WO2019159856A1 - スパッタリングターゲット材 - Google Patents

スパッタリングターゲット材 Download PDF

Info

Publication number
WO2019159856A1
WO2019159856A1 PCT/JP2019/004750 JP2019004750W WO2019159856A1 WO 2019159856 A1 WO2019159856 A1 WO 2019159856A1 JP 2019004750 W JP2019004750 W JP 2019004750W WO 2019159856 A1 WO2019159856 A1 WO 2019159856A1
Authority
WO
WIPO (PCT)
Prior art keywords
target material
sputtering target
phase
less
sputtering
Prior art date
Application number
PCT/JP2019/004750
Other languages
English (en)
French (fr)
Inventor
夢樹 新村
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to CN201980013051.9A priority Critical patent/CN111712587A/zh
Priority to SG11202007897UA priority patent/SG11202007897UA/en
Publication of WO2019159856A1 publication Critical patent/WO2019159856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a sputtering target material used for sputtering for forming a metal thin film.
  • Hard disks are used as external recording devices for computers and digital home appliances.
  • a general hard disk employs either an in-plane recording system or a perpendicular magnetic recording system.
  • a perpendicular magnetic recording type hard disk both high density and stable recording magnetization can be achieved.
  • Japanese Patent No. 4499944 discloses a magnetic recording medium having a laminate and a recording film formed on the laminate.
  • This laminate is formed on a substrate made of glass, aluminum alloy or the like.
  • This laminate has an adhesion layer, a soft magnetic underlayer, a seed layer, and an intermediate layer.
  • This adhesion layer is a film made of a Ni—Ta alloy. This film can be formed by sputtering.
  • a target material is used for sputtering.
  • a method for producing a sputtering target material there are a casting method such as vacuum melting and electron beam melting, a sintering method using a mixed powder obtained by mixing plural kinds of powders, and a sintering method using an alloy powder.
  • Japanese Patent Laid-Open No. 2000-206314 discloses a sintering method by hot isostatic pressing.
  • the conventional sputtering target material is inferior in strength. Since the adhesion layer is relatively thick, it takes time for sputtering. In some cases, a large amount of power is used for the purpose of shortening the time for forming the adhesion layer. In sputtering with a large electric power, thermal stress distortion occurs in the sputtering target material. Due to this distortion, the sputtering target material may break. Furthermore, particles may be generated in the sputtering target material due to large electric power.
  • An object of the present invention is to provide a target material that is less prone to cracking during sputtering.
  • the following sputtering target material is provided.
  • the sputtering target material including an alloy containing Ta and Cr, the balance being an inevitable impurity, and having a bending strength measured by a three-point bending test of 400 MPa or more.
  • [4] The sputtering target material according to [3], wherein a ratio Px of Cr 2 Ta (220) intensity to Ta (110) intensity in an X-ray diffraction (XRD) pattern is 10% or less.
  • [5] The sputtering target material according to [3] or [4], wherein the Cr 2 Ta phase is present on the surface of the Cr phase, and the thickness Tave of the Cr 2 Ta phase is 30 ⁇ m or less.
  • [6] The sputtering target material according to any one of [1] to [5], wherein the Ta content is 20 at% or more and 90 at% or less, and the Cr content is 10 at% or more and 80 at% or less.
  • the following steps Including a step of mixing a powder whose material is Cr and a powder whose material is Ta to obtain a mixed powder; and a step of pressing the mixed powder at a temperature of 1000 ° C. to 1350 ° C.
  • a method for producing a sputtering target material according to the invention is provided.
  • FIG. 1 is an enlarged photograph showing a part of a sputtering target material according to an embodiment of the present invention.
  • the sputtering target material according to the present invention includes the alloy according to the present invention or consists of the alloy according to the present invention.
  • the alloy according to the present invention contains Ta and Cr.
  • the balance of the alloy according to the present invention is inevitable impurities.
  • Inevitable impurities include O, S, C and N.
  • the alloy according to the present invention comprises one or more inevitable impurities.
  • the content of O is 5000 ppm or less
  • the content of S is 200 ppm or less
  • the content of C is 300 ppm or less
  • the content of N is 300 ppm or less.
  • the lower limit of content of O, S, C, and N is zero.
  • the sputtering target material according to the present invention can be manufactured by so-called powder metallurgy.
  • a powder whose material is Cr that is, an aggregate of Cr particles containing Cr and the remainder being inevitable impurities
  • a powder whose material is Ta that is, including Ta
  • the remainder is an inevitable impurity Ta particle aggregate
  • This mixed powder consists of a large number of particles.
  • This mixed powder is pressurized under high temperature. By this pressurization, the particles are sintered with other particles to obtain a sputtering target material.
  • the sputtering target material according to the present invention preferably has a Cr phase, a Ta phase, and a Cr 2 Ta phase.
  • the Cr phase is derived from particles whose material is Cr.
  • the Ta phase is derived from particles whose material is Ta.
