WO2015052848A1 - スパッタリングターゲット及びその製造方法 - Google Patents
スパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2015052848A1 WO2015052848A1 PCT/JP2013/077874 JP2013077874W WO2015052848A1 WO 2015052848 A1 WO2015052848 A1 WO 2015052848A1 JP 2013077874 W JP2013077874 W JP 2013077874W WO 2015052848 A1 WO2015052848 A1 WO 2015052848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- sputtering target
- less
- diffraction peak
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
- B22F3/1007—Atmosphere
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the present invention relates to a sputtering target used when forming a Cu—In—Ga—Se compound film (hereinafter sometimes abbreviated as CIGS film) for forming a light absorption layer of a CIGS thin film solar cell, and It relates to the manufacturing method.
- CIGS film Cu—In—Ga—Se compound film
- thin film solar cells based on chalcopyrite compound semiconductors have come into practical use, and thin film solar cells based on this compound semiconductor form a Mo electrode layer serving as a positive electrode on a soda-lime glass substrate.
- a light absorption layer made of a CIGS film is formed on the Mo electrode layer, a buffer layer made of ZnS, CdS, or the like is formed on the light absorption layer, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer. It has a basic structure formed.
- a method for forming the light absorption layer for example, a method of forming a film by a multi-source deposition method is known. Although the light absorption layer obtained by this method can obtain high energy conversion efficiency, the uniformity of the film thickness distribution tends to be lowered when the film is formed on a large-area substrate due to vapor deposition from a point source. Therefore, a method for forming a light absorption layer by a sputtering method has been proposed.
- an In film is formed by sputtering using an In target.
- a Cu-Ga binary alloy film is formed on the In film by sputtering using a Cu-Ga binary alloy target, and the resulting In film and Cu-Ga binary alloy film are formed.
- a method (so-called selenization method) for forming a CIGS film by heat-treating a laminated precursor film in a Se atmosphere has been proposed.
- the Cu-Ga alloy film and the In film laminated precursor film are formed from the metal back electrode layer side with a high Ga content Cu-Ga alloy layer, a low Ga content Cu-Ga alloy.
- a layer and an In layer are formed by a sputtering method in this order, and this is heat-treated in a selenium and / or sulfur atmosphere, so that the inside of the thin-film light absorption layer from the interface layer (buffer layer) side to the metal back electrode layer side.
- the Ga content in the CuGa target has been proposed as 1 to 40 atomic% (see Patent Document 1).
- Patent Document 2 discloses a Cu-Ga alloy sintered body sputtering target obtained by sintering a Cu-Ga mixed fine powder produced by a water atomizer by hot pressing. Has been proposed.
- this Cu-Ga alloy sintered compact sputtering target it has a single composition, and the peak intensity other than the main peak ( ⁇ phase (Cu 9 Ga 4 phase)) by X-ray diffraction of the Cu—Ga alloy is higher than the main peak.
- the average crystal grain size is 5 to 30 ⁇ m.
- this target has an oxygen content of 350 to 400 ppm.
- the present invention has been made in view of the above-described problems, and an object thereof is to provide a sputtering target of a Cu-Ga sintered body capable of further reducing the oxygen content and suppressing abnormal discharge, and a method for manufacturing the same.
- the sputtering target according to the first invention contains 20 at% or more and less than 30 at% of Ga, the remainder has a component composition consisting of Cu and inevitable impurities, and diffraction attributed to the ⁇ phase of CuGa by X-ray diffraction A sintered body in which a peak and a diffraction peak attributed to the ⁇ phase are observed, and the main peak intensity of the diffraction peak attributed to the ⁇ phase is 10% or more of the main peak intensity of the diffraction peak attributed to the ⁇ phase.
- the oxygen content is 100 ppm or less, and the average particle size is 100 ⁇ m or less.
