WO2019157805A1 - 中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底 - Google Patents

中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底 Download PDF

Info

Publication number
WO2019157805A1
WO2019157805A1 PCT/CN2018/102178 CN2018102178W WO2019157805A1 WO 2019157805 A1 WO2019157805 A1 WO 2019157805A1 CN 2018102178 W CN2018102178 W CN 2018102178W WO 2019157805 A1 WO2019157805 A1 WO 2019157805A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
midsole
outsole
amount
Prior art date
Application number
PCT/CN2018/102178
Other languages
English (en)
French (fr)
Inventor
陈志勇
黄晟维
吴孟衡
赖昭谕
舒俞宁
王振乾
Original Assignee
陈志勇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈志勇 filed Critical 陈志勇
Priority to TW107140644A priority Critical patent/TWI691538B/zh
Priority to US16/200,615 priority patent/US11278083B2/en
Priority to CN201811417205.4A priority patent/CN110157082B/zh
Priority to TW107146222A priority patent/TWI783100B/zh
Priority to CN201910779100.1A priority patent/CN110856563B/zh
Publication of WO2019157805A1 publication Critical patent/WO2019157805A1/zh
Priority to EP19193441.3A priority patent/EP3613306A1/en
Priority to US16/550,276 priority patent/US11779079B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/28Soles; Sole-and-heel integral units characterised by their attachment, also attachment of combined soles and heels
    • A43B13/32Soles; Sole-and-heel integral units characterised by their attachment, also attachment of combined soles and heels by adhesives
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D25/00Devices for gluing shoe parts
    • A43D25/20Arrangements for activating or for accelerating setting of adhesives, e.g. by using heat
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/0063Footwear characterised by the material made at least partially of material that can be recycled
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • B32B2037/1223Hot-melt adhesive film-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/414Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2431/00Presence of polyvinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to a sole, and more particularly to a midsole, a large sole, a hot melt adhesive film for bonding a midsole and an outsole, and a bonding apparatus required for bonding.
  • the sole is generally composed mainly of a midsole and an outsole. Since the outsole needs to be in contact with the ground to provide friction and the human body can be easily moved, the outsole needs to have excellent anti-wear properties. Furthermore, the midsole is used as a support for the shoe to absorb and cushion the reaction force during movement, and to protect the human body. Accordingly, the midsole and the outsole have distinct properties and their functions are different.
  • the midsole and the outsole cannot be integrally formed, and it is necessary to bond with a paste.
  • the bonded sole tends to have residual glue and affects the appearance.
  • the paste is applied too little, the bonding property between the midsole and the outsole is too poor, which tends to cause separation between the two, thereby reducing the user's feeling.
  • the paste has adhesiveness, it is easily adhered to equipment or other materials to lower its handling properties.
  • the reusability of articles is also considered to be an important property.
  • the sole is not made of a recyclable material, so it cannot be recycled and reused, and it is difficult to further process it by other treatment methods. Therefore, the conventional sole does not have good reusability and increases the burden on the environment.
  • an aspect of the present invention is to provide a midsole material composition having a specific composition to form a recyclable midsole material having good foaming properties.
  • Another aspect of the present invention provides a method of fabricating a midsole material by crosslinking an elastomer in the foregoing midsole material composition to promote elastomer and thermoplastic in the composition.
  • the polymer is reversely rotated, and the midsole material of the present invention can be further produced by a foaming process.
  • Yet another aspect of the present invention is to provide an outsole material composition having a specific composition to produce a retractable outsole material having good mechanical properties.
  • Yet another aspect of the present invention is to provide another outsole material composition having a specific composition to produce an outsole material having good mechanical properties and being recyclable.
  • Still another aspect of the present invention is to provide a hot melt adhesive film composition having a microwave absorbing material, which can heat a hot melt adhesive film by absorbing microwave energy, thereby further forming a hot melt adhesive The film is sticky.
  • Still another aspect of the present invention is to provide a laminating apparatus which can heat a hot melt adhesive film by microwave energy of a microwave emitting source to effectively bond a midsole material to an outsole material.
  • Still another aspect of the present invention provides a sole for bonding a midsole, an outsole, and a hot melt adhesive film obtained by using the above-described composition by the above-described bonding apparatus.
  • a midsole material composition comprises a blended mixture, a crosslinker, and a catalyst.
  • the blended mixture comprises an elastomer and a thermoplastic polymer, wherein the elastomer comprises ethylene vinyl acetate, and the thermoplastic polymer comprises an olefin polymer.
  • the crosslinking agent comprises a silane compound and/or a siloxane compound.
  • the elastomer has a vinyl acetate group content of from 18% to 40%.
  • the molar ratio of the crosslinking agent to the vinyl acetate group is from 1:1 to 1:8.
  • the aforementioned ethylene vinyl acetate further comprises powdered ethylene vinyl acetate.
  • the ethylene vinyl acetate is used in an amount of from 20 parts by weight to 40 parts by weight based on 100 parts by weight of the ethylene vinyl acetate.
  • thermoplastic polymer comprises high density polyethylene, low density polyethylene, polypropylene, and/or polystyrene.
  • the thermoplastic polymer has a melt index of from 0.3 to 15.
  • the elastomer is used in an amount of from 50 parts by weight to 80 parts by weight based on 100 parts by weight of the blended mixture, and the thermoplastic polymer is used in an amount of from 20 parts by weight to 50 parts by weight. Share.
  • the crosslinking agent is used in an amount of from 4 parts by weight to 10 parts by weight based on 100 parts by weight of the mixed mixture, and the catalyst is used in an amount of from 0.1 part by weight to 0.7 parts by weight. .
  • a method of making a midsole material is presented. This method of preparation is to first provide a mixture and subject the mixture to a smelting process to form a blended mixture.
  • the mixture comprises an elastomer and a thermoplastic polymer, wherein the elastomer comprises ethylene vinyl acetate and the thermoplastic polymer comprises an olefin polymer.
  • the amount of the elastomer used is greater than or equal to the amount of the thermoplastic polymer used.
  • the elastomer is the continuous phase and the thermoplastic polymer is the discontinuous phase dispersed in the continuous phase.
  • thermoplastic elastomer a crosslinking agent and a catalyst are added to the mixed mixture, and a crosslinking reaction is carried out to form a thermoplastic elastomer.
  • the thermoplastic polymer is a continuous phase
  • the elastomer is a discontinuous phase dispersed in the continuous phase.
  • the crosslinking agent contains a silane compound and/or a siloxane compound.
  • the thermoplastic elastomer is subjected to a foaming process to form a midsole material.
  • the elastomer has a vinyl acetate group content of from 18% to 40%.
  • the molar ratio of the crosslinking agent to the vinyl acetate group is from 1:1 to 1:8.
  • the preparation method selectively mixes the crosslinking agent and the powdered ethylene vinyl acetate before performing the aforementioned crosslinking reaction.
  • the ethylene vinyl acetate and the powdered ethylene vinyl acetate are used in an amount of from 100 parts by weight to 40 parts by weight based on 100 parts by weight of the powdered ethylene vinyl acetate.
  • a temperature of the foaming process is from 50 ° C to 120 ° C.
  • the elastomer is used in an amount of from 50 parts by weight to 80 parts by weight based on 100 parts by weight of the mixture, and the thermoplastic polymer is used in an amount of from 20 parts by weight to 50 parts by weight.
  • the crosslinking agent is used in an amount of from 4 parts by weight to 10 parts by weight based on 100 parts by weight of the mixture, and the catalyst is used in an amount of from 0.1 part by weight to 0.7 parts by weight.
  • an outsole material composition is proposed.
  • the material of the outsole material is composed of a thermoplastic material and an organic-inorganic hybrid material.
  • the thermoplastic material comprises a thermoplastic polyurethane and/or a thermoplastic rubber
  • the organic-inorganic hybrid material comprises a modifier and an inorganic clay.
  • the modifier may comprise polyamide, sodium lauryl sulfate and/or polypropylene grafted maleic anhydride.
  • thermoplastic material is intercalated in the inorganic clay.
  • the aforementioned outsole material composition does not comprise nylon-66 (Nylon-66).
  • the amount of the thermoplastic material used is 70 parts by weight to 99.99 parts by weight, and the organic-inorganic hybrid material is used in an amount of 0.01 parts by weight based on 100 parts by weight of the composition of the outsole material. 30 parts by weight.
  • an outsole material composition comprises a blended mixture and a crosslinking agent.
  • the blended mixture comprises a thermoplastic material and an elastomer.
  • the thermoplastic material comprises a polyurethane material and the elastomer comprises Natural Rubber.
  • the crosslinking agent comprises dicumyl peroxide or sulfur.
  • the aforementioned polyurethane material comprises a thermoplastic polyurethane and/or a polyurethane.
  • the outsole material composition may comprise an accelerator.
  • the thermoplastic material is used in an amount of from 30 parts by weight to 50 parts by weight, and the elastomer is used in an amount of from 50 parts by weight to 70 parts by weight, based on 100 parts by weight of the aforementioned blending mixture.
  • the amount of the crosslinking agent used is 100 parts by weight or more, and the crosslinking agent is used in an amount of more than 0 parts by weight and less than or equal to 2 parts by weight.
  • the amount of the crosslinking agent used is from 0.5 part by weight to 2 parts by weight based on 100 parts by weight of the elastomer.
  • a hot melt adhesive film composition comprises a hot melt adhesive and a microwave absorbent.
  • the hot melt adhesive comprises ethylene vinyl acetate and a thermoplastic material, and the microwave absorbing material is uniformly dispersed in the hot melt adhesive.
  • the thermoplastic material may comprise thermoplastic polyurethane and/or thermoplastic rubber.
  • the microwave absorbing material comprises carbon black, silicon carbide, metal oxide, carbon fiber and/or inorganic clay.
  • the amount of the ethylene vinyl acetate used is 60 parts by weight or more and less than 100 parts by weight, and the amount of the thermoplastic material used is greater than 0, based on 100 parts by weight of the hot melt adhesive.
  • the parts by weight and less than or equal to 40 parts by weight, and the amount of the microwave absorbing material used are from 5 parts by weight to 40 parts by weight.
  • a fitting apparatus comprises a cavity, at least one microwave emitting source and a pressing unit.
  • the cavity has at least one microwave inlet and a front hatch, and at least one microwave inlet is respectively disposed on both sidewalls of the cavity.
  • Microwave emission sources are respectively disposed at the microwave inlet, and the microwave emission source is configured to introduce microwaves into the cavity via the microwave inlet.
  • the nip unit is disposed in the cavity.
  • each of the aforementioned microwave inlets is not aligned with each other.
  • each of the aforementioned microwave inlets is covered by a polypropylene sheet.
  • the rear wall of the cavity is opposite to the front hatch, and the rear wall is provided with an exhaust port, and the exhaust port is connected to the air extracting device.
  • the aforementioned exhaust port is covered by a metal mesh.
  • the cavity may optionally include at least one vent hole, wherein the at least one vent hole is disposed on the sidewall, and the aperture of the at least one vent hole is less than 3 mm.
  • the nip unit has an upper pressing plate and a lower pressing plate, and at least one of the upper pressing plate and the lower pressing plate is provided with a hydraulic pressure member and/or a pneumatic member.
  • the bonding apparatus may selectively include at least one homogenizing unit, and the homogenizing units are respectively disposed on inner walls of the side walls.
  • the aforementioned homogenizing units are respectively disposed adjacent to the microwave inlet.
  • a sole is proposed.
  • the sole includes a midsole, a large sole and a hot melt adhesive film.
  • the midsole is obtained by the above-mentioned method of making the midsole
  • the outsole is formed by the above-mentioned composition of the outsole material
  • the hot melt adhesive film is formed by the aforementioned hot melt adhesive film composition. form.
  • the hot melt adhesive film directly bonds the midsole and the outsole and is located between the midsole and the outsole.
  • the midsole material composition of the present invention can be used to form a midsole material by a foaming process by a reverse crosslinking reaction.
  • the hot melt adhesive film of the present invention has good compatibility with the aforementioned midsole and the outsole, so that the hot melt adhesive film can effectively bond the midsole and the outsole by the bonding apparatus of the present invention.
  • the midsole and the outsole are bonded without using a paste, thereby improving the process convenience of the sole.
  • FIG. 1 is a cross-sectional view showing a sole according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a method of fabricating a midsole according to an embodiment of the invention.
  • FIG. 3A is a schematic perspective view of a bonding apparatus according to an embodiment of the invention.
  • FIG. 3B is a front view showing a bonding apparatus according to an embodiment of the invention.
  • Fig. 3C is a schematic cross-sectional view showing the bonding apparatus taken along the line A-A' of [Fig. 3A].
  • Embodiment 1-1 is shown in FIG. 4A to 4H are respectively showing Embodiment 1-1, Embodiment 1-2, Embodiment 1-4, Embodiment 1-5, Embodiment 1-8, and Embodiment 1 according to the present invention. 9. Scanning electron micrographs of the midsole materials of Examples 1-11 and Examples 1-12.
  • 5A to 5D are scanning electron micrographs showing the outsole materials of Example 2-1 to Example 2-3 and Comparative Example 2-1, respectively, according to the present invention.
  • Fig. 5E is a graph showing the stress-strain curves of the tensile test of the outsole material of Example 2-1 to Example 2-3 and Comparative Example 2-1 according to the present invention.
  • Fig. 5F is a graph showing loss modulus of dynamic mechanical analysis of the outsole material of Example 2-1 to Example 2-3 and Comparative Example 2-1 according to the present invention.
  • Fig. 5G is a graph showing the storage modulus of dynamic mechanical analysis of the outsole material of Example 2-1 to Example 2-3 and Comparative Example 2-1 according to the present invention.
  • Fig. 5H is a graph showing the loss factor of dynamic mechanical analysis of the outsole material of Example 2-1 to Example 2-3 and Comparative Example 2-1 according to the present invention.
  • Fig. 6A is a scanning electron micrograph showing an outsole material according to Example 3-1 of the present invention.
  • Fig. 6B is a scanning electron micrograph showing an outsole material according to Example 3-2 of the present invention.
  • Fig. 6C is a scanning electron micrograph showing an outsole material according to Example 3-3 of the present invention.
  • Fig. 6D is a scanning electron micrograph showing the outsole material according to Example 3-4 of the present invention.
  • Fig. 7A is a graph showing the temperature difference and the microwave time of the hot melt adhesive film of Example 4-1-1 to Example 4-1-5 according to the present invention.
  • Example 7B is a graph showing temperature difference and microwave time of a hot melt adhesive film according to Example 4-2-1 to Embodiment 4-2-4 of the present invention.
  • A-A’ Cut line.
  • the sole 100 includes a midsole 110, an outsole 120, and a hot melt adhesive film 130 directly bonding the midsole 110 and the outsole 120, wherein the hot melt adhesive film 130 is located at the midsole 110 and the outsole 120. between.
  • the midsole 110 is formed of a midsole material composition
  • the outsole 120 is formed of a large bottom material composition
  • the hot melt adhesive film 130 is formed of a hot melt adhesive film composition.
  • the bonding device is used for bonding the midsole 110, the outsole 120 and the hot melt adhesive film 130.
  • the midsole material composition can comprise a blended mixture, a crosslinker, and a catalyst.
  • the blended mixture comprises an elastomer and a thermoplastic polymer.
  • the elastomer may include, but is not limited to, ethylene vinyl acetate, other suitable elastomers, or any mixture of the foregoing.
  • the elastomer can comprise a compound having a vinyl acetate group.
  • the elastomer has a vinyl acetate content of from 18% to 40%, preferably from 26% to 40%, and more preferably from 26% to 33%.
  • the elastomer may be used in an amount of 50 parts by weight to 80 parts by weight, and preferably 50 parts by weight to 60 parts by weight, based on 100 parts by weight of the blending mixture.
  • the ethylene vinyl acetate when the elastomer comprises ethylene vinyl acetate, can optionally comprise powdered ethylene vinyl acetate.
  • powdered ethylene vinyl acetate can be formed by spray granulation.
  • the content of the powdery ethylene vinyl acetate may be 20 parts by weight to 40 parts by weight, preferably 25 parts by weight to 35 parts by weight, and more preferably 25 parts by weight, based on 100 parts by weight of the ethylene vinyl acetate. Parts to 30 parts by weight.
  • the above thermoplastic polymer may include, but is not limited to, an olefin polymer, another suitable thermoplastic polymer, or any combination of the above polymers.
  • the olefin polymer may include, but is not limited to, high density polyethylene, low density polyethylene, polypropylene, polystyrene, other suitable olefin polymer, or any combination of the above polymers.
  • the thermoplastic polymer may have a melt index of from 0.3 to 15, and preferably from 0.5 to 10.
  • the thermoplastic polymer may be used in an amount of 20 parts by weight to 50 parts by weight, and preferably 20 parts by weight to 30 parts by weight, based on 100 parts by weight of the blending mixture.
  • the elastomer may be used in an amount of more than 50 parts by weight and less than or equal to 80 parts by weight based on the amount of the blending mixture used, and the amount of the thermoplastic polymer may be greater than or equal to 20 parts by weight. And less than 50 parts by weight.
  • the thermoplastic polymer when the amounts of the elastomer and the thermoplastic polymer used are each in the above range, the thermoplastic polymer can be uniformly dispersed in the continuous phase formed by the elastomer before the crosslinking reaction, and after the crosslinking reaction, The elastomer and the thermoplastic polymer can easily generate the reverse reaction, and the thermoplastic polymer is reversed into a continuous phase, and the elastomer is reversed into a discontinuous phase uniformly dispersed in the continuous phase, thereby contributing to the preparation of the present invention.
  • Midsole material when the amounts of the elastomer and the thermoplastic polymer used are each in the above range
  • thermoplastic polymer is a recyclable material, and it can be reversed to a continuous phase of the midsole material after the crosslinking reaction, and the recovery of the obtained midsole material can be improved, the obtained midsole material is obtained. It is fully recyclable.
  • the crosslinking agent in the aforementioned midsole material composition may include, but is not limited to, a silane compound and/or a siloxane compound.
  • the silane compound may comprise tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetrapropoxysilane (TPOS), tetrabutoxysilane (TBOS), other suitable silane compounds, Or any mixture of the above compounds.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • TPOS tetrapropoxysilane
  • TBOS tetrabutoxysilane
  • the siloxane compound can be a long carbon chain siloxane compound.
  • the long carbon chain siloxane compound may have a carbon number of from 5 to 18.
  • the long carbon chain siloxane compound can be octadecyltrimethoxysilane, other suitable long carbon chain siloxane compounds, or any mixture thereof.
  • the crosslinking agent may be used in an amount of from 4 parts by weight to 10 parts by weight, based on the amount of the mixed mixture used, and preferably from 6 parts by weight to 9 parts by weight.
  • the molar ratio of crosslinker to vinyl acetate in the elastomer can range from 1:1 to 1:8, and preferably from 1:4 to 1:6.
  • the elastomer can more effectively produce a crosslinking reaction and increase the viscosity fraction, thereby causing a reverse conversion reaction.
  • the crosslinking agent can be mixed with the powdered ethylene vinyl acetate and adsorbed by the powdered ethylene vinyl acetate, which is beneficial. For the crosslinking reaction.
  • the catalyst in the foregoing midsole material composition may include, but is not limited to, an esterification catalyst, other suitable catalysts, or any mixture of the above materials.
  • the catalyst may comprise dibutyltin oxide (DBTO), dioctyltin oxide (DOTO), dibutyltin maleate (DBTM), stannous chloride (SnCl 2 ), other suitable esterifications.
  • DBTO dibutyltin oxide
  • DOTO dioctyltin oxide
  • DBTM dibutyltin maleate
  • SnCl 2 stannous chloride
  • the catalyst may be used in an amount of 0.1 parts by weight to 0.7 parts by weight, and preferably 0.2 parts by weight to 0.5 parts by weight, based on 100 parts by weight of the mixed mixture. When the amount of the catalyst used is in the aforementioned range, the crosslinking reaction can be carried out more efficiently.
