WO2019156150A1 - 縦型水耕栽培システム及び縦型水耕栽培方法 - Google Patents

縦型水耕栽培システム及び縦型水耕栽培方法 Download PDF

Info

Publication number
WO2019156150A1
WO2019156150A1 PCT/JP2019/004376 JP2019004376W WO2019156150A1 WO 2019156150 A1 WO2019156150 A1 WO 2019156150A1 JP 2019004376 W JP2019004376 W JP 2019004376W WO 2019156150 A1 WO2019156150 A1 WO 2019156150A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
vertical
water
sheet
water retention
Prior art date
Application number
PCT/JP2019/004376
Other languages
English (en)
French (fr)
Inventor
勝義 長瀬
坂口 浩二
のぞみ 長島
亮 高倉
Original Assignee
グリーンリバーホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018019907A external-priority patent/JP6463525B1/ja
Application filed by グリーンリバーホールディングス株式会社 filed Critical グリーンリバーホールディングス株式会社
Priority to CN201980022028.6A priority Critical patent/CN112020301B/zh
Priority to JP2019566851A priority patent/JP6753623B2/ja
Publication of WO2019156150A1 publication Critical patent/WO2019156150A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/44Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a vertical hydroponic cultivation system and a vertical hydroponic cultivation method.
  • the vertical hydroponic cultivation system of Patent Document 1 includes a plurality of hollow hydroponic cultivation towers (vertical hydroponic cultivation cylinders) and irrigation means for supplying a nutrient solution to the medium material in the hollow hydroponic cultivation tower (nutrient supply) Means).
  • the said hollow hydroponics tower is a structure provided with the groove part (vertical direction slit or opening part) for planting the seedling of a plant in the one side
  • a medium material selected from granular medium, styrofoam, polyurethane foam, plastic mesh, rock wool, coconut fiber, wicking strip, cultivation bag and vermiculite is inserted into the hollow hydroponics tower.
  • a hollow tube filled with a medium such as a nonwoven fabric is provided in a storage tank filled with a nutrient solution. It has a structure in which a nutrient solution is supplied to a medium in which plants are planted by standing upright and ejecting air from a lower end portion of a liquid feeding tube installed in a hollow tube (see Patent Document 2).
  • the vertical hydroponic cultivation system of Patent Document 3 is a plurality of vertical hydroponic cultivation tubes suspended on the ceiling of the house or standing on the floor, and a medium accommodated in the vertical hydroponic cultivation tube so as to be removable.
  • a nutrient solution supply means for supplying the nutrient solution to the culture medium from the nutrient solution storage tank, and a nutrient solution recovery means for collecting the nutrient solution dropped from the lower part of the vertical hydroponic cultivation cylinder and collecting it in the nutrient solution storage tank
  • a vertical hydroponic cultivation system wherein the vertical hydroponic cultivation cylinder is provided with a vertical slit for planting a plant seedling on one side surface, and the medium sandwiches both sides of the water retention sheet. It is composed of breathable material.
  • a medium that is removably accommodated in a vertical hydroponic cultivation cylinder is sandwiched between a water retention sheet for planting plant seedlings and both surfaces thereof.
  • the nutrient solution is dripped onto the upper end of the water retention sheet, so that moisture is reliably supplied to the roots of plant seedlings sandwiched between the water retention sheet and the breathable material. Therefore, the plant does not wither even if a large amount of nutrient solution is not dropped on the medium with a high-power pump.
  • oxygen is reliably supplied to the roots of plant seedlings sandwiched between the water retention sheet and the breathable material, root decay of the cultivated plants can be prevented.
  • the medium has a two-part structure consisting of a water-retaining sheet and a breathable material. It has the effect that it can be widely used from excellent and inexpensive ones that can be easily supplied, and the range of choice of materials can be expanded.
  • the plants may be rubbed by the slit helicopter when pulling them in. Or, it was necessary to divide a number of people to share the work of protecting the ground and pulling in the medium.
  • a vertical hydroponic cultivation cylinder that has been cultivated a large amount of force is required to draw out a medium in which the underground portion of the plant that has enlarged during cultivation is sandwiched.
  • washing vertical hydroponic cylinders for repeated use it was difficult to wash because there were only narrow slit-shaped empty portions, and it was difficult to check whether they were washed properly.
  • the conventional technique has various problems in workability. Furthermore, in order to hook and remove with a hook or the like, if the portion where the hook is hooked is repeatedly used, it stretches or tears, and there is a problem in durability.
  • the problem to be solved by the present invention is to prevent root rot of cultivated plants and to cultivate plants efficiently by supplying a small amount of nutrient solution, or vertical hydroponics that can be cultivated with high yield
  • the object is to provide a cultivation system and a vertical hydroponics method.
  • the problem to be solved by the present invention is a series of operations such as preparatory work for cultivation such as plant seedling or seed planting, removal during cultivation period, removal after cultivation, and washing of the outer frame after removal
  • the vertical hydroponic cultivation system of the present invention is accommodated in a vertical hydroponic cultivation tube suspended on the ceiling of the house or erected on the floor, and detachable in the vertical hydroponic cultivation tube.
  • a vertical hydroponics system comprising a culture medium and a nutrient solution supply means for supplying nutrient solution to the culture medium from a nutrient solution storage tank,
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • It is configured to drop the nutrient solution from the nutrient solution supply means onto the water retention sheet, It is characterized by comprising fixing means for fixing the nourishing liquid drop outlet of the nutrient solution supply means so as to be positioned directly above the water retention sheet.
  • the vertical hydroponic cultivation system of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution.
  • a nutrient solution supply means for supplying nutrient solution to the culture medium from the storage tank, and a vertical hydroponics system comprising:
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction. With a plurality of openings, It is configured to drop the nutrient solution from the nutrient solution supply means onto the water retention sheet, The nutrient liquid drop outlet of the nutrient solution supply means touches the water retention sheet.
  • the vertical hydroponic cultivation system of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution.
  • a nutrient solution supply means for supplying nutrient solution to the culture medium from the storage tank, and a vertical hydroponics system comprising:
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retention sheet and the upper end of one breathable material.
  • the vertical hydroponic cultivation system of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution.
  • a nutrient solution supply means for supplying nutrient solution to the culture medium from the storage tank, and a vertical hydroponics system comprising:
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction. With a plurality of openings, It is configured to drop the nutrient solution from the nutrient solution supply means onto the water retention sheet,
  • the water-retaining sheet has a thickness of 2 mm or more.
  • the vertical hydroponic cultivation system of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution.
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or vertical directions for planting seedlings or seeds of plants at positions including the boundary between the water retention sheet and the breathable material in at least two directions. With a plurality of openings, It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponic cultivation system of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution.
  • a nutrient solution supply means for supplying nutrient solution to the culture medium from the storage tank, and a vertical hydroponics system comprising:
  • the medium is composed of a water-retaining sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder has at least one longitudinal slit for planting seedlings or seeds of a plant in a position including a boundary between the water retention sheet and the breathable material in at least two directions. , It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponics system of the present invention is There may be a case where a fixing means for fixing the nutrient liquid drop outlet of the nutrient solution supply means so as to be positioned right above the water retention sheet is provided.
  • the vertical hydroponics system of the present invention is There is a case where the lowering mouth of the nutrient solution supply means touches the water retaining sheet.
  • the vertical hydroponics system of the present invention is In some cases, the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retention sheet and the upper end of one of the breathable materials.
  • the vertical hydroponics system of the present invention is The thickness of the water retention sheet may be 2 mm or more.
  • the vertical hydroponics system of the present invention is The upper end of the water retention sheet may protrude from the upper surfaces of both breathable materials. Furthermore, the vertical hydroponics system of the present invention is In some cases, the upper end portion of the water retaining sheet protruding from the upper end of the breathable material is folded and placed on the upper surface of at least one of the breathable materials. Furthermore, the vertical hydroponics system of the present invention is In some cases, the folded water-retaining sheet is formed in an inclined shape that increases in thickness as it goes to the tip, and the upper surface of the folded water-retaining sheet becomes higher as it goes outward with the water-retaining sheet as the center.
  • the vertical hydroponics system of the present invention is There is a case in which an inclined member having an inclined upper surface that becomes higher toward the outside centering on the water retaining sheet may be provided on at least the upper surface of the breathable material on the folded water retaining sheet side. Furthermore, the vertical hydroponics system of the present invention is The upper surface of the breathable material on the side of the water-retaining sheet that is folded may be formed in an inclined shape that increases as it goes outward with the water-retaining sheet as the center.
  • the vertical hydroponics system of the present invention is The nutrient solution dripping from the lower part of the vertical hydroponic cultivation tube is collected and provided with nutrient solution recovery means for collecting it in the nutrient solution storage tank,
  • the nutrient solution collecting means may include a drain pan that collects the nutrient solution dropped from the lower part of the vertical hydroponic cultivation cylinder, and may be configured to circulate the nutrient solution collected in the drain pan to the nutrient solution storage tank.
  • the vertical hydroponics system of the present invention is The nutrient solution supply means includes a flow rate adjusting means for adjusting the nutrient solution supply amount to the water retention sheet, and is configured to drop the nutrient solution from the flow rate adjustment means onto the water retention sheet.
  • a water content sensor may be provided at the lower end of the water retention sheet.
  • the vertical hydroponics system of the present invention is The flow rate adjusting means may be configured by nutrient solution supply amount control means for controlling the water retention amount at the lower end of the water retention sheet by automatically controlling the electric valve with signals from the electric valve and the moisture amount sensor.
  • the vertical hydroponics system of the present invention is The flow rate adjusting means may be a manual valve.
  • the vertical hydroponics system of the present invention is A thermal heater may be provided in contact with the water retention sheet.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • the nutrient liquid drop lower port of the nutrient solution supply means is in a state of being sandwiched between the water retention sheet and the upper end portion of one breathable material.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or a vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least one direction.
  • the thickness of the water retention sheet is 2 mm or more.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • a nutrient solution supply means for supplying the nutrient solution from the storage tank to the culture medium and a vertical hydroponics method comprising:
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is one or more vertically long slits or vertical directions for planting seedlings or seeds of plants at positions including the boundary between the water retention sheet and the breathable material in at least two directions. With a plurality of openings, Plant seedlings or seeds are grown with the nutrient solution supplied to the water retention sheet by dropping the nutrient solution onto the water retention sheet from the nutrient solution supply means.
  • the vertical hydroponic cultivation method of the present invention includes a vertical hydroponic cultivation tube suspended on the ceiling of a house or standing on a floor, a medium accommodated in a vertical hydroponic cultivation tube so as to be removable, and a nutrient solution
  • a nutrient solution supply means for supplying the nutrient solution from the storage tank to the culture medium and a vertical hydroponics method comprising:
  • the medium is composed of a water retention sheet and a breathable material sandwiching at least both sides thereof,
  • the vertical hydroponic cultivation cylinder is provided with one or more vertically long slits for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material in at least two directions. Plant seedlings or seeds are grown with the nutrient solution supplied to the water retention sheet by dropping the nutrient solution onto the water retention sheet from the nutrient solution supply means.
  • the vertical hydroponics method of the present invention is There may be a case where a fixing means for fixing the nutrient liquid drop outlet of the nutrient solution supply means so as to be positioned right above the water retention sheet is provided.
  • the vertical hydroponics method of the present invention is In some cases, the nutrient solution lowering port of the nutrient solution supply means is in contact with the water retention sheet.
  • the vertical hydroponics method of the present invention is In some cases, the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retention sheet and the upper end of one of the breathable materials.
  • the vertical hydroponics method of the present invention is The thickness of the water retaining sheet may be 2 mm or more.
  • the vertical hydroponics method of the present invention is In some cases, the upper end of the water retaining sheet protrudes from the upper surfaces of both breathable materials. Furthermore, the vertical hydroponics method of the present invention is The upper end portion of the water retaining sheet protruding from the upper end of the breathable material is folded and placed on the upper surface of at least one of the breathable materials, There is a case where the nutrient solution is dropped from the nutrient solution supply means onto the water retention sheet on which the nutrient solution is folded and placed.
  • the vertical hydroponics method of the present invention is in some cases, the folded water-retaining sheet is formed in an inclined shape such that the thickness of the folded water-retaining sheet increases as it goes to the front end, and the upper surface becomes higher with the water-retaining sheet as the center. Furthermore, the vertical hydroponics method of the present invention is There is a case in which an inclined member having an inclined upper surface that becomes higher toward the outside centering on the water retaining sheet may be provided on at least the upper surface of the breathable material on the side of the water retaining sheet that is folded. Furthermore, the vertical hydroponics method of the present invention is In some cases, the upper surface of the folded breathable material on the water-retaining sheet side is formed in an inclined shape that becomes higher as it goes outward with the water-retaining sheet as the center.
  • the vertical hydroponics method of the present invention is The nutrient solution dripping from the lower part of the vertical hydroponic cultivation tube is collected and provided with nutrient solution recovery means for collecting it in the nutrient solution storage tank,
  • the nutrient solution collecting means may include a drain pan that collects the nutrient solution dropped from the lower part of the vertical hydroponic cultivation cylinder, and may be configured to circulate the nutrient solution collected in the drain pan to the nutrient solution storage tank.
  • the vertical hydroponics method of the present invention is The nutrient solution supply means is provided with a flow rate adjusting means for adjusting the nutrient solution supply amount to the water retention sheet, and is configured to drop the nutrient solution from the flow rate adjustment means onto the water retention sheet.
  • a water content sensor may be provided at the lower end of the water retention sheet.
  • the vertical hydroponics method of the present invention is The flow rate adjusting means may be configured by nutrient solution supply amount control means for controlling the water retention amount at the lower end of the water retention sheet by automatically controlling the electric valve with signals from the electric valve and the moisture amount sensor.
  • the vertical hydroponics method of the present invention is The flow rate adjusting means may be configured with a manual valve.
  • the vertical hydroponics method of the present invention is A thermal heater may be provided in contact with the water retention sheet.
  • the vertical hydroponic cultivation system of the present invention includes a vertically long medium composed of a water retaining sheet and a breathable material sandwiching at least both surfaces thereof, and one side edge of the water retaining sheet.
  • a pair of split outer frames in which one or more gaps for planting seedlings or seeds are planted between the water-retaining sheet and the breathable material in the vicinity, and the culture medium is sandwiched from both breathable materials, and both outer frames
  • the cross sections of the outer frames are substantially U-shaped or substantially semicircular surrounding the outer periphery of each breathable material leaving the gap portion, It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponic cultivation system of the present invention comprises a vertically long medium composed of a water retentive sheet and a breathable material sandwiching at least both surfaces thereof, and a water retentive sheet and a breathable part near both side edges of the water retentive sheet, respectively.
  • One or more gaps for planting seedlings or seeds of plants between the material and a pair of split outer frames sandwiching the culture medium from both sides of the breathable material, and the outer frames are detachably connected.
  • the cross sections of the outer frames are substantially U-shaped or substantially semicircular surrounding the outer periphery of each breathable material leaving the gap portion, It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponics system of the present invention is There may be a top plate portion that covers at least a part of the upper end surfaces of both outer frames. Furthermore, the vertical hydroponics system of the present invention is There is a case where the top plate is formed on an inclined surface that is inclined downward toward the facing sides of both outer frames.
  • the vertical hydroponics system described in the present invention is
  • the space for planting seedlings or seeds of plants between both outer frames may be formed in a state of being elongated in the vertical direction.
  • the vertical hydroponics system of the present invention is In order to plant plant seeds or seeds between the two outer frames, a plurality of gaps may be formed under a certain interval in the vertical direction.
  • the vertical hydroponics system of the present invention is in some cases, the connecting means has a structure in which the outer frames are detachably engaged.
  • the vertical hydroponics system of the present invention is in some cases, the connecting means is a binding band that winds at least one of the outer circumferences of the outer frames.
  • the vertical hydroponics system of the present invention is in some cases, the connecting means is a hot-melt band that winds at least one of the outer circumferences of both outer frames.
  • the vertical hydroponics system of the present invention is There may be a case where a fixing means for fixing the nutrient liquid drop outlet of the nutrient solution supply means so as to be positioned right above the water retention sheet is provided.
  • the vertical hydroponics system of the present invention is There is a case where the lowering mouth of the nutrient solution supply means touches the water retaining sheet.
  • the vertical hydroponics system of the present invention is In some cases, the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retention sheet and the upper end of one of the breathable materials.
  • the vertical hydroponics system of the present invention is The lower end portion has a nutrient solution supply opening for guiding the nutrient solution dropped from the nutrient solution supply means to the upper end portion of the water retention sheet at the upper end opening portion of the vertically long columnar body formed of both the outer frames and the culture medium connected to each other.
  • a guide member may be provided.
  • the vertical hydroponics system of the present invention is The guide member may be a funnel-type cap having a nutrient solution supply opening at the lower end for guiding the nutrient solution dropped from the nutrient solution supply means to the upper end openings of both outer frames to the upper end of the water retention sheet. .
  • the cap may include a light-shielding wall that shields the upper end side of the medium contained in both outer frames in a state in which at least a part of the side surface portion not surrounded by both outer frames is closed.
  • the vertical hydroponics system of the present invention is The upper end of the water retention sheet may protrude from the upper surfaces of both breathable materials. Furthermore, the vertical hydroponics system of the present invention is In some cases, the upper end portion of the water retaining sheet protruding from the upper end of the breathable material is folded and placed on the upper surface of at least one of the breathable materials.
  • the vertical hydroponics system of the present invention is
  • the nutrient solution supply means includes a flow rate adjusting means for adjusting the nutrient solution supply amount to the water retention sheet, and is configured to drop the nutrient solution from the flow rate adjustment means onto the water retention sheet.
  • a water content sensor may be provided at the lower end of the water retention sheet.
  • the vertical hydroponics system of the present invention is A thermal heater may be provided in contact with the water retention sheet.
  • the vertical hydroponic cultivation method of the present invention comprises a vertically long medium composed of a water retentive sheet and a breathable material sandwiching at least both surfaces thereof, and a water retentive sheet and a breathability near one side edge of the water retentive sheet.
  • One or more gaps for planting seedlings or seeds of plants between the material and a pair of split outer frames sandwiching the culture medium from both sides of the breathable material, and the outer frames are detachably connected.
  • the cross section of both outer frames is substantially U-shaped or substantially semicircular surrounding the outer periphery of each breathable material leaving the gap portion, It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponic cultivation method of the present invention comprises a vertically long medium composed of a water retentive sheet and a breathable material sandwiching at least both surfaces thereof, and a water retentive sheet and a breathability in the vicinity of both side edges of the water retentive sheet, respectively.
  • One or more gaps for planting seedlings or seeds of plants between the material and a pair of split outer frames sandwiching the culture medium from both sides of the breathable material, and the outer frames are detachably connected.
  • the cross section of both outer frames is substantially U-shaped or substantially semicircular surrounding the outer periphery of each breathable material leaving the gap portion, It is comprised so that a nutrient solution may be dripped at a water retention sheet
  • the vertical hydroponics method of the present invention is There may be a top plate portion that covers at least a part of the upper end surfaces of both outer frames. Furthermore, the vertical hydroponics method of the present invention is There is a case where the top plate is formed on an inclined surface that is inclined downward toward the facing sides of both outer frames.
  • the vertical hydroponics method of the present invention is The space for planting seedlings or seeds of plants between both outer frames may be formed in a state of being elongated in the vertical direction.
  • the vertical hydroponics method of the present invention is In order to plant plant seeds or seeds between the two outer frames, a plurality of gaps may be formed under a certain interval in the vertical direction.
  • the connecting means has a structure in which the outer frames are detachably engaged.
  • the vertical hydroponics method of the present invention is in some cases, the connecting means is a binding band that winds at least one of the outer circumferences of the outer frames.
  • the vertical hydroponics method of the present invention is in some cases, the connecting means is a hot-melt band that winds at least one of the outer circumferences of both outer frames.
  • the vertical hydroponics method of the present invention is There may be a case where a fixing means for fixing the nutrient liquid drop outlet of the nutrient solution supply means so as to be positioned right above the water retention sheet is provided.
  • the vertical hydroponics method of the present invention is There is a case where the lowering mouth of the nutrient solution supply means touches the water retaining sheet.
  • the vertical hydroponics method of the present invention is In some cases, the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retention sheet and the upper end of one of the breathable materials.
  • the vertical hydroponics method of the present invention is The lower end portion has a nutrient solution supply opening for guiding the nutrient solution dropped from the nutrient solution supply means to the upper end portion of the water retention sheet at the upper end opening portion of the vertically long columnar body formed of both the outer frames and the culture medium connected to each other.
  • a guide member may be provided.
  • the vertical hydroponics method of the present invention is The guide member may be a funnel-type cap having a nutrient solution supply opening at the lower end for guiding the nutrient solution dropped from the nutrient solution supply means to the upper end openings of both outer frames to the upper end of the water retention sheet. .
  • the cap may include a light-shielding wall that shields the upper end side of the medium contained in both outer frames in a state in which at least a part of the side surface portion not surrounded by both outer frames is blocked.
  • the vertical hydroponics method of the present invention is The upper end of the water retention sheet may protrude from the upper surfaces of both breathable materials. Furthermore, the vertical hydroponics method of the present invention is In some cases, the upper end portion of the water retaining sheet protruding from the upper end of the breathable material is folded and placed on the upper surface of at least one of the breathable materials.
  • the vertical hydroponics method of the present invention is
  • the nutrient solution supply means includes a flow rate adjusting means for adjusting the nutrient solution supply amount to the water retention sheet, and is configured to drop the nutrient solution from the flow rate adjustment means onto the water retention sheet.
  • a water content sensor may be provided at the lower end of the water retention sheet.
  • the vertical hydroponics method of the present invention is A thermal heater may be provided in contact with the water retention sheet.
  • the vertical hydroponics method of the present invention is Plant cuttings may be planted between the water-holding sheet and the water-permeable material.
  • the vertical hydroponics method of the present invention is In some cases, a plant rooted in the water-holding sheet is planted by being sandwiched between both breathable materials in a state of being attached to the water-holding sheet.
  • a medium that is detachably accommodated in a vertical hydroponic cultivation cylinder a water retention sheet for planting plant seedlings or seeds, and an aeration sandwiching both sides thereof Composed of sex material. Insert the plant seedling or seed between the water retention sheet and the breathable material, insert it into the vertical hydroponics so that the boundary part of the sandwiched water retention sheet and breathable material is included in the slit part, The plant is arranged so that the ground part can be extended outside the vertical hydroponic cultivation cylinder from the slit part.
  • a seedling or seed of a plant between the water-retaining sheet and the breathable material from the slit for a medium composed of a water-retaining sheet previously inserted in the vertical hydroponics cylinder and a breathable material sandwiching at least both sides thereof To plant. Then, by dripping the nutrient solution onto the upper end of the water retention sheet, water and oxygen are reliably supplied to the roots of the plant seedlings sandwiched between the water retention sheet and the breathable material, so that the cultivated plants wither. And root rot can be prevented.
  • a vertically long slit or a plurality of openings by providing a vertically long slit or a plurality of openings in the vertical direction for planting seedlings or seeds of a plant at a position including a boundary portion between the water retention sheet and the breathable material.
  • a place that is optimal between the strains can be freely selected, and plant seedlings or seeds can be planted between the water retention sheet and the breathable material.
  • the medium has a two-part structure consisting of a water-retaining sheet and a breathable material. Any material that is excellent and inexpensive or can be easily supplied can be used widely, and the range of selection of materials can be expanded. In addition, by selecting a material that is light in weight or hard to break, performance such as ease of use can be improved.
  • each vertical type hydroponic cultivation pipe by providing one or more vertical slits or a plurality of openings for planting seedlings or seeds of plants in at least two directions of the vertical type hydroponic cultivation pipe
  • the number of plant seedlings that can be cultivated, and therefore the production yield of plants, can be greatly increased.
  • the nutrient solution can be added to the water retention sheet without leaking in the direction of the breathable material. It can be dripped reliably. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the nutrient solution lower end of the nutrient solution supply means touch the upper end of the water retention sheet, the nutrient solution can be reliably dropped onto the water retention sheet without leaking in the direction of the breathable material. it can. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the nutrient solution lowering port of the nutrient solution supply means is sandwiched between the water retaining sheet and the upper end portion of one of the air-permeable materials, so that the nutrient solution can be reliably dropped onto the water retaining sheet.
  • the plant can be cultivated with the minimum amount of nutrient droplets.
  • a nutrient solution can be dripped more reliably to a water retention sheet
  • the plant can be cultivated with the minimum amount of nutrient droplets.
  • the upper end of the water retaining sheet that protrudes from the upper end of the breathable material is folded and placed on the upper surface of at least one of the breathable materials, so that the water retaining sheet is simply sandwiched between the breathable materials.