- the oxygen content is 100 ppm or less and the average particle size is 100 ⁇ m or less, the low oxygen content and the small particle size make it possible to significantly reduce abnormal discharge. Moreover, it contributes to the improvement of the photoelectric conversion efficiency in the light absorption layer of a CIGS thin film type solar cell by suppressing the increase in the oxygen amount in the precursor film
- the reason why the Ga content is less than 30 at% is that when it is 30 at% or more, the diffraction peak attributed to the ⁇ phase almost disappears, and the peak intensity of the ⁇ phase with respect to the ⁇ phase is less than 10%. This is because it becomes a single phase of ⁇ phase.
- a method for producing a sputtering target according to a second invention is a method for producing a sputtering target according to the first invention, wherein a compact comprising a mixed powder of pure Cu powder and Cu-Ga alloy powder is reduced. It has the process of heating in an atmosphere and carrying out atmospheric pressure sintering. That is, in this method for producing a sputtering target, a compact made of a mixed powder of pure Cu powder and Cu—Ga alloy powder is heated in a reducing atmosphere and sintered at normal pressure.
- ⁇ phase and ⁇ phase appear due to mutual diffusion from the powder, and very few sintered bodies have observed diffraction peaks attributed to CuGa ⁇ phase and diffraction peaks attributed to ⁇ phase by X-ray diffraction It can be obtained with an oxygen content.
- shape maintenance becomes easy when it uses a pure Cu powder which is easy to carry out plastic deformation, when it uses a molded object.
- pure Cu powder will be oxidized also in the air
- by adding a Cu-Ga alloy powder of 50 at% Ga liquid phase sintering is performed, and a high-density sintered body is obtained.
- the present invention has the following effects. That is, according to the sputtering target and the manufacturing method thereof according to the present invention, the main peak intensity of the diffraction peak attributed to the ⁇ phase is 10% or more of the main peak intensity of the diffraction peak attributed to the ⁇ phase, and the oxygen content Is 100 ppm or less, and the average particle size is 100 ⁇ m or less, so the low oxygen content and the small particle size can greatly reduce abnormal discharge and increase the amount of oxygen in the precursor film obtained by sputtering. Can be suppressed.
- the light absorption layer of the CIGS thin film solar cell by sputtering using the sputtering target of the present invention, it is possible to contribute to the improvement of the photoelectric conversion efficiency in the light absorption layer, and the power generation efficiency is high.
- a solar cell can be manufactured.
- the sputtering target of this embodiment contains Ga of 20 at% or more and less than 30 at%, and the remainder has a component composition composed of Cu and inevitable impurities, and is converted into a CuGa ⁇ phase (Cu 9 Ga 4 phase) by X-ray diffraction. It consists of a sintered body in which the diffraction peak attributed to the diffraction peak attributed to the ⁇ phase (Cu 3 Ga phase) is observed, and the main peak intensity of the diffraction peak attributed to the ⁇ phase is the diffraction peak attributed to the ⁇ phase. It is 10% or more of the main peak intensity, the oxygen content is 100 ppm or less, and the average particle size is 100 ⁇ m or less.
- This sputtering target has a crystal structure in which a phase (Ga-rich region) containing a relatively large amount of Ga is dispersed.
- the Ga-rich region is, for example, a region observed in white in a COMPO image by EPMA as shown in FIG.
- the main peak intensity of the diffraction peak is the intensity of the strongest of a plurality of diffraction peaks belonging to a specific metal phase.
- oxygen content is measured by an infrared absorption method described in JIS Z 2613 “General Rules for Determination of Oxygen of Metallic Materials”.
- the method for producing the sputtering target of the present embodiment includes a step of heating a molded body made of a mixed powder of pure Cu powder and Cu-Ga alloy powder in a reducing atmosphere to perform atmospheric pressure sintering. Yes.
- An example of this production method will be described in detail.
- pure Cu powder having an average particle diameter of 2 to 3 ⁇ m and Cu—Ga alloy atomized powder having an average particle diameter of 20 to 30 ⁇ m are weighed to obtain a target composition, and a Henschel mixer is obtained. Is used for 1 minute at 2800 rpm in an Ar atmosphere to obtain a mixed powder.
- the obtained mixed powder is made into a green compact (molded body) at a molding pressure of 500 to 2000 kgf / cm 2 .