  • the aforementioned midsole material composition can be further formed into a midsole of the sole by a foaming process.
  • the method for producing the midsole of the present invention is described in detail below.
  • FIG. 2 is a flow chart of a method for fabricating a midsole according to an embodiment of the invention.
  • the mixture is first provided and subjected to a smelting process to form a blended mixture, as shown in operation 210 and operation 220.
  • the mixture contains an elastomer and a thermoplastic polymer.
  • the elastomer may include, but is not limited to, ethylene vinyl acetate, other suitable elastomers, or any mixture of the foregoing.
  • the elastomer can comprise a compound having a vinyl acetate group.
  • the content of the vinyl acetate group of the elastomer is from 18% to 40%, preferably from 26% to 40%, and more preferably from 26% to 33%.
  • the thermoplastic polymer contains an olefin polymer, another suitable thermoplastic polymer, or any combination of the above polymers.
  • the olefin polymer may include, but is not limited to, high density polyethylene, low density polyethylene, polypropylene, polystyrene, other suitable olefin polymer, or any combination of the above polymers.
  • the thermoplastic polymer may have a melt index of from 0.3 to 15, and preferably from 0.5 to 10.
  • the elastomer is a continuous phase, and the thermoplastic polymer is a discontinuous phase uniformly dispersed therein.
  • the amount of elastomer used in the mixture is greater than or equal to the amount of thermoplastic polymer used.
  • the elastomer may be used in an amount of 50 parts by weight to 80 parts by weight based on the amount of the mixture used, and the thermoplastic polymer may be used in an amount of 20 parts by weight to 50 parts by weight.
  • the amount of elastomer used in the mixture is greater than the amount of thermoplastic polymer used to promote the formation of the continuous phase of the elastomer in the blended mixture, and the thermoplastic polymer forms a discontinuous phase.
  • the amount of the elastomer used is more than 50 parts by weight and less than or equal to 80 parts by weight based on the amount of the mixture used, and the amount of the thermoplastic polymer used is 20 parts by weight or more. Less than 50 parts by weight.
  • a crosslinking agent and catalyst are added to the blended mixture and a crosslinking reaction is performed to form a thermoplastic elastomer, as shown in operation 230 and operation 240.
  • the crosslinking agent can include, but is not limited to, a silane compound and/or a siloxane compound
  • the catalyst can include, but is not limited to, an esterification catalyst.
  • the silane compound may comprise tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, other suitable silane compounds, or any mixture of the above compounds;
  • the compound may be a long carbon chain siloxane compound having a carbon number of 5 to 18 (for example, octadecyltrimethoxysilane, etc.);
  • the catalyst may include, but is not limited to, dibutyltin oxide, dioctyltin oxide, dibutyl Tin-maleate, stannous chloride, other suitable esterification catalysts, or any combination of the above catalyst materials.
  • the crosslinking agent may be used in an amount of from 4 parts by weight to 10 parts by weight based on 100 parts by weight of the mixed mixture, and the catalyst may be used in an amount of from 0.1 part by weight to 0.7 parts by weight.
  • the molar ratio of the crosslinking agent to the vinyl acetate group in the elastomer may be from 1:1 to 1:8, and preferably from 1:4 to 1 :6.
  • thermoplastic Vulcanizate TPV
  • the aforementioned crosslinking agent prior to the crosslinking reaction, is selectively first mixed with powdered ethylene vinyl acetate and adsorbed by powdered ethylene vinyl acetate.
  • the powdered ethylene vinyl acetate is different from the ethylene vinyl acetate in the above elastomer depending on the difference in appearance morphology (hereinafter, referred to as granular ethylene vinyl acetate for clarity of explanation).
  • the crosslinking agent is adsorbed by the powdered ethylene vinyl acetate, the crosslinking agent can be effectively blended into the mixed mixture by the powdery ethylene vinyl acetate, thereby improving the reaction performance of the crosslinking reaction.
  • the total use amount of the particulate ethylene vinyl acetate and the powdered ethylene vinyl acetate is 100 parts by weight, and the content of the powdery ethylene vinyl acetate is 20 parts by weight to 40 parts by weight, preferably 25 parts by weight to 35 parts by weight.
  • the crosslinker may be first mixed with powdered ethylene vinyl acetate prior to the smelting process. Then, the powdered ethylene vinyl acetate, the particulate ethylene vinyl acetate, the thermoplastic polymer and the catalyst which are adsorbed with the crosslinking agent are mixed, and the melting process and the crosslinking reaction can be simultaneously performed to obtain a thermoplastic elastomer.
  • the powdery ethylene vinyl acetate has a vinyl acetate group
  • the vinyl acetate group in the powdery ethylene vinyl acetate also participates in the crosslinking reaction when the crosslinking reaction is carried out. Accordingly, when the crosslinking agent is mixed with the powdered ethylene vinyl acetate, the amount of the particulate ethylene vinyl acetate and the powdery ethylene vinyl acetate may be 50 parts by weight to 80 parts by weight based on 100 parts by weight of the mixture. Share.
  • the reaction of the crosslinking reaction Performance can be improved.
  • the molar ratio can be from 1:4 to 1:6.
  • thermoplastic elastomer After operation 240, the thermoplastic elastomer is subjected to a foaming process to form a midsole, as shown in operation 250 and operation 260.
  • the discontinuous phase (ie, elastomer) in the thermoplastic elastomer can induce carbon dioxide to enter the thermoplastic elastomer, and the thermoplastic elastomer can be added.
  • the number of bubbles in the. Therefore, when the carbon dioxide bubbles start to smash and nucleate, the inside of the thermoplastic elastomer can form uniformly distributed cells instead of merely foaming the surface of the thermoplastic elastomer, so that the expansion ratio of the thermoplastic elastomer can be effectively improved.
  • the elastomer which is the continuous phase can be reversely converted into a discontinuous phase, and in the case of a dynamic reverse reaction, the elastomer tends to produce phase-separated particles dispersed in the continuous phase. Therefore, when the carbon dioxide bubbles start to nucleate and nucleate, the phase separation particles can be uniformly dispersed inside the cells, and have the effect of reinforcing the structure, thereby improving the mechanical properties of the prepared midsole.
  • the temperature of the foaming process may range from 50 ° C to 120 ° C, and preferably from 60 ° C to 70 ° C.
  • the carbon dioxide bubbles can effectively nucleate into the thermoplastic elastomer to lower the foaming density of the formed midsole.
  • the formed midsole may have a foaming density of less than or equal to 0.4 g/cm 3 , preferably less than or equal to 0.25 g/cm 3 , and more preferably from 0.1 g/cm 3 to 0.2 g/ Cm 3 .
  • the thermoplastic polymer can be dynamically reversed into a continuous phase by a crosslinking reaction, and the thermoplastic polymer has recyclability, so that the thermoplastic polymer which is reversed to a continuous phase contributes to Improve the recycling properties of the midsole, making the midsole a fully recyclable material.
  • the outsole material composition may be comprised of a thermoplastic material and an organic-inorganic hybrid material.
  • the thermoplastic material may comprise thermoplastic polyurethane (TPU), thermoplastic plastic (TPR), or any combination of the above.
  • the organic-inorganic hybrid material may contain a modifier and an inorganic clay.
  • the modifier may comprise polyamide, sodium lauryl sulfate, polypropylene grafted maleic anhydride, or any mixture of the above materials.
  • the modifier and the inorganic clay are premixed and dried to form the aforementioned organic-inorganic hybrid material.
  • the organic-inorganic hybrid material is added to the thermoplastic material and mixed by a kneading extruder to obtain the outsole material composition of the present invention.
  • the thermoplastic material and the modifier can be intercalated in the inorganic clay, and the kneading uniformity of the material can be improved, thereby improving the mechanical properties of the composition of the outsole material.
  • the interlayer distance of the inorganic clay may be at least 1.7 nm, or the inorganic clay is completely delaminated (in other words, the interlayer distance of the inorganic clay cannot be measured).
  • the thermoplastic material when the thermoplastic material is intercalated to the inorganic clay, part of the inorganic clay layer may be peeled off. Further, by the kneading extruder, the size of the exfoliated clay layer can be made small and agglomerated and dispersed in the thermoplastic material.
  • the outsole material composition of the present invention does not comprise nylon-66 (Nylon-66). If the outsole material composition comprises nylon-66, the resulting outsole material composition tends to have phase separation defects, which reduces the kneading uniformity, thereby reducing the mechanical properties of the resulting outsole material composition.
  • the amount of the thermoplastic material used is 70 parts by weight to 99.99 parts by weight, and the organic-inorganic hybrid material is used in an amount of 0.01 parts by weight to 30 parts by weight based on 100 parts by weight of the base material composition. .
  • the amount of the thermoplastic material used is 80 parts by weight to 99.99 parts by weight, and the organic-inorganic hybrid material is used in an amount of 0.01 parts by weight to 20 parts by weight based on 100 parts by weight of the composition of the outsole material.
  • the amount of the thermoplastic material used is from 90 parts by weight to 99.99 parts by weight, and the organic-inorganic hybrid material is used in an amount of from 0.01 part by weight to 10 parts by weight based on 100 parts by weight of the base material composition.
  • the outsole material composition can have better kneading uniformity and is less prone to phase separation defects, so that the resulting outsole is obtained.
  • the material has better mechanical properties.
  • the modifying agent may be used in an amount of 40 parts by weight to 60 parts by weight based on 100 parts by weight of the organic-inorganic hybrid material, and the inorganic clay may be used in an amount of 40 parts by weight to 60 parts by weight.
  • the amount of the modifier used may be 45 parts by weight to 55 parts by weight based on 100 parts by weight of the organic-inorganic hybrid material, and the inorganic clay may be used in an amount of 45 parts by weight to 55 parts by weight.
  • the amount of the modifier and the inorganic clay is in the foregoing range, when the organic-inorganic hybrid material is formed, the modifier and the thermoplastic material can be easily intercalated into the inorganic clay, thereby enhancing the composition of the outsole material.
  • the mechanical properties of the object may be 50 parts by weight based on 100 parts by weight of the organic-inorganic hybrid material, and the amount of the inorganic clay may be 50 parts by weight.
  • the outsole material composition can comprise a blended mixture and a crosslinking agent.
  • the blended mixture comprises a thermoplastic material and an elastomer.
  • the thermoplastic material comprises a polyurethane material and the elastomer comprises natural rubber (NR).
  • the polyurethane material can include, but is not limited to, thermoplastic polyurethane, polyurethane, other suitable polyurethane materials, or any combination of the foregoing.
  • the polyurethane material may be used in an amount of 30 parts by weight to 50 parts by weight, preferably 30 parts by weight to 40 parts by weight, and more preferably 33 parts by weight to 38 parts by weight, based on 100 parts by weight of the mixed mixture;
  • the natural rubber may be used in an amount of 50 parts by weight to 70 parts by weight, preferably 60 parts by weight to 70 parts by weight, and more preferably 62 parts by weight to 67 parts by weight.
  • the crosslinking agent may comprise dicumyl peroxide or sulfur.
  • the amount of the crosslinking agent used is more than 0 parts by weight and less than or equal to 2 parts by weight, preferably 0.5 parts by weight to 2 parts by weight, and more preferably 0.75 parts by weight, based on 100 parts by weight of the elastomer. Up to 2 parts by weight.
  • the crosslinking agent when used in an amount greater than 2 parts by weight, the elastomer in the blended mixture will be excessively crosslinked, resulting in the formation of the outsole material composition being comminuted, or the appearance color being converted to burnt black, And reduce its applicability.
  • the outsole material composition can optionally include an accelerator to promote sulfur crosslinking reaction of the sulfur mixture with the mixture.
  • thermoplastic material for example, a polyurethane material
  • elastomer for example, a natural rubber
  • the elastomer is a continuous phase and the thermoplastic material is a discontinuous phase uniformly dispersed in the elastomer.
  • the elastomer is used in an amount greater than the amount of thermoplastic material used to allow the elastomer to form a continuous phase in the blended mixture.
  • a crosslinking agent is added to the mixed mixture to carry out a crosslinking reaction to form an outsole material.
  • an appropriate outrigger can be obtained by a suitable shaping step.
  • the crosslinking reaction can be carried out during the compounding process, and the mixture of the cross-linked reaction is extruded into a mold to produce an outsole that satisfies the demand.
  • the mixing process can be carried out using a plastic spectrometer or a twin-screw kneader.
  • the outsole material which is the same as the above-mentioned midsole material composition
  • the crosslinking reaction when the crosslinking reaction is carried out, as the degree of crosslinking increases, the viscosity fraction of the elastomer increases, and the mixture is blended.
  • the reverse reaction is produced, which in turn causes the discontinuous phase of the thermoplastic material to reverse to a continuous phase, and the elastomer is formed as a discontinuous phase that is uniformly dispersed in the continuous phase.
  • the outsole material formed by the crosslinking reaction can be referred to as a thermoplastic dynamic vulcanized rubber.
  • the outsole material obtained by the dynamic vulcanization crosslinking reaction is fully recyclable.
  • the hot melt adhesive composition may comprise a hot melt adhesive and a microwave absorbent.
  • the hot melt adhesive comprises ethylene vinyl acetate and a thermoplastic material.
  • the thermoplastic material may include, but is not limited to, thermoplastic polyurethane (TPU), thermoplastic rubber (TPR), other suitable thermoplastic materials, or any mixture of the above materials.
  • the hot melt adhesive may comprise the material contained in the elastomer of the foregoing midsole and the material contained in the thermoplastic material of the outsole to enhance the hot melt film and the midsole and the outsole. Compatibility, which in turn enhances the bonding properties of the hot melt adhesive film to the midsole and the outsole.
  • the thermoplastic material in the hot melt adhesive is the same thermoplastic material selected for the outsole described above.
  • the thermoplastic material in the hot melt adhesive may be different than the thermoplastic material used in the outsole.
  • the amount of the ethylene vinyl acetate used is 60 parts by weight or more and 100 parts by weight or less, and the amount of the thermoplastic material used is more than 0 parts by weight and less than or equal to 100 parts by weight based on the amount of the hot melt adhesive. 40 parts by weight.
  • the ethylene vinyl acetate is used in an amount of from 60 parts by weight to 80 parts by weight based on 100 parts by weight of the hot-melt adhesive, and the thermoplastic material may be used in an amount of from 20 parts by weight to 40 parts by weight.
  • the microwave absorbing material is uniformly dispersed in the hot melt adhesive.
  • the microwave absorbing material of the present invention is not particularly limited, and it is only required to absorb microwave energy and convert it into heat energy. Therefore, when microwave energy is applied to the hot melt adhesive film containing the microwave absorbing material, the microwave absorbing material can absorb microwave energy and convert it into heat energy, and can effectively heat the hot melt adhesive film.
  • the microwave absorbing material may include, but is not limited to, carbon black, silicon carbide, metal oxide (eg, iron oxide, manganese dioxide, etc.), carbon fiber and/or inorganic clay, other suitable microwave absorbing materials, or the like. Any mix.
  • the microwave absorbing material may be used in an amount of 5 parts by weight to 40 parts by weight, based on 100 parts by weight of the hot-melt adhesive, and preferably 5 parts by weight to 15 parts by weight.
  • the microwave absorbing material is less likely to agglomerate and can be uniformly dispersed in the hot melt adhesive material, so that the inside of the hot melt adhesive material can be uniformly heated when microwave energy is applied.
  • the hot melt adhesive material and the microwave absorbent material can be blended and formed by a kneading extruder to obtain the hot melt adhesive film of the present invention.
  • the midsole, the outsole and the hot melt adhesive film of the sole can be produced by the aforementioned midsole material composition, outsole material composition and hot melt adhesive film composition.
  • the midsole, the outsole and the hot melt adhesive film can be bonded by the following bonding apparatus.
  • FIG. 3A is a perspective view of a bonding apparatus according to an embodiment of the invention
  • FIG. 3B is a front view of the bonding apparatus according to an embodiment of the invention
  • FIG. 3C is a cross-sectional view showing the bonding apparatus taken along the line AA' of FIG. 3A.
  • Fig. 3B it is to be noted that the front hatch of the fitting device is omitted for the purpose of clear depiction.
  • the bonding apparatus 300 includes a cavity 310, two microwave emission sources 321 and 323, and a nip unit 330.
  • the cavity 310 has side walls 311 and 313, a rear wall 315, a front hatch 317, and two microwave inlets 311a and 313a.
  • the microwave inlet 311a is disposed on the sidewall 311, and the microwave inlet 313a is disposed on the sidewall 313.
  • the front hatch 317 can be opened or closed to allow an operator to place the material to be affixed into the cavity 310 or to remove the affixed material from the cavity 310.
  • the door panel of the front hatch 317 may be provided with a plurality of through holes 317a, and each of the through holes 317a has an aperture of less than 3 mm.
  • the front hatch 317 can be a metal door that does not have a through hole 317a to isolate the introduced microwave.
  • the door panel of the front hatch 317 can be provided with tempered glass so that the operator can instantly observe the conforming state of the material.
  • the tempered glass may embed a metal mesh having a plurality of meshes to isolate the microwaves introduced into the cavity 310.
  • the through hole 317a of the front hatch 317 illustrated in FIG. 3A is only illustrated, and the present invention is not limited thereto.
  • the area occupied by the vias 317a can be smaller, and the microwaves can be more effectively isolated.
  • the rear wall 315 of the cavity 310 can be selectively provided with an exhaust port 340, and the exhaust port 340 is connected to an air suction device disposed outside the cavity 310 to discharge the thermal compression from the cavity 310.
  • the exhaust port 340 is covered by the metal mesh 340a to isolate the microwave introduced into the cavity 310.
  • the mesh aperture of the metal mesh 340a is less than 3 millimeters.
  • the arrangement position of the exhaust port 340 is not particularly limited, and it is only necessary to ensure that the gas in the cavity 310 can be discharged out of the cavity 310.
  • the exhaust port 340 is disposed in the upper half of the rear wall 315.
  • the cavity 310 can be selectively provided with the vent holes 311b and 313b, wherein the vent hole 311b is disposed on the sidewall 311, and the vent hole 313b is disposed on the sidewall 313.
  • the apertures of the vent holes 311b and 313b are less than 3 mm. It is to be understood that the arrangement positions of the vent holes 311b and 313b are not particularly limited, and it is only necessary to ensure that the microwave introduced into the cavity 310 is not emitted by the vent holes 311b and 313b, and the outside air can flow into the cavity by the vent holes 311b and 313b. In 310, you can.
  • the aforementioned microwave emission sources 321 and 323 are respectively disposed on the microwave inlets 311a and 313a, so the microwave emission sources 321 and 323 can emit microwaves into the cavity 310 via the microwave inlets 311a and 313a.
  • the microwave transmitting sources 321 and 323 are electrically connected to a driver (not shown), and the driver is electrically connected to a controller (not shown).
  • the controller can transmit the signal of the microwave power to the driver, and according to the received microwave power signal, the driver can further drive the microwave emission sources 321 and 323 to emit the microwave with the set power. Therefore, the operator can adjust the microwave power by the controller, and the power of the microwave heating can be adjusted.
  • the microwave inlets 311a and 313a are completely covered by the microwave emission sources 321 and 323.
  • the microwave inlets 311a and 313a are respectively covered by a polypropylene sheet 311c. This polypropylene plate 311c prevents dust in the cavity 310 from entering the microwave emission sources 321 and 323 via the microwave inlets 311a and 313a.
  • the polypropylene sheet 311c may be a sheet (or film) made of other materials, and the materials may include, but are not limited to, Teflon, polyethylene, a plastic material having a low microwave absorption capability, Other suitable materials, or any mixture of the above materials.
  • the microwave inlet 311a is not aligned with the microwave inlet 313a.