  • the nutrient solution can be effectively collected on the water retaining sheet without losing a part of the nutrient solution to the breathable material side. Even if the dripping position is slightly shifted from side to side, the plant can be reliably cultivated with a small amount of nutrient solution supplied.
  • the folded water-retaining sheet was folded by forming an inclined shape in which the upper surface becomes higher with the water-retaining sheet as the center increases as the thickness increases toward the tip. While preventing the nutrient solution dropped on the water retention sheet from jumping to the outside, the time remaining on the upper surface is shorter than when there is no inclination, so that the nutrient solution dropped on the water retention sheet is directed toward the breathable material. Leakage and evaporation on the upper surface are suppressed, and the nutrient solution can be used efficiently.
  • the upper surface of the folded water-retaining sheet is provided with an inclined member having an inclined upper surface that becomes higher toward the outside centering on the water-retaining sheet on the upper surface of the breathable material on the side of the folded water-retaining sheet. Prevents the nutrient solution dripped onto the inclined surface from jumping to the outside and prevents the nutrient solution dropped on the water-holding sheet from leaking to the breathable material and evaporating more efficiently.
  • the liquid can be utilized.
  • the upper surface of the breathable material on the side of the folded water retaining sheet is formed in an inclined shape that becomes higher as it goes outward with the water retaining sheet as the center, so that the upper surface of the folded water retaining sheet becomes an inclined surface,
  • the nutrient solution dripped onto the water retaining sheet is prevented from leaking to the breathable material and evaporating to more efficiently utilize the nutrient solution. Will be able to.
  • the nutrient solution collecting means includes a drain pan that collects the nutrient solution dropped from the lower part of the vertical hydroponic cultivation cylinder, and is configured to circulate the nutrient solution collected in the drain pan to the nutrient solution storage tank.
  • the nutrient solution can be used efficiently, and the cost of the nutrient solution can be reduced. In addition, there is little impact on the environment due to disposal of nutrient solution.
  • the nutrient solution supply means is provided with a flow rate adjusting means for adjusting the supply amount of the nutrient solution to the water retention sheet, and is configured to drop the nutrient solution from the flow rate adjustment means onto the water retention sheet. Adjust the water content at the lower end of the water-holding sheet so that it does not exceed the saturation level by installing a moisture sensor in the unit, and do not install a nutrient solution recovery / circulation device or install a simple object such as a tray. Is also possible. Alternatively, a system in which a very small amount of nutrient solution exceeding a small amount is circulated can be used.
  • the electric valve and the nutrient solution supply amount control unit as the flow rate adjusting unit, the electric valve can be automatically controlled and the nutrient solution amount can be automatically adjusted to an appropriate amount.
  • the electric valve can be automatically controlled and the nutrient solution amount can be automatically adjusted to an appropriate amount.
  • the temperature around the fine roots of the plants in contact with the water retention sheet can be maintained at an appropriate temperature even in winter, thereby promoting the development of fine roots and feeding.
  • An effect is obtained in that the liquid absorption rate can be greatly improved and the yield can be improved.
  • plant seedlings or seeds are planted between the water retention sheet and the breathable material in the vicinity of one side edge of the water retention sheet as the outer frame.
  • a pair of split outer frames with one or more gaps between them to sandwich the culture medium from both sides of the breathable material, and a structure in which both outer frames are detachably connected by a connecting means, has been extremely troublesome in the past. Therefore, preparation work such as planting seedlings or seeds of plants that required time and labor, and cleaning of the outer frame after harvesting plants can be easily performed without requiring time and labor.
  • by making the outer frame into a split type it is possible to reduce the volume to about half of the conventional cultivation cylinder during transportation, and there is an advantage that less space is required when storing as a stock.
  • the gap shape does not necessarily have to be continuous in the vertical direction, and it is possible to make it a closed shape other than the minimum gap for planting seedlings. As a result, it is possible to prevent light from being applied to the stems and underground parts of plants grown on the medium, and it is also possible to suppress water evaporation from the medium.
  • the plant is planted on only one conventional side surface. Compared to the case, the number of plant seedlings that can be cultivated can be doubled at the maximum, and the production yield of plants can be greatly increased.
  • the open area of the upper end opening can be greatly reduced, and dust (including mold spores) intrudes into both outer frames. Can be suppressed. Furthermore, since light can be prevented from entering the medium, generation of mold and algae into the medium can be suppressed. Moreover, since the top plate portion is formed on the slope inclined downward toward the facing sides of both outer frames, the dropped nutrient solution can be concentratedly supplied to the water retention sheet.
  • the strain interval can be adjusted flexibly according to the size of the plant to be planted.
  • the nutrient solution leaks in the direction of the air-permeable material by providing a guide member having a nutrient solution supply opening at the lower end for guiding the nutrient solution dropped from the nutrient solution supply means to the upper end of the water retention sheet. Without being able to guide reliably to the water retention sheet. This reduces the risk of dying due to less nutrient solution reaching the plant, even if the nutrient solution drop position slightly shifts to the left or right using a nutrient solution supply device with large variations in nutrient solution drop position. it can.
  • the liquid can be reliably collected on the water retaining sheet even when the drop opening part of the means for lowering the nutrient drop is positioned away from the medium so that it can be easily seen, it is easy to check whether the nutrient solution is clogged. is there. This facilitates visual check and also enables remote monitoring by linking the monitoring camera. As a result, the burden on the operator is reduced.
  • the open area of the upper end opening can be greatly reduced, and entry of dust (including mold spores) into both outer cylinders can be suppressed.
  • the cultivated plant grows higher than the upper ends of both outer cylinders, leaves and stems will enter the cultivation cylinder at harvest time etc. if it is not capped, and it will leave the insects such as spider mites It can become a breeding source or rot.
  • the invasion of leaves and stems can be suppressed, and if only the cap is removed, the leaves and stems can be easily cleaned, thus reducing the risk of pest damage. Can do.
  • since light can be prevented from entering the medium, generation of mold and algae into the medium can be suppressed. Even if it is a kind that does not cause disease to plants, if it continues to grow for a long time, the algae grows on the surface of the water retention sheet, not only the appearance impression worsens, but also the surface of the water retention sheet becomes hydrophobic and water retention capacity is reduced.
  • the funnel-shaped cap as described above enables the minimum amount of nutrients to be maintained without increasing special operations such as cleaning for removing algae and spraying chemicals even during long-term continuous cultivation. Plants can be cultivated efficiently with the amount of droplets.
  • the surface of the water-holding sheet is further covered than when only the upper surface is covered. Suppression of dust (including mold spores) and light from the surface of the water-retaining sheet can be suppressed, thereby suppressing generation of mold and algae on the medium.
  • a method that uses a cutting needle is used to transplant normal rooted plants on a floor or table, etc.
  • the water-holding sheet sandwiched between the breathable materials is outside the split mold It is easy to carry out the method of assembling the columnar body surrounded by the frame first without the plant and inserting it between the breathable material and the water retention sheet, even if the planting work is carried out by one person, it takes time. It becomes possible to carry out easily without spending.
  • cutting ears are cut out from the plants that are cultivated for harvesting, it is possible to increase the number of cultivated plants without raising a seedling space or a seedling raising period, which contributes to work reduction.
  • FIG. 1 is an enlarged cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged front view showing a main part of the culture medium of Example 1.
  • It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 1.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 2.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 3.
  • FIG. 1 is enlarged cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged front view showing a main part of the culture medium of Example 1.
  • It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 1.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 2.
  • FIG. It is a principal part expansion vertical front view which shows
  • FIG. 10 is a perspective view showing an inclined member of Example 8. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 9.
  • FIG. It is a whole explanatory view showing the vertical hydroponics system of Example 10. It is a whole explanatory view showing the vertical hydroponics system of Example 11.
  • FIG. 23 is an enlarged cross-sectional view taken along line AA in FIG.
  • FIG. It is a principal part enlarged front view which shows the culture medium of Example 14.
  • FIG. It is a perspective view which shows an outer frame.
  • It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 14.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 15.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 16.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 17.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 18.
  • FIG. It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 19.
  • FIG. 38 is a perspective view showing an outer frame of Example 26. 42 is a perspective view showing an outer frame of Example 27.
  • FIG. 38 is a perspective view showing an outer frame of Example 26.
  • Example 42 is a perspective view showing an outer frame of Example 28.
  • FIG. It is a principal part enlarged front view which shows the vertical hydroponic cultivation system of Example 29.
  • 42 is an enlarged perspective view of a main part of Example 32.
  • FIG. It It is a whole explanatory view showing the vertical hydroponic cultivation system of Example 33.
  • It is a principal part expansion vertical front view which shows the vertical hydroponic cultivation system of Example 33. 42 is an enlarged plan view showing a cap of Example 33.
  • FIG. 50 is a cross-sectional view taken along line BB in FIG. 49. It is sectional drawing in the CC line
  • wire of FIG. 42 is an enlarged plan view showing a cap of Example 34.
  • FIG. FIG. 53 is a cross-sectional view taken along the line DD of FIG. 52.
  • FIG. 36 is an enlarged longitudinal sectional view showing a cap of Example 35.
  • the vertical hydroponic cultivation system of Example 1 includes a vertical hydroponic cultivation cylinder 101, a culture medium 102, a nutrient solution storage tank 103, a nutrient solution supply means 104, and a nutrient solution.
  • a liquid recovery means 105, a plant seedling or seed 106, and a nutrient solution 107 are provided as main components.
  • the vertical hydroponic cultivation cylinder 101 is a cylinder having a square cross section in the first embodiment, and on one side thereof, a water retention sheet 121 and breathable materials 122 and 123 constituting the medium 102 described below.
  • the vertical hydroponics cylinder 101 can be created by opening the slit 111 or a plurality of openings in a shape that is easy to mold, such as a square or circular cross section. Alternatively, it is also possible to utilize an existing product such as ZIPAROW (trademark) of BrightAgrotech.
  • the medium 102 is composed of a water retention sheet 121 and breathable materials 122 and 123 sandwiching both surfaces thereof, and is inserted and accommodated in the vertical hydroponic cultivation cylinder 101 so as to be inserted and removed.
  • the nutrient solution supply means 104 includes a nutrient solution supply pump 141 and drops the nutrient solution 107 from the nutrient solution storage tank 103 to the upper end of the water retention sheet 121 via the nutrient solution supply pipe 104a.
  • the dropping rate of the nutrient solution 107 is preferably 0.05 g / second to 100 g / second. Particularly preferred is 0.1 g / second to 50 g / second. If it is less than 0.05 g / sec, even if the nutrient solution 107 is dropped on the water retention sheet 121, the water retention sheet 121 is dried by evaporation, and a sufficient amount of the nutrient solution 107 is not supplied to the plant roots.
  • the nutrient solution 107 that cannot be held in the water-retaining sheet 121 flows out onto the plant surface and wets the floor. Further, when the outflow of the liquid through the plant continues for a long time, the whole amount of the circulating nutrient solution is consumed, so that the nutrient solution 107 supplied is exhausted and the plant is withered. Further, when the nutrient solution 107 pumped up by one pump is circulated and used in the vertical hydroponic culture facility, one vertical hydroponic culture tube 101 increases as the number of the vertical hydroponic culture tubes 101 increases. The dripping speed that can be distributed to the area must be small. Therefore, when the dropping speed is set to be small, plants can be cultivated in a large number of cultivation cylinders without using a high output and expensive pump.
  • the nutrient solution recovery means 105 includes a drain pan 151 that receives the nutrient solution 107 dropped from the lower end of the water retention sheet 121 and a nutrient solution recovery circulation pump 152, and the nutrient solution 107 that has accumulated in the drain pan 151 is recovered and circulated.
  • the nutrient solution storage tank 103 is collected and circulated by the pump 152.
  • the thickness of the water retaining sheet 121 is desirably 2 mm or more. That is, as the thickness is larger, the dripping nutrient solution 107 can be reliably dropped onto the water retention sheet 121.
  • the water retention sheet 121 is not necessarily a single sheet, and a plurality of sheets may be used in a stacked manner. For example, two or more sheets having a thickness of 1 mm may be stacked and sandwiched between the breathable materials 122 and 123.
  • the upper limit of the thickness is desirably up to 80%, more preferably up to 70% of the thickness of the vertical hydroponic cultivation cylinder 101. If it becomes thicker than that, it will become heavy because there are too many nutrient solutions 107, and workability will become worse.
  • Example 1 Since the vertical hydroponics system of Example 1 is configured as described above, as shown in FIGS. 2 and 3, from the slit 111, between the water retention sheet 121 and the breathable material 122 or 123.
  • the culture medium 102 is inserted into the vertical hydroponic cultivation cylinder 101 while sandwiching a plurality of plant seedlings or seeds 106, and the nutrient solution 107 is dropped onto the upper end of the water retention sheet 121 by the nutrient solution supply pump 141. Then, the seedlings or seeds 106 grow by absorbing the nutrient solution 107 from the water retention sheet 121.
  • the medium 102 has a water retention sheet 121 and a breathable material 122, 123, and is divided into roles so that the water retention is low but the breathability is excellent and inexpensive, and the easy to supply / breathability is If it is low but excellent in water retention, inexpensive and easy to supply, it can be widely used and the range of materials can be selected.
  • a material that is light in weight or hard to break performance such as ease of use can be improved.
  • the nutrient solution 107 can be dripped more reliably to the water retention sheet 121 by setting the thickness of the water retention sheet 121 to 2 mm or more. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the nutrient solution 107 dripped from the lower part of the vertical hydroponic cultivation cylinder 101 is collected and provided with a nutrient solution collecting means 105 for collecting the nutrient solution 107 in the nutrient solution storage tank 103.
  • the nutrient solution collecting means 105 is a vertical hydroponic cultivation cylinder.
  • a drain pan 151 that collects the nutrient solution 107 dripped from the lower part of the 101 is provided, and the nutrient solution 107 collected in the drain pan 151 is circulated to the nutrient solution storage tank 103, so that the nutrient solution 107 can be efficiently used.
  • the cost for the nutrient solution 107 can be reduced.
  • the disposal of the nutrient solution 107 is less likely to place a burden on the environment.
  • the vertical hydroponic cultivation system of Example 2 includes a nutrient liquid drop lower port 104 b connected to the nutrient solution supply pipe 104 a in the nutrient solution supply means 104 and a true water retention sheet 121.
  • the point which is provided with the fixing means 108 for fixing so that it may be located on the top differs from the said Example 1.
  • the fixing means 108 is configured to fix the solution supply pipe 104a to the suspension member (wire or string) 108b.
  • the structure of this fixing means 108 is arbitrary, for example, it is arbitrary, such as fixing the dripping tube 104d directly to the vertical hydroponic cultivation cylinder 101.
  • the fixing unit 108 that fixes the nutrient liquid drop lower port 104b at the lower end of the nutrient solution supply pipe 104a in the nutrient solution supply unit 104 so as to be positioned directly above the water retention sheet 121,
  • the nutrient solution 107 can be effectively collected without loss to the water retention sheet 121 reliably. Accordingly, it is possible to use a pump having a small capacity as a pump used for supplying or circulating the nutrient solution 107, thereby reducing facility costs and running costs.
  • the vertical hydroponic cultivation system of the third embodiment has the above-described first embodiment in that the nourishing liquid drop lower port 104 b of the nutrient solution supply means 104 touches the upper end portion of the water retention sheet 121. 2 is different.
  • the nutrient solution lowering port 104b of the nutrient solution supply unit 104 is in contact with the upper end of the water retention sheet 121, so that the nutrient solution 107 is directed toward the breathable materials 122 and 123. Without being leaked, the water retaining sheet 121 can be reliably dropped. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the nutrient liquid lower port 104b of the nutrient solution supply means 104 is sandwiched between the water retention sheet 121 and the air permeable material 122, so that the nutrient solution is reliably supplied to the water retention sheet 121. Can be supplied to. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the vertical hydroponic cultivation system of Example 5 is different from the above Examples 1 to 4 in that the upper end of the water retention sheet 121 protrudes from the upper surfaces of both air-permeable materials 122 and 123. Is different.
  • the nutrient liquid lower port 104b of the nutrient solution supply unit 104 is in contact with the upper end of the water retention sheet 121, so that the nutrient solution 107 is directed toward the breathable materials 122 and 123. Without being leaked, the water retaining sheet 121 can be reliably dropped. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the vertical hydroponic cultivation system of Example 6 covers the upper end of the water retaining sheet protruding from the upper ends of the breathable materials 122 and 123 on the upper surface of at least one of the breathable materials 123.
  • the second embodiment is different from the first to fifth embodiments in that it is bent and mounted.
  • the upper end portion of the water retaining sheet protruding from the upper ends of the breathable materials 122 and 123 is simply folded and placed on the upper surface of at least one of the breathable materials 123, so that the water retaining sheet is simply used.
  • a portion of the nutrient solution 107 is not lost to the breathable materials 122 and 123 side, and the nutrient solution 107 is folded and placed through the water retention sheet 121a.
  • the water retention sheet 121 does not necessarily have to be one continuous sheet. Even if two or more water-retaining sheets 121 are brought into contact with each other, the same effect can be obtained.
  • a breathable material can be obtained by placing a water retaining sheet of a size covering the top surface of the breathable material on a water retaining sheet 121a folded and placed on the breathable material 123 on one side as shown in FIG. No matter where the nutrient solution 107 drops, the nutrient solution 107 can be guided to the vicinity of the roots of the seedlings of the plant without loss.
  • Experimental example 1 (reference example): Breathable materials 122 and 123 (material is polyethylene) having a thickness of 4.8 cm, a width of 10 cm, and a length of 150 cm are folded into two pieces in half length, with a thickness of 1 mm between them.
  • a vertical hydroponics cylinder 101 material is polyvinyl chloride
  • a vertical hydroponics cylinder 101 having a square with a side of a cross section of 10 cm and a slit 111 having a width of 2 cm at the center of the side is used.
  • Another piece (75 cm in length) sandwiched with the same felt as described above (75 cm in length) was prepared, and a total of 2 pieces were filled in a cultivation cylinder (length 150 cm).
  • Six vertical hydroponics cylinders 101 were prepared. Basil seedlings were planted on these vertical hydroponic cylinders.
  • the seedlings are planted in a 9 cm pot, and the plant height is 7-10 cm. After washing the soil from the roots with tap water, there are six (20 cm) gaps between the polyethylene and the felt (up and down breathability).
  • the basement of three basil seedlings for each material was sandwiched and inserted into the vertical hydroponic tube 101.
  • the vertical hydroponics cylinder 101 is suspended from the ceiling and passes through the center of the slit 111 of the vertical hydroponics cylinder 101 as shown in FIG.
  • the vertical hydroponics cylinder 101 and the nutrient solution supply pipe 104a are arranged so that the nutrient solution supply pipe 104a comes on a line that is divided into two rectangles.
  • a drip tube 104d is connected to each nutrient solution supply pipe 104a via a cock 104c for opening and closing and controlling the amount of nutrient solution, so that the nutrient solution 107 can be dripped from the drip tube 104d.
  • Six vertical hydroponics cylinders 101 were prepared. (The dropping position is theoretically a position where the thickness of the water-retaining sheet 121 is accurately divided into two, but as shown in FIG. 4, the thickness accuracy of the breathable materials 122 and 123, the dropping tube connected under the cock 104c. There was some blurring in the left-right direction due to the warpage of 104d.) 2.
  • Experimental Example 2 (Comparative Example): A vertical hydroponic cultivation cylinder 101 equipped with basil seedlings is prepared in the same manner as in Experimental Example 1 except that the medium 102 is sandwiched only in polyethylene without felt. The basil seedling basement was sandwiched between the two polyethylenes. Two vertical hydroponics cylinders 101 were prepared. 3. Experimental Example 3: A type hydroponic cultivation cylinder 101 equipped with the same basil seedling as in Example 1 was prepared. After suspending the above-mentioned hydroponics cylinder 101 from the ceiling, the presence or absence of blurring to the left and right is confirmed with the nutrient solution 107 dripped, and the dripping tube 104d is fixed to the suspension member 108b as shown in FIG. By doing so, the position was finely corrected.
  • Experimental Example 4 A cultivation cylinder equipped with the same basil seedling as in Example 1 was prepared. After the vertical hydroponics cylinder 101 was suspended from the ceiling, the tip of the dropping tube 104d was brought into contact with the water retention sheet 121 as shown in FIG. 5.
  • Experimental Example 5 A model hydroponic cultivation cylinder 101 equipped with the same basil seedling as in Example 1 was prepared. The dripping tube 104d connected to the bottom of the cock 104c with the nutrient solution supply pipe 104a is changed to a type having a long tip, and the vertical hydroponics cylinder 101 is suspended from the ceiling, and then shown in FIG. As described above, the tip of the dropping tube 104 d was sandwiched between the water retention sheet 121 and the breathable material 122. 6).
  • Experimental Example 6 A breathable material (material is polyethylene) having a thickness of 4.1 cm, a width of 10 cm, and a length of 150 cm is folded into two pieces with a half length, and in the meantime, the thickness is 16 mm, the width is 9 cm, and the length is 70 cm.
  • a type hydroponic cultivation cylinder 101 was prepared. As shown in FIG. 8, the vertical hydroponics cylinder 101 was suspended from the ceiling so that the nutrient solution 107 could be dropped. 7).
  • Experimental Example 7 A breathable material of the same size and material as in Example 1 was folded into two pieces in half length, and a polyester felt (water-retaining sheet) having a thickness of 1 mm, a width of 9 cm, and a length of 70 cm was interposed therebetween.
  • a hydroponic tube 101 was prepared. 8).
  • Example 8 A breathable material of the same size and material as in Example 1 was folded into two pieces in half length, and a polyester felt (water retention sheet) with a thickness of 1 mm, a width of 9 cm, and a length of 70 cm was placed between them.
  • the folded water-retaining sheet 121 a is thicker toward the tip so that the upper surface is centered on the water-retaining sheet 121. As described above, it is different from the sixth embodiment in that it is formed in an inclined shape that becomes higher as it goes outward. In Example 7, as described above, the thickness of the folded water-retaining sheet 121a is increased as it goes to the tip, so that the top surface becomes higher as it goes outward with the water-retaining sheet 121 as the center. By forming in the shape, the time spent on the upper surface of the folded water-retaining sheet 121a is shortened compared to the case where there is no inclination, so that the nutrient solution 107 can be used efficiently.
  • the vertical hydroponic cultivation system of Example 8 goes to the outer side centering on the water retaining sheet 121 on the upper surface of the breathable material 123 on the side of the water retaining sheet 121 a that is folded at least.
  • the present embodiment is different from the sixth and seventh embodiments in that it includes an inclined member 121b having an inclined upper surface that increases accordingly.
  • the inclined member 121a having the inclined upper surface that becomes higher as it goes outward with the water-retaining sheet 121 as the center on the upper surface of the breathable material 123 on the folded water-retaining sheet 121a side.
  • the upper surface of the folded water-retaining sheet 121a becomes an inclined surface, and the jumping of the nutrient solution 107 dropped on the inclined surface to the outside is prevented, and the nutrient solution 107 dropped on the water-retaining sheet 121a
  • the nutrient solution 107 can be used more efficiently by preventing leakage to the breathable material 123 and evaporation.
  • the raw material of the inclination member 121b is arbitrary, it is desirable that at least the upper surface of the inclination is made of a material having no air permeability.
  • the shape of the inclined member 121b is not limited to a substantially right triangle, but may be arbitrary as long as an inclined upper surface is formed.
  • the inclined upper surface of the inclined member 121b is not limited to a straight line, but may be a concave curved surface, for example.
  • Example 9 In the vertical hydroponic cultivation system of Example 9, as shown in FIG. 13, the upper surface of the folded breathable material 123 on the water retention sheet 121 a side becomes higher as it goes outward with the water retention sheet 121 as the center. This is different from Examples 6 to 8 above in that it is formed in a shape.
  • Example 9 as described above, the upper surface of the breathable material 123 on the side of the water-retaining sheet 121a that has been folded is formed in an inclined shape that becomes higher with the water-retaining sheet 121 as the center, and is bent.
  • the upper surface of the water-retaining sheet 121a formed as an inclined surface prevents the nutrient solution 107 dropped on the inclined surface from jumping to the outside, and the nutrient solution 107 dropped on the water-retaining sheet 121a is applied to the breathable material 123. Leaking and evaporation can be prevented and the nutrient solution 107 can be used more efficiently.
  • the nutrient solution supply unit 104 includes a flow rate adjusting unit 142 that adjusts the nutrient solution supply amount to the water retention sheet 121.
  • the nutrient solution 107 is dripped onto the water retention sheet 121 from the means 142.
  • the moisture retention sensor 109 is provided at the lower end of the water retention sheet 121, and the flow rate adjustment means 142 includes the electric valve 142a and the moisture content sensor.
  • the above-described Examples 1 to 10 are configured by the nutrient solution supply amount control means 142b that controls the water retention amount at the lower end portion of the water retention sheet 121 by automatically controlling the electric valve 142a with a signal from 109. It is different.
  • the moisture sensor 109 measures the moisture content at the lower end of the water retention sheet 121 and is provided at the lower end of the water retention sheet 121.
  • the amount of moisture measured by the moisture sensor 109 is displayed on a moisture meter 109a.
  • the flow rate adjusting means 142a adjusts the dripping amount of the nutrient solution 107 onto the water retention sheet 121.
  • the electric valve 142a and the electric valve 142a are automatically controlled by signals from the moisture amount sensor 109.
  • nutrient solution supply amount control means 142b for controlling the water retention amount at the lower end of the water retention sheet 121 so as to become saturated.
  • the drain pan 109b which receives the nutrient solution 107 dripped from the water retention sheet
  • the liquid 107 can be accommodated.
  • evaporation of the nutrient solution 107 is suppressed by accommodating the water retention material 109c in the drain pan 109b.
  • the nutrient solution supply unit 104 includes the flow rate adjusting unit 142 that adjusts the amount of nutrient solution supplied to the water retention sheet 121, and the nutrient solution 107 is retained by the flow rate adjusting unit 142. It is configured to be dripped onto the sheet 121, and the moisture content sensor 109 is provided at the lower end portion of the water retention sheet 121 so that the moisture content at the lower end portion of the water retention sheet 121 is adjusted so as not to exceed the saturation amount. It is also possible to install a simple object such as a saucer without installing a liquid recovery / circulation device. Alternatively, a system in which a very small amount of nutrient solution 107 exceeding a small amount is circulated may be used.
  • the electric valve 142a and the nutrient solution supply amount control unit 142b are provided as the flow rate adjusting unit 142, so that the electric valve 142a is automatically controlled and the nutrient solution amount can be automatically adjusted to an appropriate amount. it can. Thereby, including the case where it controls by the remote operation from the outside of a cultivation house, it can adjust automatically the amount of nutrient solution without being delayed even for sudden weather and temperature fluctuations.
  • the vertical hydroponic cultivation system of Example 11 is different from Example 10 in that a manual valve 142 c is used as the flow rate adjusting means 142.
  • a manual valve 142 c is used as the flow rate adjusting means 142.
  • Example 12 the vertical hydroponic cultivation system of Example 12 is different from Examples 1 to 12 in that a thermal heater 110 is provided in contact with the water retention sheet 121. .
