficient and coexisting ion concentration when measuring the measurement sample 15 using the automatic analyzer 100 are different from each other, these differences are present. It is possible to correct a measurement error caused by.
  • the selection coefficient is calculated using the selection coefficient calculation sample 13, the coexistence ion concentration is measured using the measurement unit 24, and the measurement result is corrected using these values. If these values can be obtained separately, it is sufficient to omit the measurement process and input the obtained values to the automatic analyzer 100. Therefore, in the third embodiment, an operation procedure of the automatic analyzer 100 in that case will be described.
  • the configuration of the automatic analyzer 100 is the same as that of the first embodiment.
  • FIG. 6 is a flowchart for explaining a procedure by which the automatic analyzer 100 according to the third embodiment calculates the target ion concentration in the sample. Since steps S602 to S605 are the same as steps S405 to S408, step S601 will be described.
  • Step S601 The user inputs K1, C1, K′1, and C′1 values obtained in advance to the automatic analyzer 100.
  • the automatic analyzer 100 performs step S602 and subsequent steps using these values.
  • the user may manually input these values, or supply the values using a storage medium or other data transmission means. Other suitable methods may be used.
  • Embodiment 1 it is necessary to measure the selection coefficient and the coexisting ion concentration of the calibration liquid 14 and the measurement sample 15 before measuring the measurement sample 15.
  • the measurement work is performed. Can be simplified.
  • steps S501 to S504 can be omitted and replaced by step S601.
  • FIG. 7 is an example of a screen showing a list of electrode information.
  • This screen has (a) a tab for selecting an electrode of a target ion, and (b) a list of electrode information such as coexisting ions / base liquid / coexisting ionic liquid / selection coefficient.
  • the electrode of the target ion is switched.
  • the name of the coexisting ion for the electrode of the selected tab is displayed.
  • the base liquid column displays the target ion concentration in the base liquid calculated by the concentration calculation unit 125.
  • the coexisting ion concentration calculated by the concentration calculation unit 126 is displayed.
  • the coexisting ionic liquid column displays the target ion concentration in the coexisting ionic liquid calculated by the concentration calculating unit 125.
  • the coexisting ion concentration calculated by the concentration calculation unit 126 is displayed in parentheses.
  • the base liquid and the coexisting ionic liquid correspond to the two types of selection coefficient calculation samples 13 in step S401.
  • the selection coefficient column displays the selection coefficient calculated from the information in the coexisting ion column and the base liquid column.
  • the numerical value displayed on this screen may be one obtained by another concentration measuring device or one obtained by inputting the concentration provided by the manufacturer from the input unit 123.
  • the user can list the most recently measured or input electrode information on the screen of FIG. For example, by looking at the selection coefficient, it is possible to know the deterioration state of the electrode. With this function, it is possible to find out the error factor of the measured value early.
  • FIG. 8 is an example of a screen showing the change over time of the coexisting ion concentration in the sample.
  • the sample is switched, and the coexistence ion concentration in each sample calculated by the concentration calculation unit 126 is displayed in time series.
  • the vertical axis represents the coexisting ion concentration calculated by the concentration calculation unit 126 or the value input from the input unit 123.
  • the horizontal axis is the time of day or month or the number of measurements. If an allowable range is set in advance for the coexisting ion concentration and the measured value is out of the allowable range, the CPU displays an alarm indicating that the sample should be replaced on the display unit 122, for example.
  • An alarm may be issued by any other suitable method (eg, notification sound). The same applies to other alarms.
  • the user monitors the change over time of the coexisting ion concentration in the sample from the screen of FIG. As a result, the sample having a modified composition can be removed before measurement. Further, by outputting an alarm when the measured value is out of the allowable range, the user can be prompted to remove the sample.
  • FIG. 9 is an example of a screen showing the change over time of the electrode selection coefficient.
  • the selection coefficients for the coexisting ions of each electrode calculated by the concentration calculation unit 125 are displayed in time series.
  • the vertical axis is a selection coefficient calculated by the density calculation unit 125 or a value input from the input unit 123.
  • the horizontal axis is the time of day or month or the number of measurements.
  • the graph is updated each time the electrolyte part 23 measures.
  • a threshold value for the selection coefficient is provided in advance, and when the selection coefficient exceeds the threshold value, the CPU displays an alarm indicating that the electrode should be replaced on the display unit 122, for example.