  • the microwave inlets 311a and 313a are respectively disposed at diagonal positions of the side walls 311 and 313. In other words, the microwave inlets 311a and 313a are disposed at oblique diagonal positions of the side walls 311 and 313 of the cavity 310.
  • the bonding apparatus 300 of the present invention can selectively include the homogenizing units 351 and 353 to further enhance the uniformity of the microwaves in the cavity 310.
  • the homogenization unit 351 is disposed on the sidewall 311, and the homogenization unit 353 is disposed on the sidewall 313.
  • the homogenization units 351 and 353 are made of a metal material.
  • the homogenization units 351 and 353 can be metal fans. Therefore, the uniformity of the microwave introduced into the cavity 310 can be improved by the surface reflection of the metal fan blade.
  • the homogenization units 351 and 353 can be disposed adjacent to the microwave inlets 311a and 313a.
  • the rotating homogenizing units 351 and 353 can reflect the microwaves introduced into the cavity 310 to enhance the uniformity of the microwaves in the cavity 310.
  • the top plate (not labeled) of the cavity 310 can optionally be provided with at least one homogenization unit.
  • the pressing unit 330 is disposed in the cavity 310, and the pressing unit 330 has a lower pressing member 331, an upper pressing member 333 and a driving member 335.
  • the driving element 335 is connected to the upper pressing element 333, and the upper pressing element 333 is reciprocally movable.
  • the upper pressing member 333 is moved downward (ie, moved in a direction approaching the lower pressing member 331); when the pressing is completed, the upper pressing member 333 is moved upward ( That is, moving in a direction away from the lower pressing member 331).
  • the drive element 335 is driven by hydraulic drive, pneumatic drive, other suitable drive means, or any combination of the above methods to drive the upper press element 333.
  • the drive element 335 is electrically coupled to the controller to allow an operator to set the press pressure and press time.
  • the lower press element 331 can be selectively coupled to another drive element. In this way, the lower pressing member 331 and the upper pressing member 333 can reciprocate.
  • the compression deformation of the material to be pressed differs depending on the nature of the material to be pressed. Accordingly, at least one pressure sensitive element can be selectively disposed between the lower pressing member 331 or the upper pressing member 333 and the material to be pressed (ie, between the pressing member and the material) to instantly monitor and adjust the pressure to be pressed. The force of the material.
  • the lower pressing member 331 and the upper pressing member 333 may each be a single laminate or a multiple laminate.
  • the pressing members 331 and 333 may be composed of the load layers 331a and 333a and the heat insulating layers 331b and 333b, respectively.
  • the load layers 331a and 333a are mechanical strengths for providing the pressing members to withstand the pressure applied by the pressing
  • the heat insulating layers 331b and 333b are for blocking the heat energy transfer of the material to be pressed to avoid the heat energy of the microwave transformation.
  • the load layers 331a and 333a escape.
  • the heat insulating layers 331b and 333b need to have good mechanical strength to avoid breakage at the time of pressing.
  • the materials of the load layers 331a and 333a may be metal materials such as stainless steel, aluminum alloy, copper alloy, etc., which can reflect microwaves, other suitable materials, or any combination of the above materials, and materials of the heat insulating layers 331b and 333b. It may be polyether ether ketone (PEEK), polypropylene, Teflon, polyethylene, other suitable materials, or any combination of the above materials.
  • the lower pressing member 331 may have only a heat insulating layer, and the heat insulating layer needs to be able to withstand the upper pressing.
  • the downforce of the component 333 is not limited to be fixed.
  • the midsole obtained by the above-mentioned method of manufacturing the midsole material may be first placed on the lower pressing member 331. On the top surface. Then, a hot melt adhesive film formed by using the hot melt adhesive film composition and an outsole formed by the large bottom material composition are sequentially laminated on the midsole. Next, the front hatch 317 is closed, and microwaves are introduced into the cavity 310 via the microwave inlets 311a and 313a by the microwave emission sources 321 and 323. Thereafter, depending on the set pressure value, the upper pressing member 333 is driven down by the driving member 335 to apply pressure to the outsole.
  • the microwave absorbing material in the hot melt adhesive film can absorb microwave energy and convert it into heat energy, and can heat the hot melt adhesive film and increase its viscosity. Accordingly, by converting the microwave into heat energy by the microwave absorbing material and the pressure applied by the nip unit 330, the hot melt adhesive film can effectively bond the midsole and the outsole.
  • the stacking order of the midsole and the outsole may be reversed from each other. In other words, the outsole is first placed on the lower pressing member 331, and the hot melt film and the midsole are sequentially laminated thereon.
  • the shape of the midsole and the outsole generally have high and low undulations, not flat. Therefore, in some embodiments, in order to improve the pressing effect of the bonding apparatus 300, the shape designed according to the midsole and the outsole (for example, the sole pattern and/or the arch design, etc.), and the position of the lamination, press-fit
  • the heat insulating layers 331b and 333b of the elements 331 and 333 may have corresponding shapes. According to this, when the nip unit 330 is pressed, the heat insulating layers 331b and 333b having a specific shape can be in close contact with the midsole or the outsole, and the press-fit uniformity of the sole can be improved.
  • the midsole and the outsole may each be placed in a compression mold, wherein each of the compression molds has a contact surface and an opposite placement surface.
  • the contact surface has a shape corresponding to the midsole or the outsole to closely contact the midsole or the outsole.
  • the placement surface is flat. According to this, when pressing, the applied pressure can be transmitted to the midsole and the outsole through the press mold, and the two can be bonded to have good press-fit uniformity, and the setting by press-fitting the mold
  • the fitting apparatus 300 can be further adapted to press a sole of various shapes. It should be understood that at the time of press-fitting, the two press-fit dies are not in contact with each other to prevent the applied pressure from being applied to the midsole and the outsole.
  • the midsole material of Example 1-1 was obtained by first mixing high density polyethylene (HDPE) and ethylene vinyl acetate (EVA) having a weight ratio of 3:7 to form a blended mixture, wherein ethylene vinyl acetate contained 26%. Vinyl acetate. Then, dibutyltin oxide and tetraethoxysilane (TEOS) were added to the mixed mixture to carry out a crosslinking reaction, and the thermoplastic elastomer of Example 1-1 was obtained. Wherein, the molar ratio of tetraethoxysilane to vinyl acetate of ethylene vinyl acetate is 1:4.
  • the carbon dioxide in a supercritical fluid state is introduced into the above-mentioned thermoplastic elastomer to carry out a foaming process, whereby the midsole material of Example 1-1 can be obtained.
  • the foaming temperature was 68 ° C
  • the pressure was 2000 psi
  • the time was 20 minutes.
  • the midsole material of Example 1-1 was observed by a scanning electron microscope (SEM), and the results are shown in Fig. 4A. Among them, the scale ruler represents 20 ⁇ m. Further, the foaming density of the midsole material of Example 1-1 was 0.206 g/cm 3 .
  • the midsole materials of Examples 1-2 to 1-12 were the same flow steps as those of the midsole material of Example 1-1 except that Examples 1-2 to 1-12 were used. Different blending conditions and foaming parameters were used, and the blending conditions, foaming parameters, and foaming densities of the obtained midsole materials were respectively shown in Table 1 below.
  • the midsole materials prepared in Examples 1-2, 1-4, 1-5, 1-8, 1-9, 1-11 and 1-12 The results were observed by a scanning electron microscope, respectively, and the results obtained are shown in FIGS. 4B to 4H, respectively, wherein the scale gauges of FIGS. 4B to 4D are both 20 ⁇ m, but the scale gauges of FIGS. 4E to 4H are 50 ⁇ m.
  • the obtained midsole material when the amount of tetraethoxysilane (i.e., crosslinking agent) is increased, the obtained midsole material will have higher foaming. density.
  • the high-density polyethylene since the amount of high-density polyethylene is increased, the high-density polyethylene is easily crystallized, and the carbon dioxide is inhibited from infiltrating into the thermoplastic elastomer, thereby reducing the foaming effect, so that it has a higher Foam density.
  • the foaming density of the midsole material obtained in Examples 1-1 to 1-12 was less than or equal to 0.4 g/cm 3 .
  • the midsole material composition of the present invention can produce a midsole material having good foaming properties by a foaming process.
  • EDS energy dispersive spectrometer
  • the ethylene vinyl acetate in the blended mixture contributes to the penetration of carbon dioxide into the thermoplastic elastomer, thereby enhancing the foaming effect of the foaming process.
  • phase separation particles of ethylene vinyl acetate produced during dynamic crosslinking can be uniformly distributed in the cells of the midsole material, and the mechanical strength of the obtained midsole material can be reinforced.
  • ethylene vinyl acetate helps to infiltrate carbon dioxide into the thermoplastic elastomer, which enhances the foaming effect.
  • Example 2-1 1 part by weight of inorganic clay and 1 part by weight of polyamide were mixed first to form an organic-inorganic hybrid material. After drying, the organic-inorganic hybrid material was added to 98 parts by weight of the thermoplastic polyurethane, and mixed by a kneading extruder to obtain the outsole material of Example 2-1.
  • the outsole material of Example 2-1 was observed with a scanning electron microscope, and the results are shown in Fig. 5A.
  • the scale ruler represents 10 ⁇ m.
  • Example 2-2 and Example 2-3
  • Example 2-2 and Example 2-3 were the same flow steps as the method of producing the outsole material of Example 2-1, except that Example 2-2 was mixed with 5 parts by weight. Inorganic clay, 5 parts by weight of polyamide and 90 parts by weight of thermoplastic polyurethane, and Example 2-3 was mixed with 10 parts by weight of inorganic clay, 10 parts by weight of polyamide and 80 parts by weight of thermoplastic polyurethane.
  • Example 2-2 and Example 2-3 were respectively observed by a scanning electron microscope, and the results obtained are shown in FIG. 5B and FIG. 5C, respectively, wherein the scales of FIG. 5B and FIG. 5C are used.
  • the gauge is 10 ⁇ m.
  • the outsole material of Comparative Example 2-1 was obtained by directly kneading a thermoplastic polyurethane using a kneading extruder without adding the organic-inorganic hybrid material of the present invention.
  • the resulting outsole material was observed by a scanning electron microscope, and the results obtained are shown in Fig. 5D, wherein the scale gauge of Fig. 5D was also 10 ⁇ m.
  • the smooth surface of the thermoplastic polyurethane of the outsole material obtained in Examples 2-1 to 2-3 had agglomerated clay. Therefore, the molecular chain of the polyamide and the thermoplastic polyurethane can be intercalated into the inorganic clay to peel off and separate the layered structure of the inorganic clay.
  • FIG. 5E which is a graph showing the stress-strain curves of the tensile test of the outsole material obtained in Examples 2-1 to 2-3 and Comparative Example 2-1. According to the stress-strain curve, the outsole material of Example 2-1 had a better tensile strength than the outsole material of Comparative Example 2-1.
  • FIG. 5F, FIG. 5G and FIG. 5H respectively show dynamic mechanical analysis of the outsole materials according to Embodiment 2-1 to Embodiment 2-3 and Comparative Example 2-1 according to the present invention.
  • the outsole materials of Examples 2-1 to 2-3 have higher loss modulus and storage modulus than in Comparative Example 2-1
  • FIG. 5H The outsole material of Example 2-1 had the highest loss factor compared to Example 2-2, Example 2-3 and Comparative Example 2-1.
  • thermoplastic material and the modifier of the outsole material of the present invention can be intercalated into the inorganic clay, and the mechanical properties of the outsole materials such as strength and hardness of Examples 2-1 to 2-3 can be improved.
  • the mechanical properties of the outsole material can be improved, its elasticity is relatively reduced.
  • Example 3-1 was a mixture of 30 parts by weight of thermoplastic polyurethane and 70 parts by weight of natural rubber to form a blended mixture. Then, 1.4 parts by weight of dicumyl peroxide was added to the mixed mixture to carry out a dynamic crosslinking reaction, whereby the outsole material of Example 3-1 was obtained.
  • the outsole material of Example 3-1 was observed with a scanning electron microscope, and the results are shown in Fig. 6A. Among them, the scale ruler represents 10 ⁇ m. Further, the elemental composition of the continuous phase and the discontinuous phase was analyzed by an energy scattering spectrometer.
  • the outsole materials of Examples 3-2 to 3-4 were the same flow steps as those of the outsole material of Example 3-1, except that Example 3-2 was used in an amount of 40 parts by weight.
  • Example 3-3 is used using 30 parts by weight of thermoplastic polyurethane, 70 parts by weight of natural rubber and 0.525 parts by weight of diisodoxy peroxide Propylene
  • Examples 3-4 were 40 parts by weight of thermoplastic polyurethane, 60 parts by weight of natural rubber and 0.3 parts by weight of dicumyl peroxide.
  • the outsole materials prepared in Examples 3-2 to 3-4 were each observed by a scanning electron microscope, and the results obtained are shown in FIG. 6B to FIG. 6D, respectively, wherein the scale gauge of FIG. 6B is 5 ⁇ m. And the scale gauge of FIG. 6C and FIG. 6D is 20 ⁇ m.
  • the elemental compositions of the continuous phase and the discontinuous phase of the outsole materials of Examples 3-2 to 3-4 were analyzed by an energy scattering spectrometer.
  • the nitrogen content of the continuous phase of Examples 3-1 to 3-4 is higher than that of the discontinuous phase. . Since the natural rubber does not have a nitrogen atom, the continuous phase of Examples 3-1 to 3-4 is a thermoplastic polyurethane.
  • the amount of use of the natural rubber is greater than the amount of the thermoplastic polyurethane used, so according to the results of the foregoing elemental analysis, it is known that in the crosslinking reaction, the mixture is mixed.
  • the thermoplastic polyurethane produces a reverse cross-linking dynamic reaction with natural rubber. Accordingly, the resulting outsole material can have a better thermoplastic quality and has better application properties.
  • the hot melt adhesive film of Example 4-1-1 is obtained by blending silicon carbide into ethylene vinyl acetate, and then extruding the hot melt adhesive film of Example 4-1-1, wherein the use of ethylene vinyl acetate is used.
  • the amount is 100 parts by weight, and the amount of silicon carbide used is 20 parts by weight.
  • the temperature (T i ) of the hot melt adhesive film was measured using a non-contact temperature measuring device, and the hot melt adhesive film was placed in the aforementioned bonding apparatus.
  • a microwave having a power of 1588 W was applied to the hot melt adhesive film, and the hot melt adhesive film obtained in Example 4-1-1 was heated by microwave.
  • the temperature (T f ) of the heated hot melt film was measured, and the temperature difference ( ⁇ T) before and after the heating was calculated.
  • the hot melt adhesive film was taken out, and the temperature of the hot melt adhesive film of the plurality of Examples 4-1-1 after different microwave times and the temperature difference thereof were measured according to the foregoing steps.
  • the results obtained are shown in Table 2-1.
  • the microwave times are 60 seconds, 90 seconds, 120 seconds, and 180 seconds, respectively.
  • Example 4-1-2 to Example 4-1-5 are the same flow steps as the method of producing the hot melt adhesive film of Example 4-1-1, except that Example 4-1-2 is Examples 4-1-5 have different silicon carbide contents.
  • the results of the temperature measurement are shown in Table 2-1.
  • the hot melt adhesive film of Example 4-2-1 was first blended with a thermoplastic rubber and ethylene vinyl acetate to form a hot melt adhesive of Example 4-2-1, wherein the weight ratio of thermoplastic rubber to ethylene vinyl acetate was It is 2:8. Then, based on 100 parts by weight of the hot melt adhesive, 15 parts by weight of carbon black was blended into the hot melt adhesive, and the hot melt adhesive film of Example 4-2-1 was obtained by extrusion.
  • the temperature (T i ) of the hot melt adhesive film was measured using a non-contact temperature measuring device, and the hot melt adhesive film was placed in the aforementioned bonding apparatus.
  • a microwave having a power of 1588 W was applied to the hot melt adhesive film, and the hot melt adhesive film obtained in Example 4-2-1 was heated by microwave.
  • the temperature (T f ) of the heated hot melt film was measured, and the temperature difference ( ⁇ T) before and after the heating was calculated.
  • the hot melt adhesive film was taken out, and the temperature of the hot melt adhesive films of the plurality of Examples 4-2-1 after different microwave times and their temperature differences were measured according to the foregoing steps.
  • the results obtained are shown in Table 2-2.
  • the microwave times are 60 seconds, 90 seconds, 120 seconds, and 180 seconds, respectively.
  • the hot melt adhesive film of Example 4-2-2 to Example 4-2-4 was the same flow procedure as that of the hot melt adhesive film of Example 4-2-1 except that Example 4 was used.
  • the hot melt adhesive of the hot melt adhesive film of -2-2 to Example 4-2-4 has different composition ratios and different carbon black addition amounts. The results of temperature measurement are shown in Table 2-2.
  • FIG. 7A there is shown a graph of temperature difference and microwave time of a hot melt adhesive film according to Embodiment 4-1-1 to Embodiment 4-1-5 of the present invention.
  • the temperature difference of the hot melt adhesive film increases.
  • the rate of temperature rise of the hot melt adhesive film is faster.
  • FIG. 7B which is a graph showing temperature difference and microwave time of the hot melt adhesive film according to Embodiment 4-2-1 to Embodiment 4-2-4 of the present invention. Under the same microwave time, when the composition of the hot melt adhesive is the same, and the more the carbon black is added, the temperature difference of the hot melt adhesive film is larger.
  • thermoplastic material when the amount of carbon black added is the same, if the content of the thermoplastic rubber is higher, the temperature difference of the hot melt adhesive film is smaller. Therefore, when the content of the thermoplastic material in the hot melt adhesive is increased, the hot melt adhesive film is not easily heated. However, compared to the heating effect of carbon black, the thermoplastic material has less influence on the heating rate of the hot melt adhesive film.
  • the microwave absorbing material of the hot melt adhesive film can effectively heat the hot melt adhesive material, so that the hot melt adhesive film has adhesive properties due to temperature changes.
  • the heating rate of the hot melt adhesive film is faster, and the heating temperature can be more effectively heated to the target temperature, thereby reducing the energy cost of the heating and bonding.
  • the heating effect of the microwave absorbing material is greater than the influence of the composition of the hot melt adhesive material on the heating rate, so the microwave absorbing material in the hot melt adhesive film can be applied to hot melt adhesive materials of different compositions, and has a wider application field. .
  • the midsole material composition of the present invention contains a recyclable material, so that the obtained midsole material is fully recyclable, and the impact on the environment can be reduced.
  • the midsole material composition of the present invention can be effectively produced into a midsole material by a foaming process.
  • carbon dioxide can be easily infiltrated into the obtained thermoplastic elastomer, and can be effectively foamed, thereby improving the obtained midsole material.
  • the outsole material of the present invention can improve the mechanical properties of the resulting outsole material by mixing the organic-inorganic hybrid material into the thermoplastic material.
  • the outsole material composition of the present invention comprises a recyclable material so that the outsole material produced is also fully recyclable.
  • the hot melt adhesive film composition of the present invention comprises a microwave absorbing material, so that the microwave energy can be effectively absorbed and converted into heat energy, and the hot melt adhesive film can be heated, thereby improving the adhesion of the hot melt adhesive film. Therefore, the hot melt adhesive film produced by the present invention can be heated by introducing microwaves, and can be used for bonding.
  • the midsole material and the outsole material obtained by the foregoing invention can be bonded by a hot melt adhesive film without the need to apply a paste for conventionally bonding the shoe material, thereby effectively improving the fit of the sole. effectiveness.
  • the bonding apparatus of the present invention can effectively heat the hot melt adhesive film, and can fit the midsole and the outsole to thereby obtain the sole.
  • the microwave introduced into the cavity of the bonding device can be effectively absorbed by the microwave absorbing material of the hot melt adhesive film, and converted into thermal energy, thereby improving the adhesion of the hot melt adhesive film.
  • the midsole, the outsole and the hot melt adhesive film of the present invention are all fully recoverable, and the resource reusability can be improved, and the hot melt adhesive film can be effectively and quickly by the bonding equipment. Bonding the midsole to the outsole, which greatly enhances the efficiency of the sole.