  • Cr 2 Ta is an intermetallic compound. This intermetallic compound is produced by the reaction between Cr and Ta.
  • a film having excellent characteristics can be obtained from a sputtering target material having a Cr phase, a Ta phase, and a Cr 2 Ta phase.
  • Cr phase the sputtering target material having Ta phase and Cr 2 Ta phase
  • Ta phase can relieve stress during sputtering.
  • the content of Ta in the sputtering target material according to the present invention is preferably 20 at% or more and 90 at% or less, more preferably 30 at% or more and 80 at% or less.
  • the Cr content in the sputtering target material according to the present invention is preferably 10 at% or more and 80 at% or less, more preferably 20 at% or more and 70 at% or less.
  • FIG. 1 is an enlarged photograph showing a part of a sputtering target material 2 according to an embodiment of the present invention.
  • the photograph shown in FIG. 1 is obtained by energy dispersive X-ray analysis (EDX).
  • EDX energy dispersive X-ray analysis
  • the sputtering target material 2 has a Cr phase 4, a Ta phase 6, and a Cr 2 Ta phase 8.
  • the Cr 2 Ta phase 8 exists at the interface between the Cr phase 4 and the Ta phase 6.
  • the Cr 2 Ta phase 8 exists on the surface of the Cr phase and adheres to the surface of the Cr phase 4.
  • the Cr 2 Ta phase 8 is brittle.
  • the sputtering target material 2 includes a Cr powder (that is, an aggregate of Cr particles containing Cr and the balance being inevitable impurities) and a Ta powder (that is, a collection of Ta particles containing Ta and the balance being inevitable impurities). Manufactured by sintering of the mixed powder. Therefore, the sputtering target material 2, as compared with the sputtering target material obtained by the casting method, the formation of Cr 2 Ta phase 8 can be suppressed.
  • the bending strength of the sputtering target material 2 with a small Cr 2 Ta phase 8 is large.
  • the thickness Tave of the Cr 2 Ta phase 8 is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less. Although the ideal thickness Tave is zero, a Cr 2 Ta phase 8 having a thickness Tave of 5 ⁇ m or more is actually generated.
  • the thickness T (see FIG. 1) is measured at one randomly extracted place.
  • the thickness Tave of the Cr 2 Ta phase 8 is calculated as an average value of these thicknesses T.
  • Cr powder is used as the material of the sputtering target material 2.
  • This powder can generally be produced by a grinding method.
  • the average particle diameter D50 of the Cr powder is preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • Ta powder is used as the material of the sputtering target material 2.
  • This powder can generally be produced by a chemical reduction method.
  • the average particle diameter D50 of the Ta powder is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • D50 is the particle size at a point where the cumulative volume is 50% in a volume-based cumulative frequency distribution curve obtained with the total volume of the powder as 100%.
  • D50 can be measured by a laser diffraction scattering method.
  • An apparatus suitable for this measurement is Nikkiso Co., Ltd.'s laser diffraction / scattering particle size distribution measuring apparatus “Microtrack MT3000”. In this apparatus, the powder is poured into the cell together with pure water, and the particle size of the powder is detected based on the light scattering information of the powder.
  • a mixed powder Cr powder and Ta powder are mixed to obtain a mixed powder.
  • a sputtering target material 2 is obtained.
  • the mixed powder is pressed under high temperature.
  • a typical pressing method is hot isostatic pressing (HIP).
  • a preferable pressure at the time of molding is 50 MPa or more and 300 MPa or less.
  • the temperature during sintering is preferably 1000 ° C. or higher and 1350 ° C. or lower.
  • the sputtering target material 2 having a large relative density can be obtained by pressing at a temperature of 1000 ° C. or higher.
  • the temperature is more preferably 1050 ° C. or higher, and still more preferably 1100 ° C. or higher.
  • the temperature is more preferably 1300 ° C. or lower, and still more preferably 1250 ° C. or lower.
  • the bending strength measured by a three-point bending test of the sputtering target material (for example, sputtering target material 2) according to the present invention is preferably 400 MPa or more.
  • a target material having a bending strength of 400 MPa or more is subjected to sputtering, cracks due to thermal stress distortion are unlikely to occur.
  • a target material having a bending strength of 400 MPa or more is suitable for sputtering with a large electric power. From these viewpoints, the bending strength is more preferably 450 MPa or more, and particularly preferably 500 MPa or more.
  • the bending strength is measured in accordance with the provisions of “JIS Z 2511”.
  • the test piece is cut out from the base material by wire cutting.
  • the test conditions are as follows.
  • Test piece size 2 mm (thickness) x 2 mm (width) x 20 mm (length) Distance between fulcrums: 10mm
  • the load (kN) when the test piece is broken is measured, and the bending strength BS (MPa) is calculated by the following mathematical formula.
  • BS (3 ⁇ P ⁇ L) / (2 ⁇ t 2 ⁇ W) t: thickness of test piece (mm)
  • W Specimen width (mm)
  • L Distance between fulcrums (mm)
  • P Load at break (kN)
  • the ratio Px of the intensity of Cr 2 Ta (220) to the intensity of Ta (110) is preferably 10% or less. It is.
  • the bending strength of the sputtering target material whose ratio Px is 10% or less is large.