  • the user monitors the change over time of the selection coefficient for the coexisting ions of each electrode on the screen of FIG. As a result, it is possible to remove the electrodes whose lifetime has passed before the measurement. Further, by outputting an alarm when the measured value is out of the allowable range, the user can be prompted to remove the electrode.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • the above-described configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them, for example, with an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card or an SD card.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Abstract

本発明は、対象イオンを検出するためのイオン選択電極以外のイオン選択電極を増設することなく、共存イオンによる影響を低減することができる、自動分析装置を提供することを目的とする。本発明に係る自動分析装置は、イオン選択電極の選択係数を算出した結果と、試料の中に含まれる共存イオン濃度を計測した結果とを用いて、前記試料の中に含まれる対象イオン濃度を算出する(図2参照)。

Description

自動分析装置、自動分析方法
 本発明は、自動分析装置に関する。
 臨床検査においては、血清や尿などの試料中に含まれるナトリウムイオン、カリウムイオン、クロールイオンなどの対象イオン濃度を、イオン選択電極を用いて測定する。この試料中には、生体に由来する対象イオン以外の種々なイオンが混在する。また市販の校正液や精度管理試料(QC試料)は人工物であるので、実際の血清には存在しない成分を含むものや、臨床上の基準値とかけ離れた濃度組成を有するものがある。
 イオン選択電極を用いて、生体試料内のイオン濃度を計測する際に、イオン選択電極は上記のような対象イオン以外のイオン(共存イオン)に対しても反応する場合がある。このときイオン選択電極は、対象イオンと共存イオンを併せた濃度を、対象イオンの検出結果として出力することになる。イオン選択電極が共存イオンに対して反応する程度は、選択係数として表される。
 選択係数はイオン選択電極それぞれに個体差があり、また使用時間や使用回数によっても変化する。選択係数が異なると共存イオンに応答する程度も異なるので、測定値が変動する。これにより対象イオン濃度の測定誤差が生じる。理想的なイオン選択電極は、対象イオン以外のイオンには全く影響されない、つまり選択係数0のものである。しかし対象イオンに特異的な電極膜は見つかっておらず、理想の電極を作ることは現在の技術では困難である。ここで、イオン選択電極において、対象イオンのイオン濃度を測定する技術がある(特許文献1参照)。
特開平7-167818号公報
 上記特許文献1記載の技術は、対象イオンを検出する電極と、共存イオンを検出する電極とをそれぞれ備え、各電極の検出結果を相互利用することにより、共存イオンの影響を補正することを図っている。しかし共存イオンの影響を補正するために電極を余分に設置すると、その分のスペースを余分に消費することにより、ランニングコストや装置コストが増える。
 本発明は、上記のような課題に鑑みてなされたものであり、対象イオンを検出するためのイオン選択電極以外のイオン選択電極を増設することなく、共存イオンによる影響を低減することができる、自動分析装置を提供することを目的とする。
 本発明に係る自動分析装置は、イオン選択電極の選択係数を算出した結果と、試料の中に含まれる共存イオン濃度を計測した結果とを用いて、前記試料の中に含まれる対象イオン濃度を算出する。
 本発明に係る自動分析装置によれば、対象イオン以外のためのイオン選択電極を増設することなく、共存イオンが対象イオンに対して与える影響を低減する自動分析装置を提供することができる。
実施形態1に係る自動分析装置100の概略構成図。 自動分析装置100の機能ブロック図。 補正部124の機能ブロック図。 自動分析装置100が試料内の対象イオン濃度を算出する手順を説明するフローチャート。 実施形態2において自動分析装置100が測定試料15のナトリウムイオン濃度を測定する手順を説明するフローチャート。 実施形態3に係る自動分析装置100が試料内の対象イオン濃度を算出する手順を説明するフローチャート。 電極情報一覧を示す画面例。 試料中の共存イオン濃度の経時変化を示す画面例。 電極の選択係数の経時変化を示す画面例。
<実施形態1>
 図1は、実施形態1に係る自動分析装置100の概略構成図である。自動分析装置100は、液体試料に含まれる対象イオンの濃度を計測する装置である。以下自動分析装置100の構成について説明する。
 試料容器101は、血液や尿などの生体サンプル(以下、試料と称する)を収容する。試料容器101に収容された試料に対して試料分注ノズル102を浸漬する。試料分注ノズル用シリンジ103の動作により、試料分注ノズル102は試料を設定量だけ吸引し、希釈槽104に対して吐出する。希釈液ボトル105には、試料の希釈に用いる希釈液が収容されている。希釈液は、希釈液用シリンジ106と希釈液用電磁弁107の動作によって希釈槽104に送られ、希釈槽104内の試料を希釈する。
 希釈槽104内で希釈された試料は、シッパーシリンジ108、シッパーシリンジ用電磁弁109、およびピンチバルブ110の動作により、ナトリウムイオン選択電極111、カリウムイオン選択電極112、および塩素イオン選択電極113に吸引される。比較電極液ボトル114に収容された比較電極液は、比較電極液用電磁弁115、シッパーシリンジ108、およびシッパーシリンジ用電磁弁109の動作により、比較電極116に吸引される。比較電極116と、各イオン選択電極111,112,113との間の起電力が測定される。
 試料濃度を求めるために用いられる内部標準液の測定において、内部標準液ボトル117に収容された内部標準液は、内部標準液用シリンジ118および内部標準液用電磁弁119の動作によって、試料や希釈液の排除された希釈槽104に送られる。希釈槽104内の内部標準液は、シッパーシリンジ108、シッパーシリンジ用電磁弁109、およびピンチバルブ110の動作により、ナトリウムイオン選択電極111、カリウムイオン選択電極112、および塩素イオン選択電極113に吸引され、比較電極116との間の起電力が測定される。以降において単に起電力と記載した場合は、比較電極116との間の起電力を示すものとする。