Abstract

一种中底材料组成物及中底材料的制作方法、大底材料组成物、热熔胶膜组成物、贴合设备(300)与鞋底(100)。藉由此热熔胶膜组成物所制成的热熔胶膜(130)与中底(110)和大底(120)具有良好的相容性,故藉由此贴合设备(300),热熔胶膜(130)可有效地粘合中底(110)与大底(120),而可制得鞋底(100)。另外,中底(110)、大底(120)与热熔胶膜(130)均是以可回收材料所制得,故此鞋底(100)是全可回收的。

Description

中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底 技术领域
本发明是有关一种鞋底,特别是提供一种鞋底中的中底、大底、粘合中底与大底的热熔胶膜,以及粘合所需的贴合设备。
背景技术
随着高分子材料的性质改良与混炼技术的提升,鞋底的制作与其材料亦是日益被改良。鞋底一般主要是由中底与大底所组成。由于大底需与地面接触,以提供摩擦力,而使人体可轻易地移动,故大底需具有优异的抗磨耗功效。再者,中底是作为鞋子的支撑体,以吸收并缓冲移动时的反作用力,而可保护人体。据此,中底与大底具有截然不同的性质,且其功能亦不相同。
因此,中底与大底无法一体成型,而需利用糊剂加以粘合。然而,当涂刷过多的糊剂时,粘合后的鞋底易具有残胶,而影响美观。当涂刷过少的糊剂时,中底与大底间的粘结性质过差,而易导致两者分离,进而降低使用者的感受。再者,由于糊剂具有粘着性,故其易沾粘于设备或其他材料上,而降低其操作性质。
另外,由于环保意识的抬头,物品的再利用性亦被视为重要性质。然而,一般鞋底并非是利用可回收材料所制作,故无法被回收再利用,且难以藉由其他处理方法进一步加工处理。因此,习知的鞋底不具有良好的再利用性,而增加环境的负担。
有鉴于此,亟需提供一种中底材料组成物、大底材料组成物与热熔胶膜组成物,以制得可回收的中底、大底与热熔胶膜,而可改进习知鞋底的缺陷。另外,亟需提供一种贴合设备,以有效地利用本发明所制得的热熔胶膜贴合中底与大底,而可改良鞋底的制程。
发明内容
因此,本发明的一态样是在提供一种中底材料组成物,此中底材料组成物具有特定的组成,而可形成具有良好发泡性质且可回收的中底材料。
本发明的另一态样是提供一种中底材料的制作方法,此制作方法是藉由对前述中底材料组成物中的弹性体进行交联反应,以促使组成物中的弹性体与热塑性高分子产生相反转,而可进一步藉由发泡制程制得本发明的中底材料。
本发明的又一态样是提供一种大底材料组成物,此大底材料组成物具有特定的组成,而可制得具有良好机械性质且可回收的大底材料。
本发明的再一态样是提供另一种大底材料组成物,此大底材料组成物具有特定的组成,而可制得具有良好机械性质且可回收的大底材料。
本发明的又另一态样是提供一种热熔胶膜组成物,此热熔胶模组成物具有微波吸收材,而可藉由吸收微波能量来加热热熔胶膜,进而使热熔胶膜具有粘性。
本发明的再另一态样是提供一种贴合设备,此贴合设备可藉由微波发射源的微波能量加热热熔胶膜,而可有效粘合中底材料与大底材料。
本发明的更另一态样是提供一种鞋底,其是利用前述的贴合设备来粘合利用前述组成物所制得的中底、大底与热熔胶膜。
根据本发明的一态样,提出一种中底材料组成物。此中底材料组成物包含混掺混合物、交联剂及催化剂。混掺混合物包含弹性体及热塑性高分子,其中弹性体包含乙烯醋酸乙烯酯,且热塑性高分子包含烯烃类高分子。交联剂包含硅烷化合物及/或硅氧烷化合物。
依据本发明的一实施例,前述弹性体的乙酸乙烯基团的含量为18%至40%。
依据本发明的另一实施例,前述交联剂与乙酸乙烯基团的摩尔比为1:1至1:8。
依据本发明的又一实施例,前述的乙烯醋酸乙烯酯更包含粉状乙烯醋酸乙烯酯。
依据本发明的再一实施例,基于乙烯醋酸乙烯酯的使用量为100重量份,粉状乙烯醋酸乙烯酯的含量为20重量份至40重量份。
依据本发明的又另一实施例,前述的热塑性高分子包含高密度聚乙烯、低密度聚乙烯、聚丙烯及/或聚苯乙烯。
依据本发明的再另一实施例,前述热塑性高分子的熔融指数为0.3至15。
依据本发明的更另一实施例,基于混掺混合物的使用量为100重量份,弹性体的使用量为50重量份至80重量份,且热塑性高分子的使用量为20重量份至50重量份。
依据本发明的更另一实施例,基于混掺混合物的使用量为100重量份,交联剂的使用量为4重量份至10重量份,且催化剂的使用量为0.1重量份至0.7重量份。
根据本发明的另一态样,提出一种中底材料的制作方法。此制作方法是先提供混合物,并对此混合物进行熔炼制程,以形成混掺混合物。此混合物包含弹性体及热塑性高分子,其中弹性体包含乙烯醋酸乙烯酯,且热塑性高分子包含烯烃类高分子。弹性体的使用量是大于或等于热塑性高分子的使用量。于混掺混合物中,弹性体是连续相,且热塑性高分子是分散于连续相中的不连续相。
然后,加入交联剂与催化剂至混掺混合物中,并进行交联反应,以形成热塑性弹性体。于此热塑性弹性体中,热塑性高分子是连续相,且弹性体是分散于连续相中的不连续相。其中,交联剂包含硅烷化合物及/或硅氧烷化合物。接着,对热塑性弹性体进行发泡制程,以形成中底材料。
依据本发明的一实施例,前述弹性体的乙酸乙烯基团的含量为18%至40%。
依据本发明的另一实施例,前述交联剂与乙酸乙烯基团的摩尔比为1:1至1:8。
依据本发明的又一实施例,于进行前述的交联反应前,此制作方法可选择性地混合交联剂与粉状乙烯醋酸乙烯酯。
依据本发明的再一实施例,基于乙烯醋酸乙烯酯与粉状乙烯醋酸乙烯酯的使用量为100重量份,粉状乙烯醋酸乙烯酯的含量为20重量份至40重量份。
依据本发明的又另一实施例,前述发泡制程的一温度为50℃至120℃。
依据本发明的再另一实施例,基于混合物的使用量为100重量份,弹性体的使用量为50重量份至80重量份,且热塑性高分子的使用量为20重量份至50重量份。
依据本发明的更另一实施例,基于混合物的使用量为100重量份,交联剂的使用量为4重量份至10重量份,且催化剂的使用量为0.1重量份至0.7重量份。
根据本发明的又一态样,提出一种大底材料组成物。此大底材料组成物是由热塑性材料及有机无机混成材料所组成。热塑性材料包含热塑性聚氨酯及/或热塑性橡胶,且有机无机混成材料包含改质剂及无机粘土。其中,改质剂可包含聚酰胺、十二烷基硫酸钠及/或聚丙烯接枝马来酸酐。
依据本发明的一实施例,前述的热塑性材料是插层于无机粘土中。
依据本发明的另一实施例,前述的大底材料组成物不包含尼龙-66(Nylon-66)。
依据本发明的又一实施例,基于大底材料组成物的使用量为100重量份,热塑性材料的使用量为70重量份至99.99重量份,且有机无机混成材料的使用量为0.01重量份至30重量份。
依据本发明的再一态样,提出一种大底材料组成物。此大底材料组成物包含混掺混合物及交联剂。其中,混掺混合物包含热塑性材料与弹性体。热塑性材料包含聚氨酯材料,且弹性体包含天然橡胶(Natural Rubber)。交联剂包含过氧化二异丙苯或硫。
依据本发明的一实施例,前述的聚氨酯材料包含热塑性聚氨酯及/或聚氨酯。
依据本发明的另一实施例,当前述的交联剂为硫时,大底材料组成物可包含促进剂。
依据本发明的又一实施例,基于前述混掺混合物的使用量为100重量份,热塑性材料的使用量为30重量份至50重量份,弹性体的使用量为50重量份至70重量份,且基于弹性体的使用量为100重量份,交联剂的使用量是大于0重量份且小于或等于2重量份。
依据本发明的再另一实施例,基于弹性体的使用量为100重量份,交联剂的使用量是0.5重量份至2重量份。
依据本发明的又另一态样,提出一种热熔胶膜组成物。此热熔胶膜组成物包含热熔胶材及微波吸收材。热熔胶材包含乙烯醋酸乙烯酯及热塑性材料,且微波吸收材是均匀分散于热熔胶材中。其中,热塑性材料可包含热塑性聚氨酯及/或热塑性橡胶。
依据本发明的一实施例,前述的微波吸收材包含碳黑、碳化硅、金属氧化物、碳纤维及/或无机粘土。
依据本发明的又一实施例,基于热熔胶材的使用量为100重量份,乙烯醋酸乙烯酯的使用量是大于或等于60重量份且小于100重量份,热塑性材料的使用量为大于0重量份且小于或等于40重量份,且微波吸收材的使用量是5重量份至40重量份。
根据本发明的再另一态样,提出一种贴合设备。此贴合设备包含腔体、至少一微波发射源及压合单元。腔体具有至少一微波入口及前舱门,且至少一微波入口分别是设置于腔体的两侧壁上。微波发射源分别设置于微波入口,且微波发射源是配置以经由微波入口导入微波至腔体中。压合单元是设置于腔体中。
依据本发明的一实施例,前述微波入口的每一者不彼此对准。
依据本发明的另一实施例,前述每一个微波入口被聚丙烯板覆盖。
依据本发明的又一实施例,前述腔体的后壁是相对于前舱门,此后壁设有排气口,且此排气口连接抽气装置。
依据本发明的再一实施例,前述的排气口被金属网板覆盖。
依据本发明的又另一实施例,前述的腔体可选择性地包含至少一通气孔,其中此至少一通气孔设置于侧壁上,且至少一通气孔的孔径是小于3毫米。
依据本发明的再另一实施例,前述的压合单元具有上压板及下压板,上压板及下压板的至少一者设有油压元件及/或气压元件。
依据本发明更另一实施例,此贴合设备可选择性地包含至少一均匀化单元,且均匀化单元分别设于侧壁的内壁上。
依据本发明更另一实施例,前述的均匀化单元分别邻设于微波入口。
根据本发明的更另一态样,提出一种鞋底。此鞋底包含中底、大底及热熔胶膜。其中,中底是藉由前述的中底的制作方法所制得,大底是藉由前述的大底材料组成物所形成,且热熔胶膜是藉由前述的热熔胶膜组成物所形成。此热熔胶膜是直接粘合中底及大底,且位于中底及大底之间。
应用本发明的中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底,其藉由可回收材料制作中底材料、大底材料与热熔胶膜,而使所制得的鞋底是全可回收的,而可提升再利用性。其中,藉由相反转的交联反应,本发明的中底材料组成物可利用发泡制程来制作中底材料。再者,本发明的热熔胶膜与前述的中底和大底具有良好的相容性,故藉由本发明的贴合设备,热熔胶 膜可有效地粘合中底与大底,而不使用糊剂粘合中底与大底,进而可提升鞋底的制程便利性。
附图说明
为了对本发明的实施例及其优点有更完整的理解,现请参照以下的说明并配合相应的附图。必需强调的是,各种特征并非依比例描绘且仅是为了图解目的。相关附图内容说明如下:
[图1]是绘示依照本发明的一实施例的鞋底的剖视示意图。
[图2]是绘示依照本发明的一实施例的中底的制作方法的流程示意图。
[图3A]是绘示依照本发明的一实施例的贴合设备的立体示意图。
[图3B]是绘示依照本发明的一实施例的贴合设备的前视示意图。
[图3C]是绘示沿着[图3A]的剖切线A-A’剖切的贴合设备的剖视示意图。
[图4A]至[图4H]分别是显示依照本发明的实施例1-1、实施例1-2、实施例1-4、实施例1-5、实施例1-8、实施例1-9、实施例1-11与实施例1-12的中底材料的扫描式电子显微镜照片。
[图5A]至[图5D]分别是显示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的扫描式电子显微镜照片。
[图5E]是绘示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的拉伸试验的应力应变曲线图。
[图5F]是绘示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的动态机械分析的损失模数的曲线图。
[图5G]是绘示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的动态机械分析的储存模数的曲线图。
[图5H]是绘示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的动态机械分析的损耗因数的曲线图。
[图6A]是显示依照本发明的实施例3-1的大底材料的扫描式电子显微镜照片。
[图6B]是显示依照本发明的实施例3-2的大底材料的扫描式电子显微镜照片。
[图6C]是显示依照本发明的实施例3-3的大底材料的扫描式电子显微镜照片。
[图6D]是显示依照本发明的实施例3-4的大底材料的扫描式电子显微镜照片。
[图7A]是绘示依照本发明的实施例4-1-1至实施例4-1-5的热熔胶膜的温度差与微波时间的曲线图。
[图7B]是绘示依照本发明的实施例4-2-1至实施例4-2-4的热熔胶膜的温度差与微波时间的曲线图。
其中,符号说明:
100:鞋底
110:中底
120:大底
130:热熔胶膜
200:方法
210/220/230/240/250/260:操作
300:贴合设备
310:腔体
311/313:侧壁
311a/313a:微波入口
311b/313b:通气孔
311c:聚丙烯板
315:后壁
317:前舱门
317a:通孔
321/323:微波发射源
330:压合单元
331/333:压合元件
331a/333a:负载层
331b/333b:绝热层
335:驱动元件
340:排气口
340a:金属网板
351/353:均匀化单元
A-A’:剖切线。
具体实施方式
以下仔细讨论本发明实施例的制造和使用。然而,可以理解的是,实施例提供许多可应用的发明概念,其可实施于各式各样的特定内容中。所讨论的特定实施例仅供说明,并非用以限定本发明的范围。
请参照图1,其是绘示依照本发明的一实施例的鞋底的剖视示意图。于鞋底100中,鞋底100包含中底110、大底120,以及直接粘合中底110与大底120的热熔胶膜130,其中热熔胶膜130是位于中底110与大底120之间。中底110是由中底材料组成物所形成,大底120是由大底材料组成物所形成,且热熔胶膜130是由热熔胶膜组成物所形成。以下内容分别说明本发明的中底材料组成物、大底材料组成物、热熔胶膜组成物与贴合设备。其中,贴合设备是用以粘合中底110、大底120与热熔胶膜130。
中底材料组成物
中底材料组成物可包含混掺混合物、交联剂与催化剂。混掺混合物包含弹性体与热塑性高分子。弹性体可包含但不限于乙烯醋酸乙烯酯、其他适当的弹性体,或上述材料的任意混合。在一些实施例中,弹性体可包含具有乙酸乙烯基团的化合物。在一些实施例中,弹性体的乙酸乙烯基团的含量为18%至40%,较佳可为26%至40%,且更佳可为26%至33%。当弹性体的乙酸乙烯基团的含量为前述的范围时,此中底材料组成物可制得具有较佳机械性质的中底。基于掺混混合物的使用量为100重量份,弹性体的使用量可为50重量份至80重量份,且较佳为50重量份至60重量份。
在一些实施例中,当弹性体包含乙烯醋酸乙烯酯时,乙烯醋酸乙烯酯可选择性地包含粉状乙烯醋酸乙烯酯。其中,粉状乙烯醋酸乙烯酯可藉由喷雾造粒所形成。基于乙烯醋酸乙烯酯的使用量为100重量份,粉状乙烯醋酸乙烯酯的 含量可为20重量份至40重量份,较佳可为25重量份至35重量份,且更佳可为25重量份至30重量份。
前述的热塑性高分子可包含但不限于烯烃类高分子、其他适当的热塑性高分子,或上述高分子的任意混合。在一些具体例中,烯烃类高分子可包含但不限于高密度聚乙烯、低密度聚乙烯、聚丙烯、聚苯乙烯、其他适当的烯烃类高分子,或上述高分子任意混合。在一些实施例中,热塑性高分子的熔融指数可为0.3至15,且较佳可为0.5至10。基于掺混混合物的使用量为100重量份,热塑性高分子的使用量可为20重量份至50重量份,且较佳可为20重量份至30重量份。
在一些实施例中,基于掺混混合物的使用量为100重量份,前述弹性体的使用量可大于50重量份且小于或等于80重量份,且热塑性高分子的使用量可大于或等于20重量份且小于50重量份。其中,当弹性体与热塑性高分子的使用量分别为前述的范围时,于进行交联反应前,热塑性高分子可均匀地分散于弹性体所形成的连续相中,且于交联反应后,弹性体与热塑性高分子可较易产生相反转反应,而使得热塑性高分子反转为连续相,且弹性体反转为均匀分散于连续相中的不连续相,进而有助于制得本发明的中底材料。其中,由于热塑性高分子为可回收材料,且其于交联反应后可反转为中底材料的连续相,而可提升所制得中底材料的回收性,故所制得的中底材料是全可回收的。
前述中底材料组成物中的交联剂可包含但不限于硅烷化合物及/或硅氧烷化合物。举例而言,硅烷化合物可包含四甲氧基硅烷(TMOS)、四乙氧基硅烷(TEOS)、四丙氧基硅烷(TPOS)、四丁氧基硅烷(TBOS)、其他适当的硅烷化合物,或上述化合物的任意混合。硅氧烷化合物可为长碳链硅氧烷化合物。在一些实施例中,长碳链硅氧烷化合物的碳数可为5至18。举例而言,长碳链硅氧烷化合物可为十八烷基三甲氧硅烷、其他适当的长碳链硅氧烷化合物,或其任意混合。基于混掺混合物的使用量为100重量份,交联剂的使用量可为4重量份至10重量份,且较佳可为6重量份至9重量份。
在一些实施例中,交联剂与弹性体中乙酸乙烯基团的摩尔比可为1:1至1:8,且较佳可为1:4至1:6。当交联剂与乙酸乙烯基团的摩尔比为前述的范围时,弹性体可较有效地产生交联反应,而增加粘度分率,进而导致相反转反应。
在一些实施例中,当弹性体中的乙烯醋酸乙烯酯包含粉状乙烯醋酸乙烯酯时,交联剂可与粉状乙烯醋酸乙烯酯混合,而被粉状乙烯醋酸乙烯酯所吸附,进而有益于进行交联反应。
前述中底材料组成物中的催化剂可包含但不限于酯化催化剂、其他适当的催化剂,或上述材料的任意混合。举例而言,催化剂可包含二丁基氧化锡(DBTO)、二辛基氧化锡(DOTO)、二丁基马来酸锡(DBTM)、氯化亚锡(SnCl 2)、其他适当的酯化催化剂,或上述催化剂材料的任意混合。在一些实施例中,基于混掺混合物的使用量为100重量份,催化剂的使用量可为0.1重量份至0.7重量份,且较佳为0.2重量份至0.5重量份。当催化剂的使用量为前述的范围时,交联反应可更有效地进行。