  • a sputtering target material having a ratio Px of 10% or less is used for sputtering, cracks due to thermal stress distortion are unlikely to occur.
  • a sputtering target material having a ratio Px of 10% or less is suitable for sputtering with a large electric power. From these viewpoints, the ratio Px is more preferably 7% or less, still more preferably 5% or less.
  • the ideal ratio Px is zero, in reality, the sputtering target material has a ratio Px of 1% or more.
  • the size of the test piece subjected to XRD is 10 mm ⁇ 20 mm ⁇ 5 mm. This test piece is cut out from the base material by wire cutting. The surface of the test piece is smoothed by polishing.
  • the conditions of XRD are as follows. Radiation source: CuK ⁇ 2 ⁇ : 20-80 °
  • a fully automatic multipurpose X-ray diffraction apparatus “SmartLab SE” manufactured by Rigaku Corporation is used.
  • the ratio Px is calculated from the diffraction pattern obtained by XRD.
  • the intensity of Ta (110) means the intensity of the peak attributed to the (110) plane of Ta among the X-ray diffraction peaks measured using Cu—K ⁇ rays.
  • Strength of Cr 2 Ta (220), among the X-ray diffraction peaks were measured using a Cu-K [alpha line means the intensity of a peak attributed to (220) plane of Cr 2 Ta.
  • the relative density of the sputtering target material (for example, sputtering target material 2) according to the present invention is preferably 97% or more.
  • a sputtering target material having a relative density of 97% or more cracking is unlikely to occur during sputtering.
  • the relative density is more preferably 98% or more, still more preferably 99% or more.
  • the ideal relative density is 100%.
  • the relative density is the ratio (%) of the true density of the sputtering target material to the theoretical density calculated from the density of each component of the sputtering target material.
  • C Cr represents the Cr content (% by mass)
  • ⁇ Cr represents the Cr density (g / cm 3 )
  • C Ta represents the Ta content (% by mass)
  • ⁇ Ta represents It represents the density of Ta (g / cm 3 ).
  • Example 1 Cr powder and Ta powder were prepared. These powders were mixed in a V-type mixer to obtain a mixed powder having a Cr powder ratio of 10 at% and a Ta powder ratio of 90 at%. A mixed powder was filled into a can having a diameter of 200 mm, a length of 10 mm, and a material made of carbon steel. After vacuum deaeration of this powder, billets were made with HIP. The HIP conditions are as follows. Temperature: 1350 ° C Pressure: 120MPa Retention time: 2 hours
  • the sputtering target material of Example 1 was obtained from this billet.
  • This sputtering target material has a disk shape.
  • the diameter was 95 mm and the thickness was 2 mm.
  • Example 2 to 12 and Comparative Examples 1 and 2 Sputtering target materials of Examples 2 to 12 and Comparative Examples 1 and 2 were obtained in the same manner as in Example 1 except that the composition and the temperature of HIP were as shown in Table 1 below.
  • Comparative Example 3 The sputtering target material of Comparative Example 3 was obtained by the dissolution method.
  • Test piece size 2 mm (thickness) x 2 mm (width) x 20 mm (length) Distance between fulcrums: 10mm
  • BS (3 ⁇ P ⁇ L) / (2 ⁇ t 2 ⁇ W) t: thickness of test piece (mm) W: Specimen width (mm) L: Distance between fulcrums (mm) P: Load at break (kN)
  • the size of the test piece used for XRD was 10 mm ⁇ 20 mm ⁇ 5 mm.
  • the surface of this test piece was smoothed by polishing.
  • the conditions of XRD are as follows. Radiation source: CuK ⁇ 2 ⁇ : 20-80 °
  • the intensity of Ta (110) means the intensity of the peak attributed to the (110) plane of Ta among the X-ray diffraction peaks measured using Cu—K ⁇ rays.
  • Strength of Cr 2 Ta (220), among the X-ray diffraction peaks were measured using a Cu-K [alpha line means the intensity of a peak attributed to (220) plane of Cr 2 Ta.
  • the relative density is the ratio (%) of the true density of the sputtering target material to the theoretical density calculated from the density of each component of the sputtering target material.
  • C Cr represents the Cr content (% by mass)
  • ⁇ Cr represents the Cr density (g / cm 3 )
  • C Ta represents the Ta content (% by mass)
  • ⁇ Ta represents It represents the density of Ta (g / cm 3 ).
  • each sputtering target material Five locations of each sputtering target material were subjected to energy dispersive X-ray analysis (EDX), and in each of the five locations (reflection electron images) obtained by EDX, one randomly extracted location was Cr 2 Ta.
  • the phase thickness T (see FIG. 1) was measured. The average value of these thicknesses T was calculated, and this average value was defined as the thickness Tave of the Cr 2 Ta phase of each sputtering target material.
  • Sputtering was performed using each sputtering target material, and an adhesion layer was formed on the glass substrate.
  • the thickness of the adhesion layer was 20 nm.
  • the sputtering conditions were as follows. Atmosphere in the chamber: After evacuation to 1 ⁇ 10 ⁇ 4 Pa or less, Ar gas with a purity of 99.99% is introduced Chamber pressure: 0.6 Pa
  • the sputtering target material of each example is excellent in strength. From this evaluation result, the superiority of the present invention is clear.
  • the sputtering target material described above can be used for forming various thin films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、スパッタリング時の割れが生じにくいターゲット材(2)を提供することを課題とし、かかる課題を解決するために、Ta及びCrを含み、残部が不可避的不純物である合金を含むスパッタリングターゲット材(2)であって、3点曲げ試験によって測定された抗折強さが400MPa以上である、前記スパッタリングターゲット材(2)を提供する。