 ナトリウムイオン選択電極111、カリウムイオン選択電極112、塩素イオン選択電極113、および比較電極116は、制御部120に接続されている。制御部120は、自動分析装置100の全体動作を制御するものであり、各電極間に生じる起電力を測定するほか、各シリンジ103,106,108,118や各電磁弁107,109,110,115,119等の動作を制御する。制御部120には、記憶部121、表示部122、および入力部123が接続されている。ユーザは、表示部122に表示された設定画面等に基づいて、入力部123を介して、各種パラメータや測定対象試料の情報(試料種別情報など)を入力する。記憶部121は入力された情報を記憶する。記憶部121はその他に、試料の測定に用いる各種プログラム、測定結果などを記憶する。
 図2は、自動分析装置100の機能ブロック図である。自動分析装置100は、試料内のイオン濃度を検出する機能部として、電解質部23と計測部24を備える。電解質部23はイオン選択電極を用いてイオン濃度を検出し、計測部24はそれ以外の手法を用いてイオン濃度を計測する。本実施形態1において計測部24は、呈色反応を用いてイオン濃度を計測するものとする。
 電解質部23は、電位検出回路231、ナトリウムイオン選択電極111、カリウムイオン選択電極112、塩素イオン選択電極113、および比較電極116によって構成されている。電解質部23は、試料を通過させて各電極に対して供給する流路を有する。電位検出回路231は、各イオン選択電極と比較電極116との間の電位差を計測することにより、各イオン選択電極が出力する電圧を、イオン濃度の検出結果として取得する。濃度演算部(算出部)125については後述する。
 計測部24は、反応容器241、測光部242、試料分注機構243、試薬分注機構244を備える。試料分注機構243は試料を反応容器241に対して分注し、試薬分注機構244は試薬16を反応容器241に対して分注する。計測部24は、反応容器241内の試料に対して、呈色反応に基づく計測を実施することにより、試料内のイオン濃度を計測する。濃度演算部(算出部)126については後述する。
 選択係数算出試料13、校正液(第1試料)14、測定試料(第2試料)15は、それぞれ異なる役割を有する試料である。補正部124は、これらの試料に対する計測結果を用いて、対象イオン濃度を算出する。各試料の用途および各試料を用いて対象イオン濃度を算出する手順については後述する。
 図3は、補正部124の機能ブロック図である。ここでは記載の便宜上、濃度演算部125と126は補正部124とは別の機能部として記載したが、濃度演算部125と126を補正部124と一体の機能部として構成することもできる。以下では図3の構成を前提として説明する。補正部124は、例えばCPU(Central Processing Unit)などの演算装置とメモリによって構成することができる。
 濃度演算部125は、電解質部23が出力する電圧を用いて、試料に含まれるイオン濃度やイオン選択電極の選択係数を算出し、補正部124のメモリにその値を格納する。濃度演算部126は、計測部24が出力する計測結果を用いて、試料に含まれるイオン濃度を算出し、補正部124のメモリにその値を格納する。ユーザは入力部123を用いて、後述する対象イオン濃度の入力値などを自動分析装置100に対して入力する。表示部122は、補正部124が算出した対象イオン濃度などを画面表示する。
 図4は、自動分析装置100が試料内の対象イオン濃度を算出する手順を説明するフローチャートである。ここでは校正液14を用いてナトリウムイオンの検出特性線(以下、検量線)を校正し、測定試料15内に含まれるナトリウムイオン濃度を算出する例を説明する。以下の説明において、ナトリウムイオン選択電極111がナトリウムイオンとともに検出する共存イオンをαとする。
(図4:ステップS401)
 ユーザは、電解質部23のナトリウムイオン選択電極111を用いて、ナトリウムイオン濃度と共存イオン濃度がそれぞれ既知である選択係数算出試料13のナトリウムイオン濃度を検出する。本ステップにおいては、選択係数算出試料13として、共存イオン濃度が互いに異なる2つの試料をあらかじめ準備しておき、それぞれのナトリウムイオン濃度を検出する。ここではナトリウムイオン濃度が140mM(mol/L)であり、α濃度がそれぞれ0mMと100mMであるものとする。また電解質部23によるナトリウムイオン濃度の検出結果はそれぞれ140mMと190mMであったものとする。
(図4:ステップS401:補足)
 本ステップにおいては、ステップS405を実施する際に用いる電極とステップS406を実施する際に用いる電極それぞれについて、2種類の選択係数算出試料13を用いてナトリウムイオン濃度を検出する必要がある。すなわち原則として、4つの選択係数算出試料13が必要である。ただし本フローチャートにおいては、手順を簡易化するため、ステップS405とS406において同じ電極を用いるものとする。したがって同じナトリウムイオン選択電極111に対して2種類の選択係数算出試料13を用いて本ステップを1回実施すればよい。
(図4:ステップS402:その1)
 濃度演算部125は、ステップS405においてナトリウムイオン濃度の検量線を校正する際に用いるナトリウムイオン選択電極111の選択係数K1を算出する。濃度演算部125は、その算出結果を補正部124のメモリに格納する。ステップS401の結果によれば、K1=(190-140)/(100-0)=0.5となる。本ステップは、ステップS405において検量線を校正する際に、ナトリウムイオン選択電極111がどの程度の共存イオンをナトリウムイオン濃度の検出結果として取り込むのかについて、あらかじめ把握しておく意義がある。
(図4:ステップS402:その2)
 濃度演算部125は、ステップS406において測定試料15内のナトリウムイオン濃度を検出する際に用いるナトリウムイオン選択電極111の選択係数K1’を算出する。濃度演算部125は、その算出結果を補正部124のメモリに格納する。ここではステップS405とS406において同じ電極を用いるものとする。したがってK1=K1’である。本ステップは、ステップS406において測定試料15を測定する際に、ナトリウムイオン選択電極111がどの程度の共存イオンをナトリウムイオン濃度の検出結果として取り込むのかについて、あらかじめ把握しておく意義がある。
(図4:ステップS403~S404)
 ユーザは、ステップS401と並行して、計測部24を用いて、校正液14に含まれる共存イオン濃度と測定試料15に含まれる共存イオン濃度をそれぞれ測定する(S403)。濃度演算部126は、計測部24による計測結果を用いて、校正液14に含まれる共存イオン濃度C1と測定試料15に含まれる共存イオン濃度C’1をそれぞれ算出する(S404)。濃度演算部126は、その算出結果を補正部124のメモリに格納する。ここではC1=30mM、C’1=10mMであったとする。
(図4:ステップS405)
 ユーザは、校正液14を電解質部23に対して供給することにより、ナトリウムイオン選択電極111の検量線を校正する。一般にイオン選択電極は、経時変化などにより電極の感度が次第に変化するので、イオン濃度が既知である校正液を計測したとしても、得られる計測結果がその既知濃度とは異なる場合がある。そこでイオン選択電極の検量線を、校正液の計測結果によって補正することにより、正しい検出結果が得られるようにする。この作業を検量線の校正と呼ぶ。校正液14のイオン濃度は、校正液14の出荷元から提示される。ユーザはこの値を自動分析装置100に対して入力することにより検量線を補正する。このように試料の出荷元が提示するイオン濃度値を入力値と呼ぶ。