中底材料的制作方法
当制作本发明的中底时,前述的中底材料组成物可进一步藉由发泡制程,成型为鞋底的中底。其中,本发明的中底的制作方法详述如下。请参照图2,其是绘示依照本发明的一实施例的中底的制作方法的流程示意图。于方法200中,混合物是先提供,并进行熔炼制程,以形成混掺混合物,如操作210与操作220所示。
混合物包含弹性体与热塑性高分子。其中,弹性体可包含但不限于乙烯醋酸乙烯酯、其他适当的弹性体,或上述材料的任意混合。在一些实施例中,弹性体可包含具有乙酸乙烯基团的化合物。其中,弹性体的乙酸乙烯基团的含量为18%至40%,较佳可为26%至40%,且更佳可为26%至33%。热塑性高分子包含烯烃类高分子、其他适当的热塑性高分子,或上述高分子的任意混合。举例而言,烯烃类高分子可包含但不限于高密度聚乙烯、低密度聚乙烯、聚丙烯、聚苯乙烯、其他适当的烯烃类高分子,或上述高分子任意混合。在一些实施例中,热塑性高分子的熔融指数可为0.3至15,且较佳可为0.5至10。于熔炼制程所形成的混掺混合物中,弹性体是连续相,且热塑性高分子是均匀分散于其中的不连续相。在一些实施例中,混合物中的弹性体的使用量是大于或等于热塑性高分子的使用量。在此些实施例中,基于混合物的使用量为100重量份,弹性体的使用量可为50重量份至80重量份,且热塑性高分子的使用量为20重量份至50重量份。
较佳地,混合物中的弹性体的使用量是大于热塑性高分子的使用量,以促使混掺混合物中的弹性体更易形成连续相,且热塑性高分子形成不连续相。在此些实施例中,基于混合物的使用量为100重量份,弹性体的使用量是大于50重量份且小于或等于80重量份,而热塑性高分子的使用量是大于或等于20重量份且小于50重量份。
进行操作220后,加入交联剂与催化剂至混掺混合物中,并进行交联反应,以形成热塑性弹性体,如操作230与操作240所示。交联剂可包含但不限于硅烷化合物及/或硅氧烷化合物,且催化剂可包含但不限于酯化催化剂。
在一些具体例中,硅烷化合物可包含四甲氧基硅烷、四乙氧基硅烷、四丙氧基硅烷、四丁氧基硅烷、其他适当的硅烷化合物,或上述化合物的任意混合;硅氧烷化合物可为碳数为5至18的长碳链硅氧烷化合物(例如:十八烷基三甲氧硅烷等);催化剂可包含但不限于二丁基氧化锡、二辛基氧化锡、二丁基马来酸锡、氯化亚锡、其他适当的酯化催化剂,或上述催化剂材料的任意混合。
基于混掺混合物的使用量为100重量份,交联剂的使用量可为4重量份至10重量份,且催化剂的使用量可为0.1重量份至0.7重量份。在一些实施例中,为提升交联反应的反应效能,交联剂与弹性体中的乙酸乙烯基团的摩尔比可为1:1至1:8,且较佳可为1:4至1:6。
当进行交联反应时,随着交联度的提升,弹性体的粘度分率是随之提升,而使得混掺混合物形成相反转反应,进而导致热塑性高分子相反转为连续相,且弹性体形成为均匀分散于连续相中的不连续相。据此,由于弹性体与热塑性高分子产生动态的相反转反应,故交联反应所形成的热塑性弹性体亦可称之为热塑性动态硫化橡胶(Thermoplastic Vulcanizate;TPV)。
在一些实施例中,当进行交联反应前,前述的交联剂可选择性地先与粉状乙烯醋酸乙烯酯混合,而被粉状乙烯醋酸乙烯酯所吸附。其中,依据外观形貌的差异,粉状乙烯醋酸乙烯酯是不同于前述弹性体中的乙烯醋酸乙烯酯(为明确说明,以下称之为颗粒乙烯醋酸乙烯酯)。当交联剂被粉状乙烯醋酸乙烯酯吸附时,交联剂可藉由粉状乙烯醋酸乙烯酯有效地被掺混至混掺混合物中,进而可提升交联反应的反应性能。其中,基于颗粒乙烯醋酸乙烯酯与粉状乙烯醋酸乙烯酯的总使用量为100重量份,粉状乙烯醋酸乙烯酯的含量为20重量份至40重量份,较佳可为25重量份至35重量份,且更佳可为25重量份至30重量份。 当交联剂被粉状乙烯醋酸乙烯酯吸附后,将吸附有交联剂的粉状乙烯醋酸乙烯酯与催化剂加至混掺混合物中,以进行交联反应,而可制得热塑性弹性体。
在其他实施例中,于进行熔炼制程前,交联剂可先与粉状乙烯醋酸乙烯酯混合。然后,混合吸附有交联剂的粉状乙烯醋酸乙烯酯、颗粒乙烯醋酸乙烯酯、热塑性高分子与催化剂,而可同时进行熔炼制程与交联反应,进而制得热塑性弹性体。
需说明的是,由于粉状乙烯醋酸乙烯酯具有乙酸乙烯基团,故当进行交联反应时,粉状乙烯醋酸乙烯酯中的乙酸乙烯基团亦会参与交联反应。据此,当交联剂与粉状乙烯醋酸乙烯酯混合时,基于混合物的使用量为100重量份,颗粒乙烯醋酸乙烯酯与粉状乙烯醋酸乙烯酯的使用量可为50重量份至80重量份。相同地,当交联剂的摩尔数与颗粒乙烯醋酸乙烯酯和粉状乙烯醋酸乙烯酯中的乙酸乙烯基团的总摩尔数的比值为1:1至1:8时,交联反应的反应性能可被提升。较佳地,此摩尔比值可为1:4至1:6。
进行操作240后,对热塑性弹性体进行发泡制程,即可形成中底,如操作250与操作260所示。
当进行发泡制程时,由于乙酸乙烯基团对于二氧化碳具有较高的溶解度,故热塑性弹性体中的不连续相(即弹性体)可诱使二氧化碳进入热塑性弹性体中,而可增加热塑性弹性体中的气泡数量。因此,当二氧化碳气泡开始澎润成核时,热塑性弹性体的内部可形成均匀分布的泡孔,而非仅于热塑性弹性体的表面发泡,因此可有效提升热塑性弹性体的发泡倍率。其次,当交联反应进行时,原为连续相的弹性体可相反转为不连续相,且于动态相反转反应时,弹性体易产生分散于连续相中的相分离颗粒。故,当二氧化碳气泡开始澎润成核后,此些相分离颗粒可均匀分散于泡孔内部,而具有补强结构的功效,进而可提升所制得中底的机械性质。
在一些实施例中,发泡制程的温度可为50℃至120℃,且较佳可为60℃至70℃。当发泡制程的温度为此范围时,二氧化碳气泡可有效地于热塑性弹性体中澎润成核,而降低所形成的中底的发泡密度。在一具体例中,所形成的中底的发泡密度可小于或等于0.4g/cm 3,较佳可小于或等于0.25g/cm 3,且更佳为0.1g/cm 3至0.2g/cm 3
于所制得的中底中,藉由交联反应,前述的热塑性高分子可动态反转为连续相,且热塑性高分子具有可回收性,故反转为连续相的热塑性高分子有助于提升中底的回收性质,而使得中底是全可回收材料。
大底材料组成物
在一实施例中,大底材料组成物可由热塑性材料及有机无机混成材料所组成。热塑性材料可包含热塑性聚氨酯(Polyurethane;TPU)、热塑性塑胶(Thermoplastic Rubber;TPR),或上述材料的任意混合。有机无机混成材料可包含改质剂与无机粘土。其中,改质剂可包含聚酰胺、十二烷基硫酸钠、聚丙烯接枝马来酸酐,或上述材料的任意混合。
当制作本发明的大底材料组成物时,改质剂与无机粘土是预先混合,并经烘干后,即可形成前述的有机无机混成材料。然后,将此有机无机混成材料加至热塑性材料中,并利用混炼押出机混合后,即可制得本发明的大底材料组成物。其中,于进行混炼时,热塑性材料与改质剂可插层于无机粘土中,而可提升材料的混炼均匀性,进而可提升所制得大底材料组成物的机械性质。在一些具体例中,无机粘土的层间距离可至少为1.7nm,或者无机粘土是完全脱层(换言之,无机粘土的层间距离无法测得)。另外,热塑性材料插层至无机粘土时,部分的无机粘土层可被剥离。进一步地,藉由混炼押出机,此些剥离粘土层的尺寸可变小,并团聚分散于热塑性材料中。
在一些实施例中,本发明的大底材料组成物不包含尼龙-66(Nylon-66)。若大底材料组成物包含尼龙-66时,所制得的大底材料组成物易具有相分离缺陷,而降低其混炼均匀性,进而降低所制得大底材料组成物的机械性质。
在一些实施例中,基于大底材料组成物的使用量为100重量份,热塑性材料的使用量为70重量份至99.99重量份,且有机无机混成材料的使用量为0.01重量份至30重量份。较佳地,基于大底材料组成物的使用量为100重量份,热塑性材料的使用量为80重量份至99.99重量份,且有机无机混成材料的使用量为0.01重量份至20重量份。更佳地,基于大底材料组成物的使用量为100重量份,热塑性材料的使用量为90重量份至99.99重量份,且有机无机混成材料的使用量为0.01重量份至10重量份。当热塑性材料与有无机混成材料的使用量为 前述的范围时,所制得大底材料组成物可具有较佳的混炼均匀性,且不易产生相分离的缺陷,因此所制得的大底材料具有较佳的机械性质。
在一些实施例中,基于有机无机混成材料的使用量为100重量份,改质剂的使用量可为40重量份至60重量份,且无机粘土的使用量可为40重量份至60重量份。较佳地,基于有机无机混成材料的使用量为100重量份,改质剂的使用量可为45重量份至55重量份,且无机粘土的使用量可为45重量份至55重量份。当改质剂与无机粘土的使用量为前述的范围时,所形成的有机无机混成材料于混炼时,改质剂与热塑性材料可较易插层至无机粘土中,进而提升大底材料组成物的机械性质。举例而言,在一些例子中,基于有机无机混成材料的使用量为100重量份,改质剂的使用量可为50重量份,且无机粘土的使用量可为50重量份。
在另一实施例中,大底材料组成物可包含混掺混合物与交联剂。其中,混掺混合物包含热塑性材料及弹性体。热塑性材料包含聚氨酯材料,且弹性体包含天然橡胶(Natural Rubber;NR)。在一些实施例中,聚氨酯材料可包含但不限于热塑性聚氨酯、聚氨酯、其他适当的聚氨酯材料,或上述材料的任意混合。基于混掺混合物的使用量为100重量份,聚氨酯材料的使用量可为30重量份至50重量份,较佳为30重量份至40重量份,且更佳为33重量份至38重量份;天然橡胶的使用量可为50重量份至70重量份,较佳可为60重量份至70重量份,且更佳可为62重量份至67重量份。
交联剂可包含过氧化二异丙苯或硫。基于弹性体的使用量为100重量份,交联剂的使用量是大于0重量份且小于或等于2重量份,较佳可为0.5重量份至2重量份,且更佳可为0.75重量份至2重量份。在一些实施例中,当交联剂的使用量大于2重量份时,混掺混合物中的弹性体将过度交联,而导致所形成的大底材料组成物粉碎,或者外观颜色转变为焦黑,而降低其应用性。在一些实施例中,当交联剂包含硫时,此大底材料组成物可选择性地包含促进剂,以促进硫对于混掺混合物的硫化交联反应。
当利用前述的大底材料组成物制作大底时,热塑性材料(例如:聚氨酯材料)与弹性体(例如:天然橡胶)是先混合,以形成混掺混合物。其中,弹性体是形成连续相,且热塑性材料是均匀分散于弹性体中的不连续相。在一些实施例 中,弹性体的使用量是大于热塑性材料的使用量,以使弹性体可于混掺混合物中形成连续相。
然后,加入交联剂至混掺混合物中,以进行交联反应,即可形成大底材料。其中,藉由适当的塑形步骤,即可制得符合需求的大底。在一些实施例中,交联反应可于混炼过程中进行,并将经交联反应的混合物押出至模具中,即可制得满足需求的大底。在一些具体例中,混炼过程可利用塑谱仪或双螺杆混炼机来进行。
于此大底材料组成物中,相同于前述的中底材料组成物,当进行交联反应时,随着交联度的提升,弹性体的粘度分率是随之提升,而使得混掺混合物产生相反转反应,进而导致不连续相的热塑性材料相反转为连续相,且弹性体形成为均匀分散于连续相中的不连续相。据此,由于弹性体与热塑性材料产生动态的相反转反应,故交联反应所形成的大底材料可称之为热塑性动态硫化橡胶。再者,由于所使用的热塑性材料与弹性体均为可回收的材料,动态硫化交联反应所制得的大底材料是全可回收的。
热熔胶膜组成物
热熔胶模组成物可包含热熔胶材及微波吸收材。热熔胶材包含乙烯醋酸乙烯酯与热塑性材料。其中,热塑性材料可包含但不限于热塑性聚氨酯(TPU)、热塑性橡胶(TPR)、其他适当的热塑性材料,或上述材料的任意混合。在一些实施例中,热熔胶材可包含前述中底的弹性体所包含的材料与大底的热塑性材料所包含的材料,以提升所制得的热熔胶膜与中底和大底的相容性,进而可提升热熔胶膜对于中底和大底的粘结性质。因此,热熔胶材中的热塑性材料是相同于前述大底所选用的热塑性材料。在其他实施例中,热熔胶材中的热塑性材料可不相同于大底所使用的热塑性材料。
基于热熔胶材的使用量为100重量份,乙烯醋酸乙烯酯的使用量是大于或等于60重量份且小于或等于100重量份,且热塑性材料的使用量是大于0重量份且小于或等于40重量份。较佳地,基于热熔胶材的使用量为100重量份,乙烯醋酸乙烯酯的使用量可为60重量份至80重量份,且热塑性材料的使用量可为20重量份至40重量份。当乙烯醋酸乙烯酯与热塑性材料的使用量为前述的范围时,两者可被均匀地混炼,而不具有相分离的缺陷。
微波吸收材是均匀分散于热熔胶材中。本发明的微波吸收材并没有特别的限制,其仅需可吸收微波能量,并转化为热能即可。因此,当施加微波能量于含有微波吸收材的热熔胶膜时,微波吸收材可吸收微波能量,并转化为热能,而可有效加热热熔胶膜。举例而言,微波吸收材可包含但不限于碳黑、碳化硅、金属氧化物(例如:氧化铁、二氧化锰等)、碳纤维及/或无机粘土、其他适当的微波吸收材,或上述材料的任意混合。
基于热熔胶材的使用量为100重量份,微波吸收材的使用量可为5重量份至40重量份,较佳可为5重量份至15重量份。当微波吸收材的使用量为前述的范围时,微波吸收材不易团聚,而可均匀地分散于热熔胶材中,因此于施加微波能量时,热熔胶材的内部可被均匀地加热。
于制作本发明的热熔胶膜时,前述的热熔胶材与微波吸收材可藉由混炼押出机掺混成型,即可制得本发明的热熔胶膜。
贴合设备
藉由前述的中底材料组成物、大底材料组成物与热熔胶膜组成物,鞋底的中底、大底与热熔胶膜可被制得。为了进一步制作如图1所示的鞋底,中底、大底与热熔胶膜可利用下述的贴合设备来粘合。
请参照图3A至图3C,其中图3A是绘示依照本发明的一实施例的贴合设备的立体示意图,图3B是绘示依照本发明的一实施例的贴合设备的前视示意图,且图3C是绘示沿着图3A的剖切线A-A’剖切的贴合设备的剖视示意图。于图3B中,需特别说明的是,为了清楚描绘的目的,贴合设备的前舱门是被省略的。
贴合设备300包含腔体310、两个微波发射源321与323及压合单元330。腔体310具有侧壁311与313、后壁315、前舱门317,及两个微波入口311a与313a。其中,微波入口311a是设置于侧壁311上,且微波入口313a是设置于侧壁313上。前舱门317可开启或关闭,以让操作人员放置待贴合材料于腔体310中,或由腔体310取出已贴合材料。前舱门317的门板可设有多个通孔317a,且每一个通孔317a的孔径是小于3毫米。此些通孔317a可便于操作人员观察贴合设备300内部的压合情形,以监测压合的过程。在一些实施例中,前舱门317可为不具通孔317a的金属门,以隔离所导入的微波。在一些实施例中,前舱门317的门板可设有强化玻璃,以便操作人员可即时观察材料的贴合状态。于此些实施例 中,此强化玻璃可埋设具有多个网孔的金属网板,以隔离导入至腔体310中的微波。需说明的是,图3A所绘示的前舱门317的通孔317a仅为绘示说明,本案不以此为限。在一些实施例中,通孔317a所占据的面积可较小,而更有效地隔离微波。
在一些实施例中,腔体310的后壁315可选择性地设有排气口340,且排气口340连接设于腔体310外的抽气装置,以由腔体310排出热压合时所产生的气体或异味。其中,排气口340是被金属网板340a覆盖,以隔离导入腔体310的微波。在一些实施例中,金属网板340a的网孔孔径是小于3毫米。排气口340的设置位置并没有特别的限制,其仅需确保腔体310内的气体可排出腔体310即可。较佳地,排气口340是设置于后壁315的上半部。
在其他实施例中,腔体310可选择性地设置通气孔311b与313b,其中通气孔311b设于侧壁311上,且通气孔313b设于侧壁313上。为了隔离导入腔体310的微波,通气孔311b与313b的孔径是小于3毫米。需理解的是,通气孔311b与313b的设置位置并没有特别的限制,其仅需确保导入腔体310的微波不由通气孔311b与313b射出,且外部的空气可由通气孔311b与313b流入腔体310中即可。
前述的微波发射源321与323分别设置于微波入口311a与313a上,故微波发射源321与323可经由微波入口311a与313a发射微波至腔体310中。微波发射源321与323电性连接驱动器(未绘示),且驱动器电性连接控制器(未绘示)。其中,控制器可传输微波功率的信号至驱动器,且依据所接收的微波功率信号,驱动器可进一步驱动微波发射源321与323,以发射出具有所设定的功率的微波。因此,操作人员可藉由控制器调整微波功率,而可调整微波加热的功率。为避免导入腔体310的微波由微波入口逸散,微波入口311a与313a是完整地被微波发射源321与323所覆盖。在一些实施例中,微波入口311a与313a分别是被聚丙烯板311c覆盖。此聚丙烯板311c可避免腔体310中的粉尘经由微波入口311a与313a进入微波发射源321与323中。在一些实施例中,聚丙烯板311c可为其他材料所制成的板材(或膜材),且此些材料可包含但不限于特氟龙、聚乙烯、吸收微波能力较低的塑胶材料、其他适当的材料,或上述材料的任意混合。在一些实施例中,为提升腔体310中的加热均匀性,微波入口311a不对准微波入口313a。较佳地,微波入口311a与313a分别是设置于侧壁311与313的对角位置。换言之,微波入口311a与313a是设置于腔体310的侧壁311与313的斜对角位置。