  • Example 12 as described above, the temperature around the fine root of the plant that is in contact with the water retention sheet 121 is maintained at an appropriate temperature even in winter by providing the thermal heater 110 in contact with the water retention sheet 121. As a result, it is possible to promote the development of fine roots, greatly improve the nutrient solution absorption rate and lead to an increase in yield.
  • the vertical hydroponic cultivation cylinder 101 is one or more for planting seedlings or seeds 106 of plants in at least two directions.
  • This embodiment is different from the first to twelfth embodiments in that it includes a vertical slit 111 or a plurality of openings. That is, as Example 1 of Example 13, as shown in FIGS. 17 and 18, the slits 111 are respectively provided on the opposite side walls of the vertical hydroponics cylinder 101 so that the vertical hydroponics cylinder 101 Plant seedlings or seeds 106 can be planted on both sides.
  • Example 2 of this Example 13 as shown in FIGS.
  • the slits 111 are respectively provided on all four side surfaces of the vertical hydroponic cultivation cylinder 101, and the water retention sheet 121 is provided in a cross shape.
  • plant seedlings or seeds 106 can be planted on all four surfaces of the vertical hydroponic cultivation cylinder 101.
  • the breathable materials 122 and 123 are folded in two with the lower end as the center, and a cross-shaped water retention sheet 121 is sandwiched between the breathable materials 122 and 123.
  • one or more vertical slits 111 or a plurality of openings for planting plant seedlings or seeds 106 in at least two directions of the vertical hydroponic cultivation cylinder 101 are provided.
  • the vertical hydroponic cultivation cylinder 101 is provided in a state of being hung on the ceiling of the house is shown, but it may be provided in a state of being erected on the floor surface.
  • the vertical slit 111 for planting the seedling or seed 106 of the plant is provided on one side surface of the vertical hydroponic cultivation cylinder 101.
  • the vertical slits or the vertical openings are provided. You may make it provide.
  • artificial light such as LED can be used in addition to sunlight.
  • an artificial light device such as an LED is provided on the side surface of the slit 111 of the vertical hydroponics cylinder 101.
  • the vertical hydroponic cultivation system of Example 14 has a vertically long medium 1 composed of a water-retaining sheet 11 and air-permeable materials 12 and 13 sandwiching at least both surfaces thereof, In the vicinity of both side edges of the water-holding sheet 11, leaving gaps W, W that are elongated in the longitudinal direction for planting plant seedlings or seeds 8 between the water-holding sheet 11 and the breathable materials 12, 13, respectively.
  • the nutrient solution 6 is supplied from the nutrient solution supply means 5 to the water retention sheet 11. It is comprised so that may be dripped.
  • the connecting member 3 for detachably connecting the outer frames 2 and 2 in the embodiment 14, a plurality of binding bands 31 wound around the outer peripheries of the outer frames 2 and 2 are tightened. It is used.
  • the outer frames 2 and 2 are provided in a state of being hung on a hanging pipe 9a provided along a ceiling of a house or the like via a hanging member (wire or string) 9b.
  • the hanging member 9b is preferably a flexible material that can be twisted or has a structure that includes a rotatable shaft. This makes it possible to harvest the two sides from the same place, improving work efficiency.
  • the nutrient solution supply means 5 includes a nutrient solution supply pump 51 and drops the nutrient solution 6 from the nutrient solution storage tank 4 to the upper end of the water retention sheet 11 through the nutrient solution supply pipe 5a.
  • the dropping rate of the nutrient solution 6 is preferably 0.05 g / second to 100 g / second. Particularly preferred is 0.1 g / second to 50 g / second. If it is less than 0.05 g / sec, even if the nutrient solution 6 is dropped on the water retention sheet 11, the water retention sheet 11 is dried by evaporation, and a sufficient amount of the nutrient solution 6 is not supplied to the plant roots.
  • the nutrient solution 6 that cannot be held in the water-retaining sheet 11 flows out onto the plant surface and wets the floor. Further, when the outflow of the liquid through the plant lasts for a long time, the entire amount of the circulating nutrient solution is consumed, and the supplied nutrient solution 6 is depleted and the plant is withered.
  • the nutrient solution 6 pumped up by one pump is circulated and used in the vertical hydroponic culture facility, the number of outer frames 2 and 2 increases as the number of outer frames 2 and 2 increases. The dropping speed must be small. Therefore, when the dropping speed is set to be small, plants can be cultivated in a large number of cultivation cylinders without using a high output and expensive pump.
  • the nutrient solution recovery means 7 includes a drain pan 71 that receives the nutrient solution 6 dropped from the lower end of the water retention sheet 11, and a nutrient solution recovery circulation pump 72, and the nutrient solution 6 collected in the drain pan 71 is recovered and circulated.
  • the pump 72 collects and circulates it in the nutrient solution storage tank 4.
  • the thickness of the water retaining sheet 11 is desirably 2 mm or more. That is, the larger the thickness, the more reliably the dripping nutrient solution 6 can be dripped onto the water retention sheet 11.
  • seat 11 does not necessarily need to be 1 sheet
  • the upper limit of the thickness is desirably up to 80%, more preferably up to 70% of the thickness of the vertical hydroponic cultivation cylinder 1. When it becomes thicker than that, it will become heavy because there are too many nutrient solutions 6 included, and workability
  • both the outer frames 2 and 2 are located near both side edges of the water retention sheet.
  • the nutrient solution 6 is supplied to the water retention sheet 211 by the nutrient solution supply pump 51.
  • the seedling or seed 8 grows by absorbing the nutrient solution 6 from the water retention sheet 11.
  • the medium 1 is composed of the water retention sheet 11 for planting plant seedlings or seeds 8 and the breathable materials 12 and 13 sandwiching both sides thereof as described above. Then, by dripping the nutrient solution 6 onto the upper end of the water retention sheet 11, water and oxygen are reliably supplied to the roots of plant seedlings or seeds 8 sandwiched between the water retention sheet 11 and the breathable materials 12 and 13. Since it is supplied, it is possible to prevent cultivated plants from withering and root rot.
  • the medium 1 has a two-part configuration of the water-retaining sheet 21 and the breathable materials 12 and 13 to share the roles, so that the water retention is low but the breathability is excellent and inexpensive, and the easy-to-feed and breathable If it is low but excellent in water retention, inexpensive and easy to supply, it can be widely used and the range of materials can be selected. In addition, by selecting a material that is light in weight or hard to break, performance such as ease of use can be improved.
  • the connecting member 3 that connects the outer frames 2 and 2 is detachably connected between the outer frames 2 and 2 by a binding band, the two-part water-retaining sheet 11 and the air permeability are provided. Assembling of the materials 12 and 13 and parts replacement work can be performed efficiently.
  • the volume can be reduced to about half that of a conventional cultivation tube during transportation, and there is a merit that less space is required for storage as stock. Yes.
  • the nutrient solution 6 can be further dripped at the water retention sheet 11 more reliably by the thickness of the water retention sheet 11 being 2 mm or more. This makes it possible to grow plants with the minimum amount of nutrient drops required
  • the nutrient solution 6 dropped from the lower part of the water retention sheet 11 is collected, and the nutrient solution collecting means 7 for collecting the nutrient solution 6 in the nutrient solution storage tank 4 is provided.
  • the nutrient solution recovery means 7 is dripped from the lower part of the water retention sheet 11.
  • the vertical hydroponic cultivation system of Example 15 has a nourishing liquid drop lower port 5b connected to the nourishment liquid supply pipe 5a in the nourishment liquid supply means 5 so that the water retention sheet 11 is true.
  • a fixing means 10 is provided for fixing so as to be positioned above.
  • the fixing means 10 has a structure for fixing the solution supply pipe 5a to the suspension member (wire or string) 9b.
  • the structure of the fixing means 10 is arbitrary.
  • the dropping tube 5d is directly fixed to the culture medium 1 and the outer frames 2 and 2.
  • the fixing means 10 that fixes the nutrient liquid drop lower port 5b at the lower end of the nutrient solution supply pipe 5a in the nutrient solution supply means 5 so as to be positioned directly above the water retention sheet 11, It becomes possible to effectively collect the nutrient solution 6 without losing the water retaining sheet 11 reliably. Therefore, it is possible to use a pump having a small capacity as a pump used for supplying or circulating the nutrient solution 6, thereby reducing facility costs and running costs.
  • Example 16 the vertical hydroponics system of Example 16 is the same as that of Example 14 described above in that the nutrient droplet lower outlet 5 b of the nutrient solution supply means 5 touches the upper end of the water retention sheet 11. , 15 is different.
  • the nutrient solution lowering port 5b of the nutrient solution supply means 5 is in contact with the upper end of the water retention sheet 11, so that the nutrient solution 6 is directed toward the breathable materials 12 and 13. Without being leaked, the water retaining sheet 11 can be reliably dropped. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • Example 17 In the vertical hydroponic cultivation system of Example 17, as shown in FIG. 29, the nourishment liquid drop lower port 5b of the nourishment liquid supply means 5 is sandwiched between the water retention sheet 11 and the upper end portions of one air-permeable material 12. This is different from the above-described Examples 14 to 16.
  • Example 17 as described above, the nutrient solution lower port 5b of the nutrient solution supply means 5 is sandwiched between the water retention sheet 11 and the air permeable material 12, so that the nutrient solution is reliably supplied to the water retention sheet 11. Can be supplied to. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • the vertical hydroponic cultivation system of Example 18 has the above-mentioned Examples 14 to 17 in that the upper end of the water retention sheet 11 protrudes from the upper surfaces of the air-permeable materials 12 and 13. Is different.
  • the nutrient solution 6 is directed in the direction of the breathable materials 12 and 13 by bringing the nutrient droplet lower port 5b of the nutrient solution supply means 5 into contact with the upper end portion of the water retention sheet 11. Without being leaked, the water retaining sheet 11 can be reliably dropped. As a result, the plant can be cultivated with the minimum amount of nutrient droplets.
  • Example 19 In the vertical hydroponic cultivation system of Example 19, as shown in FIG. 31, the upper end portion of the water retention sheet protruding from the upper ends of the breathable materials 12 and 13 is placed on the upper surface of at least one of the breathable materials 13. This is different from the above Examples 14 to 18 in that it is bent and mounted. In Example 19, as described above, the upper end portion of the water retaining sheet protruding from the upper ends of the breathable materials 12 and 13 is simply folded and placed on the upper surface of at least one of the breathable materials 13, thereby simply retaining the water retaining sheet.
  • the water retention sheet 11 does not necessarily have to be one continuous sheet. Even when two or more water-retaining sheets 11 are brought into contact with each other, the same effect can be obtained. For example, by placing a water retaining sheet having a size covering the upper surface of the breathable material on one side bent and placed on the upper surface of the breathable material 13 as shown in FIG. No matter where the nutrient solution 6 drops, the nutrient solution 6 can be guided to the vicinity of the root of the seedling of the plant without loss.
  • a configuration as shown in FIG. 26 can be exemplified.
  • the nutrient solution is dropped on the water retention sheet only with this configuration.
  • the commercially available polyethylene was used as the breathable materials 12 and 13, it was found that the thickness was uneven. There was also a blur in the warping of the drip tube 5d. If the distance from the left end of 12 (1) to the right end of 13 (1) in FIG.
  • the folded water-retaining sheet 11 a becomes thicker as it goes to the tip, so that the upper surface is centered on the water-retaining sheet 11.
  • the thickness of the folded water-retaining sheet 11a is increased as it goes to the tip, and the upper surface of the folded water-retaining sheet 11a becomes higher as it goes outward with the water-retaining sheet 11 as the center.
  • the time spent on the upper surface of the folded water-retaining sheet 11a is shortened as compared with the case where there is no inclination, so that the nutrient solution 6 can be used efficiently.
  • Example 21 In the vertical hydroponic cultivation system of Example 21, as shown in FIGS. 33 and 34, at least the upper surface of the breathable material 13 on the side of the water-retaining sheet 11 a that is bent goes outward with the water-retaining sheet 11 as the center.
  • the present embodiment is different from the above-described Embodiments 19 and 20 in that it includes an inclined member 11b having an inclined upper surface that increases accordingly.
  • the inclined member 11a having an inclined upper surface that increases at the upper surface of the air-permeable material 13 on the side of the folded water-retaining sheet 11a with the water-retaining sheet 11 as the center.
  • the upper surface of the folded water-retaining sheet 11a becomes an inclined surface and prevents the nutrient solution 6 dropped on the inclined surface from jumping to the outside, and the nutrient solution 6 dropped on the water-retaining sheet 11a. Leakage and evaporation to the breathable material 13 can be prevented, and the nutrient solution 6 can be used more efficiently.
  • the raw material of the inclination member 11b is arbitrary, it is desirable that at least the upper surface of the inclination is made of a material having no air permeability.
  • the shape of the inclined member 11b is not limited to a substantially right triangle as long as an inclined upper surface is formed, and is arbitrary.
  • the inclined upper surface of the inclined member 11b is not limited to a straight line, but may be a concave curved surface, for example.
  • Example 22 In the vertical hydroponic cultivation system of Example 22, as shown in FIG. 35, the upper surface of the breathable material 13 on the folded water-retaining sheet 11 a side becomes higher as it goes outward with the water-retaining sheet 11 as the center. This is different from the above-described Examples 19 to 21 in that it is formed in a shape.
  • the upper surface of the folded breathable material 13 on the side of the water-retaining sheet 11a is formed in an inclined shape that becomes higher with the water-retaining sheet 11 as the center, and is bent.
  • the upper surface of the water-retaining sheet 11a is an inclined surface, and prevents the nutrient solution 6 dropped on the inclined surface from jumping to the outside, and the nutrient solution 6 dropped on the water-retaining sheet 11a is applied to the breathable material 13.
  • the nutrient solution 6 can be used more efficiently by preventing leakage and evaporation.
  • the nutrient solution supply means 5 includes a flow rate adjusting means 52 for adjusting the nutrient solution supply amount to the water retention sheet 11, and the flow rate adjustment is performed.
  • the nutrient solution 6 is dripped onto the water retention sheet 11 from the means 52, the moisture content sensor 14 is provided at the lower end of the water retention sheet 11, and the flow rate adjustment means 52 includes the electric valve 52 a and the moisture content sensor.
  • the above Examples 14 to 22 are configured by a nutrient solution supply amount control means 52b for controlling the water retention amount at the lower end portion of the water retention sheet 11 by automatically controlling the electric valve 52a with a signal from 14. It is different.
  • the water content sensor 14 measures the water content at the lower end of the water retention sheet 11 and is provided at the lower end of the water retention sheet 11. The amount of moisture measured by the moisture amount sensor 14 is displayed on the moisture meter 14a.
  • the flow rate adjusting means 52 adjusts the dripping amount of the nutrient solution 6 onto the water retention sheet 11.
  • the electric valve 52 a and the electric valve 52 a are automatically controlled by signals from the moisture sensor 14.
  • nutrient solution supply amount control means 52b for controlling the water retention amount at the lower end of the water retention sheet 11 so as to become saturated.
  • the drain pan 14b which receives the nutrient solution 6 dripped from the water retention sheet
  • seat 11 exceeds a saturated state Liquid 6 can be accommodated.
  • evaporation of the nutrient solution 6 is suppressed by accommodating the water retaining material 14c in the drain pan 14b.
  • the nutrient solution supply means 5 is provided with the flow rate adjusting means 52 for adjusting the nutrient solution supply amount to the water retention sheet 11, and the nutrient solution 6 is retained by the flow rate adjusting means 52. It is comprised so that it may be dripped at the sheet
  • the electric valve 52a by providing the electric valve 52a and the nutrient solution supply amount control unit 52b as the flow rate adjusting unit 52, the electric valve 52a can be automatically controlled to automatically adjust the nutrient solution amount to an appropriate amount. it can. Thereby, including the case where it controls by the remote operation from the outside of a cultivation house, it can adjust automatically the amount of nutrient solution without being delayed even for sudden weather and temperature fluctuations.
  • the vertical hydroponic cultivation system of Example 24 differs from Example 23 in that a manual valve 52c is used as the flow rate adjusting means 52 as shown in FIG.
  • a manual valve 52c is used as the flow rate adjusting means 52 as shown in FIG.
  • Example 25 As shown in FIG. 38, the vertical hydroponic cultivation system of Example 25 is different from the above Examples 14 to 24 in that the thermal heater 10 is provided in contact with the water retention sheet 21. .
  • the temperature around the fine root of the plant that is in contact with the water retention sheet 11 is maintained at an appropriate temperature by providing the thermal heater 15 in contact with the water retention sheet 11 as described above. As a result, it is possible to promote the development of fine roots, greatly improve the nutrient solution absorption rate and lead to an increase in yield.
  • the vertical hydroponic cultivation system of Example 26 is different from Examples 14 to 25 in that it includes a top plate portion 21 that covers the upper end surfaces of the outer frames 2 and 2. It is a thing. Therefore, in this Example 26, while preventing intrusion of dust into both the outer frames 2 and 2, the sunlight is blocked, thereby suppressing the generation of algae and mold in the culture medium 1. .
  • the top plate portion 21 is formed on a slope inclined downward toward the facing sides of both outer frames 2 and 2. This is different from the above Examples 14 to 26. Therefore, in this Example 27, if the water retention sheet is disposed at a position where it contacts any one of the inclined surfaces, the nutrient solution 6 can be reliably placed on the water retaining cloth even if the nutrient solution 6 drops on any part of the inclined surface. To be able to supply intensively.
  • both outer frames 2 and 2 are substantially semicircular in cross section, and the upper and lower ends of both outer frames 2 and 2 are This is different from the above Examples 14 to 27 in that a part is brought into contact with each other.
  • the gaps W, W are below a certain distance in the vertical direction in order to plant plant seeds or seeds 8 between the outer frames 2 and 2. This is different from the above Examples 14 to 28 in that a plurality of them are formed.
  • a system having a series of vertical slits as shown in Examples 14 to 28 or a vertically long opening into which two or more seedlings enter can be provided in advance as in Example 29 and the system of Patent Document 2.
  • a series of vertical slits is particularly excellent in that it can flexibly cope with the number of seedlings and the strain.
  • the vertical hydroponic cultivation system of Example 30 is different from the above Examples 14 to 29 in that the connecting means 3 has a structure in which the outer frames 2 and 2 are detachably engaged. Is different. That is, in the embodiment 30, the engaging claws 32 and 33 that mesh with each other are provided at both ends of both the outer frames 2 and 2, and the engaging state between the engaging claws 32 and 33 is maintained. . In addition, although the location and the number of both engaging claws 32 and 33 are arbitrary, it is desirable to provide at least near the upper and lower ends of the outer frames 2 and 2. Therefore, in the connecting means 3 of the embodiment 30, the detachment operation between the outer frames 2 and 2 can be easily performed.
  • Example 31 In the vertical hydroponic cultivation system of Example 31, the gap W between the split outer frames 2 and 2 is formed only in the vicinity of one side edge of the water retaining sheet 11 as shown in FIG. However, this is different from Examples 14-30. Therefore, in Example 31, the same effects as in Examples 14 to 30 can be obtained except that the amount of plant cultivation is small.
  • Example 31 A comparative experiment was conducted between the cultivation system corresponding to Example 31 and the cultivation system corresponding to Japanese Patent Application Laid-Open No. 2018-113927.
  • the cultivation system corresponding to Japanese Patent Application Laid-Open No. 2018-1113927 is different from Example 31 in that the finished shape is the same as that shown in FIG. 44, but is an integrated tube with a slit that cannot be divided into two pieces.
  • Sample A was prepared as a cultivation system corresponding to Japanese Patent Application Laid-Open No. 2018-1193927 and Sample B was prepared as a cultivation system corresponding to Example 31 of the present application by the following method.
  • Sample preparation method (1) Prepare a split-type vertical hydroponic cylinder (material is polyvinyl chloride) that has a 10 cm square on one side, a 1 cm wide slit (gap) on one side, and a length of 150 cm did.
  • a breathable material (polyethylene) with a thickness of 4.8 cm, a width of 10 cm, and a length of 150 cm is folded into two pieces in half, and a polyester felt (water-retaining sheet) with a thickness of 1 mm, a width of 9 cm, and a length of 70 cm in between. ) was placed between the breathable material and the water-retaining material, and the basil seedlings were opened by 20 cm between the strains, and 3 seedlings were sandwiched between them. Two sets of the above were prepared.
  • One side of the cross-section is a square of 10 cm, a slit (gap) having a width of 1 cm on one side, and a split-type vertical hydroponics cylinder having a length of 150 cm is filled in a state where two are stacked vertically, Sample A was designated.
  • a vertical hydroponics cylinder material is polyvinyl chloride
  • a slit (gap) having a width of 1 cm on one side and a length of 150 cm on one side and a slit (gap).
  • Were cut with an electric saw so as to divide the surface on the opposite side of the side surface having a vertical shape into two, and two substantially U-shaped outer frames were prepared.
  • Two sheets of breathable material having a thickness of 4.8 cm, a width of 10 cm, and a length of 150 cm were prepared, and one of the sheets was placed in a direction that fits inside one substantially U-shaped outer frame.
  • a polyester felt with a thickness of 1 mm, a width of 9 cm and a length of 150 cm is placed on the polyethylene sheet so that the ground part of the basil faces in the direction corresponding to the slit (gap), and the vertical direction
  • the basil seedling 6 was placed on the water-retaining sheet so that the interval was the same as that of the sample A, and another polyethylene sheet was placed from above.
  • Sample B was wound with a binding band of a different type. Comparative experiment 1: Samples A and B were cultivated for 3 months under sunlight using the apparatus shown in FIGS. 22 and 29, and then sample A was pulled out of the medium using a hook. For sample B, the binding band was loosened and removed, the outer frame was opened, and the medium was taken out. Sample A was able to be taken out by pulling the hook with both hands while holding the cultivation cylinder with the feet.
  • sample B since the binding band was only loosened, it was possible to remove the medium with only the hand. Further, the breathable material after taking out was deformed by extending the portion to which the hook was applied in Sample A. When the same three-month cultivation was repeated three times, it was confirmed by using other samples carried out under the same conditions that a medium with a tearing edge came out. In sample B, although it was used for the same number of times cultivation test, since the noticeable deterioration of the breathable material was not seen, it was confirmed that the present invention is superior in operability and durability during seedling replacement. It was. Comparative experiment 2: Samples A and B were each rubbed with a sponge containing a hyter solution to remove algae attached to the inside and washed with water.
  • the time required to wash one set of cultivation tubes was 5 minutes for sample A and 2 minutes for sample B.
  • the sample A was out of reach, it was necessary to attach a thin stick to the sponge.
  • the present invention is overwhelmingly easier to operate in terms of ease of washing.
  • the vertical hydroponic cultivation system of Example 32 has the nutrient solution 6 dropped from the nutrient solution supply means 5 at the upper end openings of the connected outer frames 2 and 2.
  • a guide member 16 having a nutrient solution supply opening 16b for guiding to the upper end of the water-retaining sheet 11 is provided at the lower end.
  • the guide member 16 serves to properly guide the nutrient solution 6 dropped from the nutrient solution supply means 5 to the upper end openings of the outer cylinders 2, 2 to the upper end portion of the water retention sheet 11.
  • the guide member 16 is provided in a state of being hooked on the front and rear edges of the upper end opening edges of the outer cylinders 2, 2, and the nutrient solution from the nutrient solution supply means 5
  • a nourishing liquid supply opening 16b is provided at the bottom of the wider upper end opening 16a for receiving 6 through an inclined surface inclined toward the center.
  • the nutrient solution supply opening 16 b is formed in a long slit shape along the longitudinal direction of the water retention sheet 11.
  • the lower end of the nutrient solution supply opening 16b for guiding the nutrient solution 7 dripped from the nutrient solution supply means 4 to the upper end opening of the vertical hydroponics cylinder 1 to the upper end portion of the water retention sheet 21 is provided.
  • the guide member 16 in the part, the nutrient solution 6 can be reliably guided to the water retention sheet 11 without leaking in the direction of the breathable material 12, 13.
  • the nutrient solution lowering position slightly shifts to the left and right using a nutrient solution supply device with a large variation in the drop position of the nutrient solution 6, there is a risk that the nutrient solution that reaches the plant will decrease and die. Can be reduced.
  • the nutrient solution 6 can be collected in the water retention sheet 11 by a method in which the tip of the nutrient solution supply pipe 5a is sandwiched between the breathable materials 12 and 13 and the moisture retention sheet 11 without using the guide member 16 described above.
  • the nutrient solution supply opening 16b portion of the guide portion 19 can be made visible, so that it is easier to check whether the nutrient solution 6 is clogged. Thereby, a plant can be efficiently cultivated with the minimum amount of nutrient drops.
  • Example 33 In the vertical hydroponic cultivation system of Example 33, as shown in FIGS. 47 to 51, the guiding member 16 dripped from the nutrient solution supply means 5 into the upper end openings of both outer frames 2 and 2. This is different from Example 32 in that a funnel-type cap having a nutrient solution supply opening 16b at the lower end for guiding the water to the upper end of the water retention sheet 11 is used.
  • Example 33 as described above, as the guide member 16, the nutrient solution 6 dropped from the nutrient solution supply means 5 to the upper end openings of the outer frames 2 and 2 is guided to the upper end portion of the water retention sheet 11.
  • the open area of the upper ends of the outer frames 2 and 2 can be greatly reduced. Prevents the entry of dust (including mold spores).
  • the cultivated plant grows higher than the upper ends of both outer frames 2 and 2, if it is not capped, leaves and stems will enter the cultivation tube at harvest time etc. It becomes a breeding source of insects such as, and it rots.
  • the invasion of leaves and stems can be suppressed, and if only the cap is removed, the leaves and stems can be easily cleaned, and the risk of pest damage can be reduced by a simple method. .
  • the vertical hydroponic cultivation system of Example 34 has a light shielding wall 16c in which the cap shields the upper end side of the culture medium 1 accommodated in the outer frames 2 and 2. Is different from Example 33 in that it is provided in a state in which at least a part of the side surface not surrounded by the outer frames 2 and 2 is closed. Therefore, in Example 34, as described above, by providing the light shielding wall 16c that shields the upper end of the culture medium 1, the adhesion of dust (including mold spores) to the surface of the water retention sheet 11 is suppressed. At the same time, the surface of the water-retaining sheet 11 is prevented from being exposed to light, whereby the generation of mold and algae on the medium 1 can be suppressed.
  • the vertical hydroponic cultivation system of Example 35 includes the lid 16d that can open and close the upper end opening of the cap at the upper end opening edge of the cap. Is different. Therefore, in the embodiment 35, the lid 16d that can be closed is provided, and when the outer frames 2 and 2 are not used, the mouth of the guide member 16 is completely closed, so that the dust (mold) (Including spores) can be prevented.
  • the vertical hydroponic cultivation cylinder 1 is provided in a state of being suspended from the ceiling of the house is shown, but it may be provided in a state of being erected on the floor surface.
  • the outer frame is exemplified by a substantially U-shaped or substantially semicircular cross section, but if the cross section surrounds the outer periphery of each breathable material leaving the gap portion.
  • the specific shape is arbitrary.
  • the binding band 31 that can be loosened is used as the connecting member 3, but magic tape (registered trademark), wire, string, tape, or the like can also be used. Further, a large amount of binding can be performed in a short time by using an automatic binding machine. In the case of binding with a hot melting band, which is also used in an automatic binding machine, it can be cut with scissors when it is removed, making it easy to divide and clean the cultivation cylinder.
  • artificial light such as LED can be used in addition to sunlight.
  • artificial light devices such as LEDs are provided on the surfaces of the gaps W, W of the main cultivation system.
  • a split outer frame sandwiches a water retaining sheet between the breathable materials It is easy to carry out the method of assembling the enclosed cultivation tube first without a plant and inserting it between the breathable material and the water retaining sheet, and even if the planting work is carried out by one person, it does not take time It becomes possible to carry out easily.
  • the ability to increase the number of cultivated plants without raising the seedling space or seedling period if the cuttings are cut from the plants cultivated for harvesting in the surrounding area also contributes to reducing the work.
  • by using a method of planting both sides of the plant attached to the water retaining sheet with a breathable material it is easy to plant even if you want to transplant in a state where the plant height is high or the underground part is developed to some extent Work can be done.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