(図4:ステップS405:補足)
 本ステップにおいてユーザは、校正液14のナトリウムイオン濃度の入力値を指定するが、ナトリウムイオン選択電極111が実際に出力する検出結果は、共存イオンを取り込んだものとなっている。例えば校正液14のナトリウムイオン濃度の入力値が140mMである場合、ナトリウムイオン選択電極111は、140+(K1×C1)=155mMを検出結果として出力する。本ステップにおいてはこの検出結果を入力値140mMによって補正するので、検量線はその分だけ低値側にシフトすることになる。したがってナトリウムイオン選択電極111の以後の検出結果は、実際のナトリウムイオン濃度よりも15mM少ないものとなる。
(図4:ステップS406)
 ユーザは、測定試料15を電解質部23に対して供給することにより、測定試料15に含まれるナトリウムイオン濃度を測定する。このときナトリウムイオン選択電極111は共存イオンを取り込んだ検出結果を出力する。例えば濃度演算部125がナトリウムイオン濃度を150mMとして出力した場合、測定試料15内の実際のナトリウムイオン濃度は、150-(K’1×C’1)=145mMであることになる。
(図4:ステップS406:補足)
 ステップS405においてナトリウムイオン選択電極111の検量線を校正する際と、ステップS406においてナトリウムイオン濃度を測定する際との間において、ナトリウムイオン選択電極111を交換してもよいし、交換せずに同一のナトリウムイオン選択電極を用いてもよい。
(図4:ステップS407)
 補正部124は、共存イオンの影響を受けて低値側に校正された検量線と、共存イオンの影響を受けてナトリウムイオン濃度を余分に検出した結果を、下記式1に適用することにより、測定試料15のナトリウムイオン濃度を補正する。
(図4:ステップS407:計算式)
 下記式1において、Ci:校正液14のi番目共存イオン濃度、Ki:校正時に用いる電極のi番目共存イオンに対する選択係数、C’i:測定試料15のi番目共存イオン濃度、K’i:測定試料15を測定するとき用いる電極のi番目共存イオンに対する選択係数、Σ:対象イオンに影響を与える共存イオンの総和、である。上記例において共存イオンαは1種類のみであるので、i=1である。複数の共存イオンの影響を考慮する場合、ステップS401~S404を各共存イオンに対して実施する。この場合は各共存イオンについて、ナトリウムイオン選択電極111の選択係数K2、K3、・・・、共存イオン濃度C2、C3、・・・をそれぞれ求めておき、式1に代入することになる。
 補正後のナトリウムイオン濃度=
  ナトリウムイオン選択電極による測定値+
  Σ[i=1→n](Ci×Ki)-
  Σ[i=1→n](C’i×K’i) ・・・式1
(図4:ステップS407:計算例)
 補正後のナトリウムイオン濃度=
  150+(C1×K1)-(C’1×K’1)=
  150+0.5×30-0.5×10=
  150+15-5=160
(図4:ステップS408)
 表示部122は、ステップS407の結果を画面表示する。表示部122に代えて、またはこれと併用して、(a)算出結果を記述したデータを出力する、(b)プリンタなどを介して印刷出力する、などの適当な出力形式を用いてもよい。以下の実施形態においても同様である。
<実施形態1:まとめ>
 従来の自動分析装置においては、共存イオンによる測定値の誤差は、測定誤差として扱われている。しかしこのような共存イオンによる測定値の誤差は、臨床上見過ごせない誤差を生じさせる可能性もある。これに対して本実施形態1に係る自動分析装置100は、測定試料15を計測する前にあらかじめイオン選択電極の選択係数を算出しておき、これを用いて、共存イオンによる測定値への影響を補正する。そのため、より実際の値に近い測定値を算出することができる。
 校正液14の共存イオン濃度と測定試料15の共存イオン濃度が異なっていた場合、測定試料15の測定値がアッセイ値と乖離する。測定試料15の測定値が精度管理幅を外れるとその日の検体測定データの信頼性が得られなくなる。これに対して本実施形態1に係る自動分析装置100は、校正液14と測定試料15それぞれの共存イオンを計測部24が測定することにより、共存イオンによるアッセイ値との乖離を補正することができる。したがって検体測定データの信頼性を確保することができる。
<実施形態2>
 試料(校正液)の出荷元が試料を出荷する際に、その試料に含まれるイオン濃度を、自動分析装置100に対して入力する値として提示する。出荷元においてこの入力値を決定する工程を値付けと呼ぶ。値付けを実施する際には、出荷元が有する自動分析装置を用いてイオン濃度を測定するので、測定値が共存イオンの影響を受ける場合がある。そこで実施形態2では、自動分析装置100を用いて、値付け時における共存イオンの影響を低減する手順を説明する。自動分析装置100の構成は実施形態1と同様であるので、以下では値付け時において自動分析装置100が実施する処理手順について主に説明する。
 図5は、本実施形態2において自動分析装置100が測定試料15のナトリウムイオン濃度を測定する手順を説明するフローチャートである。自動分析装置100は図5に示す手順により、出荷元が指定した入力値に含まれる共存イオンの影響を低減する。以下図5の各ステップについて説明する。
(図5:ステップS501:その1)
 ユーザはステップS401と同様に、ステップS505において用いるナトリウムイオン選択電極111を用いて、ナトリウムイオン濃度と共存イオン濃度がそれぞれ既知である選択係数算出試料13のナトリウムイオン濃度を検出する。ここではナトリウムイオン濃度が140mM(mol/L)であり、α濃度がそれぞれ0mMと100mMであるものとする。また電解質部23によるナトリウムイオン濃度の検出結果はそれぞれ140mMと170mMであったものとする。
(図5:ステップS501:その2)
 校正液14の出荷元においても、出荷前の段階で本ステップと同様に校正液14を測定する。ここではナトリウムイオン濃度が140mM(mol/L)であり、α濃度がそれぞれ0mMと100mMであるものとする。またナトリウムイオン濃度の検出結果はそれぞれ140mMと160mMであったものとする。ユーザが使用する電極の選択係数K’1と、出荷元の値付け時における選択係数K1とがそれぞれ以後のステップを実施する時点で分かっていればよいので、ユーザが使用する電極と出荷元が使用する電極は同じでなくてよい。ユーザと出荷元との間における各選択係数の情報共有については後述する。
(図5:ステップS502:その1)
 濃度演算部125は、ステップS505においてナトリウムイオン濃度の検量線を校正する際に用いるナトリウムイオン選択電極111の選択係数K’1を算出する。濃度演算部125は、その算出結果を補正部124のメモリに格納する。ステップS501:その1の結果によれば、K’1=(170-140)/(100-0)=0.3となる。
(図5:ステップS502:その2)
 濃度演算部125は、出荷元において値付けのため校正液14を測定したときにおける選択係数K1を算出する。濃度演算部125は、その算出結果を補正部124のメモリに格納する。ステップS501:その2の結果によれば、K1=(160-140)/(100-0)=0.2となる。ステップS501:その2の結果は、例えば出荷元が校正液14を出荷する際に仕様書などと併せて書類に記載しておき、ユーザがこれを自動分析装置100に対して入力してもよいし、K1そのものを出荷元が指定しておきその値を自動分析装置100に対して入力してもよい。