由于本发明的贴合设备300是藉由微波来加热,故为进一步提升腔体310中的微波均匀性,贴合设备300可选择性地包含均匀化单元351与353。均匀化单元351设置于侧壁311上,且均匀化单元353是设置于侧壁313上。其中,均匀化单元351与353是金属材料所制成。在一些实施例中,均匀化单元351与353可为金属风扇。故,藉由金属扇叶的表面反射,导入腔体310的微波的均匀性可被提升。其次,均匀化单元351与353可邻设于微波入口311a与313a。如此一来,当微波导入腔体310后,转动的均匀化单元351与353可反射导入腔体310的微波,以提升腔体310内的微波均匀性。在一些实施例中,为更进一步提升腔体310中的微波均匀性,腔体310的顶板(未标示)可选择性地设有至少一均匀化单元。
压合单元330是设置于腔体310中,且压合单元330具有下压合元件331、上压合元件333与驱动元件335。其中,驱动元件335连接上压合元件333,且使上压合元件333可往复移动。举例而言,当欲压合时,上压合元件333是朝下移动(即沿着接近下压合元件331的方向移动);当压合完成时,上压合元件333是朝上移动(即沿着远离下压合元件331的方向移动)。在一些实施例中,驱动元件335是藉由油压驱动、气压驱动、其他适当的驱动方式,或上述方法的任意组合来驱动上压合元件333。在一些实施例中,驱动元件335电性连接控制器,以使操作人员可设定压合压力与压合时间。在一些实施例中,下压合元件331可选择性地连接另一驱动元件。如此一来,下压合元件331与上压合元件333均可往复移动。在一些实施例中,由于欲压合材料的性质不一,故其受压形变亦有所不同。据此,下压合元件331或上压合元件333与待压合材料之间(即压合元件与材料之间)可选择性地设置至少一感压元件,以即时监测并调整待压合材料的受力。
下压合元件331与上压合元件333分别可为单层压合板或多层压合板。当压合元件331与333为多层压合板时,压合元件331与333分别可由负载层331a与333a与绝热层331b与333b所组成。其中,负载层331a与333a是提供压合元件的机械强度,以承受压合所施加的压力,且绝热层331b与333b是用以阻绝待压合材料的热能传递,以避免微波转变的热能经由负载层331a与333a逸散。可理解的是,由于绝热层331b与333b亦需承受压合元件所施加的压力,故绝热层331b与333b需具有良好的机械强度,以避免压合时破损。在一具体例中,负载层331a 与333a的材料可为不锈钢、铝合金、铜合金等可反射微波的金属材料、其他适当的材料,或上述材料的任意混合,且绝热层331b与333b的材料可为聚醚醚酮(polyether ether ketone;PEEK)、聚丙烯、特氟龙、聚乙烯其他适当的材料,或上述材料的任意混合。
在下压合元件331固定不动的情形中,由于下压合元件331是直接设置于腔体310的底板上,故下压合元件331可仅具有绝热层,且此绝热层需可承受上压合元件333的下压力。
当利用本发明的贴合设备300粘合前述的中底、大底与热熔胶膜时,藉由前述中底材料的制作方法所制得的中底可先放置于下压合元件331的顶表面上。然后,于中底上依序层叠利用热熔胶膜组成物所形成的热熔胶膜,以及利用大底材料组成物所形成的大底。接着,关闭前舱门317,并利用微波发射源321与323经由微波入口311a与313a导入微波至腔体310中。之后,依据所设定的压力值,利用驱动元件335驱使上压合元件333下降,以施压于大底上。于此同时,由于微波的导入,热熔胶膜中的微波吸收材可吸收微波能量,并转化为热能,而可加热热熔胶膜,并增加其粘性。据此,藉由微波吸收材将微波转化为热能,以及压合单元330所施加的压力,热熔胶膜即可有效粘合中底与大底。在一些实施例中,中底与大底的层叠顺序可彼此对调。换言之,大底是先放置于下压合元件331上,且依序于其上层叠热熔胶膜与中底。
由于鞋底需兼顾穿着舒适性与抓地性质,故中底与大底的形状一般均具有高低起伏,而非平面的。因此,在一些实施例中,为提升贴合设备300的压合效果,依据中底与大底所设计的外形(例如:鞋底图案与/或足弓设计等),以及层叠的位置,压合元件331与333的绝热层331b与333b可具有相对应的外形。据此,当压合单元330压合时,具有特定外形的绝热层331b与333b可紧密接触中底或大底,而可提升鞋底的压合均匀性。在其他实施例中,中底与大底可分别放置于压合模具中,其中每一个压合模具均具有接触面与相对的放置面。接触面具有对应于中底或大底的外形,以紧密接触中底或大底。放置面为平面。据此,压合时,所施加的压力可通过压合模具传递至中底与大底,而可粘合此两者,以使其具有良好的压合均匀性,且通过压合模具的设置,贴合设备300可进一步适用于压合各种形状的鞋底。应理解的是,于压合时,两个压合模具彼此不接触,以避免所施加的压力无法施加于中底与大底上。
以下利用实施例以说明本发明的应用,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。
制备中底材料
实施例1-1
实施例1-1的中底材料是先混炼重量比值为3:7的高密度聚乙烯(HDPE)与乙烯醋酸乙烯酯(EVA),以形成混掺混合物,其中乙烯醋酸乙烯酯含有26%的乙酸乙烯基团。然后,添加二丁基氧化锡与四乙氧基硅烷(TEOS)至混掺混合物中,以进行交联反应,而可制得实施例1-1的热塑性弹性体。其中,四乙氧基硅烷与乙烯醋酸乙烯酯的乙酸乙烯基团的摩尔比为1:4。
接着,通入超临界流体状态的二氧化碳至前述的热塑性弹性体中,以进行发泡制程,即可制得实施例1-1的中底材料。发泡温度为68℃,压力为2000psi,且时间为20分钟。
然后,以扫描式电子显微镜(Scanning Electron Microscope;SEM)观察实施例1-1的中底材料,其结果如图4A所示。其中,比例尺规代表20μm。另外,实施例1-1的中底材料的发泡密度为0.206g/cm 3
实施例1-2至实施例1-12
实施例1-2至实施例1-12的中底材料是使用与实施例1-1的中底材料的制作方法相同的流程步骤,不同之处在于实施例1-2至实施例1-12是使用不同的混掺条件与发泡参数,其混掺条件、发泡参数与所制得的中底材料的发泡密度分别如下述的表1所示。另外,实施例1-2、实施例1-4、实施例1-5、实施例1-8、实施例1-9、实施例1-11与实施例1-12所制得的中底材料分别以扫描式电子显微镜观察,所得的结果分别如图4B至图4H所示,其中图4B至图4D的比例尺规均为20μm,但图4E至图4H的比例尺规为50μm。
表1
Figure PCTCN2018102178-appb-000001
依据表1所载的实施例1-1至实施例1-6可知,当四乙氧基硅烷(即交联剂)的用量增加时,所制得的中底材料将具有较高的发泡密度。其次,依据实施例1-7至实施例1-12可知,由于高密度聚乙烯的用量增加,高密度聚乙烯易结晶,而阻碍二氧化碳渗入热塑性弹性体,进而降低发泡效果,故具有较高的发泡密度。实施例1-1至实施例1-12所制得的中底材料的发泡密度是小于或等于0.4g/cm 3。显然,本案的中底材料组成物可藉由发泡制程制得具有良好发泡性质的中底材料。
另外,依据图4A至图4D所显示的内容可知,于泡孔的表面上均具有突起且均匀分散的颗粒。进一步地,利用能量散射光谱仪(Energy Dispersive Spectrometer;EDS)分析此些颗粒的元素成分及片状结构部分(即泡孔内的平整表面)的元素成分可知,相较于泡孔的片状结构部分,此些颗粒的氧元素含量均较高。据此,此些颗粒应是乙烯醋酸乙烯酯于动态交联时所产生的相分离结构。
其次,依据图4E至图4H所显示的内容可知,当乙烯醋酸乙烯酯的含量减少时,所制得的中底材料的泡孔较不明显且其分布较不均匀。据此,混掺混合 物中的乙烯醋酸乙烯酯有助于二氧化碳渗入热塑性弹性体中,进而可提升发泡制程的发泡效果。
如前所述,动态交联时所产生的乙烯醋酸乙烯酯的相分离颗粒可均匀分布于中底材料的泡孔中,而可补强所制得的中底材料的机械强度,且于发泡制程中,乙烯醋酸乙烯酯有助于使二氧化碳渗入热塑性弹性体中,而可提升发泡效果。
制备大底材料
实施例2-1
实施例2-1是先混合1重量份的无机粘土与1重量份的聚酰胺,以形成有机无机混成材料。待烘干后,将有机无机混成材料加至98重量份的热塑性聚氨酯中,并以混炼押出机混合后,即可制得实施例2-1的大底材料。
然后,以扫描式电子显微镜观察实施例2-1的大底材料,其结果如图5A所示。其中,比例尺规代表10μm。
实施例2-2与实施例2-3
实施例2-2与实施例2-3的大底材料是使用与实施例2-1的大底材料的制作方法相同的流程步骤,不同之处在于实施例2-2是混合5重量份的无机粘土、5重量份的聚酰胺与90重量份的热塑性聚氨酯,且实施例2-3是混合10重量份的无机粘土、10重量份的聚酰胺与80重量份的热塑性聚氨酯。相同地,实施例2-2与实施例2-3所制得的大底材料分别以扫描式电子显微镜观察,所得的结果分别如图5B与图5C所示,其中图5B与图5C的比例尺规均为10μm。
比较例2-1
比较例2-1的大底材料是直接使用混炼押出机来混炼热塑性聚氨酯,而未添加本发明的有机无机混成材料。所制得的大底材料以扫描式电子显微镜观察,所得的结果如图5D所示,其中图5D的比例尺规亦为10μm。
依据图5A至图5D所显示的内容可知,实施例2-1至实施例2-3所制得的大底材料的热塑性聚氨酯的平滑表面具有团聚的粘土。因此,聚酰胺与热塑性聚氨 酯的分子链可插层至无机粘土中,以剥离并分开无机粘土的层状结构。另外,请参照图5E,其是绘示实施例2-1至实施例2-3与比较例2-1所制得的大底材料的拉伸试验的应力应变曲线图。根据应力应变曲线图可知,实施例2-1的大底材料相较于比较例2-1的大底材料具有较佳的拉伸强度。
请参照图5F至图5H,其中图5F、图5G与图5H分别是绘示依照本发明的实施例2-1至实施例2-3与比较例2-1的大底材料的动态机械分析的损失模数、储存模数与损耗因数的曲线图。于图5F与图5G中,相较于比较例2-1,实施例2-1至实施例2-3的大底材料均具有较高的损失模数与储存模数,而于图5H中,相较于实施例2-2、实施例2-3与比较例2-1,实施例2-1的大底材料具有最高的损耗因数。显然,本案的大底材料的热塑性材料与改质剂可插层至无机粘土中,而可提升实施例2-1至实施例2-3的大底材料如强度与硬度的机械性质。然而,虽然大底材料的机械性质可被提升,但其弹性是相对降低。
实施例3-1
实施例3-1是先混炼30重量份的热塑性聚氨酯与70重量份的天然橡胶,以形成混掺混合物。然后,将1.4重量份的过氧化二异丙苯加至混掺混合物中,以进行动态交联反应,即可制得实施例3-1的大底材料。
然后,以扫描式电子显微镜观察实施例3-1的大底材料,其结果如图6A所示。其中,比例尺规代表10μm。进一步地,以能量散射光谱仪分析连续相与不连续相的元素成分。
实施例3-2至实施例3-4
实施例3-2至实施例3-4的大底材料是使用与实施例3-1的大底材料的制作方法相同的流程步骤,不同之处在于实施例3-2是使用40重量份的热塑性聚氨酯、60重量份的天然橡胶与0.6重量份的过氧化二异丙苯,实施例3-3是使用30重量份的热塑性聚氨酯、70重量份的天然橡胶与0.525重量份的过氧化二异丙苯,且实施例3-4是使用40重量份的热塑性聚氨酯、60重量份的天然橡胶与0.3重量份的过氧化二异丙苯。相同地,实施例3-2至实施例3-4所制得的大底材料分别以扫描式电子显微镜观察,所得的结果分别如图6B至图6D所示,其中图6B的比例尺规为5μm,且图6C与图6D的比例尺规为20μm。相同地,以能量 散射光谱仪分析实施例3-2至实施例3-4的大底材料的连续相与不连续相的元素成分。
依据图6A至图6D所显示的内容,以及能量散射光谱仪所获得的分析结果可知,实施例3-1至实施例3-4的连续相的氮元素含量均高于不连续相的氮元素含量。由于天然橡胶不具有氮原子,故实施例3-1至实施例3-4的连续相是热塑性聚氨酯。
另外,于实施例3-1至实施例3-4中,天然橡胶的使用量均是大于热塑性聚氨酯的使用量,故依据前述元素分析的结果可知,于进行交联反应时,混掺混合物中的热塑性聚氨酯与天然橡胶产生相反转的动态交联反应。据此,所制得的大底材料可具有较佳的热塑性质,而具有较佳的应用性质。
制备热熔胶膜
实施例4-1-1
实施例4-1-1的热熔胶膜是将碳化硅混掺至乙烯醋酸乙烯酯,即可押出制得实施例4-1-1的热熔胶膜,其中基于乙烯醋酸乙烯酯的使用量为100重量份,碳化硅的使用量为20重量份。
然后,使用非接触式温度量测器量测热熔胶膜的温度(T i),并将热熔胶膜放置于前述的贴合设备中。接着,对热熔胶膜施加功率为1588W的微波,以微波加热实施例4-1-1所制得的热熔胶膜。经过30秒后,量测被加热后的热熔胶膜的温度(T f),并计算加热前后的温度差(ΔT)。
之后,取出热熔胶膜,并依据前述的步骤,量测多个实施例4-1-1的热熔胶膜于不同的微波时间后的温度与其温度差。所得的结果如表2-1所示。其中,微波时间分别为60秒、90秒、120秒与180秒。
实施例4-1-2至实施例4-1-5
实施例4-1-2至实施例4-1-5是使用与实施例4-1-1的热熔胶膜的制作方法相同的流程步骤,不同之处在于实施例4-1-2至实施例4-1-5具有不同的碳化硅含量。温度量测所得的结果如表2-1所示。
实施例4-2-1
实施例4-2-1的热熔胶膜是先掺混热塑性橡胶与乙烯醋酸乙烯酯,以形成实施例4-2-1的热熔胶材,其中热塑性橡胶与乙烯醋酸乙烯酯的重量比值为2:8。然后,基于热熔胶材为100重量份时,将15重量份的碳黑混掺至热熔胶材中,即可押出制得实施例4-2-1的热熔胶膜。
然后,使用非接触式温度量测器量测热熔胶膜的温度(T i),并将热熔胶膜放置于前述的贴合设备中。接着,对热熔胶膜施加功率为1588W的微波,以微波加热实施例4-2-1所制得的热熔胶膜。经过30秒后,量测被加热后的热熔胶膜的温度(T f),并计算加热前后的温度差(ΔT)。
之后,取出热熔胶膜,并依据前述的步骤,量测多个实施例4-2-1的热熔胶膜于不同的微波时间后的温度与其温度差。所得的结果如表2-2所示。其中,微波时间分别为60秒、90秒、120秒与180秒。
实施例4-2-2至实施例4-2-4
实施例4-2-2至实施例4-2-4的热熔胶膜是使用与实施例4-2-1的热熔胶膜的制作方法相同的流程步骤,不同之处在于实施例4-2-2至实施例4-2-4的热熔胶膜的热熔胶材具有不同的组成比例与不同的碳黑添加量。温度量测所得的结果如表2-2所示。
表2-1
Figure PCTCN2018102178-appb-000002
表2-2
Figure PCTCN2018102178-appb-000003
请参照图7A,其是绘示依照本发明的实施例4-1-1至实施例4-1-5的热熔胶膜的温度差与微波时间的曲线图。于相同微波时间下,当碳化硅的添加量增加时,热熔胶膜的温度差越大。显然,随着碳化硅的添加量增加,热熔胶膜的升温速率越快。其次,请参照图7B,其是绘示依照本发明的实施例4-2-1至实施例4-2-4的热熔胶膜的温度差与微波时间的曲线图。于相同微波时间下,当热熔胶材的组成相同,且碳黑的添加量越多时,热熔胶膜的温度差越大。再者,当碳黑的添加量相同时,若热塑性橡胶的含量越高时,热熔胶膜的温度差越小。因此,当热塑性材料于热熔胶材的含量越多时,热熔胶膜不易被加热。然而,相较于碳黑的加热效果,热塑性材料对于热熔胶膜的加热速率的影响较小。
因此,热熔胶膜的微波吸收材可有效加热热熔胶材,而使得热熔胶膜因温度变化具有粘着特性。其中,随着微波吸收材的含量增加,热熔胶膜的升温速率越快,而可更有效地加热至目标温度,进而降低加热贴合的能源成本。另外,微波吸收材的加热效果是大于热熔胶材的组成对于升温速率的影响,故热熔胶膜中的微波吸收材可适用于不同组成的热熔胶材,而具有更广泛的应用领域。
依据前述的说明可知,本发明的中底材料组成物包含可回收材料,故所制得的中底材料是全可回收的,而可降低对环境的冲击。其次,本发明的中底材料组成物可藉由发泡制程有效地来制作中底材料。其中,藉由调整中底材料组成物中的乙烯醋酸乙烯酯的含量,二氧化碳可较易渗入所制得的热塑性弹性体中,而可有效地发泡,进而改善所制得的中底材料。
其次,本发明的大底材料藉由混合有机无机混成材料至热塑性材料中,而可改善所制得的大底材料的机械性质。同样地,本发明的大底材料组成物包含可回收材料,故所制得的大底材料亦是全可回收的。
再者,本发明的热熔胶膜组成物包含微波吸收材,故可有效吸收微波能量,并转化为热能,而可加热热熔胶膜,进而提升热熔胶膜的粘着力。因此,本发明所制得的热熔胶膜可藉由导入微波的方式来加热,而可用以粘合。
据此,前述本发明所制得的中底材料与大底材料可藉由热熔胶膜粘合,而无需涂刷习知粘合鞋材所用的糊剂,因此可有效提升鞋底的贴合效率。
另外,本发明的贴合设备可有效地加热热熔胶膜,而可贴合中底与大底,进而制得鞋底。其中,藉由贴合设备的配置,导入贴合设备的腔体的微波可有 效地被热熔胶膜的微波吸收材所吸收,而转变为热能,进而提升热熔胶膜的粘着力。
综上所述,本发明的中底、大底与热熔胶膜均是可全回收的,而可提升资源的再利用性,且藉由贴合设备,热熔胶膜可有效且快速地粘合中底与大底,而可大幅提升鞋底的制作效率。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,在本发明所属技术领域中任何具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (36)