【課題】 栽培植物の根腐れを防止し、少ない養液の供給で植物を効率的に栽培することができる縦型水耕栽培システム及び縦型水耕栽培方法の提供。 【解決手段】 ハウスの天井に吊るし又は床面に立設した縦型水耕栽培筒101と、縦型水耕栽培筒内101に抜き差し可能に収容した培地102と、養液収容タンク103から培地102に養液107を供給する養液供給手段104と、を備えた縦型水耕栽培システムであって、縦型水耕栽培筒101は、少なくともその一方向に植物の苗又は種子を植え込むための一つ以上の垂直方向のスリット111又は複数の開口部を備え、培地102は、保水性シート121と、その両面を挟み込んだ通気性素材122、123と、で構成され、落下位置のばらつきが生じる養液供給装置を用いた場合でも確実に保水性シート121に養液107が集まる手段を備えている。

Description

縦型水耕栽培システム及び縦型水耕栽培方法
 本発明は、縦型水耕栽培システム及び縦型水耕栽培方法に関する。
 従来、縦型水耕栽培システムとしては、特許文献1、2に記載の物が知られている。
 特許文献1の縦型水耕栽培システムは、複数の中空水耕栽培タワー(縦型水耕栽培筒)と、中空水耕栽培タワー内の培地材料に養液を供給する灌漑手段(養液供給手段)と、を備えている。
 また、前記中空水耕栽培タワーは、断面方形でその一側面に植物の苗を植え込むための溝部(垂直方向のスリット又は開口部)を備えた構造になっている。
 また、前記中空水耕栽培タワー内には、粒状培地、スタイロフォーム、ポリウレタン発泡体、プラスチックメッシュ、ロックウール、ココナツ繊維、ウイッキイングストリップ、栽培袋及びバーミキュライトから選択される培地材料が挿入されている(特許文献1参照)。
 特許文献2の縦型水耕栽培システムは、側面に植物を定植する多数の植え込み孔を設け、内部に不織布等の培地を充填した中空管を、養液を満たした貯液槽の中に直立させ、中空管の中に設置した送液管の下端部から空気を噴出させることにより、植物を定植した培地に養液を供給する構造になっている(特許文献2参照)。
 また、従来、縦型水耕栽培システムとしては、特許文献3に記載の物が知られている。
 特許文献3の縦型水耕栽培システムは、ハウスの天井に吊るし又は床面に立設した複数の縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、縦型水耕栽培筒の下部から滴下した養液を収集し、養液収容タンクに回収する養液回収手段と、を備えた縦型水耕栽培システムであって、前記縦型水耕栽培筒は、その一側面に植物の苗を植え込むための垂直方向のスリットを備え、前記培地は、保水性シートとその両面を挟み込んだ通気性素材とで構成されたものである。
 すなわち、特許文献3の縦型水耕栽培システムでは、上述のように、縦型水耕栽培筒内に抜き差し可能に収容した培地を、植物の苗を植え込む保水性シートと、その両面を挟み込んだ通気性素材とで構成し、養液を保水性シート上端部に滴下させるようにしたことで、保水性シートと通気性素材との間に挟み込んだ植物の苗の根に確実に水分が供給されるため、高出力なポンプで大量の養液を培地上に滴下しなくても植物が萎れずにすむ。
 また保水性シートと通気性素材との間に挟み込んだ植物の苗の根に確実に酸素も供給されるため、栽培植物の根腐れも防止することができる。
 また、培地として保水性シートと通気性素材の2部構成にし、役割分担することにより、保水性は低いが通気性に優れて安価なものや供給容易なもの・通気性は低いが保水性に優れて安価なものや供給容易なものまで広く使用でき、材料の選択の幅を広げることができる、という効果を有するものであった。
特表2017-538405号公報 特開平11-46606号公報 特開2018-113927号公報
 しかしながら、特許文献1、2の縦型水耕栽培システムのように、縦型水耕栽培筒内に1種類の培地を収容した状態では、培地内の空壁を水と空気が奪い合うことになるので、養液量によって気相比率が低くなって根腐れを生じる等、栽培を成功させることが簡単ではなく、また、水相・気体相のバランスが良いもののみに使用が限られていた。
 すなわち、培地の保水性が高く通気性が低い(培地中の気相比率が低すぎる)と、根腐れを生じ、逆に通気性が高く保水性が低い(培地中の液相比率が低すぎる)と、苗を枯らさないためには大量の養液の供給が必要で、養液の供給又は循環に用いられるポンプの容量が大きくなるため、設備費及びランニングコストが高くつくという問題点があった。
 また、逆に保水性が高く通気性が低い(培地中の液相比率が高すぎる)と、根腐れを生じる。若しくは、空気不足を回避するために特許文献2のような煩雑な装置が必要となり、設備費が高くついたり操作が不便になるという問題点があった。また、水相・気体相のバランスが良い培地(例えばロックウール)を選択したとしても、栽培筒内部に充填した培地が水を含むことにより栽培筒全体の重量が重くなり、作業性が悪いという問題点があった。
 また、さらに、特許文献3の縦型水耕栽培システムでは、保水性シートとその両面を挟み込んだ通気性素材とで構成される培地を、縦型水耕栽培筒内に抜き差し可能に収容した構造であるため、以下に述べるような問題点があった。
 すなわち、従来例の縦型水耕栽培システムでは、保水性シートと通気性素材との間に植物の苗又は種を挟んだ状態の培地を縦型水耕栽培筒内に引き入れる作業が必要であるが、その際、特に苗の地下部の大き目な植物を定植する場合、大きな力が必要であるという問題があった。
 また、植物の苗の地上部が挟む部分近くまで茂っている場合には引き入れる際にスリットのヘリで植物がこすれてしまう場合があり、それを避けるために慎重に時間をかけて引き入れ作業をしたり、複数の人員を割いて地上部保護と培地の引き入れ作業の分担作業にしなければならなかった。
 また、同様に植物の栽培が終了した縦型水耕栽培筒を片付ける際にも、栽培中に肥大した植物の地下部が挟まれた培地を引き出すには大きな力が必要である。
 また、繰り返し使用するために縦型水耕栽培筒を洗浄する際に、狭いスリット状の空き部分しかないので洗いづらく、きちんと洗えたか確認する作業も難しかった。
 以上のように、従来技術は作業性に種々の課題があった。
 さらに、フック等でひっかけて抜き差しをするために、フックをひっかける部分が
繰り返し使用すると伸びたりちぎれたりし、耐久性にも問題があった。
 本発明の解決しようとする課題は、栽培植物の根腐れを防止し、少ない養液の供給で植物を効率的に栽培することができる、又は、高収量で栽培することができる縦型水耕栽培システム及び縦型水耕栽培方法を提供することにある。
 また、本発明の解決しようとする課題は、植物の苗又は種の定植等の栽培のための準備作業から栽培期間中・栽培終了後の撤去・撤去後の外枠の洗浄作業など一連の作業を少ない労力で簡単に行なえるようにし、なおかつ、耐久性が良く長く使用でき、高いコストをかけずに実施可能な縦型水耕栽培システム及び縦型水耕栽培方法を提供することにある。
 上記課題を解決するため本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成され、
 前記養液供給手段の養液滴下口が前記保水性シートの真上に位置するように固定する固定手段を備えていることを特徴とする。
 本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成され、
 前記養液供給手段の養液滴下口が前記保水性シートに触れていることを特徴とする。
 本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成され、
 前記養液供給手段の養液滴下口が前記保水性シートと一方の通気性素材の上端部相互間に挟み込まれていることを特徴とする。
 本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成され、
 前記保水性シートの厚さが2mm以上であることを特徴とする。
 本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成されていることを特徴とする。
 本発明の縦型水耕栽培システムは、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
 前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目目分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリットを備え、
 前記養液供給手段から養液を保水性シートに滴下させるように構成されていることを特徴とする。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートの真上に位置するように固定する固定手段を備えている場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートに触れている場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートと一方の通気性素材の上端部相互間に挟み込まれている場合がある。
 また、本発明の縦型水耕栽培システムは、
 保水性シートの厚さが2mm以上である場合がある。
 また、本発明の縦型水耕栽培システムは、
 保水性シートの上端が両通気性素材の上面より突出している場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 通気性素材の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材の上面に折り曲げ載置されている場合がある。
 また、さらに、本発明の縦型水耕栽培システムは、
 折り曲げられた保水性シートは、その先端に行くにつれて肉厚が厚くなることでその上面が保水性シートを中心として外側に行くに連れて高くなる傾斜状に形成されている場合がある。
 また、さらに、本発明の縦型水耕栽培システムは、
 少なくとも折り曲げられた保水性シート側の通気性素材の上面に保水性シートを中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材を備えている場合がある。
 また、さらに、本発明の縦型水耕栽培システムは、
 折り曲げられた保水性シート側の通気性素材の上面が保水性シートを中心として外側に行くにつれて高くなる傾斜状に形成されている場合がある。
 また、本発明の縦型水耕栽培システムは、
 縦型水耕栽培筒の下部から滴下した養液を収集し、養液収容タンクに回収する養液回収手段を備え、
 養液回収手段は、縦型水耕栽培筒の下部から滴下する養液を回収するドレンパンを備え、ドレンパンに回収された養液を養液収容タンクに循環させるように構成する場合がある
 また、本発明の縦型水耕栽培システムは、
 養液供給手段には保水性シートへの養液供給量を調整する流量調整手段を備え、流量調整手段から養液を保水性シートに滴下させるように構成され、
 保水性シートの下端部には水分量センサを備えている場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 流量調整手段が、電動バルブと水分量センサからの信号で電動バルブを自動制御することにより、保水性シート下端部の保水量を制御する養液供給量制御手段で構成されている場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 流量調整手段が、手動バルブである場合がある。
 また、本発明の縦型水耕栽培システムは、
 保水性シートに接する状態で温熱ヒーターを備える場合がある。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備え、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成し、
 前記養液供給手段の養液滴下口が前記保水性シートの真上に位置するように固定する固定手段を備えることを特徴とする。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備え、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成し、
 前記養液供給手段の養液滴下口を前記保水性シートに触れさせた状態とすることを特徴とする。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備え、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成し、
 前記養液供給手段の養液滴下口を前記保水性シートと一方の通気性素材の上端部相互間に挟み込ませた状態とすることを特徴とする。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備え、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその一方向に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成し、
 前記保水性シートの厚さが2mm以上とすることを特徴とする。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培方法であって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成することを特徴とする。
 本発明の縦型水耕栽培方法は、ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培方法であって、
 前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
 前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリットを備え、
 前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成することを特徴とする。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口が保水性シートの真上に位置するように固定する固定手段を備える場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口を保水性シートに触れさせた状態とする場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口を保水性シートと一方の通気性素材の上端部相互間に挟み込ませた状態とする場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートの厚さが2mm以上とする場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートの上端が両通気性素材の上面より突出させる場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 通気性素材の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材の上面に折り曲げ載置し、
 養液供給手段から養液を折り曲げ載置した保水性シートに滴下させる場合がある。
 また、さらに、本発明の縦型水耕栽培方法は、
 折り曲げられた保水性シートは、その先端に行くにつれて肉厚を厚くすることでその上面が保水性シートを中心として外側に行くに連れて高くなる傾斜状に形成する場合がある。
 また、さらに、本発明の縦型水耕栽培方法は、
 少なくとも折り曲げられた保水性シート側の通気性素材の上面に保水性シートを中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材を備える場合がある。
 また、さらに、本発明の縦型水耕栽培方法は、
 折り曲げられた保水性シート側の通気性素材の上面を保水性シートを中心として外側に行くにつれて高くなる傾斜状に形成する場合がある。
 また、本発明の縦型水耕栽培方法は、
 縦型水耕栽培筒の下部から滴下した養液を収集し、養液収容タンクに回収する養液回収手段を備え、
 養液回収手段は、縦型水耕栽培筒の下部から滴下する養液を回収するドレンパンを備え、ドレンパンに回収された養液を養液収容タンクに循環させるように構成する場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段には保水性シートへの養液供給量を調整する流量調整手段を備え、流量調整手段から養液を保水性シートに滴下させるように構成し、
 保水性シートの下端部には水分量センサを備える場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 流量調整手段を、電動バルブと水分量センサからの信号で電動バルブを自動制御することにより、保水性シート下端部の保水量を制御する養液供給量制御手段で構成する場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 流量調整手段を、手動バルブで構成する場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートに接する状態で温熱ヒーターを備える場合がある。
 また、上記課題を解決するため本発明の縦型水耕栽培システムは、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの一側縁部付近に保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
 前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状であり、
 前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする。
 本発明の縦型水耕栽培システムは、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの両側縁部付近にそれぞれ保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
 前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状であり、
 前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする。
 また、本発明の縦型水耕栽培システムは、
 両外枠の上端面の少なくとも一部分を覆う天板部を有する場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 天板部が両外枠の対面側へ向けて下向きに傾斜する斜面に形成されている場合がある。
 また、本発明の記載の縦型水耕栽培システムは、
 両外枠相互間の植物の苗又は種を植え込むための隙間が縦方向細長く連続する状態で形成されている場合がある。
 また、本発明の縦型水耕栽培システムは、
 両外枠相互間の植物の苗又は種を植え込むため隙間が縦方向一定間隔の下に複数形成されている場合がある。
 また、本発明の縦型水耕栽培システムは、
 連結手段が両外枠間を着脱可能にかみ合わせる構造である場合がある。
 また、本発明の縦型水耕栽培システムは、
 連結手段が両外枠の外周の少なくとも1か所を巻き締める結束バンドである場合がある。
 また、本発明の縦型水耕栽培システムは、
 連結手段が両外枠の外周の少なくとも1か所を巻き締める熱溶融バンドである場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートの真上に位置するように固定する固定手段を備えている場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートに触れている場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段の養液滴下口が保水性シートと一方の通気性素材の上端部相互間に挟み込まれている場合がある。
 また、本発明の縦型水耕栽培システムは、
 連結された両外枠および培地で形成された縦長の柱状体の上端開口部に養液供給手段から滴下する養液を保水性シートの上端部に案内する養液供給開口部を下端部に有する案内部材を備えている場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 案内部材は、両外枠の上端開口部に養液供給手段から滴下する養液を保水性シートの上端部に案内する養液供給開口部を下端部に有する漏斗型のキャップである場合がある。
 また、さらに、本発明の縦型水耕栽培システムは、
 キャップは、両外枠内に収容された培地の上端部側を遮光する遮光壁を両外枠で囲まれていない側面部分の少なくとも一部分を塞ぐ状態で備えている場合がある。
 また、本発明の縦型水耕栽培システムは、
 保水性シートの上端が両通気性素材の上面より突出している場合がある。
 さらに、本発明の縦型水耕栽培システムは、
 通気性素材の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材の上面に折り曲げ載置されている場合がある。
 また、本発明の縦型水耕栽培システムは、
 養液供給手段には保水性シートへの養液供給量を調整する流量調整手段を備え、流量調整手段から養液を保水性シートに滴下させるように構成され、
 保水性シートの下端部には水分量センサを備えている場合がある。
 また、本発明の縦型水耕栽培システムは、
 保水性シートに接する状態で温熱ヒーターを備える場合がある。
 本発明の縦型水耕栽培方法は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの一側縁部付近に保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
 前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状にし、
 前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする。
 本発明の縦型水耕栽培方法は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの両側縁部付近にそれぞれ保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
 前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状にし、
 前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする。
 また、本発明の縦型水耕栽培方法は、
 両外枠の上端面の少なくとも一部分を覆う天板部を有する場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 天板部が両外枠の対面側へ向けて下向きに傾斜する斜面に形成されている場合がある。
 また、本発明の縦型水耕栽培方法は、
 両外枠相互間の植物の苗又は種を植え込むための隙間が縦方向細長く連続する状態で形成されている場合がある。
 また、本発明の縦型水耕栽培方法は、
 両外枠相互間の植物の苗又は種を植え込むため隙間が縦方向一定間隔の下に複数形成されている場合がある。
 また、本発明の縦型水耕栽培方法は、
 連結手段が両外枠間を着脱可能にかみ合わせる構造である場合がある。
 また、本発明の縦型水耕栽培方法は、
 連結手段が両外枠の外周の少なくとも1か所を巻き締める結束バンドである場合がある。
 また、本発明の縦型水耕栽培方法は、
 連結手段が両外枠の外周の少なくとも1か所を巻き締める熱溶融バンドである場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口が保水性シートの真上に位置するように固定する固定手段を備えている場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口が保水性シートに触れている場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段の養液滴下口が保水性シートと一方の通気性素材の上端部相互間に挟み込まれている場合がある。
 また、本発明の縦型水耕栽培方法は、
 連結された両外枠および培地で形成された縦長の柱状体の上端開口部に養液供給手段から滴下する養液を保水性シートの上端部に案内する養液供給開口部を下端部に有する案内部材を備える場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 案内部材は、両外枠の上端開口部に養液供給手段から滴下する養液を保水性シートの上端部に案内する養液供給開口部を下端部に有する漏斗型のキャップである場合がある。
 また、さらに、本発明の記載の縦型水耕栽培方法は、
 キャップは、両外枠内に収容された培地の上端部側を遮光する遮光壁を両外枠で囲まれていない側面部分の少なくとも一部分を塞ぐ状態で備える場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートの上端が両通気性素材の上面より突出している場合がある。
 さらに、本発明の縦型水耕栽培方法は、
 通気性素材の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材の上面に折り曲げ載置されている場合がある。
 また、本発明の縦型水耕栽培方法は、
 養液供給手段には保水性シートへの養液供給量を調整する流量調整手段を備え、流量調整手段から養液を保水性シートに滴下させるように構成され、
 保水性シートの下端部には水分量センサを備えている場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートに接する状態で温熱ヒーターを備える場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートと通水性素材との間に植物のさし穂を定植する場合がある。
 また、本発明の縦型水耕栽培方法は、
 保水性シートに根を張っている植物を保水性シートに付着した状態で両通気性素材間に挟んで定植する場合がある。