(図5:ステップS503~S504:その1)
 ユーザは、ステップS501と並行して、計測部24を用いて、校正液14に含まれる共存イオン濃度を測定する(S503)。濃度演算部126は、計測部24による計測結果を用いて、校正液14に含まれる共存イオン濃度C’1を算出する(S504)。濃度演算部126は、その算出結果を補正部124のメモリに格納する。ここではC’1=30mMであったとする。
(図5:ステップS503~S504:その2)
 校正液14の出荷元においても、出荷前の段階でS503と同様に校正液14を測定する。濃度演算部126は、その計測結果を受け取り、出荷元における共存イオン濃度C1を算出する。出荷元における計測結果は、S502と同様に出荷元とユーザとの間で共有し、ユーザがこれを自動分析装置100に対して入力すればよい。ここではC1=30mMであったとする。
(図5:ステップS505:その1)
 ユーザはステップS405と同様に、校正液14を電解質部23に対して供給することにより、ナトリウムイオン選択電極111の検量線を校正する。例えば校正液14のナトリウムイオン濃度の入力値が100mMである場合、出荷元において値付けする際には、(K1×C1)=0.2×30=6mMを余分に取り込んだ計測結果を、入力値100mMとして提示したことになる。したがって校正液14に実際に含まれているナトリウムイオン濃度は、100-6=94mMであることになる。
(図5:ステップS505:その2)
 本ステップにおいて、ナトリウムイオン選択電極111は、(K’1×C’1)=0.3×30=9mMを余分に取り込んで計測することになる。したがって、94mMのナトリウムイオン濃度を103mMとして計測する。
(図5:ステップS505:その3)
 以上によれば、本ステップにおいては、103mMとして計測されたナトリウムイオン濃度を入力値100mMによって補正するので、検量線はその分だけ低値側にシフトすることになる。したがってナトリウムイオン選択電極111の以後の検出結果は、実際のナトリウムイオン濃度よりも3mM少ないものとなる。
(図5:ステップS506)
 ユーザは、測定試料15を電解質部23に対して供給することにより、測定試料15に含まれるナトリウムイオン濃度を測定する。ここでは濃度演算部125がナトリウムイオン濃度を122mMとして算出したものとする。
(図5:ステップS507~S508)
 補正部124は、出荷元とステップS505それぞれにおいて共存イオンの影響を受けて低値側に校正された検量線を、下記式2にしたがって補正することにより、測定試料15の正しいナトリウムイオン濃度を算出する(S507)。式2の各係数の意味は式1と同じである。ステップS508はステップS408と同様である。
(図5:ステップS507:計算式)
 正しいナトリウムイオン濃度=
  ナトリウムイオン選択電極による測定値-
  Σ[i=1→n](Ci×Ki)+
  Σ[i=1→n](C’i×K’i) ・・・式2
(図5:ステップS507:計算例)
 正しいナトリウムイオン濃度=
  122-(C1×K1)+(C’1×K’1)=
  122-0.2×30+0.3×30=
  122-6+9=125
<実施形態2:まとめ>
 本実施形態2に係る自動分析装置100は、校正液14の出荷元における値付け時の選択係数および共存イオン濃度を取得し、これを用いて測定結果を補正する。したがって、出荷元における校正液14の選択係数および共存イオン濃度と、自動分析装置100を用いて測定試料15を測定する際における選択係数および共存イオン濃度が、互いに異なっていたとしても、これらの差異に起因する測定誤差を補正することができる。
<実施形態3>
 以上の実施形態においては、選択係数算出試料13を用いて選択係数を算出し、計測部24を用いて共存イオン濃度を計測し、これらの値を用いて測定結果を補正することを説明した。これらの値を別途入手できるのであれば、計測工程を省略し、入手した値を自動分析装置100に対して入力すれば足りる。そこで実施形態3では、その場合における自動分析装置100の動作手順を説明する。自動分析装置100の構成は実施形態1と同様である。
 図6は、本実施形態3に係る自動分析装置100が試料内の対象イオン濃度を算出する手順を説明するフローチャートである。ステップS602~S605はステップS405~S408と同様であるので、ステップS601について説明する。
(図6:ステップS601)
 ユーザは、あらかじめ入手したK1、C1、K’1、C’1の値を、自動分析装置100に対して入力する。自動分析装置100は、これらの値を用いてステップS602以降を実施する。ユーザはこれらの値を手入力してもよいし、記憶媒体その他データ送信手段を用いて値を供給してもよい。その他適当な手法を用いてもよい。
 実施形態1においては、測定試料15を測定する前に、選択係数と校正液14および測定試料15の共存イオン濃度を測定しておく必要がある。これに対して本実施形態3においては、例えば上記各値を試料の製造元から提供された場合や、選択係数と共存イオン濃度が前回測定時から変動していないと考えられる場合などにおいて、測定作業を簡略化することができる。実施形態2で説明した手順についても同様に、あらかじめ各値が分かっている場合は、ステップS501~S504を省略してステップS601により置き換えることができる。
<実施形態4>
 実施形態4では、表示部122が提供するGUI(Graphical User Interface)の例について説明する。自動分析装置100の構成は実施形態1と同様である。
 図7は、電極情報一覧を示す画面例である。本画面は、(a)対象イオンの電極を選択するためのタブ、(b)共存イオン/ベース液/共存イオン液/選択係数などの電極情報一覧、を有する。ユーザがタブを選択することにより、対象イオンの電極が切り替わる。
 共存イオン欄は、選択したタブの電極に対する共存イオンの名称を表示する。ベース液欄は、濃度演算部125が演算したベース液中の対象イオン濃度を表示する。括弧内は濃度演算部126が演算した共存イオン濃度を表示する。共存イオン液欄は、濃度演算部125が演算した共存イオン液中の対象イオン濃度を表示する。括弧内は濃度演算部126が演算した共存イオン濃度が表示される。ベース液と共存イオン液は、ステップS401における2種類の選択係数算出試料13に相当する。選択係数欄は、共存イオン欄とベース液欄の情報から算出された選択係数を表示する。この画面に表示する数値は、他の濃度測定装置が得たものや、製造元から提供されている濃度を入力部123から入力したものであってもよい。
 図7の画面により、ユーザは直近に測定または入力した電極情報を一覧できる。例えば選択係数を見ると、電極の劣化状態を知ることができる。この機能により、測定値の誤差要因を早めに発見することができる。
 図8は、試料中の共存イオン濃度の経時変化を示す画面例である。ユーザがタブを選択することにより試料が切り替わり、濃度演算部126が演算した各試料中の共存イオン濃度が時系列で表示される。縦軸は、濃度演算部126が演算した共存イオン濃度または入力部123から入力した値である。横軸は、日、月などの時間もしくは測定数である。あらかじめ共存イオン濃度について許容範囲を設けておき、測定値が許容範囲を外れると、CPUは試料交換すべき旨のアラームを、例えば表示部122上に表示する。その他適当な方法(例:報知音など)によってアラームを発してもよい。その他のアラームについても同様である。