- the green compact is placed in a furnace, heated at a rate of 10 ° C./min to a firing temperature of 700 to 1000 ° C. while flowing a reducing gas at 10 to 100 L / min, and held for 5 hours. Thereafter, the inside of the furnace is naturally cooled, and the surface portion and the outer peripheral portion of the obtained sintered body are turned to produce a sputtering target having a diameter of 50 mm and a thickness of 6 mm.
- the Cu—Ga alloy atomized powder is prepared by filling a carbon crucible with Cu and Ga raw materials at a specified composition ratio and by gas atomizing with Ar gas.
- the processed sputtering target is bonded to a backing plate made of Cu or SUS (stainless steel) or other metal (for example, Mo) using In as solder, and is subjected to sputtering.
- a vacuum pack or a pack obtained by replacing the entire target with a vacuum in order to prevent oxidation and moisture absorption.
- the thus produced sputtering target is subjected to DC magnetron sputtering using Ar gas as a sputtering gas.
- direct current (DC) sputtering may be performed using a pulsed DC power supply to which a pulse voltage is applied or a DC power supply without a pulse.
- the main peak intensity of the diffraction peak attributed to the ⁇ phase is 10% or more of the main peak intensity of the diffraction peak attributed to the ⁇ phase
- the oxygen content is 100 ppm or less
- it contributes to the improvement of the photoelectric conversion efficiency in the light absorption layer of a CIGS thin film type solar cell by suppressing the increase in the oxygen amount in the precursor film
- the manufacturing method of the sputtering target of this embodiment since the molded object consisting of the mixed powder of pure Cu powder and Cu-Ga alloy powder is heated in a reducing atmosphere and sintered at normal pressure, A sintered body in which a ⁇ phase and a ⁇ phase appear due to mutual diffusion from each raw material powder, and a diffraction peak attributed to the ⁇ phase of CuGa and a diffraction peak attributed to the ⁇ phase are observed by X-ray diffraction. Can be obtained with a very low oxygen content.
- Cu—Ga alloy powder (CuGa powder in the table) having the component composition and particle size shown in Table 1 and Cu powder were blended so as to have the amounts shown in Table 1, and Examples 1 to 5 mixed powder.
- the obtained mixed powder was made into a green compact (molded body) with a molding pressure of 1500 kgf / cm 2 .
- Examples 1 to 3 were subjected to normal pressure sintering in a hydrogen atmosphere
- Example 4 was subjected to normal pressure sintering in a carbon monoxide atmosphere
- Example 5 was an ammonia cracking gas atmosphere. Sintered at normal pressure.
- these atmospheric pressure sintering was performed by flowing reducing gas at 50 L / min, and hold
- a Cu-Ga alloy powder (CuGa powder in the table) having the component composition and particle size shown in Table 1 and Cu powder are blended so as to have the amount shown in Table 1, The mixed powders of Comparative Examples 1 to 4 were used. In Comparative Examples 2 and 3, the Ga content deviated from the scope of the present invention. Next, the obtained mixed powder was used as a green compact (molded body) in the same manner as in the above example. In Comparative Examples 5 and 8, only the Cu—Ga alloy powder was used as the raw material powder.
- Comparative Example 1 was subjected to normal pressure sintering in an air atmosphere
- Comparative Examples 2, 3 and 8 were subjected to normal pressure sintering in a hydrogen atmosphere in the same manner as in the Examples.
- No. 5 was sintered in a vacuum by a hot press method. The hot press conditions at this time are a holding temperature of 740 ° C. and a holding time of 60 minutes.
- Comparative Examples 6 and 7 were produced by a casting method so as to have the composition shown in Table 1.
- Table 1 shows the results of examining the average particle diameter, the analysis by X-ray diffraction, the oxygen content, the density, and the number of abnormal discharges for the examples and comparative examples of the present invention thus prepared.
- the shape of the disk could not be maintained and collapsed, so that the green compact could not be produced and the target could not be produced, so these measurements were not performed.
- a portion of the lump that remained unbroken during compacting was fired and the Ga composition was measured.
- the composition of the target was measured using an ICP method (high frequency inductively coupled plasma method).