 本発明の縦型水耕栽培システムでは、上述のように、縦型水耕栽培筒内に抜き差し可能に収容した培地を、植物の苗又は種子を植え込む保水性シートと、その両面を挟み込んだ通気性素材とで構成する。
 保水性シートと通気性素材との間に植物の苗又は種子を挟み込み、挟み込んだ保水性シートと通気性素材の境目部分がスリット部分に含まれるように縦型水耕栽培筒内へ挿入し、スリット部分から植物が縦型水耕栽培筒外は地上部を伸ばしていける配置とする。若しくは縦型水耕栽培筒内に予め挿入した保水性シートと少なくともその両面を挟み込んだ通気性素材で構成される培地に対し、スリットから保水性シートと通気性素材の間に植物の苗又は種子を植え込む。そして、養液を保水性シート上端部に滴下させることで、保水性シートと通気性素材との間に挟み込んだ植物の苗の根に確実に水と酸素が供給されるため、栽培植物の枯れや根腐れを防止することができる。
 また、保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための縦長のスリット又は縦方向に複数の開口部を備えることで、縦長のスリット又は複数の開口部のうち、最適な株間になるような箇所を自由に選び、保水性シートと通気性素材との間に植物の苗又は種子を植え込むことができる。
 また、培地として保水性シートと通気性素材の2部構成にし、役割分担することにより、保水性は低いが通気性に優れて安価なものや供給容易なもの・通気性は低いが保水性に優れて安価なものや供給容易なものであれば広く使用でき、材料の選択の幅を広げることができる。
 また、重量が軽い、壊れにくいものなどを選択することにより、使い易さ等の性能を向上させることができる。
 また、縦型水耕栽培筒の少なくともその二方向以上に植物の苗又は種子を植え込むための一つ以上の垂直方向のスリット又は複数の開口部を備えることで、各縦型水耕栽培筒における栽培可能な植物苗の本数、ひいては植物の生産収量を大幅に増やすことができる。
 また、養液供給手段の養液滴下口が保水性シートの真上に位置するように固定する固定手段を備えることで、養液が通気性素材方向に漏れ出ることなしに、保水性シートに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、養液供給手段の養液滴下口が保水性シート上端部に触れた状態にすることで、養液が通気性素材方向に漏れでることなしに、保水性シートに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、養液供給手段の養液滴下口が保水性シートと一方の通気性素材の上端部相互間に挟み込まれることで、養液を保水性シートに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、保水性シートの厚さを2mm以上とすることで、養液を保水性シートにさらに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、保水性シートの上端が両通気性素材の上面より突出することで、滴下口との距離を近づけることができるため、養液を保水性シートにさらに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、通気性素材の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材の上面に折り曲げ載置することで、単に保水性シートを通気性素材に挟んだだけの場合に比べて養液の一部を通気性素材側にロスすることなく、養液を保水性シートに効果的に集めることができるので、養液の落下位置のバラツキが大きい養液供給装置を用いて養液滴下位置が多少左右にずれてしまったとしても、少ない養液の供給でも確実に植物を栽培することができる。
 また、折り曲げられた保水性シートは、その先端に行くにつれて肉厚が厚くなることでその上面が保水性シートを中心として外側に行くに連れて高くなる傾斜状に形成することにより、折り曲げられた保水性シートに滴下した養液の外部への飛び跳ねを防止すると共に、上面にとどまる時間が、傾斜が無い場合に比べ短くなることにより保水性シートに滴下された養液の通気性素材方向への漏れだしや上面での蒸発を抑制し、効率的に養液を活用することができるようになる。
 また、少なくとも折り曲げられた保水性シート側の通気性素材の上面に保水性シートを中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材を備えることで、折り曲げられた保水性シートの上面が傾斜面となり、その傾斜面に滴下した養液の外部への飛び跳ねを防止すると共に、保水性シートに滴下された養液の通気性素材への漏れや蒸発を防止してより効率的に養液を活用することができるようになる。
 また、折り曲げられた保水性シート側の通気性素材の上面が保水性シートを中心として外側に行くにつれて高くなる傾斜状に形成されることで、折り曲げられた保水性シートの上面が傾斜面となり、その傾斜面に滴下した養液の外部への飛び跳ねを防止すると共に、保水性シートに滴下された養液の通気性素材への漏れや蒸発を防止してより効率的に養液を活用することができるようになる。
 また、縦型水耕栽培筒の下部から滴下した養液を収集し、養液収容タンクに回収する養液回収手段を備え、
 前記養液回収手段は、縦型水耕栽培筒の下部から滴下する養液を回収するドレンパンを備え、該ドレンパンに回収された養液を養液収容タンクに循環させるように構成されることにより、効率的に養液を活用することができ、養液にかかるコストを低減させることができる。また、養液の廃棄で環境に負荷を与えることも少ない。
 また、養液供給手段には保水性シートへの養液供給量を調整する流量調整手段を備え、該流量調整手段から養液を保水性シートに滴下させるように構成され、保水性シートの下端部には水分量センサを備えることにより、保水性シートの下端部の水分量が飽和量を超えないように調整し、養液回収循環装置を設置しない、もしくは受け皿等簡易なものの設置で済ますことも可能である。あるいは、飽和量を少量だけ超過したごく少量の養液が循環するシステムとすることも可能である。
 また、流量調整手段として、電動バルブと養液供給量制御手段を備えることで、電動バルブを自動制御し、自動で養液量を適量に調整することができる。
 これにより、栽培ハウス外からの遠隔操作も含め、急な天気や気温の変動に対しても出遅れることなしに自動で養液量調整を行うことができる。
 また、流量調整手段として手動バルブを用いることで、手動で特に設備費をかけず養液量を適量に調整することができる。
 また、保水性シートに接する状態で温熱ヒーターを備えることで、冬場においても保水性シートに接している植物の細根の周りの温度を適温に保つことができ、これにより、細根の発達を促し養液吸収率を大幅に向上させて収量の向上に繋げることができるようになるという効果が得られる。
 また、本発明の縦型水耕栽培システムでは、上述のように、外枠として、保水性シートの一側縁部付近に保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠とし、両外枠相互間を連結手段で着脱可能に連結する構造としたことで、従来極めて面倒で時間と労力を要していた植物の苗又は種の植え付け等の準備作業及び植物収穫後の外枠の洗浄作業が時間や労力を要せず簡単に行なえるようになる。
 また、外枠を分割型にすることにより、運搬時には従来品の栽培筒の半分程度の体積にすることができ、また、在庫として収納する際にもスペースが少なくてすむというメリットが有る。
 また、特許文献3に記載されている培地を抜き差しするタイプのものでは、定植および苗撤去時にフック等で引っ張るために、繰り返し使用すると折り畳んでフックをひっかける部分が劣化し、培地がちぎれてしまい耐久性が悪いという欠点が有った。
 これに対し、本出願のように分割型外枠で培地の外周を囲うようにすると、培地を抜き差しする必要がなくなるので、培地がちぎれることがなくなり結果として栽培装置全体の持ちが向上する。
 また、抜き差しできるように培地を半分に折りたたむ必要がない、すなわち、抜きさしのための折りたたみ部分の厚みを確保する必要がなくなるので、最長では隙間の長さ全部を、植物を植えこむために使用できる。
 これにより、従来の抜き差しタイプ(外筒一体型)に比べ、よりたくさんの苗を同じ長さの1本の栽培筒に植えることができる。
 また、抜き差しが不要になることで、隙間形状は必ずしも縦方向に連続している必要はなく、苗を植える最小限の隙間以外は閉じた形にしておくことも可能になる。これにより、培地上で生育した植物の茎元や地下部に光が当たることを抑制することが可能になるとともに、培地からの水分蒸発を抑制することも可能になる。
 また、保水性シートの両側縁部付近にそれぞれ保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けることで、従来の1側面のみに植えこむ場合に比べて栽培可能な植物苗の本数を最大で2倍に、ひいては植物の生産収量も大幅に増やすことができる。
 また、両外枠の上端面を覆う天板部を備えることで、上端開口部の開放部分面積を大幅に減らすことができ、両外枠内へのほこり(カビの胞子も含まれる)の侵入を抑制することができる。またさらに培地への光の侵入を抑制することができるので、培地へのカビや藻の発生を抑制することができるようになる。
 また、天板部が両外枠の対面側へ向けて下向きに傾斜する斜面に形成されていることで、滴下した養液を保水性シートに集中的に供給することができるようになる。
 また、植物の苗又は種を植え込むための隙間が縦方向細長く連続する状態で形成されていることにより、定植する植物の大きさにあわせて柔軟に株間隔を調節することが可能になる。
 一方、隙間が縦方向一定間隔の下に複数形成されている場合は、作業に熟練している人でなくても、植えるべき間隔で素早く苗を定植することが可能となる。
 また、養液供給手段から滴下する養液を前記保水性シートの上端部に案内する養液供給開口部を下端部に有する案内部材を備えることにより、養液が通気性素材方向に漏れ出ることなしに、保水性シートに確実に案内することができる。
 これにより、養液の落下位置のバラツキが大きい養液供給装置を用いて養液滴下位置が多少左右にずれてしまったとしても、植物に到達する養液が少なくなって枯れてしまうリスクを低減できる。
 養液滴下手段の滴下口部分を目で見やすいような培地から上方に離した位置にした際も保水シートに液を確実に集めることができるので、養液の詰まりがないかの確認が容易である。
 これにより、目視でのチェックも容易になるのに加え、監視カメラを連動させることにより、遠隔での監視も可能になる。
 ひいては作業者の負担低減につながる。
 また、上端開口部に前記養液供給手段から滴下する養液を前記保水性シートの上端部に案内する養液供給開口部を下端部に有する漏斗型のキャップであることにより、両外筒の上端開口部の開放部分面積を大幅に減らすことができ、両外筒内へのほこり(カビの胞子も含まれる)の侵入を抑制することができる。
 また、両外筒上端よりも高く栽培植物が伸びた場合、キャップをしていないと収穫時等に葉や茎が栽培筒内部へ入ってしまい、それが放置されることでハダニ等の虫の繁殖源になったり腐ったりしてしまう。
 また、上述のキャップをすることにより、葉や茎の侵入を抑制できるとともに、キャップだけをとりはずせば容易に葉や茎の清掃が可能であって、病虫害のリスク低減を簡便な方法ですることができる。
 またさらに培地への光の侵入を抑制することができるので、培地へのカビや藻の発生を抑制することができるようになる。
 植物に病害性をもたない種類であっても、長期間栽培を続けていくと、藻が保水性シートの表面に繁茂することで外観の印象が悪くなるだけでなく、保水性シートの表面が疎水的になり、保水能力が低減してくる。
 これにより、滴下した養液の一部が通気性素材側にロスされ、ひいては植物への養液供給が不足していく。
 これに対し、上述のような漏斗型のキャップとすることで、長期間の連続栽培においても、藻の除去のための清掃や薬剤散布など特別な作業を増やすことなしに、必要最小限度の養液滴下量で植物を効率的に栽培することができるようになる。
 また、上端部側を遮光する遮光壁を前記分割型外枠で囲まれていない側面部分の少なくとも一部分を塞ぐ状態で備えていることにより、上面のみを覆った場合より更に保水性シート表面へのほこり(カビの胞子も含まれる)の付着を抑制するとともに保水性シート表面へ光があたることを抑制し、これにより、培地へのカビや藻の発生を抑制することができるようになる。
 また、根のついている状態の植物の代わりに、さし穂をはさむ方法とすることにより、通常の根がついた植物を移植する場合に実施する、床や台の上などで通気性素材の上にのせた保水布上に植物を並べてからもう一方の通気性素材を上にのせてはさんだ状態をつくり結束するという方法に加え、通気性素材の間に保水シートをはさんだものを分割型外枠で囲った柱状体を植物なしで先に組み立てておき、通気性素材と保水シートの間に差し込んでいくという方法も実施しやすく、定植作業を1人で実施する場合であっても時間をかけず簡単に実施することが可能になる。
 また、周囲の収穫用に栽培している植物から挿し穂を切り取れば、育苗スペースや育苗期間無しに栽培植物を増やすことが可能なことも、作業低減に寄与する。
 また、保水性シートに付着した状態の植物の両側を通気性素材ではさんで定植する方法を用いることにより、草丈が高めの状態・地下部がある程度発達した状態で移植したい場合にも簡単に定植作業を行うことができる。
実施例1の縦型水耕栽培システムを示す全体説明図である。 図1のA-A線における拡大横断断面図である。 実施例1の培地を示す要部拡大正面図である。 実施例1の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例2の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例3の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例4の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例5の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例6の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例7の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例8の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例8の傾斜部材を示す斜視図である。 実施例9の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例10の縦型水耕栽培システムを示す全体説明図である。 実施例11の縦型水耕栽培システムを示す全体説明図である。 実施例12の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例13の例1の縦型水耕栽筒を示す斜視図である。 実施例13の例1の縦型水耕栽装置を示す拡大横断面図である。 実施例13の例2の縦型水耕栽筒を示す斜視図である。 実施例13の例2の縦型水耕栽装置を示す拡大横断面図である。 実施例13の例2の通気性素材を示す斜視図である。 実施例14の縦型水耕栽培システムを示す全体説明図である。 図22のA-A線における拡大横断断面図である。 実施例14の培地を示す要部拡大正面図である。 外枠を示す斜視図である。 実施例14の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例15の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例16の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例17の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例18の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例19の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例20の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例21の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例21の傾斜部材を示す斜視図である。 実施例22の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例23の縦型水耕栽培システムを示す全体説明図である。 実施例24の縦型水耕栽培システムを示す全体説明図である。 実施例25の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例26の外枠を示す斜視図である。 実施例27の外枠を示す斜視図である。 実施例28の外枠を示す斜視図である。 実施例29の縦型水耕栽培システムを示す要部拡大正面図である。 実施例30の縦型水耕栽培システムを示す拡大横断面図である。 実施例31の縦型水耕栽培システムを示す拡大横断面図である。 実施例32の縦型水耕栽培システムを示す全体説明図である。 実施例32の要部拡大斜視図である。 実施例33の縦型水耕栽培システムを示す全体説明図である。 実施例33の縦型水耕栽培システムを示す要部拡大縦断正面図である。 実施例33のキャップを示す拡大平面図である。 図49のB-B線における断面図である。 図49のC-C線における断面図である。 実施例34のキャップを示す拡大平面図である。 図52のD-D線における断面図である。 実施例35のキャップを示す拡大縦断面図である。
 以下にこの発明の実施例を図面に基づいて説明する。
 まず、この実施例1の縦型水耕栽培システムを図面に基づいて説明する。
 この実施例1の縦型水耕栽培システムは、図1~4に示すように、縦型水耕栽培筒101と、培地102と、養液収容タンク103と、養液供給手段104と、養液回収手段105と、植物の苗又は種子106と、養液107と、を主な構成として備えている。
 さらに詳述すると、前記縦型水耕栽培筒101は、この実施例1では断面方形の筒状で、その一側面に、下記培地102を構成する保水性シート121と通気性素材122、123との境目部分を含む位置に植物の苗又は種子106を植え込むための一つ以上の縦長のスリット111を備え、ハウス等の天井に沿って備えた吊下げパイプ108aに吊下部材(針金又は紐)108bを介して吊下げた状態で備えられている。
 なお、縦型水耕栽培筒101としては、断面四角形・円形など成型加工しやすい形状のものにスリット111又は複数の開口部を開けることで作成できる。あるいは、BrightAgrotech社のZIPGROW(商標)などの既成の商品を活用することも可能である。
 前記培地102は、保水性シート121と、その両面を挟み込んだ通気性素材122、123と、で構成され、縦型水耕栽培筒101内に抜き差し可能に差込収容されている。
 前記養液供給手段104は、養液供給ポンプ141を備え、養液収容タンク103から養液供給パイプ104aを介して保水性シート121の上端部に養液107を滴下させる。
 養液107の滴下速度としては、0.05g/秒から100g/秒が好ましい。特に好ましくは、0.1g/秒から50g/秒が好ましい。
 0.05g/秒未満では、養液107が保水性シート121に滴下したとしても蒸発により保水性シート121が乾燥してしまい十分な量の養液107が植物の根に供給されない。
 また、100g/秒よりも大きい値だと、保水性シート121に保持しきれない養液107が植物表面に流れ出し床を濡らす原因になる。そしてさらに、植物をつたっての液の流出が長時間続いた場合は、循環養液が全量消費されてしまい、ひいては供給される養液107が枯渇し、植物が枯れてしまうことになる。
 また、縦型水耕培施設内で、1つのポンプでくみ上げた養液107を循環させて使用する場合、縦型水耕培筒101の数が多くなるほど縦型水耕栽培筒101の1本あたりに配分できる滴下速度は小さくならざるをえない。
 従って、滴下速度を小さく設定した方が、高出力で高価なポンプを使わずに多数の栽培筒で植物栽培することが可能になる。
 前記養液回収手段105は、保水性シート121の下端部から滴下する養液107を受け止めるドレンパン151と、養液回収循環ポンプ152とを備え、ドレンパン151に溜まった養液107を養液回収循環ポンプ152で養液収容タンク103に回収循環させる。
 前記保水性シート121の厚さとしては、2mm以上とすることが望ましい。
 すなわち、厚みが大きいほど、滴下してくる養液107を保水性シート121上に確実に滴下させることができる。
 なお、保水性シート121は、1枚のシートである必要は必ずしもなく、複数枚のシートを重ねて使用してもよい。
 例えば、厚さ1mmのシートを2枚以上重ねて通気性素材122、123に挟んで使用してもよい。
 厚みの上限値としては、縦型水耕栽培筒101の厚みの80%まで、より好ましくは70%まであることが望ましい。それよりも厚くなると、含む養液107が多すぎるために重くなり、作業性がわるくなる。
 次に、この実施例1の作用・効果を説明する。
 この実施例1の縦型水耕栽培システムでは、上述のように構成されるため、図2、3に示すように、スリット111から、保水性シート121と通気性素材122又は123との間に複数の植物の苗又は種子106を挟み込んだ状態で培地102を縦型水耕栽培筒101の中に差込装着し、養液供給ポンプ141で養液107を保水性シート121の上端部に滴下させると、苗又は種子106は保水性シート121から養液107を吸収して成長する。
 この実施例1の縦型水耕栽培システムでは、上述のように、縦型水耕栽培筒101内に抜き差し可能に収容した培地102を、植物の苗又は種子106を植え込む保水性シート121と、その両面を挟み込んだ通気性素材122、123とで構成し、養液107を保水性シート121上端部に滴下させることで、保水性シート121と通気性素材122、123との間に挟み込んだ植物の苗又は種子106の根に確実に水と酸素が供給されるため、栽培植物の枯れや根腐れを防止することができる。
 また、保水性シート121と通気性素材122又は123との境目部分を含む位置に植物の苗又は種子106を植え込むための縦長のスリット111を備えることで、縦長のスリット111のどの位置へも保水性シート121と通気性素材122又は123との間に植物の苗又は種子106を植え込むことができる。
 また、培地102として保水性シート121と通気性素材122、123の2部構成にし、役割分担することにより、保水性は低いが通気性に優れて安価なものや供給容易なもの・通気性は低いが保水性に優れて安価なものや供給容易なものであれば広く使用でき、材料の選択の幅を広げることができる。
 また、重量が軽い、壊れにくいものなどを選択することにより、使い易さ等の性能を向上させることができる。
 また、保水性シート121の厚さを2mm以上とすることで、養液107を保水性シート121にさらに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 また、縦型水耕栽培筒101の下部から滴下した養液107を収集し、養液収容タンク103に回収する養液回収手段105を備え、養液回収手段105は、縦型水耕栽培筒101の下部から滴下する養液107を回収するドレンパン151を備え、該ドレンパン151に回収された養液107を養液収容タンク103に循環させるように構成されることにより、効率的に養液107を活用することができ、養液107にかかるコストを低減させることができる。また、養液107の廃棄で環境に負荷を与えることも少ない。
 次に、他の実施例について説明する。この他の実施例の説明にあたっては、前記実施例1と同様の構成部分については図示を省略し、もしくは同一の符号を付けてその説明を省略し、相違点についてのみ説明する。
 この実施例2の縦型水耕栽培システムは、図5に示すように、養液供給手段104における養液供給パイプ104aに接続された下端部の養液滴下口104bが保水性シート121の真上に位置するように固定するための固定手段108を備えている点が前記実施例1とは相違したものである。
 この固定手段108は、この実施例2では、吊下部材(針金又は紐)108bに対し溶液供給パイプ104aを固定する構造としている。なお、この固定手段108の構造は任意であり、例えば、滴下チューブ104dを縦型水耕栽培筒101に直接固定するなど、任意である。
 この実施例2によれば、養液供給手段104における養液供給パイプ104a下端部の養液滴下口104bが保水性シート121の真上に位置するように固定する固定手段108を備えることで、養液107を確実に保水性シート121にロスすることなく効果的に集めることができるようになる。
 従って、養液107の供給又は循環に用いられるポンプとして容量の小さなポンプの使用が可能になり、これにより、設備費及びランニングコストの低減が可能になる。
 この実施例3の縦型水耕栽培システムは、図6に示すように、養液供給手段104の養液滴下口104bが保水性シート121の上端部に触れている点で、上記実施例1、2とは相違したものである。
 この実施例3では、上述のように、養液供給手段104の養液滴下口104bが保水性シート121上端部に触れた状態にすることで、養液107が通気性素材122、123方向に漏れでることなしに、保水性シート121に確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例4の縦型水耕栽培システムは、図7に示すように、養液供給手段104の養液滴下口104bが保水性シート121と一方の通気性素材122の上端部相互間に挟み込まれている点で、上記実施例1~3とは相違したものである。