 図8の画面により、ユーザは試料中の共存イオン濃度の経時変化をモニタする。これにより組成が変性した試料を測定前に取り除くことができる。また測定値が許容範囲を外れたときアラームを出力することにより、その試料を取り除くようにユーザに対して促すことができる。
 図9は、電極の選択係数の経時変化を示す画面例である。ユーザがタブを選択すると、濃度演算部125が演算した各電極の共存イオンに対する選択係数が時系列で表示される。縦軸は、濃度演算部125が演算した選択係数または入力部123から入力した値である。横軸は、日、月などの時間もしくは測定数である。電解質部23が測定する度にグラフが更新される。あらかじめ選択係数の閾値を設けておき、選択係数が閾値を上回ると、CPUは電極を交換すべき旨のアラームを、例えば表示部122上に表示する。
 図9の画面により、ユーザは各電極の共存イオンに対する選択係数の経時変化をモニタする。これにより寿命を過ぎた電極を測定前に取り除くことができる。また測定値が許容範囲を外れたときアラームを出力することにより、その電極を取り除くようにユーザに対して促すことができる。
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
13:選択係数算出試料
14:校正液
15:測定試料
23:電解質部
24:計測部
100:自動分析装置
111:ナトリウムイオン選択電極
112:カリウムイオン選択電極
113:塩素イオン選択電極
116:比較電極
122:表示部
123:入力部
124:補正部
125:濃度演算部
126:濃度演算部

Claims (13)

  1.  試料に含まれる対象イオンの濃度を計測する自動分析装置であって、
     前記試料に含まれる前記対象イオンの濃度を検出する第1イオン選択電極、
     前記試料に含まれる前記対象イオンの濃度を算出する算出部、
     を備え、
     前記算出部は、前記第1イオン選択電極による検出結果と、前記試料に含まれる共存イオンの濃度を計測する計測部による計測結果を取得し、
     前記算出部は、前記試料に含まれる前記共存イオンのうち、前記第1イオン選択電極が検出した割合を、前記第1イオン選択電極の前記共存イオンに対する選択係数として算出し、
     前記算出部は、前記第1イオン選択電極による検出結果、前記選択係数、および前記計測部が計測した前記共存イオンの濃度を用いて、前記試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする自動分析装置。
  2.  前記自動分析装置は、前記計測部を備え、
     前記第1イオン選択電極と前記計測部は、前記試料として、第1試料と第2試料をそれぞれ計測し、
     前記算出部は、前記第1試料に含まれる前記共存イオンに対する前記選択係数を第1試料選択係数として算出するとともに、前記第2試料に含まれる前記共存イオンに対する前記選択係数を第2試料選択係数として算出し、
     前記計測部は、前記第1試料に含まれる前記共存イオンの濃度を第1試料共存イオン濃度として計測するとともに、前記第2試料に含まれる前記共存イオンの濃度を第2試料共存イオン濃度として計測し、
     前記算出部は、前記第1試料選択係数、前記第2試料選択係数、前記第1試料共存イオン濃度、および前記第2試料共存イオン濃度を用いて、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項1記載の自動分析装置。
  3.  前記算出部は、前記第1イオン選択電極が前記第1試料に含まれる前記対象イオンの濃度を検出した結果と、前記第1試料に含まれる前記対象イオンの濃度としてあらかじめ指定された値とを用いて、前記第1イオン選択電極を校正し、
     前記算出部は、前記第1イオン選択電極が前記第2試料に含まれる前記対象イオンの濃度を検出した結果を取得し、
     前記算出部は、前記第1試料選択係数、前記第2試料選択係数、前記第1試料共存イオン濃度、および前記第2試料共存イオン濃度を用いて、前記校正の結果を補正することにより、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項2記載の自動分析装置。
  4.  前記算出部は、前記第2試料に含まれる前記対象イオンの濃度を前記第1イオン選択電極が計測した結果に対して、前記第1試料選択係数と前記第1試料共存イオン濃度を乗算することにより得られる値を加算し、さらに前記第2試料選択係数と前記第2試料共存イオン濃度を乗算することにより得られる値を減算することにより、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項3記載の自動分析装置。
  5.  前記第1イオン選択電極を前記算出部が校正するときと、前記第2試料に含まれる前記対象イオンの濃度を検出した結果を前記算出部が取得するときとの間において、前記第1イオン選択電極は交換されており、
     または、
     前記第1イオン選択電極を前記算出部が校正するときと、前記第2試料に含まれる前記対象イオンの濃度を検出した結果を前記算出部が取得するときそれぞれにおいて、同一の前記第1イオン選択電極が用いられる
     ことを特徴とする請求項3記載の自動分析装置。
  6.  前記自動分析装置は、前記計測部を備え、
     前記算出部は、第1試料が出荷される前段階の製造工程において、前記第1試料に含まれる前記共存イオンのうち、前記対象イオンの濃度を検出する第2イオン選択電極が検出した割合を、前記第2イオン選択電極の前記共存イオンに対する第1選択係数として取得し、
     前記第1イオン選択電極と前記計測部は、第2試料をそれぞれ計測し、
     前記算出部は、前記第2試料に含まれる前記共存イオンのうち、前記対象イオンの濃度を前記第1イオン選択電極が検出した割合を、第2選択係数として算出し、
     前記算出部は、前記製造工程において、前記第1試料に含まれる前記共存イオンの濃度を計測した結果を、第1共存イオン濃度として取得し、
     前記算出部は、前記第2試料に含まれる前記共存イオンの濃度を前記計測部が計測した結果を、第2共存イオン濃度として取得し、
     前記算出部は、前記第1選択係数、前記第2選択係数、前記第1共存イオン濃度、および前記第2共存イオン濃度を用いて、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項1記載の自動分析装置。
  7.  前記算出部は、前記第1イオン選択電極が前記第1試料に含まれる前記対象イオンの濃度を検出した結果と、前記第1試料に含まれる前記対象イオンの濃度としてあらかじめ指定された値とを用いて、前記第1イオン選択電極を校正し、
     前記算出部は、前記第1イオン選択電極が前記第2試料に含まれる前記対象イオンの濃度を検出した結果を取得し、
     前記算出部は、前記第1選択係数、前記第2選択係数、前記第1共存イオン濃度、および前記第2共存イオン濃度を用いて、前記校正の結果を補正することにより、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項6記載の自動分析装置。