- both a diffraction peak attributed to the ⁇ phase and a diffraction peak attributed to the ⁇ phase are observed, and the main peak intensity of the diffraction peak attributed to the ⁇ phase is A case where it is 10% or more of the main peak intensity of the assigned diffraction peak is expressed as “ ⁇ , ⁇ ” in Table 1, and the main peak intensity of the diffraction peak attributed to the ⁇ phase is the diffraction peak attributed to the ⁇ phase.
- the case where it is less than 10% of the main peak intensity is represented as “ ⁇ ” in Table 1.
- sputtering was performed for 12 hours under the following film forming conditions, and the number of abnormal discharges was measured.
- ⁇ Power supply: Pulse DC500W ⁇ Total pressure: 0.4Pa Sputtering gas: Ar 47.5 sccm, O 2 : 2.5 sccm -Target-substrate (TS) distance: 70 mm
- the number of abnormal discharges was measured by the arc count function of a DC power supply (model number: RPDG-50A) manufactured by MKS Instruments.
- all of the examples of the present invention have a small average particle size of 68 to 84 ⁇ m, and two phases of ⁇ phase and ⁇ phase are observed in X-ray diffraction.
- the oxygen content is very low, 55 to 75 ppm, and the number of abnormal discharges is greatly reduced to 1 or less.
- Comparative Example 1 subjected to atmospheric pressure sintering in the atmosphere, the oxygen content is as high as 300 ppm and the number of abnormal discharges is greatly increased to 13 times. Further, in Comparative Example 2 where Ga is less than the composition range of the present invention, the oxygen content is increased to 105 ppm and the number of abnormal discharges is increased to 3 times. Furthermore, in Comparative Example 3 in which Ga is out of the composition range of the present invention, it becomes a single ⁇ phase, and the number of abnormal discharges has increased to three.
- Comparative Examples 4 and 5 baked by the hot press method the oxygen content greatly increases to 300 ppm or more, and the number of abnormal discharges also increases. Further, in Comparative Examples 6 and 7 produced by the casting method, the average particle size is as large as 500 nm or more, and the number of abnormal discharges is increased to 8 times and 6 times, respectively.
- FIGS. 1 to 4 show the results of measurement by XRD diffraction peaks produced by holding atmospheric pressure sintering.
- the diffraction peak attributed to the ⁇ phase (Cu 9 Ga 4 phase) of CuGa and the ⁇ phase (Cu 3 Ga phase) are attributed.
- the diffraction peak attributed to the ⁇ phase is 10% or more of the main peak intensity of the diffraction peak attributed to the ⁇ phase. It can be seen that the phase is clearly formed in the tissue. However, it can be seen that when the Ga content is 30 at%, the diffraction peak attributed to the ⁇ phase almost disappears and the structure is substantially a single phase of ⁇ phase.
- FIGS. 1-10 A composition image (COMPO image) observed by EPMA and element mapping images of Cu, Ga, O (oxygen), and C (carbon) are shown in FIGS.
- the original image is a color image, but is converted into a black and white image in gray scale, and the Cu mapping image tends to have a high content in a portion with high brightness. is there.
- the Cu mapping image tends to have a high content in a portion with high brightness. is there.
- Ga mapping image it exists in the tendency for content to be high in the part where the brightness is dark.
- the whitest portion indicates a region having a relatively high Ga content.