 この実施例4では、上述のように、養液供給手段104の養液滴下口104bが保水性シート121と通気性素材122との間に挟み込まれることで、養液を保水性シート121に確実に供給することができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例5の縦型水耕栽培システムは、図8に示すように、保水性シート121の上端が両通気性素材122、123の上面より突出している点で、上記実施例1~4とは相違したものである。
 この実施例5では、上述のように、養液供給手段104の養液滴下口104bが保水性シート121上端部に触れた状態にすることで、養液107が通気性素材122、123方向に漏れでることなしに、保水性シート121に確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例6の縦型水耕栽培システムは、図9に示すように、通気性素材122、123の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材123の上面に被せるように折り曲げ載置している点で、上記実施例1~5とは相違したものである。
 この実施例6では、上述のように、通気性素材122、123の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材123の上面に折り曲げ載置することで、単に保水性シート121を通気性素材122、123に挟んだだけの場合比べて養液107の一部を通気性素材122、123側にロスすることなく、養液107を折り曲げ載置した保水性シート121aを介して保水性シート121に効果的に集めることができるので、養液107の落下位置のバラツキが大きい養液供給装置を用いて養液滴下位置が多少左右にずれてしまったとしても、少ない養液107の供給でも確実に植物を栽培することができる。
 なお、前記保水性シート121は必ずしも1枚の連続したシートでなくてもかまわない。2枚以上の保水性シート121を接触させたものでも同様の効果を奏する。例えば、図9のような片方に通気性素材123の上面に折り曲げ載置した保水性シート121aの上に通気性素材上面を覆うサイズの保水性シートを重ねて載置することにより、通気性素材上のどこに養液107が滴下しても、ロスすることなく養液107を保水性シート121ひいては植物の苗の根周辺に誘導することができる。
 次に、この実施例1~6の栽培比較実験例について説明する。
1.実験例1(参考例):厚さ4.8cm、幅10cm、長さ150cmの通気性素材122、123(材質はポリエチレン)を半分の長さで2枚に折り畳み、その間に、厚さ1mm、幅9cm、長さ70cmの大創産業社製のポリエステルフェルト(保水性シート121)を、通気性素材122、123と上面の高さが同じになるように(フェルトの上端部を上部に突出させない状態で)挟み込み、断面の一辺が10cmの正方形で、その一辺の中央に幅2cmのスリット111を有する縦型水耕栽培筒101(材質はポリ塩化ビニル)に差し込んだ状態とした。
 上述と同様のフェルトを通気性素材で挟み込んだもの(長さ75cm)をさらにもう1本準備し、合計2本を栽培筒(長さ150cm)に充填した状態とした。
 上記の縦型水耕栽培筒101を6点準備した。
 これら縦型水耕栽培筒に対し、バジル苗の定植を行った。
 苗は9cmのポットに植わっている、草丈7~10cmのものを用い、水道水で根から土を洗い落とした後、ポリエチレンとフェルトとの間に間隔を20cmずつ開けて6本(上下の通気性素材に対しそれぞれ3本ずつ)のバジル苗の地下部を挟み込み、縦型水耕栽培筒101に差込装着した。
 上記縦型水耕栽培筒101を天井より吊り下げ、図4に示すように、上記縦型水耕栽培筒101のスリット111中央部を通り、縦型水耕栽培筒101の断面を面積の等しい2つの長方形に分割する線上に養液供給パイプ104aがくるように縦型水耕栽培筒101と養液供給パイプ104aを配置した。
 各養液供給パイプ104aに開閉及び養液量制御をするためのコック104cを介して滴下チューブ104dを接続し、前記滴下チューブ104dから養液107を滴下できるようにした。
 上記の縦型水耕栽培筒101を6点準備した。(滴下位置としては理論上保水性シート121の厚みを正確に2分割する位置になるが、図4に示すように、通気性素材122、123の厚みの精度、コック104c下に接続した滴下チューブ104dの反り具合により多少左右方向にブレが生じていた。)
2.実験例2(比較例):培地102がフェルトを含まないポリエチレンのみの状態で挟み込む以外は、実験例1と同様で、バジル苗を装着した縦型水耕栽培筒101を準備し、
 なお、バジル苗地下部は両ポリエチレン相互間に挟み込んだ。
 上記の縦型水耕栽培筒101を2点準備した。
3.実験例3:実施例1と同様のバジル苗を装着した型水耕栽培筒101を準備した。
 上記型水耕栽培筒101を天井より吊り下げた後、養液107を滴下した状態で左右へのブレの有無を確認し、図5に示すように、吊下部材108bに滴下チューブ104dを固定することにより位置の微修正を行った。
4.実験例4:実施例1と同様のバジル苗を装着した栽培筒を準備した。
 上記縦型水耕栽培筒101を天井より吊り下げた後、図6に示すように、滴下チューブ104dの先端を保水性シート121と接触させた。
5.実験例5:実施例1と同様のバジル苗を装着した型水耕栽培筒101を準備した。
 養液供給パイプ104aでコック104cの下に接続する滴下チューブ104dを先端が長いタイプのものにすることに変更し、上記縦型水耕栽培筒101を天井より吊り下げた後、図7に示すように、滴下チューブ104dの先端を保水性シート121と通気性素材122の間に挟みこんだ。
6.実験例6:厚さ4.1cm、幅10cm、長さ150cmの通気性素材(材質はポリエチレン)を半分の長さで2枚に折り畳み、その間に、厚さ16mm、幅9cm、長さ70cmに切断した日本ロックウール社のロックウール(商品名:やさいはなベッド)を、通気性素材122、123の上面から3cm突出するように挟み込み、他は実施例1と同様のバジル苗を装着した縦型水耕栽培筒101を準備した。
 図8に示すように、上記縦型水耕栽培筒101を天井より吊り下げ、養液107を滴下できるようにした。
7.実験例7:実施例1と同様のサイズ・材質の通気性素材を半分の長さで2枚に折り畳み、その間に、厚さ1mm、幅9cm、長さ70cmのポリエステルフェルト(保水性シート)を挟み込み、フェルトの上端部2cmをポリエチレンの上端より突出させ、図9に示すように、その突出部をポリエチレンの上面に折り曲げ載置し、他は実施例1と同様のバジル苗を装着した縦型水耕栽培筒101を準備した。
8.実験例8:実施例1と同様のサイズ・材質の通気性素材を半分の長さで2枚に折り畳み、その間に、厚さ1mm、幅9cm、長さ70cmのポリエステルフェルト(保水性シート)を挟み込み、フェルトの上端部1cmをポリエチレンの上端より突出させ、突出部の長さが2cmでなく1cmである以外は実施例7と同様のバジル苗を装着した縦型水耕栽培筒101を準備した。
 さらに、厚さ1mmの同様のフェルトを幅9cm・長さ9cmの正方形に切り取り前記の折りたたんだポリエチレン製通気性素材の上端に、すでに折り曲げ載置された1cmのフェルトにかぶせる形で載置した。
9.実験例1から8の縦型水耕栽培筒101に肥料養液(OATハウス1号を濃度0.8g/Lとなるように溶解した水溶液)を毎分20gの速度で滴下しながら3日間太陽光下で栽培を行った。
10.比較実験結果
 実験例1(参考例):縦型水耕栽培筒101の6点の合計36苗のうち、21苗が順調に生育した。
  一番順調に生育した縦型水耕栽培筒101は、6苗中6苗全てが順調に生育した。
  一番不調であった縦型水耕栽培筒101では、6苗中5苗が枯れた。
 実験例2(比較例):2縦型水耕栽培筒101の合計12苗のうち、1苗が順調に生育した。
  1つめの縦型水耕栽培筒101では、6苗中1苗は生育を続けたが、5苗が枯れた。
  2つめの縦型水耕栽培筒101では、6苗中6苗が枯れた。
  実験例3から8:いずれも6苗中6苗全てが順調に生育した。
 この実施例7の縦型水耕栽培システムは、図10に示すように、折り曲げられた保水性シート121aは、その先端に行くにつれて肉厚が厚くなることでその上面が保水性シート121を中心として外側に行くに連れて高くなる傾斜状に形成されている点が、上記実施例6とは相違したものである。
 この実施例7では、上述のように、折り曲げられた保水性シート121aがその先端に行くにつれて肉厚が厚くなることでその上面が保水性シート121を中心として外側に行くに連れて高くなる傾斜状に形成することにより、折り曲げられた保水性シート121a上面にとどまる時間が、傾斜がない場合に比べ短くなることにより、効率的に養液107を活用することができるようになる。
 この実施例8の縦型水耕栽培システムは、図11、12に示すように、少なくとも折り曲げられた保水性シート121a側の通気性素材123の上面に保水性シート121を中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材121bを備えている点で、上記実施例6、7とは相違したものである。
 この実施例8では、上述のように、少なくとも折り曲げられた保水性シート121a側の通気性素材123の上面に保水性シート121を中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材121aを備えることで、折り曲げられた保水性シート121aの上面が傾斜面となり、その傾斜面に滴下した養液107の外部への飛び跳ねを防止すると共に、保水性シート121aに滴下された養液107の通気性素材123への漏れや蒸発を防止してより効率的に養液107を活用することができるようになる。
 なお、傾斜部材121bの素材は任意であるが、少なくとも傾斜上面は通気性を有しない素材で構成されていることが望ましい。
 また、傾斜部材121bの形状は、傾斜上面を形成するならば、断面は略直角三角形に限らず、任意である。また、傾斜部材121bの傾斜上面は直線に限らず、その他に例えば凹曲面にしてもよい。
 この実施例9の縦型水耕栽培システムは、図13に示すように、折り曲げられた保水性シート121a側の通気性素材123の上面が保水性シート121を中心として外側に行くにつれて高くなる傾斜状に形成されている点で、上記実施例6~8とは相違したものである。
 この実施例9では、上述のように、折り曲げられた保水性シート121a側の通気性素材123の上面が保水性シート121を中心として外側に行くにつれて高くなる傾斜状に形成されることで、折り曲げられた保水性シート121aの上面が傾斜面となり、その傾斜面に滴下した養液107の外部への飛び跳ねを防止すると共に、保水性シート121aに滴下された養液107の通気性素材123への漏れや蒸発を防止してより効率的に養液107を活用することができるようになる。
 この実施例10の縦型水耕栽培システムは、図14に示すように、養液供給手段104には保水性シート121への養液供給量を調整する流量調整手段142を備え、該流量調整手段142から養液107を保水性シート121に滴下させるように構成され、保水性シート121の下端部には水分量センサ109を備え、前記流量調整手段142が、電動バルブ142aと前記水分量センサ109からの信号で電動バルブ142aを自動制御することにより、保水性シート121下端部の保水量を制御する養液供給量制御手段142bで構成されている点で、上記実施例1~10とは相違したものである。
 なお、前記水分量センサ109は、保水性シート121の下端部の水分量を計測するもので、保水性シート121の下端部に備えられている。この水分量センサ109で計測された水分量は水分量計109aに表示される。
 前記流量調整手段142aは、保水性シート121への養液107の滴下量を調整するもので、この実施例14では電動バルブ142aと、前記水分量センサ109からの信号により電動バルブ142aを自動制御することにより保水性シート121下端部の保水量を飽和状態になるように制御する養液供給量制御手段142bを備えている。
 また、縦型水耕栽培筒101の下部に保水性シート121から滴下した養液107を受けるドレンパン109bを備えることで、保水性シート121の下端部の水分量が飽和状態を超えた場合の養液107を収容することができる。なお、このドレンパン109b内には保水性素材109cを収容することにより、養液107の蒸発を抑制する。
 この実施例10では、上述のように、養液供給手段104には保水性シート121への養液供給量を調整する流量調整手段142を備え、該流量調整手段142から養液107を保水性シート121に滴下させるように構成され、保水性シート121の下端部には水分量センサ109を備えることにより、保水性シート121の下端部の水分量が飽和量を超えないように調整し、養液回収循環装置を設置しない、もしくは受け皿等簡易なものの設置で済ますことも可能である。あるいは、飽和量を少量だけ超過したごく少量の養液107が循環するシステムとすることも可能である。
 また、この実施例10では、流量調整手段142として、電動バルブ142aと養液供給量制御手段142bを備えることで、電動バルブ142aを自動制御し、自動で養液量を適量に調整することができる。
 これにより、栽培ハウス外からの遠隔操作で制御する場合も含め、急な天気や気温の変動に対しても出遅れることなしに自動で養液量調整を行うことができる。
 この実施例11の縦型水耕栽培システムは、図15に示すように、流量調整手段142として手動バルブ142cを用いた点が前記実施例10とは相違したものである。
 この実施例11では、上述のように、流量調整手段142として手動バルブ142cを用いることで、手動で特に設備費をかけず養液量を適量に調整することができる。
 この実施例12の縦型水耕栽培システムは、図16に示すように、保水性シート121に接する状態で温熱ヒーター110を備えている点が上記実施例1~12とは相違したものである。
 この実施例12では、上述のように、保水性シート121に接する状態で温熱ヒーター110を備えることで、冬場においても保水性シート121に接している植物の細根の周りの温度を適温に保つことができ、これにより、細根の発達を促し養液吸収率を大幅に向上させて収量の向上に繋げることができるようになるという効果が得られる。
 この実施例13の縦型水耕栽培システムは、図17~20に示すように、前記縦型水耕栽培筒101は少なくともその二方向以上に植物の苗又は種子106を植え込むための一つ以上の垂直方向のスリット111又は複数の開口部を備えている点で、上記実施例1~12とは相違したものである。
 すなわち、この実施例13の例1としては、図17,18に示すように、縦型水耕栽培筒101の相対する両側壁にスリット111をそれぞれ設けることで、縦型水耕栽培筒101の両面に植物の苗又は種子106を定植することができる。
 また、この実施例13の例2としては、図19、20に示すように、縦型水耕栽培筒101の4つの側面全てにスリット111をそれぞれ設け、保水性シート121を十文字状に設けることにより、縦型水耕栽培筒101の4面全部に植物の苗又は種子106を定植することができる。
 なお、この場合の通気性素材122、123は、図21に示すように、それぞれ下端を中心として2枚に折り畳み、両通気性素材122、123の間に十文字状の保水性シート121を挟み込む。
 この実施例13では、上述のように、縦型水耕栽培筒101の少なくともその二方向以上に植物の苗又は種子106を植え込むための一つ以上の垂直方向のスリット111又は複数の開口部を備えることで、各縦型水耕栽培筒101における栽培可能な植物苗の本数、ひいては植物の生産収量を大幅に増やすことができる。
 以上、本発明の複数の実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
 例えば、実施例では、縦型水耕栽培筒101をハウスの天井に吊下げた状態で備えた例を示したが、床面に立設した状態で備えるようにしてもよい。
 また、実施例では、縦型水耕栽培筒101の一側面に植物の苗又は種子106を植え込むための縦長のスリット111を設けたが、縦長の複数のスリット又は縦方向の複数の開口部を設けるようにしてもよい。
 また、縦型水耕栽培システム又は方法の光源としては、太陽光の他にLED等の人工光を用いることができる。人工光を利用する場合は、例えば、縦型水耕栽培筒101のスリット111側面にLED等の人工光装置を備える。
 また、実施例では、苗又は種子を定植する例を示したが、別途播種設備で栽培した際の培地がついたままの植物苗を定植するようにしてもよい。この方法を用いた場合、例えばウレタン培地に播種を行い、各苗周辺の培地を残したまま挟むことにより根洗いの手間を省くことができる。また、根が細く根洗いをすると傷んでその後の生育が悪くなる植物種も失敗せずに栽培することが可能となる。
 また、少ない養液量で確実に植物への水と酸素の供給が可能であるため、まだ根が出てきていない挿し穂の状態で定植するようにしてもよい。この方法を用いることにより、播種からの生育が遅い植物種についても短期間で苗を育てることができる。
 以下、さらに、この発明の実施例を図面に基づいて説明する。
 まず、この実施例14の縦型水耕栽培システムを図面に基づいて説明する。
 この実施例14の縦型水耕栽培システムは、図22~26に示すように、保水性シート11と少なくともその両面を挟み込んだ通気性素材12、13とで構成される縦長の培地1と、保水性シート11の両側縁部付近にそれぞれ保水性シート11と通気性素材12、13との間に植物の苗又は種8を植え込むための縦方向に細長く連続する隙間W、W部分を残して各通気性素材の外周を囲う一対の横断面略コの字状の分割型外枠2、2と、両外枠2、2相互間を着脱可能に連結する連結手段3と、溶液収容タンク4と、溶液収容タンク4から培地1に養液6を供給する養液供給手段5と、溶液回収手段7と、を主な構成として備え、養液供給手段5から保水性シート11に養液6を滴下させるように構成されている。
 さらに詳述すると、前記両外枠2、2相互間を着脱可能に連結する連結部材3として、本実施例14では、両外枠2、2の外周に巻き付けて締め付ける複数個の結束バンド31が用いられている。
 前記外枠2、2は、ハウス等の天井に沿って備えた吊下げパイプ9aに吊下部材(針金又は紐)9bを介して吊下げた状態で備えられている。
 なお、吊り下げ部材9bは、ねじることができる柔軟な素材であるまたは回転できる軸部を備えた構造を有することが好ましい。これにより、2側面の収穫を同じ場所から行うことが可能になり、作業効率が向上する。
 前記養液供給手段5は、養液供給ポンプ51を備え、養液収容タンク4から養液供給パイプ5aを介して保水性シート11の上端部に養液6を滴下させる。
 養液6の滴下速度としては、0.05g/秒から100g/秒が好ましい。特に好ましくは、0.1g/秒から50g/秒が好ましい。
 0.05g/秒未満では、養液6が保水性シート11に滴下したとしても蒸発により保水性シート11が乾燥してしまい十分な量の養液6が植物の根に供給されない。
 また、100g/秒よりも大きい値だと、保水性シート11に保持しきれない養液6が植物表面に流れ出し床を濡らす原因になる。そしてさらに、植物をつたっての液の流出が長時間続いた場合は、循環養液が全量消費されてしまい、ひいては供給される養液6が枯渇し、植物が枯れてしまうことになる。
 また、縦型水耕培施設内で、1つのポンプでくみ上げた養液6を循環させて使用する場合、外枠2、2の数が多くなるほど外枠2、2の1本あたりに配分できる滴下速度は小さくならざるをえない。
 従って、滴下速度を小さく設定した方が、高出力で高価なポンプを使わずに多数の栽培筒で植物栽培することが可能になる。
 前記養液回収手段7は、保水性シート11の下端部から滴下する養液6を受け止めるドレンパン71と、養液回収循環ポンプ72とを備え、ドレンパン71に溜まった養液6を養液回収循環ポンプ72で養液収容タンク4に回収循環させる。
 前記保水性シート11の厚さとしては、2mm以上とすることが望ましい。
 すなわち、厚みが大きいほど、滴下してくる養液6を保水性シート11上に確実に滴下させることができる。
 なお、保水性シート11は、1枚のシートである必要は必ずしもなく、複数枚のシートを重ねて使用してもよい。
 例えば、厚さ1mmのシートを2枚以上重ねて通気性素材12、13に挟んで使用してもよい。
 厚みの上限値としては、縦型水耕栽培筒1の厚みの80%まで、より好ましくは70%まであることが望ましい。それよりも厚くなると、含む養液6が多すぎるために重くなり、作業性が悪くなる。
 次に、この実施例14の作用・効果を説明する。
 この実施例14の縦型水耕栽培システムでは、上述のように構成されるため、図22~26に示すように、両外枠2、2相互間で保水性シートの両側縁部付近にそれぞれ形成された隙間W、Wから保水性シート1と通気性素材12、33との間に植物の苗又は種子8を植え込んだ状態で、養液供給ポンプ51で養液6を保水性シート211の上端部に滴下させると、苗又は種子8は、保水性シート11から養液6を吸収して成長する。
 この実施例14の縦型水耕栽培システムでは、上述のように、培地1を、植物の苗又は種子8を植え込む保水性シート11と、その両面を挟み込んだ通気性素材12、13とで構成し、養液6を保水性シート11上端部に滴下させることで、保水性シート11と通気性素材12、13との間に挟み込んだ植物の苗又は種子8の根に確実に水と酸素が供給されるため、栽培植物の枯れや根腐れを防止することができる。
 また、保水性シート11の両側縁部付近に、保水性シート11と通気性素材12、33との間に植物の苗又は種子8を植え込むための縦方向に細長く連続する隙間W、Wを開けて両通気性素材12、12側から培地1を挟み込む一対の横断面略コ字状の外枠2、2を備えることで、従来の1側面のみに植えこむ場合に比べて栽培可能な植物苗の本数を最大で2倍に、ひいては植物の生産収量も大幅に増やすことができる。
 また、実施例14の栽培システムで1側面にバジル8苗、合計16苗を定植し、太陽光下で42日間栽培した。
 また、同条件下で、特許文献3に記載の特開2018-113927で開示されている1側面にスリットを持つ同サイズの栽培筒を用いてバジル8苗を栽培し、両者で1タワーあたりの収穫量を比較した。
 定植後、2週間ごとに合計3回収穫を実施し、合計の収穫量を比較したところ、実施例14(請求項4に相当)の収量は、スリットが1側面のみの従来品タワーに比べて1.7倍であった。
 また、培地1として保水性シート21と通気性素材12、13の2部構成にし、役割分担することにより、保水性は低いが通気性に優れて安価なものや供給容易なもの・通気性は低いが保水性に優れて安価なものや供給容易なものであれば広く使用でき、材料の選択の幅を広げることができる。
 また、重量が軽い、壊れにくいものなどを選択することにより、使い易さ等の性能を向上させることができる。
 また、両外枠2、2相互間を連結する連結部材3が結束バンドによる両外枠2、2間を着脱可能に連結する構造であるため、2部構成である保水性シート11と通気性素材12、13の組み付けや部品交換作業を能率的に行うことができるようになる。
 また、外枠2、2を分割型にすることにより、運搬時には従来品の栽培筒の半分程度の体積にすることができ、また、在庫として収納する際にもスペースが少なくてすむというメリットが有る。
 また、保水性シート11の厚さを2mm以上とすることで、養液6を保水性シート11にさらに確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる
 また、保水性シート11の下部から滴下した養液6を収集し、養液収容タンク4に回収する養液回収手段7を備え、養液回収手段7は、保水性シート11の下部から滴下する養液6を回収するドレンパン71を備え、該ドレンパン71に回収された養液6を養液収容タンク4に循環させるように構成されることにより、効率的に養液6を活用することができ、養液6にかかるコストを低減させることができる。また、養液6の廃棄で環境に負荷を与えることも少ない。
 次に、他の実施例について説明する。この他の実施例の説明にあたっては、前記実施例14と同様の構成部分については図示を省略し、もしくは同一の符号を付けてその説明を省略し、相違点についてのみ説明する。
 この実施例15の縦型水耕栽培システムは、図27に示すように、養液供給手段5における養液供給パイプ5aに接続された下端部の養液滴下口5bが保水性シート11の真上に位置するように固定するための固定手段10を備えている点が前記実施例14とは相違したものである。
 この固定手段10は、この実施例15では、吊下部材(針金又は紐)9bに対し溶液供給パイプ5aを固定する構造としている。なお、この固定手段10の構造は任意であり、例えば、滴下チューブ5dを培地1や外枠2,2に直接固定するなど、任意である。
 この実施例15によれば、養液供給手段5における養液供給パイプ5a下端部の養液滴下口5bが保水性シート11の真上に位置するように固定する固定手段10を備えることで、養液6を確実に保水性シート11にロスすることなく効果的に集めることができるようになる。
 従って、養液6の供給又は循環に用いられるポンプとして容量の小さなポンプの使用が可能になり、これにより、設備費及びランニングコストの低減が可能になる。
 この実施例16の縦型水耕栽培システムは、図28に示すように、養液供給手段5の養液滴下口5bが保水性シート11の上端部に触れている点で、上記実施例14、15とは相違したものである。
 この実施例16では、上述のように、養液供給手段5の養液滴下口5bが保水性シート11上端部に触れた状態にすることで、養液6が通気性素材12、13方向に漏れでることなしに、保水性シート11に確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例17の縦型水耕栽培システムは、図29に示すように、養液供給手段5の養液滴下口5bが保水性シート11と一方の通気性素材12の上端部相互間に挟み込まれている点で、上記実施例14~16とは相違したものである。
 この実施例17では、上述のように、養液供給手段5の養液滴下口5bが保水性シート11と通気性素材12との間に挟み込まれることで、養液を保水性シート11に確実に供給することができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例18の縦型水耕栽培システムは、図30に示すように、保水性シート11の上端が両通気性素材12、13の上面より突出している点で、上記実施例14~17とは相違したものである。