  8.  前記算出部は、前記第2試料に含まれる前記対象イオンの濃度を前記第1イオン選択電極が計測した結果から、前記第1選択係数と前記第1共存イオン濃度を乗算することにより得られる値を減算し、さらに前記第2選択係数と前記第2共存イオン濃度を乗算することにより得られる値を加算することにより、前記第2試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項7記載の自動分析装置。
  9.  前記自動分析装置は、前記第1イオン選択電極による検出結果と前記計測部による計測結果を入力するインタフェースを備え、
     前記算出部は、前記インタフェースを介して入力された前記第1イオン選択電極による検出結果と前記インタフェースを介して入力された前記計測部による計測結果を用いて、前記試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする請求項4記載の自動分析装置。
  10.  前記自動分析装置は、
      前記試料に含まれる前記共存イオンの濃度の経時変化を記憶する記憶部、
      前記試料に含まれる前記共存イオンの濃度の経時変化を出力する出力部、
     を備える
     ことを特徴とする請求項1記載の自動分析装置。
  11.  前記自動分析装置は、
      前記第1イオン選択電極の前記選択係数の経時変化を記憶する記憶部、
      前記第1イオン選択電極の前記選択係数の経時変化を出力する出力部、
     を備える
     ことを特徴とする請求項1記載の自動分析装置。
  12.  前記自動分析装置は、
      前記試料に含まれる前記共存イオンの濃度、または前記第1イオン選択電極の前記選択係数が、あらかじめ設定した許容範囲を外れたとき、その旨のアラームを出力する報知部を備える
     ことを特徴とする請求項1記載の自動分析装置。
  13.  試料に含まれる対象イオンの濃度を計測する自動分析方法であって、
     第1イオン選択電極を用いて前記試料に含まれる前記対象イオンの濃度を検出するステップ、
     前記試料に含まれる前記対象イオンの濃度を算出する算出ステップ、
     を有し、
     前記算出ステップにおいては、前記第1イオン選択電極による検出結果と、前記試料に含まれる共存イオンの濃度を計測する計測部による計測結果を取得し、
     前記算出ステップにおいては、前記試料に含まれる前記共存イオンのうち、前記第1イオン選択電極が検出した割合を、前記第1イオン選択電極の前記共存イオンに対する選択係数として算出し、
     前記算出ステップにおいては、前記第1イオン選択電極による検出結果、前記選択係数、および前記計測部が計測した前記共存イオンの濃度を用いて、前記試料に含まれる前記対象イオンの濃度を算出する
     ことを特徴とする自動分析方法。
PCT/JP2018/047389 2018-02-23 2018-12-21 自動分析装置、自動分析方法 WO2019163281A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880061604.3A CN111788479B (zh) 2018-02-23 2018-12-21 自动分析装置、自动分析方法
EP18906758.0A EP3757561A4 (en) 2018-02-23 2018-12-21 AUTOMATED ANALYZER AND AUTOMATIC ANALYSIS METHOD
US16/647,952 US20200256821A1 (en) 2018-02-23 2018-12-21 Automated analyzer and automatic analysis method
JP2020502054A JP7148594B2 (ja) 2018-02-23 2018-12-21 自動分析装置、自動分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-030892 2018-02-23
JP2018030892 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163281A1 true WO2019163281A1 (ja) 2019-08-29

Family

ID=67687520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047389 WO2019163281A1 (ja) 2018-02-23 2018-12-21 自動分析装置、自動分析方法

Country Status (5)

Country Link
US (1) US20200256821A1 (ja)
EP (1) EP3757561A4 (ja)
JP (1) JP7148594B2 (ja)
CN (1) CN111788479B (ja)
WO (1) WO2019163281A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185641A1 (ja) * 2021-03-02 2022-09-09 株式会社日立ハイテク 電解質測定装置、および電解質濃度測定ユニットの異常判定方法
WO2023157421A1 (ja) * 2022-02-18 2023-08-24 株式会社日立ハイテク 電解質濃度測定装置及び選択係数取得方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195343A (ja) * 1985-02-25 1986-08-29 Shimadzu Corp イオン電極の直接電位差法で用いる標準液
JPH07167818A (ja) 1993-12-16 1995-07-04 Toshiba Corp イオン濃度測定装置
JPH07325063A (ja) * 1994-05-31 1995-12-12 Shimadzu Corp イオン電極法電解質分析装置の校正液
JP2002228629A (ja) * 2001-01-31 2002-08-14 Horiba Ltd 硝酸イオン濃度測定方法
JP2012058117A (ja) * 2010-09-10 2012-03-22 Jokoh Co Ltd イオン選択性電極法用2液系校正液および兼用参照電極液
WO2015008517A1 (ja) * 2013-07-19 2015-01-22 株式会社 日立ハイテクノロジーズ 陰イオンセンサ
JP2017146307A (ja) * 2016-02-15 2017-08-24 東京都 濃度測定方法、濃度測定用プログラム、濃度測定システム、及び濃度測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220350A1 (en) * 1985-10-22 1987-05-06 British Nuclear Fuels PLC Ion concentration analysis
US5112455A (en) * 1990-07-20 1992-05-12 I Stat Corporation Method for analytically utilizing microfabricated sensors during wet-up