- the examples of the present invention have a crystal structure in which a phase (Ga-rich region) containing a relatively large amount of Ga is dispersed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
すなわち、特許文献2に記載の技術では、ホットプレスにより作製を行うことで、酸素含有量が低減されていると共に異常放電が少なくなるが、太陽電池製造メーカーからは、より酸素含有量の少ないターゲットが要望されているのが現状である。また、溶解法により作製したターゲットでは、特許文献2の表1に記載されているように、酸素含有量が40~50ppmと大幅に低減できる反面、平均粒径が830~1100μmと非常に大きくなり、異常放電が増大してしまう不都合がある。
(化学式)γ相:Cu9Ga4,ζ相:Cu3Ga
(空間群)γ相:P−43m,ζ相:P63/mmcE
また、酸素含有量を大幅に低減したことにより、スパッタで得られるプリカーサ膜中の酸素量の増大を抑制することにより、CIGS薄膜型太陽電池の光吸収層中の光電変換効率の向上に寄与することができる。
なお、Gaの含有量を30at%未満とした理由は、30at%以上になるとζ相に帰属する回折ピークがほとんど消失し、γ相に対するζ相のピーク強度が10%未満になって実質的にγ相の単相になってしまうためである。
すなわち、このスパッタリングターゲットの製造方法では、純Cu粉末とCu−Ga合金粉末との混合粉末からなる成形体を、還元性雰囲気中で加熱して常圧焼結するので、焼成中にそれぞれの原料粉から相互拡散が起こることでγ相とζ相が出現し、X線回折によりCuGaのγ相に帰属する回折ピークとζ相に帰属する回折ピークとが観察される焼結体を非常に少ない酸素含有量で得ることができる。
なお、塑性変形のし易い純Cu粉末を用いることで成形体とする際に形状保持が容易になる。また、純Cu粉末は室温大気中でも酸化されてしまうが、還元性雰囲気中での加熱で容易に還元されるため、酸素含有量を増加させる原因にはならない。さらに、50at%GaのCu−Ga合金粉末を入れることで、液相焼結となり、高密度な焼結体が得られる。
すなわち、本発明に係るスパッタリングターゲット及びその製造方法によれば、ζ相に帰属する回折ピークの主ピーク強度が、γ相に帰属する回折ピークの主ピーク強度の10%以上であり、酸素含有量が100ppm以下となり、平均粒径が100μm以下であるので、低い酸素含有量かつ粒径が小さいため、異常放電を大幅に低減することができると共に、スパッタで得られるプリカーサ膜中の酸素量の増大を抑制することができる。
したがって、本発明のスパッタリングターゲットを用いてスパッタ法によりCIGS薄膜型太陽電池の光吸収層を成膜することで、光吸収層中の光電変換効率の向上に寄与することができ、発電効率の高い太陽電池を製造することが可能となる。
上記回折ピークの主ピーク強度は、特定の金属相に帰属する複数の回折ピークのうち最も強いものの強度である。
平均結晶粒径=(写真上の10本の線分の長さを実際の長さに補正した値)/(10本の線分が通過する結晶粒の数)
この製造方法の一例について詳述すると、まず平均粒径2~3μmの純Cu粉と、平均粒径20~30μmのCu−Ga合金アトマイズ粉末とを、目標組成となるように秤量し、ヘンシェルミキサーを用いてAr雰囲気下において回転数2800rpmで1分間混合して混合粉末とする。
なお、加工済みのターゲットを保管する際には、酸化、吸湿を防止するため、ターゲット全体を真空パックまたは不活性ガス置換したパックを施すことが好ましい。
また、酸素含有量を大幅に低減したことにより、スパッタで得られるプリカーサ膜中の酸素量の増大を抑制することにより、CIGS薄膜型太陽電池の光吸収層中の光電変換効率の向上に寄与することができる。
また、比較例6,7は、表1に示す組成となるように鋳造法により作製した。
なお、ターゲットの組成は、ICP法(高周波誘導結合プラズマ法)を用いて測定した。
装置:理学電気社製(RINT−Ultima/PC)
管球:Cu
管電圧:40kV
管電流:40mA
走査範囲(2θ):20°~120°
スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.8mm
測定ステップ幅:2θで0.02度
スキャンスピード:毎分2度
試料台回転スピード:30rpm
・電源:パルスDC500W
・全圧:0.4Pa
・スパッタガス:Ar=47.5sccm、O2:2.5sccm
・ターゲット−基板(TS)距離:70mm
・異常放電回数は、MKSインスツルメンツ社製DC電源(型番:RPDG−50A)のアークカウント機能により計測した。
これらの画像からわかるように、本発明の実施例では、相対的にGaが多く含有されている相(Ga−rich領域)が分散した結晶組織を有している。
また、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態及び上記実施例のスパッタリングターゲットは、平板状のものであるが、円筒状のスパッタリングターゲットとしても構わない。
Claims (2)
- 20at%以上30at%未満のGaを含有し、残部がCu及び不可避不純物からなる成分組成を有し、
X線回折によりCuGaのγ相に帰属する回折ピークとζ相に帰属する回折ピークとが観察される焼結体からなり、
前記ζ相に帰属する回折ピークの主ピーク強度が、前記γ相に帰属する回折ピークの主ピーク強度の10%以上であり、
酸素含有量が100ppm以下であり、
平均粒径が100μm以下であることを特徴とするスパッタリングターゲット。 - 請求項1に記載のスパッタリングターゲットを製造する方法であって、
純Cu粉末とCu−Ga合金粉末との混合粉末からなる成形体を、還元性雰囲気中で加熱して常圧焼結する工程を有していることを特徴とするスパッタリングターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/077874 WO2015052848A1 (ja) | 2013-10-07 | 2013-10-07 | スパッタリングターゲット及びその製造方法 |