 この実施例18では、上述のように、養液供給手段5の養液滴下口5bが保水性シート11上端部に触れた状態にすることで、養液6が通気性素材12、13方向に漏れでることなしに、保水性シート11に確実に滴下させることができる。
 これにより、必要最小限度の養液滴下量で植物を栽培することができるようになる。
 この実施例19の縦型水耕栽培システムは、図31に示すように、通気性素材12、13の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材13の上面に被せるように折り曲げ載置している点で、上記実施例14~18とは相違したものである。
 この実施例19では、上述のように、通気性素材12、13の上端より突出した保水性シートの上端部を少なくとも一方の通気性素材13の上面に折り曲げ載置することで、単に保水性シート11を通気性素材12、13に挟んだだけの場合比べて養液6の一部を通気性素材12、13側にロスすることなく、養液6を折り曲げ載置した保水性シート11aを介して保水性シート11に効果的に集めることができるので、養液6の落下位置のバラツキが大きい養液供給装置を用いて養液滴下位置が多少左右にずれてしまったとしても、少ない養液6の供給でも確実に植物を栽培することができる。
 なお、前記保水性シート11は必ずしも1枚の連続したシートでなくてもかまわない。2枚以上の保水性シート11を接触させたものでも同様の効果を奏する。例えば、図31のような片方に通気性素材13の上面に折り曲げ載置した保水性シート11aの上に通気性素材上面を覆うサイズの保水性シートを重ねて載置することにより、通気性素材上のどこに養液6が滴下しても、ロスすることなく養液6を保水性シート11ひいては植物の苗の根周辺に誘導することができる。
 実施例14は、図26に示すような構成が例示できる。すべての使用資材が、精度が高く製造されている場合は、この構成のみでも保水性シート上に養液が滴下される。
 しかし市販で入手できるポリエチレンを通気性素材12,13として用いて検証したところ、厚みのブレが有った。
 また滴下チューブ5dの反り具合にもブレがあった。
 液を滴下するチューブの位置を図23の12(1)の左端から13(1)の右端までの距離を正確に2分割する位置に設定すれば、12(1)と13(1)に同じ資材を用いた場合は理論的に同じ厚みであるからちょうど中心に置かれている保水シート上に液が落とせるはずであるが、実際に上記の通気性素材と滴下チューブを無作為に取って、厚み1mmの保水性シートとともに用いた縦型システムで、太陽光下で3日間バジル苗で栽培検証したところ、中央の保水性シート上に液が滴下し順調に生育するケースと養液が部分的にしか保水シートにまわらず萎れる苗が出てくるケースの両者が確認された。
 実施例15~19は、実施例14に比べ、より確実に保水シート上に養液を集中させられる。
 実施例15~19のいずれの方法でも、上記と同じ3日間の栽培検証で苗が萎れることはなかった。
 この実施例20の縦型水耕栽培システムは、図32に示すように、折り曲げられた保水性シート11aは、その先端に行くにつれて肉厚が厚くなることでその上面が保水性シート11を中心として外側に行くに連れて高くなる傾斜状に形成されている点が、上記実施例19とは相違したものである。
 この実施例20では、上述のように、折り曲げられた保水性シート11aがその先端に行くにつれて肉厚が厚くなることでその上面が保水性シート11を中心として外側に行くに連れて高くなる傾斜状に形成することにより、折り曲げられた保水性シート11a上面にとどまる時間が、傾斜がない場合に比べ短くなることにより、効率的に養液6を活用することができるようになる。
 この実施例21の縦型水耕栽培システムは、図33、34に示すように、少なくとも折り曲げられた保水性シート11a側の通気性素材13の上面に保水性シート11を中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材11bを備えている点で、上記実施例19、20とは相違したものである。
 この実施例21では、上述のように、少なくとも折り曲げられた保水性シート11a側の通気性素材13の上面に保水性シート11を中心として外側に行くに連れて高くなる傾斜上面を有する傾斜部材11aを備えることで、折り曲げられた保水性シート11aの上面が傾斜面となり、その傾斜面に滴下した養液6の外部への飛び跳ねを防止すると共に、保水性シート11aに滴下された養液6の通気性素材13への漏れや蒸発を防止してより効率的に養液6を活用することができるようになる。
 なお、傾斜部材11bの素材は任意であるが、少なくとも傾斜上面は通気性を有しない素材で構成されていることが望ましい。
 また、傾斜部材11bの形状は、傾斜上面を形成するならば、断面は略直角三角形に限らず、任意である。また、傾斜部材11bの傾斜上面は直線に限らず、その他に例えば凹曲面にしてもよい。
 この実施例22の縦型水耕栽培システムは、図35に示すように、折り曲げられた保水性シート11a側の通気性素材13の上面が保水性シート11を中心として外側に行くにつれて高くなる傾斜状に形成されている点で、上記実施例19~21とは相違したものである。
 この実施例22では、上述のように、折り曲げられた保水性シート11a側の通気性素材13の上面が保水性シート11を中心として外側に行くにつれて高くなる傾斜状に形成されることで、折り曲げられた保水性シート11aの上面が傾斜面となり、その傾斜面に滴下した養液6の外部への飛び跳ねを防止すると共に、保水性シート11aに滴下された養液6の通気性素材13への漏れや蒸発を防止してより効率的に養液6を活用することができるようになる。
 この実施例23の縦型水耕栽培システムは、図36に示すように、養液供給手段5には保水性シート11への養液供給量を調整する流量調整手段52を備え、該流量調整手段52から養液6を保水性シート11に滴下させるように構成され、保水性シート11の下端部には水分量センサ14を備え、前記流量調整手段52が、電動バルブ52aと前記水分量センサ14からの信号で電動バルブ52aを自動制御することにより、保水性シート11下端部の保水量を制御する養液供給量制御手段52bで構成されている点で、上記実施例14~22とは相違したものである。
 なお、前記水分量センサ14は、保水性シート11の下端部の水分量を計測するもので、保水性シート11の下端部に備えられている。この水分量センサ14で計測された水分量は水分量計14aに表示される。
 前記流量調整手段52は、保水性シート11への養液6の滴下量を調整するもので、この実施例23では電動バルブ52aと、前記水分量センサ14からの信号により電動バルブ52aを自動制御することにより保水性シート11下端部の保水量を飽和状態になるように制御する養液供給量制御手段52bを備えている。
 また、縦型水耕栽培筒1の下部に保水性シート11から滴下した養液6を受けるドレンパン14bを備えることで、保水性シート11の下端部の水分量が飽和状態を超えた場合の養液6を収容することができる。なお、このドレンパン14b内には保水性素材14cを収容することにより、養液6の蒸発を抑制する。
 この実施例23では、上述のように、養液供給手段5には保水性シート11への養液供給量を調整する流量調整手段52を備え、該流量調整手段52から養液6を保水性シート11に滴下させるように構成され、保水性シート11の下端部には水分量センサ14を備えることにより、保水性シート11の下端部の水分量が飽和量を超えないように調整し、養液回収循環装置を設置しない、もしくは受け皿等簡易なものの設置で済ますことも可能である。あるいは、飽和量を少量だけ超過したごく少量の養液6が循環するシステムとすることも可能である。
 また、この実施例23では、流量調整手段52として、電動バルブ52aと養液供給量制御手段52bを備えることで、電動バルブ52aを自動制御し、自動で養液量を適量に調整することができる。
 これにより、栽培ハウス外からの遠隔操作で制御する場合も含め、急な天気や気温の変動に対しても出遅れることなしに自動で養液量調整を行うことができる。
 この実施例24の縦型水耕栽培システムは、図37に示すように、流量調整手段52として手動バルブ52cを用いた点が前記実施例23とは相違したものである。
 この実施例24では、上述のように、流量調整手段52として手動バルブ52cを用いることで、手動で特に設備費をかけず養液量を適量に調整することができる。
 この実施例25の縦型水耕栽培システムは、図38に示すように、保水性シート21に接する状態で温熱ヒーター10を備えている点が上記実施例14~24とは相違したものである。
 この実施例25では、上述のように、保水性シート11に接する状態で温熱ヒーター15を備えることで、冬場においても保水性シート11に接している植物の細根の周りの温度を適温に保つことができ、これにより、細根の発達を促し養液吸収率を大幅に向上させて収量の向上に繋げることができるようになるという効果が得られる。
 この実施例26の縦型水耕栽培システムは、図39に示すように、前記両外枠2、2の上端面を覆う天板部21を備える点が、上記実施例14~25とは相違したものである。
 従って、この実施例26では、両外枠2、2内への埃の侵入を防止すると共に、太陽光を遮断し、これにより、培地1に藻やカビが発生するのを抑制することができる。
 この実施例27の縦型水耕栽培システムは、図40に示すように、前記天板部21が両外枠2、2の対面側へ向けて下向きに傾斜する斜面に形成されている点が、上記実施例14~26とは相違したものである。
 従って、この実施例27では、保水シートをどちらかの傾斜面に接触させる位置に配置させれば、斜面上のいずれの部分に養液6が滴下しても養液6を確実に保水布上に集中的に供給することができるようになる。
 この実施例28の縦型水耕栽培システムは、図41に示すように、両外枠2、2の形状が、横断面略半円状であり、両外枠2、2の上下両端部の一部を互いに当接させている点が、上記実施例14~27とは相違したものである。
 この実施例29の縦型水耕栽培システムは、図42に示すように、前記両外枠2、2相互間の植物の苗又は種8を植え込むため隙間W、Wが縦方向一定間隔の下に複数形成されている点が、上記実施例14~28とは相違したものである。
 実施例28のシステムでは、結束バンドで結束することも可能であり、また、図43に示すような係合状態とすることも可能である。また、結束する際に誰が実施しても結束の強さによらず同じ仕上がりにすることが可能であるので、作業者が熟練していなくても失敗が少ない。
 実施例29のシステムでは、苗を植える株間が非熟練者でもすぐわかり、定植作業がミスなく効率的に実施できる。
 一方、実施例14~28に示したような、例えば、図25のような外枠を用いたシステムでは、結束の強さ・結束バンドの長さ等を調節することにより、はさみこむ植物体の大きさにあわせて柔軟に締め具合を調節することが可能である。
 また、実施例14~28に示したような一続きの縦型スリット又は苗2つ以上が入るような縦長な開口部を有するシステムは、実施例29や特許文献2のシステムのようなあらかじめ各植物苗を植える位置に孔が設けられているのに比べて、最適な株間になるような箇所を自由に選べる点で優れている。つまり、大きな苗を植える際には株間を大きめにとることも可能であり、一方、株間を小さくして、より多くの本数の苗を植えることも可能となる。
 中でも、一続きの縦型スリットは、苗の本数・株間に柔軟に対応できる点で、特に優れている。
 この実施例30の縦型水耕栽培システムは、図43に示すように、前記連結手段3が両外枠2、2間を着脱可能にかみ合わせる構造である点が上記実施例14~29とは相違したものである。
 すなわち、この実施例30では、両外枠2、2の両端部に、互いにかみ合う係合爪32、33を備え、両係合爪32、33同士の係合状態を維持するようになっている。
 なお、両係合爪32、33を設ける箇所及び個数は任意であるが、少なくとも外枠2、2の上下両端部付近に設けることが望ましい。
 従って、この実施例30の連結手段3では、両外枠2、2間の着脱操作が簡単に行なえるようになる。
 この実施例31の縦型水耕栽培システムは、図44に示すように、分割型外枠2、2間の隙間Wが、保水性シート11の一側縁部付近だけに形成されている点が、上記実施例14~30とは相違したものである。
 従って、この実施例31では、植物の栽培量が少ない点を除けば、上記実施例14~30と同様の効果が得られる。
 実施例31に相当する栽培システムと、特開2018-113927に相当する栽培システムの比較実験を実施した。
 (特開2018-113927に相当する栽培システムは、できあがり形状は図44と同じであるが2枚に分割できないスリットが入った一体型の筒である点が実施例31とは異なっている。)
 具体的には、下記の方法で特開2018-113927に相当する栽培システムとしてサンプルAを、本出願の実施例31に相当する栽培システムとしてサンプルBを準備した。
 それらを用いて、3か月栽培後の苗片づけ時に「苗および内部の培地の取り出しやすさ」・「培地を取り出したあとの栽培筒の洗浄しやすさ」の2点を比較評価した。 サンプルの準備方法:
 (1)断面の一辺が10cmの正方形で、その一辺に幅1cmのスリット(隙間)を有し、長さが150cmである分割型の縦型水耕栽培筒(材質はポリ塩化ビニル)を準備した。
 厚さ4.8cm、幅10cm、長さ150cmの通気性素材(ポリエチレン)を半分の長さで2枚に折り畳み、その間に、厚さ1mm、幅9cm、長さ70cmのポリエステルフェルト(保水性シート)をその間に入れ通気性素材と保水性素材の中間に、バジル苗を株間20cmずつ開けて3苗挟み込んだ。
 上記を2セット準備した。
 断面の一辺が10cmの正方形で、その一辺に幅1cmのスリット(隙間)を有し、長さが150cmである分割型の縦型水耕栽培筒に2つを縦長に重ねる状態で充填し、サンプルAとした。
 (2)断面の一辺が10cmの正方形で、その一辺に幅1cmのスリット(隙間)を有し、長さが150cmである縦型水耕栽培筒(材質はポリ塩化ビニル)を、スリット(隙間)を有する側面の向かい側にある面を縦長に2分割するように、電動のこぎりで切断し、略コの字型の外枠2枚を準備した。
 厚さ4.8cm、幅10cm、長さ150cmの通気性素材(ポリエチレン)を2枚用意し、そのうち1枚を、略コの字型の外枠1枚の内側におさまる向きで納めた。そのポリエチレンシートの上に、厚さ1mm、幅9cm、長さ150cmのポリエステルフェルト(保水性シート)をのせ、スリット(隙間)に相当する方向にバジルの地上部が向くように、そして、縦方向の間隔はサンプルAと同様になるようバジル苗6を保水シート上に配置し上からもう1枚のポリエチレンシートを載せた。
 その上から、スリットの向きがそろうようにもう1枚の略コの字型の外枠をかぶせ、上端・中央・下端の3か所を、爪の位置を調節することでシメ具合を調節可能なタイプの結束バンドで巻締め、サンプルBとした。
 比較実験1:サンプルA、Bそれぞれを図22、29に示す装置で、太陽光下で3か月栽培した後、サンプルAはフックを用いて培地を引き出した。サンプルBは、結束バンドをゆるめて外し、外枠を開き、培地を取り出した。
 サンプルAは、足で栽培筒を抑えながら両手でフックを力いっぱいひくことで取り出すことができた。
 サンプルBは、結束バンドを緩めるだけなので手先のみで培地の取り出しが可能であった。
 また、取り出したあとの通気性素材は、サンプルAではフックをあてた部分が引き延ばされて変形していた。
 同じ3か月栽培を3回繰り返すと、縁部分がちぎれる培地も出てくることも同条件で実施した他のサンプルを用いて確認された。
 サンプルBでは、同様の回数栽培試験に使用したが、通気性素材の目立った劣化は見られなかったことから、本願発明の方が、苗交換時の操作性・耐久性に優れることが確認された。
 比較実験2:サンプルA、Bそれぞれについて、内側に付着した藻を除去するためハイター液を含ませたスポンジでこすり、水洗いを実施した。
 1セットの栽培筒を洗うための所要時間は、サンプルAで5分、サンプルBでは2分であった。また、サンプルAについては奥まで手が届かないのでスポンジに細い棒をつけてこする必要があった。
 以上のように、洗いやすさという点でも圧倒的に本願発明の方が、操作性が良いことが確認された。
 この実施例32の縦型水耕栽培システムは、図45、46に示すように、連結された両外枠2,2の上端開口部に前記養液供給手段5から滴下する養液6を前記保水性シート11の上端部に案内する養液供給開口部16bを下端部に有する案内部材16を備えている点が、上記実施例14~31とは相違したものである。
 前記案内部材16は、両外筒2、2の上端開口部に養液供給手段5から滴下する養液6を保水性シート11の上端部に適正に案内する役目をなす。
 この案内部材16は、図46にその詳細を示すように、両外筒2、2の上端開口縁部の前後の縁部に掛止する状態で備えられ、養液供給手段5からの養液6を受け止める広めの上端開口部16aの底部には、中央に向かって傾斜する傾斜面を介して養液供給開口部16bが設けられている。この養液供給開口部16bは、この実施例32では、保水性シート11の長手方向に沿って長いスリット状に形成されている。
 従って、この実施例32では、縦型水耕栽培筒1の上端開口部に養液供給手段4から滴下する養液7を保水性シート21の上端部に案内する養液供給開口部16bを下端部に有する案内部材16を備えることで、養液6が通気性素材12、13方向に漏れ出ることなしに、保水性シート11に確実に案内することができる。これにより、養液6の落下位置のバラツキが大きい養液供給装置を用いて養液滴下位置が多少左右にずれてしまったとしても、植物に到達する養液が少なくなって枯れてしまうリスクを低減できる。
 上述の案内部材16を使わずに、通気性素材12、13と保水シート11に養液供給パイプ5aの先端を挟んだりする方法でも養液6を保水性シート11に集めることはできるが、上述の案内部材16を用いた場合の方が、案内部19の養液供給開口部16b部分が目で見える状態にできるので、養液6の詰まりがないかの確認が容易である。
 これにより、必要最小限度の養液滴下量で植物を効率的に栽培することができる。
 この実施例33の縦型水耕栽培システムは、図47~51に示すように、前記案内部材16が、両外枠2,2の上端開口部に養液供給手段5から滴下する養液6を保水性シート11の上端部に案内する養液供給開口部16bを下端部に有する漏斗型のキャップとした点で、上記実施例32とは相違したものである。
 この実施例33では、上述のように、前記案内部材16として、両外枠2,2の上端開口部に養液供給手段5から滴下する養液6を保水性シート11の上端部に案内する養液供給開口部16bを下端部に有する漏斗型のキャップとすることで、両外枠2,2の上端開口部の開放部分面積を大幅に減らすことができ、両外枠2,2の内へのほこり(カビの胞子も含まれる)の侵入を防ぐことができる。
 また、両外枠2,2の上端よりも高く栽培植物が伸びた場合、キャップをしていないと収穫時等に葉や茎が栽培筒内部へ入ってしまい、それが放置されることでハダニ等の虫の繁殖源になったり腐ったりしてしまう。上述のキャップをすることにより、葉や茎の侵入を抑制できるとともに、キャップだけをとりはずせば容易に葉や茎の清掃が可能であって、病虫害のリスク低減を簡便な方法ですることができる。
 またさらに培地への光の侵入を抑制することができるので、培地へのカビや藻の発生を抑制することができるようになる。
 植物に病害性をもたない種類であっても、長期間栽培を続けていくと、藻が保水性シートの表面に繁茂することで外観の印象が悪くなるだけでなく、保水性シートの表面が疎水的になり、保水能力が低減してくる。これにより、滴下した養液の一部が通気性素材側にロスされ、ひいては植物への養液供給が不足していく。
 これに対し、上述のような漏斗型のキャップとすることで、長期間の連続栽培においても、必要最小限度の養液滴下量で植物を効率的に栽培することができるようになる。
 この実施例34の縦型水耕栽培システムは、図52、53に示すように、前記キャップが、前記両外枠2、2内に収容された培地1の上端部側を遮光する遮光壁16cを前記両外枠2,2で囲まれていない側面部分の少なくとも一部分を塞ぐ状態で備えている点が、上記実施例33とは相違したものである。
 従って、この実施例34では、上述のように、培地1の上端部側を遮光する遮光壁16cを備えることで、保水性シート11表面へのほこり(カビの胞子も含まれる)の付着を抑制するとともに保水性シート11表面へ光があたることを抑制し、これにより、培地1へのカビや藻の発生を抑制することができるようになる。
 この実施例35の縦型水耕栽培システムは、図54に示すように、キャップの上端開口縁部にキャップの上端開口部を開閉自在な蓋体16dを備える点が、上記実施例32~34とは相違したものである。
 従って、この実施例35では、閉自在な蓋体16dを備えることで、外枠2、2を使用していないときには案内部材16の口を完全に閉鎖することにより、キャップ内へのほこり(カビの胞子も含まれる)の侵入を防止することができるようになる。
 以上、本発明の複数の実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。
 例えば、実施例では、縦型水耕栽培筒1をハウスの天井に吊下げた状態で備えた例を示したが、床面に立設した状態で備えるようにしてもよい。
 また、実施例では、外枠として、横断面略コの字状又は略半円状のものを例示したが、横断面が前記隙間部分を残して各通気性素材の外周を囲う形態であればその具体的形状は任意である。
 また実施例では、連結部材3として緩めることも可能な結束バンド31を用いたが、マジックテープ(登録商標)・ワイヤー・ひも・テープ等も用いることができる。
 また、自動結束機を用いることで大量な結束を短時間で実施することもできる。自動結束機でも使用されているような、熱溶融バンドでの結束の場合は、とりはずす際ははさみで切断することができ、楽に栽培筒の分割・片付けが可能となる。
 また、縦型水耕栽培システム又は方法の光源としては、太陽光の他にLED等の人工光を用いることができる。人工光を利用する場合は、例えば、本栽培システムの隙間W、Wの面にLED等の人工光装置を備える。
 また、実施例では、苗を定植する例を示したが、別途播種設備で栽培した際の培地がついたままの植物苗を定植するようにしてもよい。
 この方法を用いた場合、例えばウレタン培地に播種を行い、各苗周辺の培地を残したまま挟むことにより根洗いの手間を省くことができる。
 また、根が細く根洗いをすると傷んでその後の生育が悪くなる植物種も失敗せずに栽培することが可能となる。
 また、少ない養液量で確実に植物への水と酸素の供給が可能であるため、まだ根が出てきていない挿し穂の状態で定植するようにしてもよい。
 この方法を用いることにより、播種からの生育が遅い植物種についても短期間で苗を育てることができる。
 根のついている状態の植物の代わりに、さし穂をはさむ方法とすることにより、通常の根がついた植物を移植する場合に実施する、床や台の上などで通気性素材の上にのせた保水布上に植物を並べてからもう一方の通気性素材を上にのせてはさんだ状態をつくり結束するという方法に加え、通気性素材の間に保水シートをはさんだものを分割型外枠で囲った栽培筒を植物なしで先に組み立てておき、通気性素材と保水シートの間に差し込んでいくという方法も実施しやすく、定植作業を1人で実施する場合であっても時間をかけず簡単に実施することが可能となる。
 周囲の収穫用に栽培している植物から挿し穂を切り取れば、育苗スペースや育苗期間無しに栽培植物を増やすことが可能なことも、作業低減に寄与する。
 また、保水性シートに付着した状態の植物の両側を通気性素材ではさんで定植する方法を用いることにより、草丈が高めの状態・地下部がある程度発達した状態で移植したい場合にも簡単に定植作業を行うことができる。
 101   縦型水耕栽培筒
 111   スリット
 102   培地
 121   保水性シート
  121a 折り曲げた保水性シート
  121b 傾斜部材
 122   通気性素材
 123   通気性素材
 103   養液収容タンク
 104   養液供給手段
  104a 養液供給パイプ
  104b 養液滴下口
  104c コック
  104d 滴下チューブ
 141   養液供給ポンプ
 142   流量調整手段
  142a 電動バルブ
  142b 養液供給量制御手段
  142c 手動バルブ
 105   養液回収手段
 151   ドレンパン
 152   養液回収循環ポンプ
 106   植物の苗又は種子
 107   養液
 108   固定手段
  108a 吊下げパイプ
  108b 吊下部材
 109   水分量センサ
  109a 水分量計
  109b ドレンパン
  109c 保水性素材
 110   温熱ヒーター
   1   培地
  11   保水性シート
   11a 折り曲げた保水性シート
   11b 傾斜部材
  12   通気性素材
  13   通気性素材
   2   外枠
  21   天板部
   3   連結部材
  31   結束バンド(連結部材)
  32   係合爪(連結部材)
  33   係合爪(連結部材)
   4   養液収容タンク
   5   養液供給手段
   5a  養液供給パイプ
   5b  養液滴下口
   5c  コック
   5d  滴下チューブ
  51   養液供給ポンプ
  52   流量調整手段
   52a 電動バルブ
   52b 養液供給量制御手段
   52c 手動バルブ
   6   養液
   7   養液回収手段
  71   ドレンパン
  72   養液回収循環ポンプ
   8   植物の苗又は種子
   9a  吊下げパイプ
   9b  吊下部材
  10   固定手段
  14   水分量センサ
   14a 水分量計
   14b ドレンパン
   14c 保水性素材
  15   温熱ヒーター
  16   案内部材
   16a 上端開口部
   16b 養液供給開口部
   16c 遮光壁
   16d 蓋体
   W   隙間

Claims (10)

  1.  ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培システムであって、
     前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成され、
     前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
     前記養液供給手段から養液を保水性シートに滴下させるように構成されていることを特徴とする縦型水耕栽培システム。
  2.  ハウスの天井に吊下げ又は床面に立設した縦型水耕栽培筒と、縦型水耕栽培筒内に抜き差し可能に収容した培地と、養液収容タンクから培地に養液を供給する養液供給手段と、を備えた縦型水耕栽培方法であって、
     前記培地は、保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成し、
     前記縦型水耕栽培筒は、少なくともその二方向以上に前記保水性シートと通気性素材との境目部分を含む位置に植物の苗又は種子を植え込むための一つ以上の縦長のスリット又は縦方向に複数の開口部を備え、
     前記養液供給手段から養液を保水性シートに滴下させることにより、保水性シートに供給された養液で植物の苗又は種子を育成することを特徴とする縦型水耕栽培方法。
  3.  保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの一側縁部付近に保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
     前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状であり、
     前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする縦型水耕栽培システム。
  4.  保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの両側縁部付近にそれぞれ保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
     前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状であり、
     前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする縦型水耕栽培システム。
  5.  請求項3~4のいずれか1項に記載の縦型水耕栽培システムにおいて、
     前記連結手段が両外枠間を着脱可能にかみ合わせる構造であることを特徴とする縦型水耕栽培システム。
  6.  請求項3~5のいずれか1項に記載の縦型水耕栽培システムにおいて、
     前記連結手段が両外枠の外周の少なくとも1か所を巻き締める結束バンドであることを特徴とする縦型水耕栽培システム。
  7.  保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの一側縁部付近に保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
     前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状にし、
     前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする縦型水耕栽培方法。
  8.  保水性シートと少なくともその両面を挟み込んだ通気性素材とで構成される縦長の培地と、保水性シートの両側縁部付近にそれぞれ保水性シートと通気性素材との間に植物の苗又は種を植え込むための一つ以上の隙間を開けて両通気性素材側から培地を挟み込む一対の分割型外枠と、両外枠相互間を着脱可能に連結する連結手段と、溶液収容タンクと、溶液収容タンクから培地に養液を供給する養液供給手段とを備え、
     前記両外枠の横断面が前記隙間部分を残して各通気性素材の外周を囲う略コの字状又は略半円状にし、
     前記養液供給手段から保水性シートに養液を滴下させるように構成されていることを特徴とする縦型水耕栽培方法。
  9.  請求項2又は請求項7~8のいずれか1項に記載の縦型水耕栽培方法において、
     前記保水性シートと前記通気性素材との間に植物のさし穂を定植することを特徴とする縦型水耕栽培方法。
  10.  請求項2又は請求項7~8のいずれか1項に記載の縦型水耕栽培方法において、
     前記保水性シートに根を張っている植物を同保水性シートに付着した状態で両通気性素材に挟んで定植することを特徴とする縦型水耕栽培方法。
PCT/JP2019/004376 2018-02-07 2019-02-07 縦型水耕栽培システム及び縦型水耕栽培方法 WO2019156150A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980022028.6A CN112020301B (zh) 2018-02-07 2019-02-07 立式水耕栽培系统及立式水耕栽培方法
JP2019566851A JP6753623B2 (ja) 2018-11-19 2019-02-07 縦型水耕栽培システム及び縦型水耕栽培方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-019907 2018-02-07
JP2018019907A JP6463525B1 (ja) 2018-02-07 2018-02-07 縦型水耕栽培システム及び縦型水耕栽培方法
JP2018-216523 2018-11-19
JP2018216523 2018-11-19

Publications (1)

Publication Number Publication Date
WO2019156150A1 true WO2019156150A1 (ja) 2019-08-15

Family

ID=67548308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004376 WO2019156150A1 (ja) 2018-02-07 2019-02-07 縦型水耕栽培システム及び縦型水耕栽培方法

Country Status (2)

Country Link
CN (1) CN112020301B (ja)
WO (1) WO2019156150A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716981C1 (ru) * 2019-11-20 2020-03-17 Денис Владимирович Чаннов Вертикальная грядка
RU2746805C1 (ru) * 2020-07-10 2021-04-21 Алексей Игоревич Аминов Гидропонное устройство для выращивания растений и система выращивания, использующая это устройство

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150325A (en) * 1981-03-11 1982-09-17 Chiyoda Nosan Kk Cultivation method and apparatus
JPS61158726A (ja) * 1984-12-28 1986-07-18 黒岩 卓郎 立体水耕栽培方法およびそれに用いる栽培床
JPS61274630A (ja) * 1985-05-29 1986-12-04 強靭繊維興業株式会社 着生植物の育成方法及びその育成器
JPH01247023A (ja) * 1988-03-28 1989-10-02 Satoshi Hosokawa 植物栽培筒及びこれを有する植物栽培装置
JPH0568440A (ja) * 1991-04-08 1993-03-23 Emushiki Suiko Kenkyusho:Kk 植物栽培方法
US20130067813A1 (en) * 2009-08-03 2013-03-21 Nathaniel R. Storey Vertical Hydroponic Plant Production Apparatus
JP2016034243A (ja) * 2014-08-01 2016-03-17 株式会社インタートレード 高麗人参の水耕栽培方法及び水耕栽培装置
JP2016123404A (ja) * 2014-12-26 2016-07-11 金寶生物科技股▲ふん▼有限公司 植物栽培装置
JP2017538405A (ja) * 2014-11-19 2017-12-28 ユニバーシティ オブ ワイオミング 垂直な水耕栽培タワー・アレイ固定システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2301846Y (zh) * 1997-08-07 1998-12-30 郑肇龙 全自动定时供水培芽装置
JPWO2007063815A1 (ja) * 2005-11-30 2009-05-07 サントリー株式会社 植物栽培ユニット及び植物栽培容器
EP3311655A1 (en) * 2014-01-24 2018-04-25 Fujitsu Limited Plant cultivation apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150325A (en) * 1981-03-11 1982-09-17 Chiyoda Nosan Kk Cultivation method and apparatus
JPS61158726A (ja) * 1984-12-28 1986-07-18 黒岩 卓郎 立体水耕栽培方法およびそれに用いる栽培床
JPS61274630A (ja) * 1985-05-29 1986-12-04 強靭繊維興業株式会社 着生植物の育成方法及びその育成器
JPH01247023A (ja) * 1988-03-28 1989-10-02 Satoshi Hosokawa 植物栽培筒及びこれを有する植物栽培装置
JPH0568440A (ja) * 1991-04-08 1993-03-23 Emushiki Suiko Kenkyusho:Kk 植物栽培方法
US20130067813A1 (en) * 2009-08-03 2013-03-21 Nathaniel R. Storey Vertical Hydroponic Plant Production Apparatus
JP2016034243A (ja) * 2014-08-01 2016-03-17 株式会社インタートレード 高麗人参の水耕栽培方法及び水耕栽培装置
JP2017538405A (ja) * 2014-11-19 2017-12-28 ユニバーシティ オブ ワイオミング 垂直な水耕栽培タワー・アレイ固定システム
JP2016123404A (ja) * 2014-12-26 2016-07-11 金寶生物科技股▲ふん▼有限公司 植物栽培装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716981C1 (ru) * 2019-11-20 2020-03-17 Денис Владимирович Чаннов Вертикальная грядка
RU2746805C1 (ru) * 2020-07-10 2021-04-21 Алексей Игоревич Аминов Гидропонное устройство для выращивания растений и система выращивания, использующая это устройство
WO2022010382A1 (ru) * 2020-07-10 2022-01-13 Алексей Игоревич АМИНОВ Гидропонное устройство и система для выращивания растений

Also Published As

Publication number Publication date
CN112020301A (zh) 2020-12-01
CN112020301B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US8495833B2 (en) Live plant box
JP3991163B2 (ja) キュウリの栽培ベッド
JP6566501B2 (ja) 養液栽培システム
US20130031834A1 (en) Vertical planter system for orchids and epiphytic plants
JP3768489B2 (ja) 植物栽培装置及び植物栽培方法
WO2019156150A1 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
JP6707245B2 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
GB2070403A (en) Hanging plant device
JPH0342853B2 (ja)
JP6463525B1 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
JP3060208B2 (ja) 渟水式養液栽培方法及び栽培装置
SA98190305B1 (ar) طريقة وجهاز لزراعة النبات
JP6753623B2 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
JP2006174829A (ja) 簡易式養液栽培容器
JP2004208611A (ja) 自然薯の養液栽培方法およびその栽培装置
WO2017104703A1 (ja) 露地水耕栽培キット、露地水耕栽培システム、及び植物体の製造方法
JP6292693B1 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
JP6006182B2 (ja) 栽培槽の給水装置
KR102620968B1 (ko) 자바라스트로우로 양액을 공급하는 비닐하우스용 양액재배장치
JP6738071B2 (ja) 長尺育苗容器、連続集合鉢体苗を入れる装置、および、巻き取り器具
JP6292697B1 (ja) 縦型水耕栽培システム及び縦型水耕栽培方法
JP6292695B1 (ja) 養液非循環式縦型水耕栽培システム及び縦型水耕栽培方法
JPS6228865Y2 (ja)
JPH0937664A (ja) 水耕栽培用の栽培物保持器
JP2001211739A (ja) イチゴの栽培方法とそれに用いる栽培装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751545

Country of ref document: EP

Kind code of ref document: A1