JP3442458B2 (ja) * 1994-03-14 2003-09-02 株式会社東芝 選択係数測定方法及びイオン濃度測定装置
KR100195594B1 (ko) * 1993-12-16 1999-06-15 니시무로 타이죠 이온농도 측정장치 및 이온농도 측정방법
JP2000121595A (ja) * 1998-10-14 2000-04-28 Hitachi Ltd イオン濃度測定システム及びこれに用いる測定ユニット
US8958917B2 (en) * 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
JP2004219352A (ja) * 2003-01-17 2004-08-05 Toshiba Corp 分析装置及び管理システム
US7646474B2 (en) 2005-10-28 2010-01-12 Panasonic Corporation Measuring device, measuring apparatus and method of measuring
MY143657A (en) * 2007-11-30 2011-06-30 Mimos Berhad Method for determination of chemical ions
US9222921B2 (en) * 2011-05-18 2015-12-29 Harmesh K. Saini Method and apparatus for determination of haloacetic acid (“HAA”) presence in aqueous solution
MX2018003758A (es) * 2015-09-30 2018-09-12 Siemens Healthcare Diagnostics Inc Analizador de fluidos para la medicion de iones de magnesio y metodo de calibracion del sensor potenciometrico de iones de magnesio.
CN105806915B (zh) * 2016-04-06 2018-11-09 江苏大学 一种营养液钾、钠离子浓度检测装置及检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195343A (ja) * 1985-02-25 1986-08-29 Shimadzu Corp イオン電極の直接電位差法で用いる標準液
JPH07167818A (ja) 1993-12-16 1995-07-04 Toshiba Corp イオン濃度測定装置
JPH07325063A (ja) * 1994-05-31 1995-12-12 Shimadzu Corp イオン電極法電解質分析装置の校正液
JP2002228629A (ja) * 2001-01-31 2002-08-14 Horiba Ltd 硝酸イオン濃度測定方法
JP2012058117A (ja) * 2010-09-10 2012-03-22 Jokoh Co Ltd イオン選択性電極法用2液系校正液および兼用参照電極液
WO2015008517A1 (ja) * 2013-07-19 2015-01-22 株式会社 日立ハイテクノロジーズ 陰イオンセンサ
JP2017146307A (ja) * 2016-02-15 2017-08-24 東京都 濃度測定方法、濃度測定用プログラム、濃度測定システム、及び濃度測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3757561A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185641A1 (ja) * 2021-03-02 2022-09-09 株式会社日立ハイテク 電解質測定装置、および電解質濃度測定ユニットの異常判定方法
WO2023157421A1 (ja) * 2022-02-18 2023-08-24 株式会社日立ハイテク 電解質濃度測定装置及び選択係数取得方法

Also Published As

Publication number Publication date
JP7148594B2 (ja) 2022-10-05
EP3757561A1 (en) 2020-12-30
JPWO2019163281A1 (ja) 2021-02-18
CN111788479A (zh) 2020-10-16
US20200256821A1 (en) 2020-08-13
CN111788479B (zh) 2023-03-28
EP3757561A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP5331669B2 (ja) 電解質分析装置
Helm et al. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method
US20070054404A1 (en) Method of hemoglobin correction due to temperature variation
WO2019163281A1 (ja) 自動分析装置、自動分析方法
US20130151189A1 (en) Quality control system
US20230075119A1 (en) Electrolyte Analysis Device
EP3373004A1 (en) Method of determining an analyte concentration
JP6510046B2 (ja) 新規較正方法
JP2022534006A (ja) 補償システムおよび分析物バイオセンサ内のサーミスタ感知の方法
US20200103428A1 (en) Calibration curve creation method, analyzer and non-transitory storage medium
JPH06308131A (ja) データ処理装置
JP2020012823A (ja) 自動分析装置
US20220026452A1 (en) Automatic analyzer
CN107110815B (zh) 对用于测量肌酸酐浓度的设备进行校准的方法
JP2009047638A (ja) 自動分析装置
JP5427975B2 (ja) 電解質分析装置の管理システム
JP7423752B2 (ja) 自動分析装置
JP2013024783A (ja) 自動分析装置
JP2000321281A (ja) 自動分析装置
WO2023157421A1 (ja) 電解質濃度測定装置及び選択係数取得方法
JPH08220049A (ja) 電解質測定法及び装置
JP2015222198A (ja) 分析装置、分析方法及びプログラム
WO2023013222A1 (ja) 電解質分析装置および分析方法
JPH07110333A (ja) 自動分析装置
JPH0835944A (ja) 臨床用電解質測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906758

Country of ref document: EP

Effective date: 20200923