  1. 一种中底材料组成物,包含:
    混掺混合物,包含:
    弹性体,包含乙烯醋酸乙烯酯,其中该弹性体的乙酸乙烯基团的含量为18%至40%;以及
    热塑性高分子,包含烯烃类高分子;
    交联剂,包含硅烷化合物及/或硅氧烷化合物;以及
    催化剂。
  2. 如权利要求1所述的中底材料组成物,其中该交联剂与该乙酸乙烯基团的摩尔比为1:1至1:8。
  3. 如权利要求1所述的中底材料组成物,其中该乙烯醋酸乙烯酯更包含粉状乙烯醋酸乙烯酯。
  4. 如权利要求3所述的中底材料组成物,其中基于该乙烯醋酸乙烯酯的使用量为100重量份,该粉状乙烯醋酸乙烯酯的含量为20重量份至40重量份。
  5. 如权利要求1所述的中底材料组成物,其中该热塑性高分子包含高密度聚乙烯、低密度聚乙烯、聚丙烯及/或聚苯乙烯。
  6. 如权利要求1所述的中底材料组成物,其中该热塑性高分子的熔融指数为0.3至15。
  7. 如权利要求1所述的中底材料组成物,其中基于该混掺混合物的使用量为100重量份,该弹性体的使用量为50重量份至80重量份,且该热塑性高分子的使用量为20重量份至50重量份。
  8. 如权利要求7所述的中底材料组成物,其中基于该混掺混合物的使用量为100重量份,该交联剂的使用量为4重量份至10重量份,且该催化剂的使用量为0.1重量份至0.7重量份。
  9. 一种中底材料的制作方法,包含:
    提供混合物,其中该混合物包含:
    弹性体,包含乙烯醋酸乙烯酯,其中该弹性体的乙酸乙烯基团的含量为18%至40%;以及
    热塑性高分子,包含烯烃类高分子,且
    其中该弹性体的使用量大于或等于该热塑性高分子的使用量;
    对该混合物进行熔炼制程,以形成混掺混合物,其中该弹性体是连续相,且该热塑性高分子是分散于该连续相中的不连续相;
    加入交联剂与催化剂至该混掺混合物中,并进行交联反应,以形成热塑性弹性体,于该热塑性弹性体中,该热塑性高分子是连续相,且该弹性体是分散于该连续相中的不连续相,其中该交联剂包含硅烷化合物及/或硅氧烷化合物;以及
    对该热塑性弹性体进行发泡制程,以形成该中底材料。
  10. 如权利要求9所述的中底材料的制作方法,其中该交联剂与该乙酸乙烯基团的摩尔比为1:1至1:8。
  11. 如权利要求9所述的中底材料的制作方法,进行该交联反应前,该制作方法更包含:
    混合该交联剂与粉状乙烯醋酸乙烯酯。
  12. 如权利要求11所述的中底材料的制作方法,其中基于该乙烯醋酸乙烯酯与该粉状乙烯醋酸乙烯酯的使用量为100重量份,该粉状乙烯醋酸乙烯酯的含量为20重量份至40重量份。
  13. 如权利要求9所述的中底材料的制作方法,其中该发泡制程的温度为50℃至120℃。
  14. 如权利要求9所述的中底材料的制作方法,其中基于该混合物的使用量为100重量份,该弹性体的使用量为50重量份至80重量份,且该热塑性高分子的使用量为20重量份至50重量份。
  15. 如权利要求14所述的中底材料的制作方法,其中基于该混合物的使用量为100重量份,该交联剂的使用量为4重量份至10重量份,且该催化剂的使用量为0.1重量份至0.7重量份。
  16. 一种大底材料组成物,由下述成份所组成:
    热塑性材料,包含热塑性聚氨酯及/或热塑性橡胶;以及
    有机无机混成材料,包含:
    改质剂,包含聚酰胺、十二烷基硫酸钠及/或聚丙烯接枝马来酸酐;以及
    无机粘土。
  17. 如权利要求16所述的大底材料组成物,其中该热塑性材料是插层于该无机粘土中。
  18. 如权利要求16所述的大底材料组成物,其中基于该大底材料组成物的使用量为100重量份,该热塑性材料的使用量为70重量份至99.99重量份,且该有机无机混成材料的使用量为0.01重量份至30重量份。
  19. 一种大底材料组成物,包含:
    混掺混合物,包含:
    热塑性材料,包含聚氨酯材料;以及
    弹性体,包含一天然橡胶;以及
    交联剂,包含过氧化二异丙苯或硫。
  20. 如权利要求19所述的大底材料组成物,其中该聚氨酯材料包含热塑性聚氨酯及/或聚氨酯。
  21. 如权利要求19所述的大底材料组成物,其中当该交联剂为该硫时,该大底材料组成物更包含促进剂。
  22. 如权利要求19所述的大底材料组成物,其中基于该混掺混合物的使用量为100重量份,该热塑性材料的使用量为30重量份至50重量份,该弹性体的使用量为50重量份至70重量份,且基于该弹性体的使用量为100重量份,该交联剂的使用量是大于0重量份且小于或等于2重量份。
  23. 如权利要求22所述的大底材料组成物,其中基于该弹性体的使用量为100重量份,该交联剂的使用量是0.5重量份至2重量份。
  24. 一种热熔胶膜组成物,包含:
    热熔胶材,包含:
    乙烯醋酸乙烯酯;以及
    热塑性材料,包含热塑性聚氨酯及/或热塑性橡胶;以及
    微波吸收材,均匀分散于该热熔胶材中。
  25. 如权利要求24所述的热熔胶膜组成物,其中该微波吸收材包含碳黑、碳化硅、金属氧化物、碳纤维及/或无机粘土。
  26. 如权利要求24所述的热熔胶膜组成物,其中基于该热熔胶材的使用量为100重量份,该乙烯醋酸乙烯酯的使用量是大于或等于60重量份且小于或等于100重量份,该热塑性材料的使用量为大于0重量份且小于或等于40重量份,且该微波吸收材的使用量是5重量份至40重量份。
  27. 一种贴合设备,包含:
    腔体,具有至少一微波入口及一前舱门,其中该至少一微波入口设于该腔体的两侧壁上;
    至少一微波发射源,分别设置于该至少一微波入口,其中该至少一微波发射源是配置以分别经由该至少一微波入口导入微波至该腔体中;以及
    压合单元,设于该腔体中。
  28. 如权利要求27所述的贴合设备,其中该至少一微波入口的每一者不彼此对准。
  29. 如权利要求27所述的贴合设备,其中该至少一微波入口的每一者被聚丙烯板覆盖。
  30. 如权利要求27所述的贴合设备,其中该腔体的后壁是相对于该前舱门,该后壁设有排气口,且该排气口连接抽气装置。
  31. 如权利要求30所述的贴合设备,其中该排气口被金属网板覆盖。
  32. 如权利要求27所述的贴合设备,其中该腔体更包含至少一通气孔,该至少一通气孔设于该些侧壁上,且该至少一通气孔的孔径是小于3毫米。
  33. 如权利要求27所述的贴合设备,其中该压合单元具有上压板及下压板,且该上压板及该下压板的至少一者设有油压元件及/或气压元件。
  34. 如权利要求27项所述的贴合设备,更包含:
    至少一均匀化单元,设于该些侧壁的内壁上。
  35. 如权利要求34所述的贴合设备,其中该至少一均匀化单元邻设于该至少一微波入口。
  36. 一种鞋底,包含:
    中底,藉由如权利要求9至15项中的任一项所述的中底的制作方法所制得;
    大底,藉由如权利要求16至23项中的任一项所述的大底材料组成物所形成;以及
    热熔胶膜,藉由如权利要求24至26项中的任一项所述的热熔胶膜组成物所形成,其中该热熔胶膜直接粘合该中底及该大底,且位于该中底及该大底之间。
PCT/CN2018/102178 2018-02-13 2018-08-24 中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底 WO2019157805A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
TW107140644A TWI691538B (zh) 2018-02-13 2018-11-15 中底材料組成物與中底材料之製作方法及鞋底
US16/200,615 US11278083B2 (en) 2018-02-13 2018-11-26 Midsole material composition, method for producing midsole material and shoe sole
CN201811417205.4A CN110157082B (zh) 2018-02-13 2018-11-26 中底材料组合物与中底材料的制作方法及鞋底
TW107146222A TWI783100B (zh) 2018-02-13 2018-12-20 熱熔膠膜組成物、鞋底與其製作方法
CN201910779100.1A CN110856563B (zh) 2018-02-13 2019-08-22 热熔胶膜组成物与鞋底的制作方法
EP19193441.3A EP3613306A1 (en) 2018-02-13 2019-08-23 Composition of hot-melt adhesive film and method for producing shoe sole
US16/550,276 US11779079B2 (en) 2018-02-13 2019-08-25 Composition of hot-melt adhesive film and method for producing shoe sole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862629711P 2018-02-13 2018-02-13
US62/629,711 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019157805A1 true WO2019157805A1 (zh) 2019-08-22