CN201380078980.0A CN105473758B (zh) | 2013-10-07 | 2013-10-07 | 溅射靶及其制造方法 |
US15/027,436 US10351946B2 (en) | 2013-10-07 | 2013-10-07 | Sputtering target and method for producing same |
EP13895300.5A EP3056586B1 (en) | 2013-10-07 | 2013-10-07 | Sputtering target and process for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/077874 WO2015052848A1 (ja) | 2013-10-07 | 2013-10-07 | スパッタリングターゲット及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015052848A1 true WO2015052848A1 (ja) | 2015-04-16 |
Family
ID=52812692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/077874 WO2015052848A1 (ja) | 2013-10-07 | 2013-10-07 | スパッタリングターゲット及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10351946B2 (ja) |
EP (1) | EP3056586B1 (ja) |
CN (1) | CN105473758B (ja) |
WO (1) | WO2015052848A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6814758B2 (ja) * | 2018-02-19 | 2021-01-20 | 山陽特殊製鋼株式会社 | スパッタリングターゲット |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135495A (ja) | 1996-10-25 | 1998-05-22 | Showa Shell Sekiyu Kk | 薄膜太陽電池の製造方法及び製造装置 |
JP2008138232A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Materials Corp | 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法 |
JP2010265544A (ja) * | 2009-04-14 | 2010-11-25 | Kobelco Kaken:Kk | Cu−Ga合金スパッタリングターゲットおよびその製造方法 |
WO2011010529A1 (ja) | 2009-07-23 | 2011-01-27 | Jx日鉱日石金属株式会社 | Cu-Ga合金焼結体スパッタリングターゲット、同ターゲットの製造方法、Cu-Ga合金焼結体ターゲットから作製された光吸収層及び同光吸収層を用いたCIGS系太陽電池 |
JP2012031508A (ja) * | 2010-06-28 | 2012-02-16 | Hitachi Metals Ltd | Cu−Ga合金ターゲット材およびその製造方法 |
JP2012214857A (ja) * | 2011-04-01 | 2012-11-08 | Sanyo Special Steel Co Ltd | 酸素含有量が低いCu−Ga系合金粉末、Cu−Ga系合金ターゲット材、およびターゲット材の製造方法 |
JP2012246574A (ja) * | 2012-09-18 | 2012-12-13 | Mitsubishi Materials Corp | スパッタリングターゲット及びその製造方法 |
JP2013142175A (ja) * | 2012-01-11 | 2013-07-22 | Sumitomo Metal Mining Co Ltd | Cu−Ga合金スパッタリングターゲット及びその製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5630416B2 (ja) | 2011-03-23 | 2014-11-26 | 住友金属鉱山株式会社 | Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金粉末の製造方法 |
JP5725610B2 (ja) | 2011-04-29 | 2015-05-27 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
JP5165100B1 (ja) | 2011-11-01 | 2013-03-21 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
-
2013
- 2013-10-07 CN CN201380078980.0A patent/CN105473758B/zh not_active Expired - Fee Related
- 2013-10-07 US US15/027,436 patent/US10351946B2/en not_active Expired - Fee Related
- 2013-10-07 WO PCT/JP2013/077874 patent/WO2015052848A1/ja active Application Filing
- 2013-10-07 EP EP13895300.5A patent/EP3056586B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135495A (ja) | 1996-10-25 | 1998-05-22 | Showa Shell Sekiyu Kk | 薄膜太陽電池の製造方法及び製造装置 |