Description

スパッタリングターゲット材
 本発明は、金属の薄膜を形成するためのスパッタリングに用いられるスパッタリングターゲット材に関する。
 コンピューター、デジタル家電等の外部記録装置として、ハードディスクが用いられている。一般的なハードディスクには、面内記録方式及び垂直磁気記録方式のいずれかが採用されている。近年のハードディスクには、記録密度の向上の要請がある。この観点から、垂直磁気記録方式が主流となっている。垂直磁気記録方式のハードディスクでは、高密度化と記録磁化の安定とが、両立されうる。
 特許第4499044号公報には、積層体とこの積層体の上に成膜された記録膜とを有する磁気記録媒体が開示されている。この積層体では、ガラス、アルミニウム合金等からなる基板の上に形成される。この積層体は、密着層、軟磁性下地層、シード層及び中間層を有している。この密着層は、その材質がNi-Ta合金である膜である。この膜は、スパッタリングによって成膜されうる。
 スパッタリングには、ターゲット材が用いられる。スパッタリングターゲット材の製造方法として、真空溶解、電子ビーム溶解等の鋳造法、複数種の粉末が混合されて得られる混合粉末が用いられた焼結法、及び合金粉末が用いられた焼結法が知られている。特開2000-206314号公報には、熱間静水圧プレスによる焼結方法が開示されている。
特許第4499044号公報 特開2000-206314号公報
 従来のスパッタリングターゲット材は、強度に劣る。密着層は比較的厚いので、スパッタリングに時間を要する。密着層の成膜の時間短縮の目的で、大きな電力が用いられることがある。大きな電力でのスパッタリングでは、スパッタリングターゲット材に熱応力歪みが生じる。この歪みに起因して、スパッタリングターゲット材が割れることがある。さらに、大きな電力に起因して、スパッタリングターゲット材にパーティクルが生じることがある。
 本発明の目的は、スパッタリング時の割れが生じにくいターゲット材の提供にある。
 本発明の一態様によれば、以下のスパッタリングターゲット材が提供される。
[1]Ta及びCrを含み、残部が不可避的不純物である合金を含むスパッタリングターゲット材であって、3点曲げ試験によって測定された抗折強さが400MPa以上である、前記スパッタリングターゲット材。
[2]相対密度が97%以上である、[1]に記載のスパッタリングターゲット材。
[3]Cr相、Ta相及びCrTa相を有する、[1]又は[2]に記載のスパッタリングターゲット材。
[4]X線回折(XRD)パターンにおける、Ta(110)の強度に対するCrTa(220)の強度の比率Pxが、10%以下である、[3]に記載のスパッタリングターゲット材。
[5]前記Cr相の表面に前記CrTa相が存在しており、前記CrTa相の厚みTaveが30μm以下である、[3]又は[4]に記載のスパッタリングターゲット材。
[6]Taの含有量が20at%以上90at%以下であり、Crの含有量が10at%以上80at%以下である、[1]~[5]のいずれかに記載のスパッタリングターゲット材。
 本発明の他の態様によれば、以下の工程:
 その材質がCrである粉末と、その材質がTaである粉末とを混合し、混合粉末を得る工程;及び
 上記混合粉末を、1000℃以上1350℃以下の温度下で加圧する工程
を含む、本発明に係るスパッタリングターゲット材の製造方法が提供される。
 本発明に係るターゲット材では、スパッタリング時に割れが生じにくい。
図1は、本発明の一実施形態に係るスパッタリングターゲット材の一部が示された拡大写真である。
 以下、適宜図面を参照しつつ、本発明の実施形態について詳細に説明する。
 本発明に係るスパッタリングターゲット材は、本発明に係る合金を含むか、又は、本発明に係る合金からなる。本発明に係る合金は、Ta及びCrを含む。本発明に係る合金の残部は、不可避的不純物である。不可避的不純物としては、O、S、C及びNが例示される。一実施形態において、本発明に係る合金は、1種又は2種以上の不可避不純物を含む。好ましい実施形態において、Oの含有量は5000ppm以下であり、Sの含有量は200ppm以下であり、Cの含有量は300ppm以下であり、Nの含有量は300ppm以下である。なお、O、S、C及びNの含有量の下限値はゼロである。
 本発明に係るスパッタリングターゲット材は、いわゆる粉末冶金によって製造されうる。スパッタリングターゲット材の製造方法では、その材質がCrである粉末(すなわち、Crを含み、残部が不可避的不純物であるCr粒子の集合体)と、その材質がTaである粉末(すなわち、Taを含み、残部が不可避的不純物であるTa粒子の集合体)とが混合されて、混合粉末が得られる。この混合粉末は、多数の粒子からなる。この混合粉末が、高温下で加圧される。この加圧により、粒子が他の粒子と焼結されて、スパッタリングターゲット材が得られる。
 本発明に係るスパッタリングターゲット材は、好ましくは、Cr相、Ta相及びCrTa相を有する。Cr相は、その材質がCrである粒子に由来する。Ta相は、その材質がTaである粒子に由来する。CrTaは、金属間化合物である。この金属間化合物は、CrとTaとの反応によって生じる。
 Cr相、Ta相及びCrTa相を有するスパッタリングターゲット材から、優れた特性を有する膜が得られうる。また、Cr相、Ta相及びCrTa相を有するスパッタリングターゲット材では、スパッタリング時にTa相が応力を緩和しうる。これらの観点から、本発明に係るスパッタリングターゲット材におけるTaの含有量は、好ましくは20at%以上90at%以下、さらに好ましくは30at%以上80at%以下である。また、本発明に係るスパッタリングターゲット材におけるCrの含有量は、好ましくは10at%以上80at%以下、さらに好ましくは20at%以上70at%以下である。
 図1は、本発明の一実施形態に係るスパッタリングターゲット材2の一部が示された拡大写真である。図1に示す写真は、エネルギー分散型X線分析(EDX)によって得られる。EDXでは、反射電子像が観察される。図1に示すように、スパッタリングターゲット材2は、Cr相4、Ta相6及びCrTa相8を有する。
 CrTa相8は、Cr相4とTa相6との界面に存在する。CrTa相8は、Cr相の表面に存在しており、Cr相4の表面に付着している。CrTa相8は、脆い。スパッタリングターゲット材2は、Cr粉末(すなわち、Crを含み、残部が不可避的不純物であるCr粒子の集合体)と、Ta粉末(すなわち、Taを含み、残部が不可避的不純物であるTa粒子の集合体)との混合粉末の焼結により製造されたものである。このため、スパッタリングターゲット材2では、鋳造法で得られたスパッタリングターゲット材と比較して、CrTa相8の生成が抑制されうる。CrTa相8の少ないスパッタリングターゲット材2の抗折強さは、大きい。抗折強さの観点から、CrTa相8の厚みTaveは、好ましくは30μm以下、さらに好ましくは25μm以下、さらに一層好ましくは20μm以下である。理想的な厚みTaveはゼロであるが、現実には、5μm以上の厚みTaveを有するCrTa相8が生成される。
 EDXによって得られた5箇所の写真のそれぞれにおいて、無作為に抽出された1箇所で、厚みT(図1参照)が測定される。CrTa相8の厚みTaveは、これらの厚みTの平均値として算出される。
 前述の通り、スパッタリングターゲット材2の材料として、Cr粉末が用いられる。この粉末は、一般的には、粉砕法によって製造されうる。Cr粉末の平均粒子径D50は、好ましくは10μm以上300μm以下である。
 前述の通り、スパッタリングターゲット材2の材料として、Ta粉末が用いられる。この粉末は、一般的には、化学還元法によって製造されうる。Ta粉末の平均粒子径D50は、1μm以上100μm以下が好ましい。
 D50は、粉末の全体積を100%として求められる体積基準の累積度数分布曲線において、累積体積が50%である点の粒径である。D50は、レーザー回折散乱法によって測定することができる。この測定に適した装置として、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。この装置では、セル内に粉末が純水と共に流し込まれ、粉末の光散乱情報に基づいて、粉末の粒径が検出される。
 Cr粉末とTa粉末とが混合されて、混合粉末が得られる。この混合粉末が成形に供されることにより、スパッタリングターゲット材2が得られる。成形では、混合粉末が高温下で加圧される。典型的な加圧法は、熱間等方圧プレス(HIP)である。成形時の好ましい圧力は、50MPa以上300MPa以下である。
 焼結時の温度は、好ましくは1000℃以上1350℃以下である。1000℃以上の温度下で加圧されることにより、大きな相対密度を有するスパッタリングターゲット材2が得られうる。この観点から、温度は、さらに好ましくは1050℃以上、さらに一層好ましくは1100℃以上である。1350℃以下の温度下で加圧されることにより、CrTa相8の生成が抑制されうる。この観点から、温度は、さらに好ましくは1300℃以下、さらに一層好ましくは1250℃以下である。
 本発明に係るスパッタリングターゲット材(例えば、スパッタリングターゲット材2)の3点曲げ試験によって測定された抗折強さは、好ましくは400MPa以上である。抗折強さが400MPa以上であるターゲット材がスパッタリングに供されるとき、熱応力歪みに起因する割れが生じにくい。抗折強さが400MPa以上であるターゲット材は、大きな電力でのスパッタリングに適している。これらの観点から、抗折強さは450MPa以上がより好ましく、500MPa以上が特に好ましい。
 抗折強さは、「JIS Z 2511」の規定に準拠して測定される。試験片は、ワイヤーカットによって母材から切り出される。試験の条件は、以下の通りである。
 試験片のサイズ:2mm(厚さ)×2mm(幅)×20mm(長さ)
 支点間距離:10mm
 試験片が折れた時の荷重(kN)が測定され、下記の数式によって抗折強さBS(MPa)が算出される。
 BS=(3×P×L)/(2×t×W)
  t:試験片の厚さ(mm)
  W:試験片の幅(mm)
  L:支点間距離(mm)
  P:破断時の荷重(kN)
 本発明に係るスパッタリングターゲット材(例えば、スパッタリングターゲット材2)のX線回折(XRD)パターンにおける、Ta(110)の強度に対するCrTa(220)の強度の比率Pxは、好ましくは10%以下である。比率Pxが10%以下であるスパッタリングターゲット材の抗折強さは、大きい。比率Pxが10%以下であるスパッタリングターゲット材がスパッタリングに供されるとき、熱応力歪みに起因する割れが生じにくい。比率Pxが10%以下であるスパッタリングターゲット材は、大きな電力でのスパッタリングに適している。これらの観点から、比率Pxは、さらに好ましくは7%以下、さらに一層好ましくは5%以下である。理想的な比率Pxはゼロであるが、現実には、スパッタリングターゲット材は、1%以上の比率Pxを有する。
 XRDに供される試験片のサイズは、10mm×20mm×5mmである。この試験片は、母材からワイヤーカットにて切り出される。この試験片の表面は、研磨によって平滑にされる。XRDの条件は、以下の通りである。
 線源:CuKα
 2θ:20-80°
 測定には、例えば、株式会社リガクの全自動多目的X線回折装置「SmartLab SE」が用いられる。XRDによって得られた回折パターンから、比率Pxが算出される。
 Ta(110)の強度は、Cu-Kα線を用いて測定されたX線回折ピークのうち、Taの(110)面に帰属するピークの強度を意味する。CrTa(220)の強度は、Cu-Kα線を用いて測定されたX線回折ピークのうち、CrTaの(220)面に帰属するピークの強度を意味する。
 本発明に係るスパッタリングターゲット材(例えば、スパッタリングターゲット材2)の相対密度は、好ましくは97%以上である。相対密度が97%以上であるスパッタリングターゲット材では、スパッタリング時に割れが生じにくい。さらに、相対密度が97%以上であるスパッタリングターゲット材では、スパッタリング時にパーティクルが生じにくい。これらの観点から、相対密度は、さらに好ましくは98%以上、さらに一層好ましくは99%以上である。理想的な相対密度は、100%である。
 相対密度は、スパッタリングターゲット材の各成分の密度から算出される理論密度に対する、スパッタリングターゲット材の真密度の比率(%)である。真密度(g/cm)は、アルキメデス法によって測定される。測定に供される試験片のサイズは、10mm×20mm×5mmである。この試験片は、母材からワイヤーカットにて切り出される。この試験片の表面は、研磨によって平滑にされる。真密度は、試験片の空中重量を、試験片の体積(=試験片の水中重量/計測温度における水比重)で除して算出される。理論密度ρ(g/cm)は、下記の数式によって算出される。
 ρ(g/cm)=100/(CCr/ρCr+CTa/ρTa
 この数式において、CCrはCrの含有量(質量%)を表し、ρCrはCrの密度(g/cm)を表し、CTaはTaの含有量(質量%)を表し、ρTaはTaの密度(g/cm)を表す。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[実施例1]
 Cr粉末と、Ta粉末とを準備した。これらの粉末をV型混合機にて混合し、Cr粉末の割合が10at%であり、Ta粉末の割合が90at%である混合粉末を得た。直径が200mmであり、長さが10mmであり、材質が炭素鋼である缶に、混合粉末を充填した。この粉末に真空脱気を施したのち、HIPにてビレットを作成した。HIPの条件は、以下の通りである。
  温度:1350℃
  圧力:120MPa
  保持時間:2時間
 このビレットから、実施例1のスパッタリングターゲット材を得た。このスパッタリングターゲット材は、円盤形状を有する。このスパッタリングターゲット材では、直径は95mmであり、厚さは2mmであった。
[実施例2~12及び比較例1~2]
 組成及びHIPの温度を下記の表1に示される通りとした点を除き、実施例1と同様にして、実施例2~12及び比較例1~2のスパッタリングターゲット材を得た。
[比較例3]
 溶解法により、比較例3のスパッタリングターゲット材を得た。
[スパッタリングターゲット材の特性]
 以下の方法により、各スパッタリングターゲット材の抗折強さ、相対密度、XRDの強度比率Px及びCrTa相の厚みTaveを測定した。測定用の試験片は、ワイヤーカットによって上記ビレットから切り出した。
 抗折強さは、「JIS Z 2511」の規定に準拠して測定した。試験の条件は、以下の通りである。
 試験片のサイズ:2mm(厚さ)×2mm(幅)×20mm(長さ)
 支点間距離:10mm
 試験片が折れた時の荷重(kN)を測定し、下記の数式によって抗折強さBS(MPa)を算出した。
 BS=(3×P×L)/(2×t×W)
  t:試験片の厚さ(mm)
  W:試験片の幅(mm)
  L:支点間距離(mm)
  P:破断時の荷重(kN)
 XRDに供される試験片のサイズは、10mm×20mm×5mmとした。この試験片の表面を、研磨によって平滑にした。XRDの条件は、以下の通りである。
 線源:CuKα
 2θ:20-80°
 測定には、株式会社リガクの全自動多目的X線回折装置「SmartLab SE」を用いた。XRDによって得られた回折パターンから、Ta(110)の強度及びCrTa(220)の強度を求め、Ta(110)の強度に対するCrTa(220)の強度の比率Pxを算出した。Ta(110)の強度は、Cu-Kα線を用いて測定されたX線回折ピークのうち、Taの(110)面に帰属するピークの強度を意味する。CrTa(220)の強度は、Cu-Kα線を用いて測定されたX線回折ピークのうち、CrTaの(220)面に帰属するピークの強度を意味する。
 相対密度は、スパッタリングターゲット材の各成分の密度から算出される理論密度に対する、スパッタリングターゲット材の真密度の比率(%)である。真密度(g/cm)は、アルキメデス法によって測定した。測定に供される試験片のサイズは、10mm×20mm×5mmとし、この試験片の表面を研磨によって平滑にした。真密度は、試験片の空中重量を、試験片の体積(=試験片の水中重量/計測温度における水比重)で除して算出した。理論密度ρ(g/cm)は、下記の数式によって算出した。
 ρ(g/cm)=100/(CCr/ρCr+CTa/ρTa
 この数式において、CCrはCrの含有量(質量%)を表し、ρCrはCrの密度(g/cm)を表し、CTaはTaの含有量(質量%)を表し、ρTaはTaの密度(g/cm)を表す。
 各スパッタリングターゲット材の5箇所をエネルギー分散型X線分析(EDX)し、EDXによって得られた5箇所の写真(反射電子像)のそれぞれにおいて、無作為に抽出された1箇所で、CrTa相の厚みT(図1参照)を測定した。これらの厚みTの平均値を算出し、この平均値を、各スパッタリングターゲット材のCrTa相の厚みTaveとした。
[スパッタリング]
 各スパッタリングターゲット材を用いてスパッタリングを実施し、ガラス基板上に密着層を成膜した。密着層の厚みは、20nmであった。スパッタリングの条件は、以下の通りであった。
 チャンバー内雰囲気:1×10-4Pa以下に真空排気後、純度が99.99%のArガスを投入
 チャンバー内圧:0.6Pa
 スパッタリング後のターゲット材の割れを、目視で確認した。この結果が、下記の表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、各実施例のスパッタリングターゲット材は、強度に優れている。この評価結果から、本発明の優位性は明らかである。
 以上説明されたスパッタリングターゲット材は、種々の薄膜の形成に利用されうる。
 2・・・スパッタリングターゲット材
 4・・・Cr相
 6・・・Ta相
 8・・・CrTa相

Claims (6)

  1.  Ta及びCrを含み、残部が不可避的不純物である合金を含むスパッタリングターゲット材であって、
     3点曲げ試験によって測定された抗折強さが400MPa以上である、前記スパッタリングターゲット材。
  2.  相対密度が97%以上である、請求項1に記載のスパッタリングターゲット材。
  3.  Cr相、Ta相及びCrTa相を有する、請求項1に記載のスパッタリングターゲット材。
  4.  X線回折(XRD)パターンにおける、Ta(110)の強度に対するCrTa(220)の強度の比率Pxが、10%以下である、請求項3に記載のスパッタリングターゲット材。
  5.  前記Cr相の表面に前記CrTa相が存在しており、前記CrTa相の厚みTaveが30μm以下である、請求項3に記載のスパッタリングターゲット材。
  6.  Taの含有量が20at%以上90at%以下であり、Crの含有量が10at%以上80at%以下である、請求項1に記載のスパッタリングターゲット材。
PCT/JP2019/004750 2018-02-19 2019-02-08 スパッタリングターゲット材 WO2019159856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980013051.9A CN111712587A (zh) 2018-02-19 2019-02-08 溅射靶材
SG11202007897UA SG11202007897UA (en) 2018-02-19 2019-02-08 Sputtering target material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026578A JP6814758B2 (ja) 2018-02-19 2018-02-19 スパッタリングターゲット
JP2018-026578 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019159856A1 true WO2019159856A1 (ja) 2019-08-22

Family

ID=67619052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004750 WO2019159856A1 (ja) 2018-02-19 2019-02-08 スパッタリングターゲット材

Country Status (5)

Country Link
JP (1) JP6814758B2 (ja)
CN (1) CN111712587A (ja)
SG (1) SG11202007897UA (ja)
TW (1) TW201936938A (ja)
WO (1) WO2019159856A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929325A1 (de) * 2016-03-07 2021-12-29 CERATIZIT Austria Gesellschaft m.b.H. Verfahren zur herstellung einer beschichtungsquelle zur physikalischen gasphasenabscheidung von crtan, sowie dadurch hergestellte crta beschichtungsquelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404443A (zh) * 2020-11-25 2021-02-26 河南东微电子材料有限公司 一种铬钽硼合金粉末的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308080A (ja) * 1991-04-02 1992-10-30 Hitachi Metals Ltd Co−Cr−Ta合金ターゲットおよびその製造方法
JPH06172944A (ja) * 1992-04-07 1994-06-21 Koji Hashimoto 耐高温腐食性アモルファス合金
JP2000057554A (ja) * 1998-08-18 2000-02-25 Mitsubishi Chemicals Corp 磁気ディスク
JP2000232206A (ja) * 1999-02-09 2000-08-22 Oki Electric Ind Co Ltd 強誘電体メモリ
JP2001131673A (ja) * 1999-11-05 2001-05-15 Sony Corp 電子薄膜材料、誘電体キャパシタおよび不揮発性メモリ
JP2004039196A (ja) * 2002-07-08 2004-02-05 Showa Denko Kk 磁気記録媒体、その製造方法および磁気記録再生装置
WO2016052371A1 (ja) * 2014-09-30 2016-04-07 Jx金属株式会社 スパッタリングターゲット用母合金及びスパッタリングターゲットの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260218A (ja) * 2001-03-05 2002-09-13 Anelva Corp 磁気記録ディスク、磁気記録ディスク製造方法及び磁気記録ディスク製造装置
JP4331182B2 (ja) * 2006-04-14 2009-09-16 山陽特殊製鋼株式会社 軟磁性ターゲット材
JP6180755B2 (ja) * 2013-02-25 2017-08-16 山陽特殊製鋼株式会社 磁気記録用Cr合金およびスパッタリング用ターゲット材並びにそれらを用いた垂直磁気記録媒体
WO2015052848A1 (ja) * 2013-10-07 2015-04-16 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
AT15220U1 (de) * 2016-03-07 2017-03-15 Ceratizit Austria Gmbh Verfahren zur Herstellung einer Hartstoffschicht auf einem Substrat, Hartstoffschicht, Zerspanwerkzeug sowie Beschichtungsquelle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308080A (ja) * 1991-04-02 1992-10-30 Hitachi Metals Ltd Co−Cr−Ta合金ターゲットおよびその製造方法
JPH06172944A (ja) * 1992-04-07 1994-06-21 Koji Hashimoto 耐高温腐食性アモルファス合金
JP2000057554A (ja) * 1998-08-18 2000-02-25 Mitsubishi Chemicals Corp 磁気ディスク
JP2000232206A (ja) * 1999-02-09 2000-08-22 Oki Electric Ind Co Ltd 強誘電体メモリ
JP2001131673A (ja) * 1999-11-05 2001-05-15 Sony Corp 電子薄膜材料、誘電体キャパシタおよび不揮発性メモリ
JP2004039196A (ja) * 2002-07-08 2004-02-05 Showa Denko Kk 磁気記録媒体、その製造方法および磁気記録再生装置
WO2016052371A1 (ja) * 2014-09-30 2016-04-07 Jx金属株式会社 スパッタリングターゲット用母合金及びスパッタリングターゲットの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3929325A1 (de) * 2016-03-07 2021-12-29 CERATIZIT Austria Gesellschaft m.b.H. Verfahren zur herstellung einer beschichtungsquelle zur physikalischen gasphasenabscheidung von crtan, sowie dadurch hergestellte crta beschichtungsquelle

Also Published As

Publication number Publication date
JP2019143179A (ja) 2019-08-29
SG11202007897UA (en) 2020-09-29
TW201936938A (zh) 2019-09-16
JP6814758B2 (ja) 2021-01-20
CN111712587A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
US10562101B2 (en) Methods of making metal matrix composite and alloy articles
TWI622661B (zh) W-Ni濺鍍靶及其製法和用途
JP2011149039A (ja) 高強度を有するCu−Ga系スパッタリングターゲット材およびその製造方法
WO2014208447A1 (ja) サーメットおよびその製造方法並びに切削工具
TWI683008B (zh) 濺鍍靶材及其製造方法
JP5730903B2 (ja) スパッタリングターゲット
WO2019159856A1 (ja) スパッタリングターゲット材
JP5960287B2 (ja) 焼結体スパッタリングターゲット
CN111188016A (zh) 一种高性能CrAlSiX合金靶材及其制备方法
CN114262872A (zh) 一种铬铝硼合金复合靶材及其制备方法
JP6048651B2 (ja) スパッタリングターゲットおよびその製造方法
WO2017204158A1 (ja) スパッタリングターゲット材
JP4476827B2 (ja) スパッタリングターゲット材の製造方法
TW201829799A (zh) 適於積層製程的硬質合金
JP7412183B2 (ja) スパッタリングターゲット材
JP6863059B2 (ja) W−Ti積層膜
JP7492831B2 (ja) スパッタリングターゲット材
JP6156734B2 (ja) Fe−Co系合金スパッタリングターゲット材およびその製造方法
JP6972508B2 (ja) 超硬合金及び被覆超硬合金、並びにそれらを有する工具
WO2020066114A1 (ja) スパッタリングターゲット及びスパッタリングターゲットを製造するための粉体
JP5601920B2 (ja) Fe/Co−Pt系焼結合金の製造方法
JP2021180057A (ja) スパッタリングターゲット材
JP5384849B2 (ja) 垂直磁気記録媒体におけるNi−W−P,Zr系中間層膜製造用スパッタリングターゲット材およびこれを用いて製造した薄膜
JPWO2014017381A1 (ja) ターゲット材およびその製造方法
JP2020132978A (ja) Cr合金ターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753804

Country of ref document: EP

Kind code of ref document: A1