Family

ID=67619045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102178 WO2019157805A1 (zh) 2018-02-13 2018-08-24 中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底

Country Status (5)

Country Link
US (2) US11278083B2 (zh)
EP (1) EP3613306A1 (zh)
CN (2) CN110157082B (zh)
TW (2) TWI691538B (zh)
WO (1) WO2019157805A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045815A (zh) * 2019-12-27 2021-06-29 陈志勇 鞋底材料组成物、鞋底材料与其制作方法
CN111534081B (zh) * 2020-06-02 2021-12-24 安踏(中国)有限公司 一种具有自然透光性的鞋中底材料及其制备方法
CN112143391A (zh) * 2020-09-14 2020-12-29 东莞市汇齐新材料有限公司 一种适用模压中底免刷胶的胶膜
IT202100019103A1 (it) * 2021-07-20 2023-01-20 Rubbermac It S R L Uso di un materiale per realizzare un film per componente di suola di calzatura, film per componente di suola di calzatura, componente di suola di calzatura e procedimento per la sua realizzazione
TWI820764B (zh) * 2021-11-12 2023-11-01 財團法人鞋類暨運動休閒科技研發中心 具高耐磨與止滑效果的熱塑性彈性複合發泡材料及其應用
CN114933862A (zh) * 2022-04-24 2022-08-23 广东汇齐新材料有限公司 一种复合鞋底用热熔胶膜及其制备方法
CN115073773A (zh) * 2022-07-15 2022-09-20 黎明职业大学 一种eva材料的制备方法及eva材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093942A1 (en) * 2006-12-21 2010-04-15 Dow Global Technlogies Inc. Functionalized olefin polymers, compositions and articles prepared therefrom, and method of making the same
CN104559843A (zh) * 2014-12-31 2015-04-29 广州鹿山新材料股份有限公司 一种橡胶/发泡eva复合鞋底粘接用热熔胶膜及其制备方法
CN105801998A (zh) * 2016-04-12 2016-07-27 安踏(中国)有限公司 一种热塑性聚氨酯复合发泡材料及其制备方法
CN107245183A (zh) * 2017-06-28 2017-10-13 安踏(中国)有限公司 一种用于制备运动鞋底用复合发泡材料的组合物及制备方法
CN107411239A (zh) * 2017-09-15 2017-12-01 信泰(福建)科技有限公司 一种鞋材热贴合工艺、鞋材热贴合设备及其生产线

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3930352A1 (de) * 1989-09-12 1991-03-21 Renia Gmbh Verfahren, vorrichtung und klebstoff zum verkleben von schuhteilen, insbesondere bei der schuhreparatur
US5301847A (en) * 1991-01-10 1994-04-12 Amos Fehr Paste pump with an adjustable stroke piston
AU691203B2 (en) * 1993-11-10 1998-05-14 Minnesota Mining And Manufacturing Company Melt-flowable materials and method of sealing surfaces
US6379497B1 (en) * 1996-09-20 2002-04-30 Fort James Corporation Bulk enhanced paperboard and shaped products made therefrom
US6497786B1 (en) * 1997-11-06 2002-12-24 Nike, Inc. Methods and apparatus for bonding deformable materials having low deformation temperatures
US6024822A (en) * 1998-02-09 2000-02-15 Ato Findley, Inc. Method of making disposable nonwoven articles with microwave activatable hot melt adhesive
WO1999055753A1 (en) * 1998-04-27 1999-11-04 The Dow Chemical Company Cure on demand adhesives for assembling shoe soles
US6586054B2 (en) * 2001-04-24 2003-07-01 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for selectively distributing and controlling a means for impregnation of fibrous articles
US20050274455A1 (en) * 2004-06-09 2005-12-15 Extrand Charles W Electro-active adhesive systems
CN100581335C (zh) * 2006-01-20 2010-01-13 傅敏恭 氧化锌吸波材料及其制备工艺
DE102007007617A1 (de) * 2007-02-13 2008-08-14 Tesa Ag Intrinsisch erwärmbare heißschmelzklebrige Flächengebilde
US8541502B2 (en) * 2008-05-30 2013-09-24 Dow Global Technologies Llc Two/three component compatible polyolefin compounds
CN101993673A (zh) * 2009-08-27 2011-03-30 E.I.内穆尔杜邦公司 粘合剂组合物及其用途
KR101572776B1 (ko) * 2010-03-08 2015-11-27 아사히 가세이 케미칼즈 가부시키가이샤 발포체용 조성물, 그의 제조 방법 및 발포체
CN102690463A (zh) * 2012-06-19 2012-09-26 上海交通大学 乙烯醋酸乙烯酯橡胶热塑性弹性体及其制备方法
US9986787B2 (en) * 2012-06-29 2018-06-05 Nike, Inc. Induction heating apparatuses and processes for footwear manufacturing
US9277787B2 (en) * 2013-03-15 2016-03-08 Nike, Inc. Microwave bonding of EVA and rubber items
CN103522564B (zh) * 2013-09-05 2015-12-09 隆典实业股份有限公司 复合式鞋底的制法
US10377922B2 (en) * 2014-06-06 2019-08-13 The Board Of Trustees Of The University Of Illinois Composite dry adhesive and methods of making and using a composite dry adhesive
WO2016186837A1 (en) * 2015-05-20 2016-11-24 Nike Innovate C.V. Selectively applied adhesive particulate on nonmetallic substrates
TWI621409B (zh) * 2015-06-26 2018-04-21 耐克創新有限合夥公司 鞋類製造工具以及製造鞋類物品之構件的方法
EP3390475A1 (en) * 2015-12-15 2018-10-24 Dow Global Technologies, LLC Cross-linked foams made from interpolymers of ethylene/alpha-olefins
CN106117765B (zh) * 2016-06-27 2019-09-27 中国人民解放军总后勤部军需装备研究所 一种复合鞋底及其制备方法
US10827799B2 (en) * 2017-02-23 2020-11-10 Nike, Inc. Debondable adhesives and uses thereof
CN107418459A (zh) * 2017-07-24 2017-12-01 江苏和和新材料股份有限公司 一种新型热熔胶膜、制备方法及应用
CN108192529A (zh) * 2017-12-13 2018-06-22 广州艾科洛克建筑材料技术开发有限公司 一种可采用微波加热的新型热熔胶及其制备方法
CN108329850A (zh) * 2018-01-22 2018-07-27 黑天鹅智能科技(福建)有限公司 一种鞋材粘合片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100093942A1 (en) * 2006-12-21 2010-04-15 Dow Global Technlogies Inc. Functionalized olefin polymers, compositions and articles prepared therefrom, and method of making the same
CN104559843A (zh) * 2014-12-31 2015-04-29 广州鹿山新材料股份有限公司 一种橡胶/发泡eva复合鞋底粘接用热熔胶膜及其制备方法
CN105801998A (zh) * 2016-04-12 2016-07-27 安踏(中国)有限公司 一种热塑性聚氨酯复合发泡材料及其制备方法
CN107245183A (zh) * 2017-06-28 2017-10-13 安踏(中国)有限公司 一种用于制备运动鞋底用复合发泡材料的组合物及制备方法
CN107411239A (zh) * 2017-09-15 2017-12-01 信泰(福建)科技有限公司 一种鞋材热贴合工艺、鞋材热贴合设备及其生产线

Also Published As

Publication number Publication date
US11779079B2 (en) 2023-10-10
EP3613306A1 (en) 2020-02-26
TW201934701A (zh) 2019-09-01
CN110856563B (zh) 2022-06-10
US11278083B2 (en) 2022-03-22
CN110157082A (zh) 2019-08-23
CN110856563A (zh) 2020-03-03
TWI783100B (zh) 2022-11-11
CN110157082B (zh) 2023-07-07
US20200060387A1 (en) 2020-02-27
TWI691538B (zh) 2020-04-21
US20190246739A1 (en) 2019-08-15
TW201934639A (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
WO2019157805A1 (zh) 中底材料与其制作方法、大底材料、热熔胶膜、贴合设备及鞋底
JP7316408B2 (ja) 靴底、組成物、およびそれらを作製する方法
CN1320041C (zh) 交联聚烯烃系树脂泡沫薄片及其制造方法以及粘合带
JP5042390B2 (ja) レーザー接着用積層体、シューズ、及びシューズの製造方法
WO2018024191A1 (zh) 一种掺杂石墨烯的发泡材料的制备方法
US20090176045A1 (en) Molded Composite Material and Process for Production Thereof
CN102329461A (zh) 一种三元乙丙海绵橡胶及其制备方法
CN1966262A (zh) 钢板增强片
WO2010047407A1 (ja) 架橋発泡成形体の製造方法および架橋発泡成形体
CN1768105A (zh) 低光泽可热成型的地板结构
CN105873996B (zh) 可固化的聚合物组合物
CN102504415B (zh) 一种浅色微孔结构三元乙丙海绵橡胶及其制备方法
CN107849283A (zh) 物理交联的能发泡的粒子,由其制造原位发泡体和层合发泡体的方法
CN100500757C (zh) 部分交联高熔体强度聚丙烯的制备方法
CN1239585C (zh) 用于微波烹饪的成型聚丙烯树脂容器
CN1435315A (zh) 发泡聚丙烯树脂片
CN102924802A (zh) 一种poe/epdm/rec复合发泡材料及其制备方法
CN1104324C (zh) 层压板
WO1999021693A1 (fr) Procede de production d'une feuille composite expansible en resine polyolefinique et mousse composite ainsi obtenue
CN1524473A (zh) 化妆涂敷用具
CN110640960B (zh) 一种泡绵废料再利用制备泡泡绵的工艺
JPH11291425A (ja) ポリオレフィン系樹脂発泡性複合シートの製造方法および複合発泡体
CN1769350A (zh) 硅橡胶薄膜及其制造方法
CN1316453A (zh) 发泡橡胶、其制法以及含有该发泡橡胶的复合材料
KR20160017955A (ko) 복원력과 반발탄성이 우수한 신발 중창용 조성물 및 이를 이용한 신발 중창의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905948

Country of ref document: EP

Kind code of ref document: A1