JP2008138232A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Materials Corp | 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法 |
JP2010265544A (ja) * | 2009-04-14 | 2010-11-25 | Kobelco Kaken:Kk | Cu−Ga合金スパッタリングターゲットおよびその製造方法 |
WO2011010529A1 (ja) | 2009-07-23 | 2011-01-27 | Jx日鉱日石金属株式会社 | Cu-Ga合金焼結体スパッタリングターゲット、同ターゲットの製造方法、Cu-Ga合金焼結体ターゲットから作製された光吸収層及び同光吸収層を用いたCIGS系太陽電池 |
JP2012031508A (ja) * | 2010-06-28 | 2012-02-16 | Hitachi Metals Ltd | Cu−Ga合金ターゲット材およびその製造方法 |
JP2012214857A (ja) * | 2011-04-01 | 2012-11-08 | Sanyo Special Steel Co Ltd | 酸素含有量が低いCu−Ga系合金粉末、Cu−Ga系合金ターゲット材、およびターゲット材の製造方法 |
JP2013142175A (ja) * | 2012-01-11 | 2013-07-22 | Sumitomo Metal Mining Co Ltd | Cu−Ga合金スパッタリングターゲット及びその製造方法 |
JP2012246574A (ja) * | 2012-09-18 | 2012-12-13 | Mitsubishi Materials Corp | スパッタリングターゲット及びその製造方法 |
Non-Patent Citations (2)
Title |
---|
P. R. SUBRAMANIAN; D. E. LAUGHLIN: "Binary Alloy Phase Diagrams", 1990, ASM INTERNATIONAL(R, pages: 1410 |
See also references of EP3056586A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3056586B1 (en) | 2019-11-27 |
CN105473758B (zh) | 2018-02-27 |
CN105473758A (zh) | 2016-04-06 |
EP3056586A1 (en) | 2016-08-17 |
US10351946B2 (en) | 2019-07-16 |
EP3056586A4 (en) | 2017-05-17 |
US20160237551A1 (en) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5907428B2 (ja) | スパッタリングターゲット及びその製造方法 | |
JP6120076B2 (ja) | Cu−Ga合金スパッタリングターゲット及びその製造方法 | |
JP5725610B2 (ja) | スパッタリングターゲット及びその製造方法 | |
TWI583811B (zh) | A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer | |
JP5730788B2 (ja) | スパッタリングターゲット及びスパッタリングターゲットの製造方法 | |
WO2013069710A1 (ja) | スパッタリングターゲットおよびその製造方法 | |
JP5743119B1 (ja) | Cu−Ga合金スパッタリングターゲット及びその製造方法 | |
KR101293330B1 (ko) | Cu-In-Ga-Se 4 원계 합금 스퍼터링 타겟 | |
TW201610193A (zh) | Cu-Ga合金濺鍍靶及其製造方法 | |
WO2014069652A1 (ja) | スパッタリングターゲット及びその製造方法 | |
Cheng et al. | Optimization of post-selenization process of Co-sputtered CuIn and CuGa precursor for 11.19% efficiency Cu (In, Ga) Se 2 solar cells | |
WO2015052848A1 (ja) | スパッタリングターゲット及びその製造方法 | |
JP2012246574A (ja) | スパッタリングターゲット及びその製造方法 | |
TWI586824B (zh) | Sputtering target and its manufacturing method | |
JP6436006B2 (ja) | スパッタリングターゲット及びその製造方法 | |
WO2014061697A1 (ja) | Cu-Ga二元系スパッタリングターゲット及びその製造方法 | |
JP2016082120A (ja) | 太陽電池用光吸収層およびその製造方法、並びに前記太陽電池用光吸収層を有する太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380078980.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13895300 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013895300 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013895300 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15027436 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |